WorldWideScience

Sample records for boost intensity modulated

  1. Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Dolsma, Willemtje; Schilstra, C; Korevaar, Erik W; de Bock, Geertruida H; Maduro, John H; Langendijk, Johannes A

    2010-01-01

    BACKGROUND AND PURPOSE: To examine whether in breast-conserving radiotherapy (RT) with simultaneously integrated boost (SIB), application of inversely planned intensity-modulated radiotherapy (IMRT-SIB) instead of three-dimensional RT (3D-CRT-SIB) has benefits that justify the additional costs, and

  2. Simultaneous integrated boost-intensity modulated radiation therapy for inoperable hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Park, Joong-Won; Kim, Yeon-Joo; Kim, Bo Hyun; Woo, Sang Myung; Moon, Sung Ho; Kim, Sang Soo; Lee, Woo Jin; Kim, Dae Yong; Kim, Chang-Min [National Cancer Center, Center for Liver Cancer, Research Institute and Hospital, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2014-10-15

    The aim of this work was to evaluate the clinical efficacy and safety of simultaneous integrated boost-intensity modulated radiation therapy (SIB-IMRT) in patients with inoperable hepatocellular carcinoma (HCC). A total of 53 patients with inoperable HCC underwent SIB-IMRT using two dose-fractionation schemes, depending on the proximity of gastrointestinal structures. The 41 patients in the low dose-fractionation (LD) group, with internal target volume (ITV) < 1 cm from gastrointestinal structures, received total doses of 55 and 44 Gy in 22 fractions to planning target volume 1 (PTV1) and 2 (PTV2), respectively. The 12 patients in the high dose-fractionation (HD) group, with ITV ≥ 1 cm from gastrointestinal structures, received total doses of 66 and 55 Gy in 22 fractions to the PTV1 and PTV2, respectively. Overall, treatment was well tolerated, with no grade > 3 toxicity. The LD group had larger sized tumors (median: 6 vs. 3.4 cm) and greater frequencies of vascular invasion (80.6 vs. 16.7 %) than patients in the HD group (p < 0.05 each). The median overall survival (OS) was 25.1 months and the actuarial 2-year local progression-free survival (LPFS), relapse-free survival (RFS), and OS rates were 67.3, 14.7, and 54.7 %, respectively. The HD group tended to show better tumor response (100 vs. 62.2 %, p = 0.039) and 2-year LPFS (85.7 vs. 59 %, p = 0.119), RFS (38.1 vs. 7.3 %, p = 0.063), and OS (83.3 vs. 44.3 %, p = 0.037) rates than the LD group. Multivariate analysis showed that tumor response was significantly associated with OS. SIB-IMRT is feasible and safe for patients with inoperable HCC. (orig.) [German] Ziel der Arbeit war es, die klinische Wirksamkeit und die Sicherheit der intensitaetsmodulierten Radiotherapie mit simultanem integriertem Boost (SIB-IMRT) fuer Patienten mit einem inoperablen hepatozellulaeren Karzinom (HCC) zu evaluieren. Bei 53 Patienten mit inoperablem HCC wurden zwei unterschiedliche Dosierungskonzepte je nach Lagebeziehung des

  3. Optimal beam design on intensity-modulated radiation therapy with simultaneous integrated boost in nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mei-Chun [Division of Radiation Oncology, Department of Oncology Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Hu, Yu-Wen; Liu, Ching-Sheng [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Lee, Jeun-Shenn [Division of Radiation Oncology, Department of Oncology Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Huang, Pin-I; Yen, Sang-Hue; Lee, Yuh-Lin; Hsieh, Chun-Mei [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Shiau, Cheng-Ying, E-mail: cyshiau@vghtpe.gov.tw [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2014-10-01

    This study aims to determine the optimal beam design among various combinations of field numbers and beam trajectories for intensity-modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB) technique for the treatment of nasopharyngeal cancer (NPC). We used 10 fields with gantry angles of 155°, 130°, 75°, 25°, 0° L, 0° R, 335°, 285°, 230°, and 205° denoted as F10. To decrease doses in the spinal cord, the F10 technique was designed by featuring 2 pairs of split-opposed beam fields at 155° to 335° and 205° to 25°, as well as one pair of manually split beam fields at 0°. The F10 technique was compared with 4 other common field arrangements: F7E, 7 fields with 50° equally spaced gantry angles; F7, the basis of F10 with 155°, 130°, 75°, 0°, 285°, 230°, and 205°; F9E, 9 fields with 40° equally spaced gantry angles; and FP, 7 posterior fields with 180°, 150°, 120°, 90°, 270°, 240°, and 210°. For each individual case of 10 patients, the customized constraints derived after optimization with the standard F10 technique were applied to 4 other field arrangements. The 4 new optimized plans of each individual case were normalized to achieve the same coverage of planning target volume (PTV){sub 63} {sub Gy} as that of the standard F10 technique. The F10 field arrangement exhibited the best coverage in PTV{sub 70} {sub Gy} and the least mean dose in the trachea-esophagus region. Furthermore, the F10 field arrangement demonstrated the highest level of conformity in the low-dose region and the least monitor unit. The F10 field arrangement performed more outstandingly than the other field arrangements in PTV{sub 70} {sub Gy} coverage and spared the central organ. This arrangement also exhibited the highest conformity and delivery efficiency. The F10 technique is recommended as the standard beam geometry for the SIB-IMRT of NPC.

  4. Simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Studer, Gabriela [Dept. of Radiation Oncology, Univ. Hospital, Zurich (Switzerland); Peponi, Evangelia; Glanzmann, Christoph; Kunz, Guntram; Renner, Christoph; Tomuschat, Katja

    2010-03-15

    Purpose: To assess the efficacy and safety of using simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) to treat nasopharyngeal cancer (NPC) in a Caucasian cohort. Outcome was analyzed with respect to dose-volume histogram (DVH) values. Patients and Methods: Between 03/2002 and 01/2008, 39 NPC patients underwent SIB-IMRT (37 Caucasians; 31 males; mean age 53 years [16-78 years]). 41% presented with WHO (World Health Organization) type 1 unfavorable histology, 85% with stage III/IV disease. 19 patients had total gross tumor volume (GTV) 16-70 cm{sup 3} (mean 36 cm{sup 3}), while 16 had GTV > 70 cm{sup 3} (73-217 cm{sup 3}; mean 115 cm{sup 3}). All patients with stage II-IV disease received concomitant cisplatin. The prescribed SIB dose delivered to the planning target volume (PTV) was 70 Gy (2.00 Gy/fraction) in 17, 69.6 Gy (2.11 Gy/fraction) in 19, and 66 Gy (2.20 Gy/fraction) in three patients. Results: 3-year local relapse-free, nodal relapse-free, distant metastases-free, disease-free rates and overall survival were 86%, 89%, 85%, 72%, and 85% (median follow-up 30 months [8-71 months]). Histology was a significant prognostic factor concerning overall survival, with worst prognosis in WHO type 1 compared to type 2/3 (75% vs. 93%; p = 0.03). There was a trend in favor of WHO type 2/3 regarding local control (74% vs. 94%; p = 0.052). The PTV DVHs showed a slight left shift compared to reported series. Three patients developed grade 3 late effects (xerostomia [n=2], dysphagia [n=1], hearing loss [n=1]). Conclusion: In comparison with predominantly Asian NPC IMRT series in the literature, chemo-IMRT in the own Caucasian cohort, characterized by less radioresponsive WHO type 1, was equally effective. Treatment tolerance was excellent. (orig.)

  5. Dosimetric study comparing intensity modulated and conformal pelvic radiotherapy boost plans in locally advanced cancer cervix in NCI-Cairo

    Institute of Scientific and Technical Information of China (English)

    Mohamed Mahmoud; Hesham A. EL-Hossiny; Nashaat A. Diab; Mahmoud Shosha

    2013-01-01

    Objective: This study was to compare 5 field conformal technique to the intensity modulated radiotherapy (IMRT) 8 fields technique in boosting locally advanced cancer cervix cases after external beam radiotherapy with respect to target volume coverage and dose to normal tissues. Methods: We conducted a single institutional comparative dosimetric analysis of 10 patients with cancer cervix who was presented to radiotherapy department in National Cancer Institute, Cairo in period between June 2012 to September 2012 and received a CRT boost in the place of planned brachytherapy after large field pelvic radiotherapy (PRT) with concurrent chemotherapy were retrospectively identified. All tumors were situated in the low central pelvis. Two plans were done for every patient; one using the 8 fields IMRT and the second one using 5 fields' 3DCRT the two techniques were then compared using dose volume histogram (DVH) analysis for the PTV, bladder, rectum and both femoral heads. Results: Comparing different DVHs, it was found that the planning target volume (PTV) was adequately covered in both plans while it was demonstrates that the 8 fields IMRT technique carried less doses reaching OARs (rectum, bladder, both femoral heads). Conclusion: From the present study, it is concluded that IMRT technique spared more efficiently OARs than CRT technique but both techniques covered the PTV adequately so whenever possible IMRT technique should be used.

  6. Ballistic optimisation with intensity modulation with integration of a concomitant boost for the radiotherapy of glioblastomas; Optimisation de la balistique en modulation d'intensite avec integration d'un boost concomitant pour la radiotherapie des glioblastomes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, C.; Franceries, X. [Universite Paul-Sabatier, 31 - Toulouse (France); Supper, C.; Vieillevigne, L.; Ken, S.; Simon, L.; Rives, M.; Moyal, E.; Delannes, M.; Noel, A.; Laprie, A. [Deparement de radiotherapie, Institut Claudius-Regaud, 31 - Toulouse (France); Franceries, X.; Ken, S.; Laprie, A. [Inserm UMR 825 Imagerie cerebrale et handicapes neurologiques, 31 - Toulouse (France); Noel, A. [Departement de radiotherapie, Centre Alexis-Vautrin, 54 - Nancy (France)

    2010-10-15

    The authors report a study aimed at the optimisation of the ballistics of intensity-modulated conformation radiotherapy (IMRT) treatment with a boost for the preparation of a multi-centric prospective trial financed by a program on glioblastoma treatment. This treatment consists in using the boost technique to obtain an increase of the dose delivered by the IMRT in sites presenting a strong predictive value for relapse. These sites are defined by means of magnetic resonance spectrometric imagery. Conformation indexes, planning target volumes, doses delivered to organs at risk are analysed. The proximity of organs at risk was the main difficulty, but a good dosimetry has been obtained with the use of five coplanar beams. Short communication

  7. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    Science.gov (United States)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O’Brien, Ricky T.; Petersen, Peter Meidahl; Rosenschöld, Per Munck af

    2013-01-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 seconds. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7–100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7–99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with > 3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf

  8. Endoscope-guided interstitial intensity-modulated brachytherapy and intracavitary brachytherapy as boost radiation for primary early T stage nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Xiang-Bo Wan

    Full Text Available BACKGROUND: Intracavitary brachytherapy (ICBT is usually applied as boost radiotherapy for superficial residual of nasopharyngeal carcinoma (NPC after primary extern-beam radiptherapy (ERT. Here, we evaluated the outcome of endoscope-guided interstitial intensity-modulated brachytherapy (IMBT boost radiation for deep-seated residual NPC. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred and thirteen patients with residual NPC who were salvaged with brachytherapy boost radiation during 2005-2009 were analyzed retrospectively. Among these patients, 171 patients had superficial residual NPC (≤1 cm below the nasopharyngeal epithelium were treated with ICBT boost radiation, and interstitial IMBT boost radiation was delivered to 42 patients with deep-seated residual NPC (>1 cm below the nasopharyngeal epithelium. We found that IMBT boost subgroup had a higher ratio of T2b (81.0% VS 34.5%, P<0.001 and stage II (90.5% VS 61.4%, P = 0.001 than that of ICBT boost subgroup. The dosage of external-beam radiotherapy in the nasopharyngeal (63.0±3.8 VS 62.6±4.3 Gray (Gy, P = 0.67 and regional lymph nodes (55.8±5.0 VS 57.5±5.7 Gy, P = 0.11 was comparable in both groups. For brachytherapy, IMBT subgroup had a lower boost radiation dosage than ICBT subgroup (11.0±2.9 VS 14.8±3.2 Gy, P<0.01. Though the IMBT group had deeper residual tumors and received lower boost radiation dosages, both subgroups had the similar 5-year actuarial overall survival rate (IMBT VS ICBT group: 96.8% VS 93.6%, P = 0.87, progression-free survival rate (92.4% VS 86.5%, P = 0.41 and distant metastasis-free survival rate (94.9% VS 92.7%, P = 0.64. Moreover, IMBT boost radiation subgroup had a similar local (97.4% VS 94.4%, P = 0.57 and regional (95.0% VS 97.2%, P = 0.34 control to ICBT subgroup. The acute and late toxicities rates were comparable between the both subgroups. CONCLUSIONS/SIGNIFICANCE: IMBT boost radiation may be a promising therapeutic

  9. Simultaneous integrated boost intensity-modulated radiotherapy in esophageal carcinoma. Early results of a phase II study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei-Wei [Fudan University, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Shanghai (China); Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Department of Radiation Oncology, Shanghai (China); Zhu, Zheng-Fei; Zhao, Kuai-Le; Mao, Jing-Fang; Wu, Kai-Liang; Yang, Huan-Jun; Fan, Min; Zhao, Sen [Fudan University, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Shanghai (China); Fu, Xiao-Long [Fudan University Cancer Hospital, Department of Radiation Oncology, Shanghai (China); Fudan University, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Shanghai (China); Welsh, James [The University of Texas MD Anderson Cancer Center, Departments of Radiation Oncology, Houston, Texas (United States)

    2014-11-15

    The safety and efficacy of using simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with esophageal squamous cell carcinoma were evaluated in a single-institution phase II setting. Between June 2007 and October 2009, 45 patients underwent concurrent chemoradiotherapy (n = 27) or radiotherapy alone (n = 18). Two planning target volumes (PTV) were defined for the SIB: PTV{sub C} and PTV{sub G}, with prescribed doses of 50.4 Gy to the PTV{sub C} (1.8 Gy/fraction) and 63 Gy to the PTV{sub G} (2.25 Gy/fraction), both given in 28 fractions. At a median follow-up interval of 20.3 months, the 3-year overall survival (OS) and progression-free survival (PFS) rates were 42.2 and 40.7 %, respectively. The median overall survival time was 21 months; locoregional control rates were 83.3 % at 1 year and 67.5 % at 3 years. According to CTCAE (version 3.0) criteria, none of the patients developed grade 4-5 toxicity. The most common grade 2 and 3 radiation-related toxicity was radiation esophagitis, occurring in 64 % of all patients (but only 13 % as grade 3). No patient developed grade > 2 pulmonary complications. SIB-IMRT is a feasible therapeutic approach for esophageal carcinoma patients and provides encouraging locoregional control with a low toxicity profile. Further investigations should focus on dose escalation and optimization of the combination with systemic therapies. (orig.) [German] Die Wirksamkeit und Effektivitaet einer intensitaetsmodulierten Radiotherapie mit einem simultan integrierten Boost (SIB-IMRT) fuer Patienten mit Oesophaguskarzinom wurde in einer Single-Institution-Phase-II-Studie bewertet. Zwischen Juni 2007 und Oktober 2009 wurden 45 Patienten mit einer simultanen Radiochemotherapie (n = 27) oder einer alleinigen Strahlentherapie (n = 18) behandelt. Zwei Planungszielvolumen (PTV) wurden fuer die SIB definiert: PTV{sub C} und PTV{sub G}, mit vorgeschriebenen Dosen von 50,4 Gy fuer PTV{sub C} (1,8 Gy/Fraktion) und 63 Gy

  10. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, Sebastien, E-mail: sebastien.clavel@umontreal.ca [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen, David H.A.; Fortin, Bernard [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Despres, Philippe [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Khaouam, Nader [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis [Department of Head and Neck Surgery, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada)

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  11. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Gary M., E-mail: Gary.Freedman@uphs.upenn.edu [Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Anderson, Penny R. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Bleicher, Richard J. [Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Litwin, Samuel; Li Tianyu [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Swaby, Ramona F. [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Ma, Chang-Ming Charlie; Li Jinsheng [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Sigurdson, Elin R. [Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Watkins-Bruner, Deborah [School of Nursing, Emory University, Atlanta, Georgia (United States); Morrow, Monica [Department of Surgical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goldstein, Lori J. [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)

    2012-11-15

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  12. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per Rugaard

    2013-01-01

    during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average......This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose...... done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm...

  13. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    Energy Technology Data Exchange (ETDEWEB)

    Penoncello, Gregory P.; Ding, George X., E-mail: george.ding@vanderbilt.edu

    2016-04-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  14. A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to high-risk prostate cancer.

    Science.gov (United States)

    Oermann, Eric K; Slack, Rebecca S; Hanscom, Heather N; Lei, Sue; Suy, Simeng; Park, Hyeon U; Kim, Joy S; Sherer, Benjamin A; Collins, Brian T; Satinsky, Andrew N; Harter, K William; Batipps, Gerald P; Constantinople, Nicholas L; Dejter, Stephen W; Maxted, William C; Regan, James B; Pahira, John J; McGeagh, Kevin G; Jha, Reena C; Dawson, Nancy A; Dritschilo, Anatoly; Lynch, John H; Collins, Sean P

    2010-10-01

    Clinical data suggest that large radiation fractions are biologically superior to smaller fraction sizes in prostate cancer radiotherapy. The CyberKnife is an appealing delivery system for hypofractionated radiosurgery due to its ability to deliver highly conformal radiation and to track and adjust for prostate motion in real-time. We report our early experience using the CyberKnife to deliver a hypofractionated stereotactic body radiation therapy (SBRT) boost to patients with intermediate- to high-risk prostate cancer. Twenty-four patients were treated with hypofractionated SBRT and supplemental external radiation therapy plus or minus androgen deprivation therapy (ADT). Patients were treated with SBRT to a dose of 19.5 Gy in 3 fractions followed by intensity modulated radiation therapy (IMRT) to a dose of 50.4 Gy in 28 fractions. Quality of life data were collected with American Urological Association (AUA) symptom score and Expanded Prostate Cancer Index Composite (EPIC) questionnaires before and after treatment. PSA responses were monitored; acute urinary and rectal toxicities were assessed using Common Toxicity Criteria (CTC) v3. All 24 patients completed the planned treatment with an average follow-up of 9.3 months. For patients who did not receive ADT, the median pre-treatment PSA was 10.6 ng/ml and decreased in all patients to a median of 1.5 ng/ml by 6 months post-treatment. Acute effects associated with treatment included Grade 2 urinary and gastrointestinal toxicity but no patient experienced acute Grade 3 or greater toxicity. AUA and EPIC scores returned to baseline by six months post-treatment. Hypofractionated SBRT combined with IMRT offers radiobiological benefits of a large fraction boost for dose escalation and is a well tolerated treatment option for men with intermediate- to high-risk prostate cancer. Early results are encouraging with biochemical response and acceptable toxicity. These data provide a basis for the design of a phase II clinical

  15. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Katrien; De Neve, Wilfried; De Gersem, Werner; Paelinck, Leen; Fonteyne, Valerie; De Wagter, Carlos; De Meerleer, Gert [Dept. of Radiotherapy, Ghent Univ. Hospital (Belgium); Delrue, Louke; Villeirs, Geert [Dept. of Radiology, Ghent Univ. Hospital (Belgium); Makar, Amin [Dept. of Gynecology, Ghent Univ. Hospital (Belgium)

    2009-12-15

    Purpose: to report on the planning procedure, quality control, and clinical implementation of intensity-modulated arc therapy (IMAT) delivering a simultaneous integrated boost (SIB) in patients with primary irresectable cervix carcinoma. Patients and methods: six patients underwent PET-CT (positron emission tomography-computed tomography) and MRI (magnetic resonance imaging) before treatment planning. Prescription (25 fractions) was (1) a median dose (D{sub 50}) of 62, 58 and 56 Gy to the primary tumor (GTVcervix), primary clinical target volume (CTVcervix) and its planning target volume (PTVcervix), respectively; (2) a D{sub 50} of 60 Gy to the PET-positive lymph nodes (GTVnodes); (3) a minimal dose (D{sub 98}) of 45 Gy to the planning target volume of the elective lymph nodes (PTVnodes). IMAT plans were generated using an anatomy-based exclusion tool with the aid of weight and leaf position optimization. The dosimetric delivery of IMAT was validated preclinically using radiochromic film dosimetry. Results: five to nine arcs were needed to create valid IMAT plans. Dose constraints on D{sub 50} were not met in two patients (both GTVcervix: 1 Gy and 3 Gy less). D{sub 98} for PTVnodes was not met in three patients (1 Gy each). Film dosimetry showed excellent gamma evaluation. There were no treatment interruptions. Conclusion: IMAT allows delivering an SIB to the macroscopic tumor without compromising the dose to the elective lymph nodes or the organs at risk. The clinical implementation is feasible. (orig.)

  16. Intensity-modulated pelvic radiation therapy and simultaneous integrated boost to the prostate area in patients with high-risk prostate cancer: a preliminary report of disease control.

    Science.gov (United States)

    Saracino, Biancamaria; Petrongari, Maria Grazia; Marzi, Simona; Bruzzaniti, Vicente; Sara, Gomellini; Arcangeli, Stefano; Arcangeli, Giorgio; Pinnarò, Paola; Giordano, Carolina; Ferraro, Anna Maria; Strigari, Lidia

    2014-10-01

    The aim of the study was to report the clinical results in patients with high-risk prostate cancer treated with pelvic intensity-modulated radiation therapy (IMRT) and simultaneous integrated boost (SIB) to the prostate area. A total of 110 patients entered our study, 37 patients presented with localized prostate cancer and radiological evidence of node metastases or ≥15% estimated risk of lymph node (LN) involvement, while 73 patients underwent postoperative adjuvant or salvage irradiation for biochemical or residual/recurrent disease, LN metastases, or high risk of harboring nodal metastases. All patients received androgen deprivation therapy (ADT) for 2 years. The median follow-up was 56.5 months. For the whole patient group, the 3- and 5-year freedom from biochemical failure were 82.6% and 74.6%, respectively, with a better outcome in patients treated with radical approach. The 3- and 5-year freedom from local failure were 94.4% and 90.2%, respectively, while the 3- and 5-year distant metastasis-free survival were 87.8% and 81.7%, respectively. For all study patients, the rate of freedom from G2 acute rectal, intestinal, and urinary toxicities was 60%, 77%, and 61%, respectively. There was no G3 acute toxicity, ≥G2 late intestinal toxicity, or G3 late urinary or rectal toxicity. The 3- and 5-year ≥G2 freedom from late rectal toxicity rate were 98% and 95%, respectively, while the 3- and 5-year ≥G2 freedom from late urinary toxicity rate were 95% and 88%, respectively. The study concludes that pelvic IMRT and SIB to the prostatic area in association with 2-year ADT was a well-tolerated technique, providing high disease control in patients with prostate cancer requiring LN treatment.

  17. Intensity-Modulated Radiotherapy with a Simultaneous Integrated Boost Combined with Chemotherapy in Stages III-IV Hypopharynx-Larynx Cancer: Treatment Compliance and Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Giovanni Franchin

    2014-01-01

    Full Text Available Objectives. Retrospective review of our experience using intensity-modulated radiotherapy with simultaneous integrated boost (SIB-IMRT combined with chemotherapy as the primary treatment of locoregionally advanced larynx and hypopharynx cancers. Materials and Methods. Between September 2008 and June 2012, 60 patients (26 with larynx and 34 hypopharynx cancers were treated. Our policy was to offer SIB-IMRT plus concurrent cisplatin to patients affected by larynx cancer stage T3N0-N1 and NCT with TPF (docetaxel/cisplatin/fluorouracil followed by SIB-IMRT to patients with larynx cancer stage T2-4N2-3 or hypopharynx cancer T2-4N0-3. SIB-IMRT consisted in a total dose of 70.95 Gy (2.15 Gy/fraction, 5 fractions/week to the gross primary and nodal disease and differentiated dosages for high risk and low risk nodal regions. Results. Complete remission was achieved in 53/60 (88% of patients. At a median follow up of 31 months (range 9–67, the rate of overall survival and locoregional control with functional larynx at 3 years were 68% and 60%, respectively. T stage (T1–3 versus T4 resulted in being significant for predicting 3-year freedom from relapse (it was 69% and 35%, resp., for T1–T3 and T4 tumors; P=0.04, while site of primary disease (larynx versus hypopharynx was not significant (P=0.35. Conclusion. Our results indicated that combining SIB-IMRT with induction chemotherapy or concurrent chemotherapy is an effective treatment strategy for organ preservation in advanced larynx/hypopharynx cancer.

  18. Long-term outcome and late toxicities of simultaneous integrated boost-intensity modulated radiotherapy in pediatric and adolescent nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chang-Juan Tao; Ai-Hua Lin; Jun Ma; Ying Sun; Xu Liu; Ling-Long Tang; Yan-Ping Mao; Lei Chen; Wen-Fei Li; Xiao-Li Yu; Li-Zhi Liu; Rong Zhang

    2013-01-01

    The application of simultaneous integrated boost-intensity modulated radiotherapy (SIB-IMRT) in pediatric and adolescent nasopharyngeal carcinoma (NPC) is underevaluated. This study aimed to evaluate long-term outcome and late toxicities in pediatric and adolescent NPC after SIB-IMRT combined with chemotherapy. Thirty-four patients (aged 8-20 years) with histologically proven, non-disseminated NPC treated with SIB-IMRT were enrol ed in this retrospective study. The disease stage distribution was as fol ows:stage I, 1 (2.9%);stage III, 14 (41.2%);and stage IV, 19 (55.9%). Al patients underwent SIB-IMRT and 30 patients also underwent cisplatin-based chemotherapy. The prescribed dose of IMRT was 64-68 Gy in 29-31 fractions to the nasopharyngeal gross target volume. Within the median fol ow-up of 52 months (range, 9-111 months), 1 patient (2.9%) experienced local recurrence and 4 (11.8%) developed distant metastasis (to the lung in 3 cases and to multiple organs in 1 case). Four patients (11.8%) died due to recurrence or metastasis. The 5-year locoregional relapse-free survival, distant metastasis-free survival, disease-free survival, and overal survival rates were 97.1%, 88.2%, 85.3%, and 88.2%, respectively. The most common acute toxicities were grades 3-4 hematologic toxicities and stomatitis. Of the 24 patients who survived for more than 2 years, 16 (66.7%) and 15 (62.5%) developed grades 1-2 xerostomia and ototoxicity, respectively. Two patients (8.3%) developed grade 3 ototoxicity; no grade 4 toxicities were observed. SIB-IMRT combined with chemotherapy achieves excellent long-term locoregional control in pediatric and adolescent NPC, with mild incidence of late toxicities. Distant metastasis is the predominant mode of failure.

  19. Intensity modulated radiation therapy with simultaneous integrated boost based dose escalation on neoadjuvant chemoradiation therapy for locally advanced distal esophageal adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Ming Zeng; Fernando N Aguila; Taral Patel; Mark Knapp; XueQiang Zhu; XiLin Chen; Phillip D Price

    2016-01-01

    AIM:To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost(IMRT-SIB).METHODS:We retrospectively reviewed the patients who underwent four-dimensional-based IMRT-SIBbased neoadjuvant chemoradiation protocol.During the concurrent chemoradiation therapy,radiation therapy was through IMRT-SIB delivered in 28 consecutive daily fractions with total radiation doses of 56 Gy to tumor and 5040 Gy dose-painted to clinical tumor volume,with a regimen at the discretion of the treating medical oncologist.This was followed by surgical tumor resection.We analyzed pathological completion response(p CR) rates its relationship with overall survival and event-freesurvival.RESULTS:Seventeen patients underwent dose escalation with the IMRT-SIB protocol between 2007 and 2014 and their records were available for analysis.Among the IMRT-SIB-treated patients,the toxicity appeared mild,the most common side effects were grade 1-3 esophagitis(46%) and pneumonitis(11.7%).There were no cardiac events.The Ro resection rate was 94%(n = 16),the p CR rate was 47%(n = 8),and the postoperative morbidity was zero.There was one mediastinal failure found,one patient had local failure at the anastomosis site,and the majority of failures were distant in the lung or bone.The 3-year diseasefree survival and overall survival rates were 41%(n = 7) and 53%(n = 9),respectively.CONCLUSION:The dose escalation through IMRT-SIB in the chemoradiation regimen seems responsible for down-staging the distal esophageal with well-tolerated complications.

  20. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Wu Binbin, E-mail: binbin.wu@gunet.georgetown.edu [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); McNutt, Todd [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Zahurak, Marianna [Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland (United States); Simari, Patricio [Autodesk Research, Toronto, ON (Canada); Pang, Dalong [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); Taylor, Russell [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland (United States); Sanguineti, Giuseppe [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States)

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  1. Conformal radiotherapy with intensity modulation and integrated boost in the head and neck cancers: experience of the Curie Institute; Radiotherapie conformationnelle avec modulation d'intensite et boost integre des cancers de la tete et du cou: experience de l'institut Curie

    Energy Technology Data Exchange (ETDEWEB)

    Toledano, I.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P. [Centre Jean-Perrin, 63 - Clermont-Ferrand (France); Graff, P.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P. [Hopital Europeen Georges-Pompidou, 75 -Paris (France)

    2009-10-15

    The modulated intensity radiotherapy (I.M.R.T.) is used in the treatment of cancers in superior aero digestive tracts to reduce the irradiation of parotids and to reduce the delayed xerostomia. This retrospective study presents the results got on the fourteen first patients according an original technique of I.M.R.T. with integrated boost. It appears that this technique is feasible and allows to reduce the xerostomia rate without modifying the local control rate. To limit the average dose to the parotids under 30 Gy seems reduce the incidence of severe xerostomia. (N.C.)

  2. Effect of intrafractional prostate motion on simultaneous boost intensity-modulated radiotherapy to the prostate: a simulation study based on intrafractional motion in the prone position.

    Science.gov (United States)

    Ikeda, Itaru; Mizowaki, Takashi; Ono, Tomohiro; Yamada, Masahiro; Nakamura, Mitsuhiro; Monzen, Hajime; Yano, Shinsuke; Hiraoka, Masahiro

    2015-01-01

    Although the prostate displacement of patients in the prone position is affected by respiration-induced motion, the effect of intrafractional prostate motion in the prone position during "simultaneous integrated boost intensity-modulated radiotherapy" (SIB-IMRT) is unclear. The purpose of this study was to evaluate the dosimetric effects of intrafractional motion on SIB-IMRT to a dominant intraprostatic lesion (IPL) using measured motion data of patients in a prone position, fixed with a thermoplastic shell. We obtained 2 orthogonal x-ray fluoroscopic images at the same moment every 0.2 seconds for 30 seconds before and after treatment, once weekly, from 7 patients with localized prostate cancer with detectable prostatic calcification. Prostate displacements in the left-right (LR), anteroposterior (AP), and superoinferior (SI) directions were calculated using the prostatic calcification as a fiducial marker. We defined the displacement between pretreatment and posttreatment as baseline drift (BD). An SIB-IMRT plan was generated in which each IPL + 3mm received a dose of 94.5Gy, whereas the remainder of the prostate + 7mm received a dose of 75.6Gy in 9 fields. A simulated plan of dose blurring was generated by the convolution of isocenter-shifted plans using measured motion data in 30 seconds and motion in 30 seconds + distance between pretreatment and posttreatment position (BD) for each of the 7 patients. The motion in 30 seconds mainly reflected respiration-induced motion. The mean displacements of BD were 1.4mm (- 3.1 to 8.2mm), - 2.2mm (- 9.1 to 1.5mm), and - 0.3mm (- 5.0 to 1.8mm) in the AP, SI, and LR directions, respectively. The differences in the target coverage with V90% of the IPL and V100% of the prostate between the simulated plan and original plan were - 3.9% to - 0.3% and - 0.6% to 1.1% for respiration-induced motion and 3.1% to - 67.8% and 3.6% to - 13.3% for BD with respiration-induced motion, respectively. The large motion of BD resulted in an

  3. A dosimetric comparison between 3D-Conformal radiation therapy and intensity modulated radiation therapy plans in the treatment of posterior fossa boost in children with high risk medulloblastom

    Institute of Scientific and Technical Information of China (English)

    Saad El Din I; Abd El AAl H; Makaar W; Mashhour K; El Beih D; Hashem W

    2013-01-01

    Objective:The work is a comparative study between two modalities of radiation therapy, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) in treating posterior fossa boost in children with high risk medul oblastoma;dosimetrical y evaluating and comparing both techniques as regard target coverage and doses to organs at risk (OAR). Methods:Twenty patients with high risk medul oblastoma were treated by 3D-CRT technique. A dosimetric comparison was done by performing two plans for the posterior fossa boost, 3D-CRT and IMRT plans, for the same patient using Eclipse planning system (version 8.6). Results:IMRT had a better conformity index compared to 3D-CRT plans (P value of 0.000). As for the dose homogeneity it was also better in the IMRT plans, yet it hasn’t reached the statistical significant value. Also, doses received by the cochleae, brainstem and spinal cord were significantly less in the IMRT plans than those of 3D-CRT (P value<0.05). Conclusion:IMRT technique was clearly able to improve conformity and homogeneity index, spare the cochleae, reduce dose to the brainstem and spinal cord in comparison to 3D-CRT technique.

  4. Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT

    Directory of Open Access Journals (Sweden)

    Mavtratzas Athanasios

    2011-05-01

    Full Text Available Abstract Background Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT and carbon ion therapy (C12 are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity. Methods/design The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions and 50 Gy IMRT (2.0 Gy/fraction in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL analyses. Discussion The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN. Trial Registration

  5. Extended Field Intensity Modulated Radiation Therapy With Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Kim, Hayeon; Choi, Serah [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Sukumvanich, Paniti; Olawaiye, Alexander B.; Kelley, Joseph L.; Edwards, Robert P.; Comerci, John T. [Department of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)

    2014-12-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence

  6. SU-E-T-810: Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Non-Small-Cell Lung Cancer with Simultaneously Integrated Boost Radiation Therapy: A Planning Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Chen, J; Zhang, G; Sun, T [Shandong Tumor Hospital, Jinan, Shandong (China)

    2015-06-15

    Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissue volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.

  7. High Efficient Universal Buck Boost Solar Array Regulator SAR Module

    Science.gov (United States)

    Kimmelmann, Stefan; Knorr, Wolfgang

    2014-08-01

    The high efficient universal Buck Boost Solar Array Regulator (SAR) module concept is applicable for a wide range of input and output voltages. The single point failure tolerant SAR module contains 3 power converters for the transfer of the SAR power to the battery dominated power bus. The converters are operating parallel in a 2 out of 3 redundancy and are driven by two different controllers. The output power of one module can be adjusted up to 1KW depending on the requirements. The maximum power point tracker (MPPT) is placed on a separate small printed circuit board and can be used if no external tracker signal is delivered. Depending on the mode and load conditions an efficiency of more than 97% is achievable. The stable control performance is achieved by implementing the magnetic current sense detection. The sensed power coil current is used in Buck and Boost control mode.

  8. CIM—Compact intensity modulation

    Science.gov (United States)

    Bleuel, M.; Lang, E.; Gähler, R.; Lal, J.

    2008-07-01

    Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse.

  9. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B [Omega Hospitals, Hyderabad, Telangana (India); Anuradha, C [Vit University, Vellore, Tamil Nadu (India)

    2015-06-15

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  10. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: alexdjensen@gmx.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nikoghosyan, Anna V.; Lossner, Karen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Haberer, Thomas; Jäkel, Oliver [Heidelberg Ion Beam Therapy Centre, Heidelberg (Germany); Münter, Marc W.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  11. Plasma optical modulators for intense lasers

    CERN Document Server

    Yu, Lu-Le; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10^16 W/cm^2 level to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser beams in a sub-mm-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser beam is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are presented. Such optical modulators may enable new applications in the high field physics.

  12. Plasma optical modulators for intense lasers

    Science.gov (United States)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  13. Smooth-Transition Simple Digital PWM Modulator for Four-Switch Buck-Boost Converters

    Science.gov (United States)

    Rodriguez, Alberto; Rodriguez, Miguel; Vazquez, Aitor; Maija, Pablo F.; Sebastian, Javier

    2014-08-01

    Four Switch non-inverting Buck-Boost (4SBB) converters are extensively used in non-isolated applications where voltage step-up and step-down are required. In order to achieve high efficiency operation it is preferred to control the 4SBB as a Buck or Boost converter, depending on the input/output voltage ratio. However, when input and output voltages are close this approach requires near- unity conversion ratios, which are difficult to achieve in practice. Several alternative operating modes have been proposed in the literature to overcome this issue. In particular, operating the 4SBB as a Buck and Boost at the same time (Buck+Boost mode) has proven to be adequate to achieve near-unity conversion ratios.This paper proposes a simple, hardware-efficient digital pulse width modulator for a 4SBB that enables operation in Buck, Boost and Buck+Boost modes, thus allowing near-unity conversion ratios, while achieving smooth transitions between the different modes. The proposed modulator is simulated with Simulink and experimentally demonstrated using a 500W 4SBB converter with 24V input voltage and 12V-36V output voltage range.

  14. Analysis and simulation of XPM intensity modulation

    Institute of Scientific and Technical Information of China (English)

    Jing Huang; Jianquan Yao

    2005-01-01

    Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.

  15. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    Energy Technology Data Exchange (ETDEWEB)

    Osa, Etin-Osa O.; DeWyngaert, Keith [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Roses, Daniel [Department of Surgery, New York University School of Medicine, New York, New York (United States); Speyer, James [Department of Medical Oncology, New York University School of Medicine, New York, New York (United States); Guth, Amber; Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York, New York (United States); Fenton Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Department of Population Health, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: Silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  16. X-ray-boosted photoionization for the measurement of an intense laser pulse

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng; He Hai-Ping

    2013-01-01

    Investigations show that X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity Ⅰ and field envelope F(t) (time t,pulse duration τL,carrier-envelope-phase Φ):accuracy,dynamic range,and rapidness.The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift.The maximum momentump9 and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum,PES) linearly depend on I1/2 and τL,respectively.Φ and F(t) can be determined from the PES cut-off energy and peak positions.The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.

  17. Non-Inverted Buck-Boost Converters with Dual Delta Sigma Modulators

    Science.gov (United States)

    Kobori, Yasunori; Kono, Masashi; Shimizu, Toshihiko; Kobayashi, Haruo

    This paper presents a new control circuit to create high-performance non-inverted Buck-Boost converter with dual ⊿∑ modulations. Experimental load regulation, corresponding to load current steps of ±0.5A, is within 45mVpp, and the efficiency without synchronized rectifier is 83% at input voltage 2.5V and load current 0.8A.

  18. Fan-beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  19. Exercise Intensity Modulation of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Fábio S. Lira

    2012-01-01

    Full Text Available Lipid metabolism in the liver is complex and involves the synthesis and secretion of very low density lipoproteins (VLDL, ketone bodies, and high rates of fatty acid oxidation, synthesis, and esterification. Exercise training induces several changes in lipid metabolism in the liver and affects VLDL secretion and fatty acid oxidation. These alterations are even more conspicuous in disease, as in obesity, and cancer cachexia. Our understanding of the mechanisms leading to metabolic adaptations in the liver as induced by exercise training has advanced considerably in the recent years, but much remains to be addressed. More recently, the adoption of high intensity exercise training has been put forward as a means of modulating hepatic metabolism. The purpose of the present paper is to summarise and discuss the merit of such new knowledge.

  20. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  1. Intensity-Modulated Radiotherapy for Pancreatic Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Abelson, Jonathan A.; Murphy, James D.; Minn, Ann Yuriko; Chung, Melody [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Fisher, George A.; Ford, James M.; Kunz, Pamela [Department of Medical Oncology, Stanford University, Stanford, CA (United States); Norton, Jeffrey A.; Visser, Brendan C.; Poultsides, George A. [Department of Surgical Oncology, Stanford University, Stanford, CA (United States); Koong, Albert C. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2012-03-15

    Purpose: To report the outcomes and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for pancreatic adenocarcinoma. Methods and Materials: Forty-seven patients with pancreatic adenocarcinoma were treated with IMRT between 2003 and 2008. Of these 47 patients, 29 were treated adjuvantly and 18 definitively. All received concurrent 5-fluorouracil chemotherapy. The treatment plans were optimized such that 95% of the planning target volume received the prescription dose. The median delivered dose for the adjuvant and definitive patients was 50.4 and 54.0 Gy, respectively. Results: The median age at diagnosis was 63.9 years. For adjuvant patients, the 1- and 2-year overall survival rate was 79% and 40%, respectively. The 1- and 2-year recurrence-free survival rate was 58% and 17%, respectively. The local-regional control rate at 1 and 2 years was 92% and 80%, respectively. For definitive patients, the 1-year overall survival, recurrence-free survival, and local-regional control rate was 24%, 16%, and 64%, respectively. Four patients developed Grade 3 or greater acute toxicity (9%) and four developed Grade 3 late toxicity (9%). Conclusions: Survival for patients with pancreatic cancer remains poor. A small percentage of adjuvant patients have durable disease control, and with improved therapies, this proportion will increase. Systemic therapy offers the greatest opportunity. The present results have demonstrated that IMRT is well tolerated. Compared with those who received three-dimensional conformal radiotherapy in previously reported prospective clinical trials, patients with pancreatic adenocarcinoma treated with IMRT in our series had improved acute toxicity.

  2. Implementation of intensity modulation with dynamic multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.W.; Yu, C.; Jaffray, D. [William Beaumont Hospital, Royal Oak, MI (United States)

    1995-12-01

    The computer-controlled multileaf collimator (MLC) marks one of the most important advances in radiation therapy. The device efficiently replaces manual blocking to shape fields and can be used to modulate beam intensity. The results of a research programme at William Beaumont Hospital, aimed at bringing dynamic intensity modulation into clinical use, are discussed.

  3. DFB laser with attached external intensity modulator

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, D. (AT and T Bell Labs. Holmdel, NJ (US))

    1990-02-01

    This paper presents a theoretical study of the frequency pulling effect exerted on a DFB laser by an external amplitude modulator that is directly attached to it. The modulator consists of a piece of waveguide whose loss is modulated by means of an externally applied voltage. The modulator affects the laser due to residual reflections from its far end which appear as a variable effective reflectivity to the output end of the DFB laser. Modulation affects the magnitude as well as the phase of the effective reflection coefficient presented to the laser due to the coupling of the real and imaginary parts of the effective refractive index of the modulator waveguide. The tuning problem is formulated as an eigenvalue equation for the DFB laser in the presence of an externally attached lossy cavity.

  4. Performance analysis of the ultra-linear optical intensity modulator

    Science.gov (United States)

    Madamopoulos, Nicholas; Dingel, Benjamin

    2006-10-01

    The linear optical intensity modulator is a key component in any broadband optical access-based analog fiber-optic link systems such as sub-carrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. Previously, we have proposed a super-linear optical modulator, having SFDR = 130 -140 dB-Hz 2/3, based on a unique combination of phase-modulator (PM) and a weak ring resonator (RR) modulator within a Mach-Zehnder interferometer (MZI). We presented some of its unique features. In this paper, we characterize further this ultra-linear optical intensity modulator, analyze its RF performance and provide method for parameter optimization. Other excellent features of this modulator design such as high manufacturing tolerance, effect of link insertion loss, adaptive characteristic and device simplicity are also discussed.

  5. Depth and Intensity Gabor Features Based 3D Face Recognition Using Symbolic LDA and AdaBoost

    Directory of Open Access Journals (Sweden)

    P. S. Hiremath

    2013-11-01

    Full Text Available In this paper, the objective is to investigate what contributions depth and intensity information make to the solution of face recognition problem when expression and pose variations are taken into account, and a novel system is proposed for combining depth and intensity information in order to improve face recognition performance. In the proposed approach, local features based on Gabor wavelets are extracted from depth and intensity images, which are obtained from 3D data after fine alignment. Then a novel hierarchical selecting scheme embedded in symbolic linear discriminant analysis (Symbolic LDA with AdaBoost learning is proposed to select the most effective and robust features and to construct a strong classifier. Experiments are performed on the three datasets, namely, Texas 3D face database, Bhosphorus 3D face database and CASIA 3D face database, which contain face images with complex variations, including expressions, poses and longtime lapses between two scans. The experimental results demonstrate the enhanced effectiveness in the performance of the proposed method. Since most of the design processes are performed automatically, the proposed approach leads to a potential prototype design of an automatic face recognition system based on the combination of the depth and intensity information in face images.

  6. Intensity modulated short circuit current spectroscopy for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavasoglu, Nese; Sertap Kavasoglu, A.; Birgi, Ozcan; Oktik, Sener [Mugla University, Faculty of Arts and Sciences, Physics Department, TR-48000 Mugla (Turkey); Mugla University Clean Energy Research and Development Centre, TR-48000 Mugla (Turkey)

    2011-02-15

    Understanding charge separation and transport is momentously important for the rectification of solar cell performance. To probe photo-generated carrier dynamics, we implemented intensity modulated short circuit current spectroscopy (IMSCCS) on porous Si and Cu(In{sub x},Ga{sub 1-x})Se{sub 2} solar cells. In this experiment, the solar cells were lightened with sinusoidally modulated monochromatic light. The photocurrent response of the solar cell as a function of modulation frequency is measured as the optoelectronic transfer function of the system. The optoelectronic transfer function introduces the connection between the modulated light intensity and measured AC current of the solar cell. In this study, interaction of free carriers with the density of states of the porous Si and Cu(In{sub x}, Ga{sub 1-x})Se{sub 2} solar cells was studied on the basis of charge transport time by IMSCCS data. (author)

  7. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  8. Topological Design and Modulation Strategy for Buck-Boost Three-Level Inverters

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus;

    2009-01-01

    To date, designed topologies for dc-ac inversion with both voltage buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable...

  9. Topological Design and Modulation Strategy for Buck-Boost Three-Level Inverters

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Gao, F.; Blaabjerg, Frede;

    2007-01-01

    To date, designed topologies for dc-ac inversion with both voltage-buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable...

  10. Pulse width modulated buck-boost five-level current source inverters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Gao, F.; Loh, P.C.;

    2008-01-01

    This paper presents new five-level current source inverters (CSIs) with voltage/current buck-boost capability. Being different from the existing multilevel CSI, the proposed CSIs were first designed to regulate the flowing path of dc input current by controlling two additional active switches, re...

  11. A low-cost vector processor boosting compute-intensive image processing operations

    Science.gov (United States)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  12. 局部晚期中低位直肠癌术前螺旋断层同期加量放疗并同步口服卡培他滨化疗的效果%Chemoradiation effect of combined preoperative intensity-modulated radiotherapy with oral capecitabine in patients with locally advanced mid-low rectal cancer using a simultaneous integrated boost of tomotherapy

    Institute of Scientific and Technical Information of China (English)

    许卫东; 高军茂; 赵一虹; 陈纲; 杜峻峰; 张富利

    2015-01-01

    Objective To assess the safety and efficacy of preoperative intensity-modulated radiotherapy(IMRT) with oral capecitabine in patients with locally advanced mid-low rectal cancer using a simultaneous integrated boost (SIB) of tomotherapy.Methods Total 16 patients with resectable locally advanced mid-low rectal cancer (patients with T3 to T4 and/or N ± rectal cancer) were enroll in current study.Patients were received IMRT to 2 dose levels simultaneously (55 and 47.5 Gy in 25 fractions) with concurrent capecitabine 825 mg/m2 twice daily,5 days/week.Total mesorectal excision was performed at 8 to 9 week after the completion of chemoradiation.The primary end point included side effect,the rate of sphinctersparing,postoperative complication and pathological complete response rate (pCR) were observed.Side effects were scored using the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0.Results All patients were received chemoradiotion therapy without any break.Tomotherapy showed superiority with respect to target coverage,homogeneity and conformality.Two patients refused to perform radical surgery because of almost complete primary tumor regression and complete symptom relief after neoadjuvant therapy.Fourteen patients underwent surgical resection and 11 patients (78.6%) underwent sphincter-sparing lower anterior resection.Four patients(28.6%) had a pathological complete response.The incidence of grade 1-2 hematologic,gastro-intestinal toxicities were 62.5% (10/16) and 18.8% (3/16).The incidence of grade 3 skin toxicities were 68.8%(10/16).Grade Ⅳ side effect was not observed.Surgical complications (incisional infection on thirteen after surgery) were observed in 1 patient.Conclusion Preoperative simultaneous integrated boost of tomotherapy with concurrent oral capecitabine is safe and well tolerated in patients with a promising local control.However,a larger number of patients and a long follow-up are required to assess its

  13. Standard fractionation intensity modulated radiation therapy (IMRT of primary and recurrent glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Fuller Clifton D

    2007-07-01

    Full Text Available Abstract Background Intensity-modulated radiation therapy (IMRT affords unparalleled capacity to deliver conformal radiation doses to tumors in the central nervous system. However, to date, there are few reported outcomes from using IMRT, either alone or as a boost technique, for standard fractionation radiotherapy for glioblastoma multiforme (GBM. Methods Forty-two patients were treated with IMRT alone (72% or as a boost (28% after 3-dimensional conformal radiation therapy (3D-CRT. Thirty-three patients with primary disease and 9 patients with recurrent tumors were included. Thirty-four patients (81% had surgery, with gross tumor resection in 13 patients (36%; 22 patients (53% received chemo-radiotherapy. The median total radiation dose for all patients was 60 Gy with a range from 30.6 to 74 Gy. Standard fractions of 1.8 Gy/day to 2.0 Gy/day were utilized. Results Median survival was 8.7 months, with 37 patients (88% deceased at last contact. Nonparametric analysis showed no survival difference in IMRT-boost vs. IMRT-only groups. Conclusion While technically feasible, preliminary results suggest delivering standard radiation doses by IMRT did not improve survival outcomes in this series compared to historical controls. In light of this lack of a survival benefit and the costs associated with use of IMRT, future prospective trials are needed to evaluate non-survival endpoints such as quality of life and functional preservation. Short of such evidence, the use of IMRT for treatment of GBM needs to be carefully rationalized.

  14. Single-Switch Equalization Charger Using Multiple Stacked Buck-Boost Converters for Series-Connected Energy-Storage Modules

    Science.gov (United States)

    Uno, Masatoshi; Tanaka, Koji

    Series connections of energy-storage modules such as electric double-layer capacitors (EDLCs) and lithium-ion batteries result in voltage imbalance because of the nonuniform properties of individual modules. Conventional voltage equalizers based on traditional dc-dc converters require numerous switches and/or transformers, and therefore, their costs and complexity tend to increase. This paper proposes a novel single-switch equalization charger using multiple stacked buck-boost converters. The single-switch operation not only reduces the circuit complexity but also contributes to increasing the reliability. The fundamental operating principles and design procedures of key components are presented in detail. An experimental charge test using a 25W prototype of the proposed equalization charger was performed for four series-connected EDLC modules whose initial voltages were intentionally imbalanced. Experimental results demonstrated that the proposed equalization charger could charge the series-connected modules preferentially in the order of increasing module voltage and that all the modules could be charged up to a uniform voltage level.

  15. Plasma-based polarization modulator for high-intensity lasers

    Science.gov (United States)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  16. Comparison study of intensity modulated arc therapy using single or multiple arcs to intensity modulated radiation therapy for high-risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ashamalla, Hani; Tejwani, Ajay; Parameritis, Loannis; Swamy, Uma; Luo, Pei Ching; Guirguis, Adel; Lavaf, Amir [Weill Medical College of Cornell University, Brooklyn, NY (United States)

    2013-06-15

    Intensity modulated arc therapy (IMAT) is a form of intensity modulated radiation therapy (IMRT) that delivers dose in single or multiple arcs. We compared IMRT plans versus single-arc field (1ARC) and multi-arc fields (3ARC) IMAT plans in high-risk prostate cancer. Sixteen patients were studied. Prostate (PTV{sub P}), right pelvic (PTV{sub RtLN}) and left pelvic lymph nodes (PTV{sub LtLN}), and organs at risk were contoured. PTVP, PTV{sub RtLN}, and PTV{sub LtLN} received 50.40 Gy followed by a boost to PTV{sub B} of 28.80 Gy. Three plans were per patient generated: IMRT, 1ARC, and 3ARC. We recorded the dose to the PTV, the mean dose (D{sub MEAN}) to the organs at risk, and volume covered by the 50% isodose. Efficiency was evaluated by monitor units (MU) and beam on time (BOT). Conformity index (CI), Paddick gradient index, and homogeneity index (HI) were also calculated. Average Radiation Therapy Oncology Group CI was 1.17, 1.20, and 1.15 for IMRT, 1ARC, and 3ARC, respectively. The plans' HI were within 1% of each other. The D{sub MEAN} of bladder was within 2% of each other. The rectum D{sub MEAN} in IMRT plans was 10% lower dose than the arc plans (p < 0.0001). The GI of the 3ARC was superior to IMRT by 27.4% (p = 0.006). The average MU was highest in the IMRT plans (1686) versus 1ARC (575) versus 3ARC (1079). The average BOT was 6 minutes for IMRT compared to 1.3 and 2.9 for 1ARC and 3ARC IMAT (p < 0.05). For high-risk prostate cancer, IMAT may offer a favorable dose gradient profile, conformity, MU and BOT compared to IMRT.

  17. Intensity modulation with electrons: calculations, measurements and clinical applications.

    Science.gov (United States)

    Karlsson, M G; Karlsson, M; Zackrisson, B

    1998-05-01

    Intensity modulation of electron beams is one step towards truly conformal therapy. This can be realized with the MM50 racetrack microtron that utilizes a scanning beam technique. By adjusting the scan pattern it is possible to obtain arbitrary fluence distributions. Since the monitor chambers in the treatment head are segmented in both x- and y-directions it is possible to verify the fluence distribution to the patient at any time during the treatment. Intensity modulated electron beams have been measured with film and a plane parallel chamber and compared with calculations. The calculations were based on a pencil beam method. An intensity distribution at the multileaf collimator (MLC) level was calculated by superposition of measured pencil beams over scan patterns. By convolving this distribution with a Gaussian pencil beam, which has propagated from the MLC to the isocentre, a fluence distribution at isocentre level was obtained. The agreement between calculations and measurements was within 2% in dose or 1 mm in distance in the penumbra zones. A standard set of intensity modulated electron beams has been developed. These beams have been implemented in a treatment planning system and are used for manual optimization. A clinical example (prostate) of such an application is presented and compared with a standard irradiation technique.

  18. Intensity modulation with electrons: calculations, measurements and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Magnus G.; Karlsson, Mikael [Department of Radiation Physics, Umeaa University, S-901 85 Umeaa (Sweden); Zackrisson, Bjoern [Department of Oncology, Umeaa University, S-901 85 Umeaa (Sweden)

    1998-05-01

    Intensity modulation of electron beams is one step towards truly conformal therapy. This can be realized with the MM50 racetrack microtron that utilizes a scanning beam technique. By adjusting the scan pattern it is possible to obtain arbitrary fluence distributions. Since the monitor chambers in the treatment head are segmented in both x- and y-directions it is possible to verify the fluence distribution to the patient at any time during the treatment. Intensity modulated electron beams have been measured with film and a plane parallel chamber and compared with calculations. The calculations were based on a pencil beam method. An intensity distribution at the multileaf collimator (MLC) level was calculated by superposition of measured pencil beams over scan patterns. By convolving this distribution with a Gaussian pencil beam, which has propagated from the MLC to the isocentre, a fluence distribution at isocentre level was obtained. The agreement between calculations and measurements was within 2% in dose or 1 mm in distance in the penumbra zones. A standard set of intensity modulated electron beams has been developed. These beams have been implemented in a treatment planning system and are used for manual optimization. A clinical example (prostate) of such an application is presented and compared with a standard irradiation technique. (author)

  19. Metadevice for intensity modulation with sub-wavelength spatial resolution

    CERN Document Server

    Cencillo-Abad, Pablo; Plum, Eric

    2016-01-01

    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic beam diffraction, light focusing and holography without unwanted diffraction artefacts.

  20. New techniques in hadrontherapy: intensity modulated proton beams.

    Science.gov (United States)

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  1. Arc binary intensity modulated radiation therapy (AB IMRT)

    Science.gov (United States)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  2. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu; Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  3. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  4. Standardized evaluation of simultaneous integrated boost plans on volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wensha; Jones, Ryan; Read, Paul; Benedict, Stanley; Sheng Ke, E-mail: ks2mc@virginia.edu [Department of Radiation Oncology, University of Virginia, VA (United States)

    2011-01-21

    The purpose of this paper is to quantify the capability of the RapidArc (RA) planning system to deliver highly heterogeneous doses for simultaneous integrated boost (SIB) in both a phantom and patients. A cylindrical planning target volume (PTV) with a diameter of 6 cm was created in a cylindrical phantom. A smaller boost tumor volume (BTV) in the PTV with varying diameters (0.625-2.5 cm), positions and shapes was also created. Five previously treated patients with brain tumors were included in the study. Original gross tumor volumes (average 41.8 cm{sup 3}) and PTVs (average 316 cm{sup 3}) were adopted as the BTV and the PTV in the new plans. 30 Gy was prescribed to the PTV. Doses varying from 35 to 90 Gy were prescribed to the BTV. Both SIB and sequential boost (SEQ) plans were created on RA to meet the prescription. A set of reference plans was also created on the helical tomotherapy (HT) platform. Normalized dose contrast (NDC) and the integral dose were used to evaluate the quality of plans. NDC was defined as the dose contrast between BTV and PTV-BTV, normalizing to the ideal scenario where the contrast is the ratio between prescribed doses to the BTV and PTV. NDC above 90% was observed with BTV dose less than 60 Gy. NDC was minimally affected by the size of BTV but adversely affected by the complexity of the shape of the BTV. In the phantom plans, a peak of NDC was observed with 45 Gy (150% of PTV dose) to the BTV; for BTVs at the center of the PTV, the increase in the integral dose was less than 2% and remained constant for all dose levels in the phantom plans but a linear increase in the integral dose was observed with the HT plans. In the patient plans, an 11% average increase in the integral dose was observed with SIB plans and 60 Gy to the BTV, lower than the 30% average increase in the SEQ plans by RA and 25% by HT. The study showed not only that SIB by RA can achieve superior plans compared with SEQ plans on the same platform and SIB plans on HT, but

  5. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  6. Similarities between static and rotational intensity-modulated plans

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q Jackie; Yin Fangfang; McMahon, Ryan; Zhu Xiaofeng; Das, Shiva K [Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710 (United States)], E-mail: jackie.wu@duke.edu

    2010-01-07

    The aim of this study was to explore similarities between intensity-modulated radiotherapy (IMRT) and intensity-modulated arc therapy (IMAT) techniques in the context of the number of multi-leaf collimator (MLC) segments required to achieve plan objectives, the major factor influencing plan quality. Three clinical cases with increasing complexity were studied: (a) prostate only, (b) prostate and seminal vesicles and (c) prostate and pelvic lymph nodes. Initial 'gold-standard' plans with the maximum possible organ-at-risk sparing were generated for all three cases. For each case, multiple IMRT and IMAT plans were generated with varying intensity levels (IMRT) and arc control points (IMAT), which translate into varying MLC segments in both modalities. The IMAT/IMRT plans were forced to mimic the organ-at-risk sparing and target coverage in the gold-standard plans, thereby only allowing the target dose inhomogeneity to be variable. A higher target dose inhomogeneity (quantified as D5-dose to the highest 5% of target volume) implies that the plan is less capable of modulation. For each case, given a similar number of MLC segments, both IMRT and IMAT plans exhibit similar target dose inhomogeneity, indicating that there is no difference in their ability to provide dose painting. Target dose inhomogeneity remained approximately constant with decreasing segments, but sharply increased below a specific critical number of segments (70, 100, 110 for cases a, b, c, respectively). For the cases studied, IMAT and IMRT plans are similar in their dependence on the number of MLC segments. A minimum critical number of segments are required to ensure adequate plan quality. Future studies are needed to establish the range of minimum critical number of segments for different treatment sites and target-organ geometries.

  7. Similarities between static and rotational intensity-modulated plans

    Science.gov (United States)

    Wu, Q. Jackie; Yin, Fang-Fang; McMahon, Ryan; Zhu, Xiaofeng; Das, Shiva K.

    2010-01-01

    The aim of this study was to explore similarities between intensity-modulated radiotherapy (IMRT) and intensity-modulated arc therapy (IMAT) techniques in the context of the number of multi-leaf collimator (MLC) segments required to achieve plan objectives, the major factor influencing plan quality. Three clinical cases with increasing complexity were studied: (a) prostate only, (b) prostate and seminal vesicles and (c) prostate and pelvic lymph nodes. Initial 'gold-standard' plans with the maximum possible organ-at-risk sparing were generated for all three cases. For each case, multiple IMRT and IMAT plans were generated with varying intensity levels (IMRT) and arc control points (IMAT), which translate into varying MLC segments in both modalities. The IMAT/IMRT plans were forced to mimic the organ-at-risk sparing and target coverage in the gold-standard plans, thereby only allowing the target dose inhomogeneity to be variable. A higher target dose inhomogeneity (quantified as D5—dose to the highest 5% of target volume) implies that the plan is less capable of modulation. For each case, given a similar number of MLC segments, both IMRT and IMAT plans exhibit similar target dose inhomogeneity, indicating that there is no difference in their ability to provide dose painting. Target dose inhomogeneity remained approximately constant with decreasing segments, but sharply increased below a specific critical number of segments (70, 100, 110 for cases a, b, c, respectively). For the cases studied, IMAT and IMRT plans are similar in their dependence on the number of MLC segments. A minimum critical number of segments are required to ensure adequate plan quality. Future studies are needed to establish the range of minimum critical number of segments for different treatment sites and target-organ geometries.

  8. Whole pelvic intensity-modulated radiotherapy for high-risk prostate cancer: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji Hyeon; Kim, Yeon Joo; Kim, Young Seok [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); and others

    2013-12-15

    To assess the clinical efficacy and toxicity of whole pelvic intensity-modulated radiotherapy (WP-IMRT) for high-risk prostate cancer. Patients with high-risk prostate cancer treated between 2008 and 2013 were reviewed. The study included patients who had undergone WP-IMRT with image guidance using electronic portal imaging devices and/or cone-beam computed tomography. The endorectal balloon was used in 93% of patients. Patients received either 46 Gy to the whole pelvis plus a boost of up to 76 Gy to the prostate in 2 Gy daily fractions, or 44 Gy to the whole pelvis plus a boost of up to 72.6 Gy to the prostate in 2.2 Gy fractions. The study cohort included 70 patients, of whom 55 (78%) had a Gleason score of 8 to 10 and 50 (71%) had a prostate-specific antigen level > 20 ng/mL. The androgen deprivation therapy was combined in 62 patients. The biochemical failure-free survival rate was 86.7% at 2 years. Acute any grade gastrointestinal (GI) and genitourinary (GU) toxicity rates were 47% and 73%, respectively. The actuarial rate of late grade 2 or worse toxicity at 2 years was 12.9% for GI, and 5.7% for GU with no late grade 4 toxicity. WP-IMRT was well tolerated with no severe acute or late toxicities, resulting in at least similar biochemical control to that of the historic control group with a small field. The long-term efficacy and toxicity will be assessed in the future, and a prospective randomized trial is needed to verify these findings.

  9. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  10. Dose profile analysis of small fields in intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  11. Residual intensity modulation in resonator fiber optic gyros with sinusoidal wave phase modulation

    Institute of Scientific and Technical Information of China (English)

    Di-qing YING; Qiang LI; Hui-lian MA; Zhong-he JIN

    2014-01-01

    We present how residual intensity modulation (RIM) affects the performance of a resonator fiber optic gyro (R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system’s demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value;however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be con-sidered when designing and evaluating an R-FOG system.

  12. Quantitative shadowgraphy and proton radiography for large intensity modulations

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ratan, Naren; Sadler, James; Chen, Nicholas; Savert, Alexander; Trines, Raoul; Bingham, Robert; Burrows, Philip N; Kaluza, Malte C; Norreys, Peter

    2016-01-01

    Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the non-linear nature of the process. Here, a novel method to retrieve quantitative information from shadowgrams, based on computational geometry, is presented for the first time. This process can be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and post-processing techn...

  13. Effects of intensity-modulated radiotherapy on human oral microflora.

    Science.gov (United States)

    Shao, Zi-Yang; Tang, Zi-Sheng; Yan, Chao; Jiang, Yun-Tao; Ma, Rui; Liu, Zheng; Huang, Zheng-Wei

    2011-01-01

    This study aimed to evaluate changes in the biodiversity of the oral microflora of patients with head and neck cancer treated with postoperative intensity-modulated radiotherapy (IMRT) or conventional radiotherapy (CRT). Pooled dental plaque samples were collected during the radiation treatment from patients receiving IMRT (n = 13) and CRT (n = 12). Denaturing gradient gel electrophoresis (DGGE) was used to analyze the temporal variation of these plaque samples. The stimulated and unstimulated salivary flow rates were also compared between IMRT and CRT patients. Reductions in the severity of hyposalivation were observed in IMRT patients compared with CRT patients. We also observed that the temporal stability of the oral ecosystem was significantly higher in the IMRT group (69.96 ± 7.82%) than in the CRT group (51.98 ± 10.45%) (P oral ecosystem than CRT.

  14. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  15. Subcarrier Intensity Modulated Optical Wireless Communications:A Survey from Communication Theory Perspective

    Institute of Scientific and Technical Information of China (English)

    Md Zoheb Hassan; Md Jahangir Hossain; Julian Cheng; Victor C M Leung

    2016-01-01

    Subcarrier intensity modulation with direct detection is a modulation/detection technique for optical wireless communication sys⁃tems, where a pre⁃modulated and properly biased radio frequency signal is modulated on the intensity of the optical carrier. The most important benefits of subcarrier intensity modulation are as follows: 1) it does not provide irreducible error floor like the con⁃ventional on⁃off keying intensity modulation with a fixed detection threshold; 2) it provides improved spectral efficiency and sup⁃ports higher order modulation schemes; and 3) it has much less implementation complexity compared to coherent optical wireless communications with heterodyne or homodyne detection. In this paper, we present an up⁃to⁃date review of subcarrier intensity modulated optical wireless communication systems. We survey the error rate and outage performance of subcarrier intensity modu⁃lations in the atmospheric turbulence channels considering different modulation and coding schemes. We also explore different contemporary atmospheric turbulence fading mitigation solutions that can be employed for subcarrier intensity modulation. These solutions include diversity combining, adaptive transmission, relay assisted transmission, multiple⁃subcarrier intensity modulations, and optical orthogonal frequency division multiplexing. Moreover, we review the performance of subcarrier intensity modulations due to the pointing error and synchronization error.

  16. Mach-Zehnder Type Annealed Proton Exchange Waveguide and Coplanar Waveguide Modulation Electrode LiNbO3 Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    HE Jian; ZHU Xue-jun

    2007-01-01

    The characteristics of a conventional LiNbO3 intensity modulator made up of a Mach-Zehnder(MZ) type annealed proton exchange(APE) waveguide and coplanar waveguide(CPW) modulation electrode are presented. The APE waveguide characteristics and their relations with process parameters are analyzed. At the same time, the electrical characteristics of modulation electrode, such as modulation voltage, microwave effective index associated with modulation bandwidth, characteristics impedance, are also investigated in detail.

  17. Modulation Electric Field Intensity Sensor in a Conductive Medium

    Directory of Open Access Journals (Sweden)

    O. I. Miseyk

    2015-01-01

    Full Text Available The requirement to conduct measurements across the big water areas and in the ocean depths arises a problem of creating devices to measure an electric field, being either set on the high-speed mobile carriers, or implemented as the sounders, which investigate a vertical or horizontal structure of the electric field of ocean. Manufactured, designed, and hypothetical devices for measuring poor electric fields of the ocean were analyzed. The analysis allowed us to prove that there is a need in creation of modulation sensors (with modulation of a non-electric origin either with periodically changing capabilities of measuring bases, or with space-changing (and therefore, time-changing position of measuring base of primary converters, as the most effective in terms of allocation and measurement of the modulated signal from unmodulated noise.The paper considers the mathematical models of modulation sensors of electric field intensity in the ultralow-frequency range, which are set on the mobile carriers. It justifies a choice of two basic models of primary converters with a change of the measuring base in space, i.e. with the "changing" base and with the "rotating" base. A feature of the offered models with vertical sounding is the minimum value of noise because of rotation of measuring electrodes in a magnetic field of Earth, and hydrodynamic noise. The paper shows that noise caused by the relative movement of sensor and water completely disappears in two cases:1. for a vertical sounder in the autonomous mode or a horizontal sounder with zero buoyancy in the specified shape of water;2. in a case when the sensor has no component of measuring base in the considered area, for example, for the sensor with in-line array of electrodes located in the horizontal plane.The paper proves advantage of the model with "rotating" measuring base, which provides the maximum power transfer from the primary converter to loading for all relative positions of an external

  18. Accelerated hypofractionated adjuvant whole breast radiation with simultaneous integrated boost using volumetric modulated arc therapy for early breast cancer: A phase I/II dosimetric and clinical feasibility study from a tertiary cancer care centre of India

    Directory of Open Access Journals (Sweden)

    Dodul Mondal

    2017-03-01

    Mini abstract: Simultaneous integrated boost with accelerated hypofractionated whole breast radiotherapy using Volumetric Modulated Arc Therapy is a novel approach. Patient selection and technical considerations are of paramount importance. The present study describes successful implementation of this approach.

  19. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing; Zhao, Lina [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Amy [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Yupeng [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Applied Research, Varian Medical Systems, Palo Alto, California (United States); Sahoo, Narayan; Poenisch, Falk [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wu, Richard; Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang, Xiaodong, E-mail: xizhang@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-11-15

    Purpose: Intensity modulated proton therapy (IMPT) can improve dose conformality and better spare normal tissue over passive scattering techniques, but range uncertainties complicate its use, particularly for moving targets. We report our early experience with IMPT for thoracic malignancies in terms of motion analysis and management, plan optimization and robustness, and quality assurance. Methods and Materials: Thirty-four consecutive patients with lung/mediastinal cancers received IMPT to a median 66 Gy(relative biological equivalence [RBE]). All patients were able to undergo definitive radiation therapy. IMPT was used when the treating physician judged that IMPT conferred a dosimetric advantage; all patients had minimal tumor motion (<5 mm) and underwent individualized tumor-motion dose-uncertainty analysis and 4-dimensional (4D) computed tomographic (CT)-based treatment simulation and motion analysis. Plan robustness was optimized by using a worst-case scenario method. All patients had 4D CT repeated simulation during treatment. Results: IMPT produced lower mean lung dose (MLD), lung V{sub 5} and V{sub 20}, heart V{sub 40}, and esophageal V{sub 60} than did IMRT (P<.05) and lower MLD, lung V{sub 20}, and esophageal V{sub 60} than did passive scattering proton therapy (PSPT) (P<.05). D{sub 5} to the gross tumor volume and clinical target volume was higher with IMPT than with intensity modulated radiation therapy or PSPT (P<.05). All cases were analyzed for beam-angle-specific motion, water-equivalent thickness, and robustness. Beam angles were chosen to minimize the effect of respiratory motion and avoid previously treated regions, and the maximum deviation from the nominal dose-volume histogram values was kept at <5% for the target dose and met the normal tissue constraints under a worst-case scenario. Patient-specific quality assurance measurements showed that a median 99% (range, 95% to 100%) of the pixels met the 3% dose/3 mm distance criteria for the

  20. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Senthi, Sashendra, E-mail: sasha.senthi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Gill, Suki S. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Haworth, Annette; Kron, Tomas; Cramb, Jim [Department of Physical Sciences, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Rolfo, Aldo [Radiation Therapy Services, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Thomas, Jessica [Biostatistics and Clinical Trials, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Duchesne, Gillian M. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Hamilton, Christopher H.; Joon, Daryl Lim [Radiation Oncology Department, Austin Repatriation Hospital, Heidelberg, VIC (Australia); Bowden, Patrick [Radiation Oncology Department, Tattersall' s Cancer Center, East Melbourne, VIC (Australia); Foroudi, Farshad [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia)

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  1. High speed traveling wave electrooptic intensity modulator with a doped PIN semiconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Vawter, G.A.; Hietala, V.M.; Wendt, J.R.; Fuchs, B.A.; Hafich, M.; Housel, M.; Armendariz, M.; Sullivan, C.T.

    1996-02-01

    A high-electrooptic-efficiency Mach-Zehnder intensity modulator is demonstrated with a bandwidth exceeding 40 GHZ. The 1 mm-long modulator has a switching voltage comparable to undoped semiconductor designs of much greater length.

  2. Prioritized efficiency optimization for intensity modulated proton therapy

    Science.gov (United States)

    Müller, Birgit S.; Wilkens, Jan J.

    2016-12-01

    A high dosimetric quality and short treatment time are major goals in radiotherapy planning. Intensity modulated proton therapy (IMPT) plans obtain dose distributions of great conformity but often result in long delivery times which are typically not incorporated into the optimization process. We present an algorithm to optimize delivery efficiency of IMPT plans while maintaining plan quality, and study the potential trade-offs of these interdependent objectives. The algorithm is based on prioritized optimization, a stepwise approach to implemented objectives. First the quality of the plan is optimized. The second step of the prioritized efficiency optimization (PrEfOpt) routine offers four alternatives for reducing delivery time: minimization of the total spot weight sum (A), maximization of the lowest spot intensity of each energy layer (B), elimination of low-weighted spots (C) or energy layers (D). The trade-off between dosimetric quality (step I) and treatment time (step II) is controlled during the optimization by option-dependent parameters. PrEfOpt was applied to a clinical patient case, and plans for different trade-offs were calculated. Delivery times were simulated for two virtual facilities with constant and variable proton current, i.e. independent and dependent on the optimized spot weight distributions. Delivery times decreased without major degradation of plan quality; absolute time reductions varied with the applied method and facility type. Minimizing the total spot weight sum (A) reduced times by 28% for a similar plan quality at a constant current (changes of minimum dose in the target  qualities. A potential clinical application of PrEfOpt is the generation of multiple plans with different trade-offs for a multicriteria optimization setting. Then, the planner can select the preferred compromise between treatment time and quality for each individual patient.

  3. Postoperative intensity modulated radiation therapy in high risk prostate cancer: a dosimetric comparison.

    Science.gov (United States)

    Digesú, Cinzia; Cilla, Savino; De Gaetano, Andrea; Massaccesi, Mariangela; Macchia, Gabriella; Ippolito, Edy; Deodato, Francesco; Panunzi, Simona; Iapalucci, Chiara; Mattiucci, Gian Carlo; D'Angelo, Elisa; Padula, Gilbert D A; Valentini, Vincenzo; Cellini, Numa; Piermattei, Angelo; Morganti, Alessio G

    2011-01-01

    The aim of this study was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal technique (3D-CRT), with respect to target coverage and irradiation of organs at risk for high dose postoperative radiotherapy (PORT) of the prostate fossa. 3D-CRT and IMRT treatment plans were compared with respect to dose to the rectum and bladder. The dosimetric comparison was carried out in 15 patients considering 2 different scenarios: (1) exclusive prostate fossa irradiation, and (2) pelvic node irradiation followed by a boost on the prostate fossa. In scenario (1), a 3D-CRT plan (box technique) and an IMRT plan were calculated and compared for each patient. In scenario (2), 3 treatment plans were calculated and compared for each patient: (a) 3D-CRT box technique for both pelvic (prophylactic nodal irradiation) and prostate fossa irradiation (3D-CRT only); (b) 3D-CRT box technique for pelvic irradiation followed by an IMRT boost to the prostatic fossa (hybrid 3D-CRT and IMRT); and (c) IMRT for both pelvic and prostate fossa irradiation (IMRT only). For exclusive prostate fossa irradiation, IMRT significantly reduced the dose to the rectum (lower Dmean, V50%, V75%, V90%, V100%, EUD, and NTCP) and the bladder (lower Dmean, V50%, V90%, EUD and NTCP). When prophylactic irradiation of the pelvis was also considered, plan C (IMRT only) performed better than plan B (hybrid 3D-CRT and IMRT) as respect to both rectum and bladder irradiation (reduction of Dmean, V50%, V75%, V90%, equivalent uniform dose [EUD], and normal tissue complication probability [NTCP]). Plan (b) (hybrid 3D-CRT and IMRT) performed better than plan (a) (3D-CRT only) with respect to dose to the rectum (lower Dmean, V75%, V90%, V100%, EUD, and NTCP) and the bladder (Dmean, EUD, and NTCP). Postoperative IMRT in prostate cancer significantly reduces rectum and bladder irradiation compared with 3D-CRT.

  4. Quantitative shadowgraphy and proton radiography for large intensity modulations

    Science.gov (United States)

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Ratan, Naren; Sadler, James; Chen, Nicholas; Sävert, Alexander; Trines, Raoul; Bingham, Robert; Burrows, Philip N.; Kaluza, Malte C.; Norreys, Peter

    2017-02-01

    Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a method to retrieve quantitative information from shadowgrams, based on computational geometry. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.

  5. Intensity modulated radiation therapy for breast cancer: current perspectives

    Science.gov (United States)

    Buwenge, Milly; Cammelli, Silvia; Ammendolia, Ilario; Tolento, Giorgio; Zamagni, Alice; Arcelli, Alessandra; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Morganti, Alessio G

    2017-01-01

    Background Owing to highly conformed dose distribution, intensity modulated radiation therapy (IMRT) has the potential to improve treatment results of radiotherapy (RT). Postoperative RT is a standard adjuvant treatment in conservative treatment of breast cancer (BC). The aim of this review is to analyze available evidence from randomized controlled trials (RCTs) on IMRT in BC, particularly in terms of reduction of side effects. Methods A literature search of the bibliographic database PubMed, from January 1990 through November 2016, was performed. Only RCTs published in English were included. Results Ten articles reporting data from 5 RCTs fulfilled the selection criteria and were included in our review. Three out of 5 studies enrolled only selected patients in terms of increased risk of toxicity. Three studies compared IMRT with standard tangential RT. One study compared the results of IMRT in the supine versus the prone position, and one study compared standard treatment with accelerated partial breast IMRT. Three studies reported reduced acute and/or late toxicity using IMRT compared with standard RT. No study reported improved quality of life. Conclusion IMRT seems able to reduce toxicity in selected patients treated with postoperative RT for BC. Further analyses are needed to better define patients who are candidates for this treatment modality. PMID:28293119

  6. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Fan, J [Fox Chase Cancer Center, Philadelphia, PA (United States); Virtua Fox Chase Cancer Center, Voorhees, NJ (United States); Zhang, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Qiqihar Medical University, Qiqihar (China)

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  7. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Karen [Department of Radiation Oncology, Liverpool Hospital, Sydney (Australia); Stewart, James [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Kelly, Valerie [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Xie, Jason [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Brock, Kristy K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Moseley, Joanne [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Cho, Young-Bin; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Lundin, Anna; Rehbinder, Henrik; Löf, Johan [RaySearch Laboratories AB, Stockholm (Sweden); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario (Canada); Milosevic, Michael, E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  8. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joanna C.; Dharmarajan, Kavita V. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wexler, Leonard H. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); La Quaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  9. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flentje, Michael [Dept. of Radiotherapy, Univ. Hospital Wuerzburg (Germany); Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-10-15

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade {>=} 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade {>=} 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade {>=} 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  10. Intensity Modulated Radiation Therapy Dose Painting for Localized Prostate Cancer Using {sup 11}C-choline Positron Emission Tomography Scans

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joe H. [Radiation Oncology Centre, Austin Health, Victoria (Australia); University of Melbourne, Victoria (Australia); Lim Joon, Daryl [Radiation Oncology Centre, Austin Health, Victoria (Australia); Lee, Sze Ting [University of Melbourne, Victoria (Australia); Centre for PET, Austin Health, Victoria (Australia); Ludwig Institute for Cancer Research, Victoria (Australia); Gong, Sylvia J. [Centre for PET, Austin Health, Victoria (Australia); Anderson, Nigel J. [Radiation Oncology Centre, Austin Health, Victoria (Australia); Scott, Andrew M. [University of Melbourne, Victoria (Australia); Centre for PET, Austin Health, Victoria (Australia); Ludwig Institute for Cancer Research, Victoria (Australia); Davis, Ian D. [University of Melbourne, Victoria (Australia); Ludwig Institute for Cancer Research, Victoria (Australia); Clouston, David [Focus Pathology, Victoria (Australia); Bolton, Damien [University of Melbourne, Victoria (Australia); Department of Urology, Austin Health, Victoria (Australia); Hamilton, Christopher S. [Radiation Oncology Centre, Austin Health, Victoria (Australia); Khoo, Vincent, E-mail: vincent.khoo@rmh.nhs.uk [Radiation Oncology Centre, Austin Health, Victoria (Australia); University of Melbourne, Victoria (Australia); Department of Clinical Oncology, Royal Marsden Hospital and Institute of Cancer Research, London (United Kingdom)

    2012-08-01

    Purpose: To demonstrate the technical feasibility of intensity modulated radiation therapy (IMRT) dose painting using {sup 11}C-choline positron emission tomography PET scans in patients with localized prostate cancer. Methods and Materials: This was an RT planning study of 8 patients with prostate cancer who had {sup 11}C-choline PET scans prior to radical prostatectomy. Two contours were semiautomatically generated on the basis of the PET scans for each patient: 60% and 70% of the maximum standardized uptake values (SUV{sub 60%} and SUV{sub 70%}). Three IMRT plans were generated for each patient: PLAN{sub 78}, which consisted of whole-prostate radiation therapy to 78 Gy; PLAN{sub 78-90}, which consisted of whole-prostate RT to 78 Gy, a boost to the SUV{sub 60%} to 84 Gy, and a further boost to the SUV{sub 70%} to 90 Gy; and PLAN{sub 72-90}, which consisted of whole-prostate RT to 72 Gy, a boost to the SUV{sub 60%} to 84 Gy, and a further boost to the SUV{sub 70%} to 90 Gy. The feasibility of these plans was judged by their ability to reach prescription doses while adhering to published dose constraints. Tumor control probabilities based on PET scan-defined volumes (TCP{sub PET}) and on prostatectomy-defined volumes (TCP{sub path}), and rectal normal tissue complication probabilities (NTCP) were compared between the plans. Results: All plans for all patients reached prescription doses while adhering to dose constraints. TCP{sub PET} values for PLAN{sub 78}, PLAN{sub 78-90}, and PLAN{sub 72-90} were 65%, 97%, and 96%, respectively. TCP{sub path} values were 71%, 97%, and 89%, respectively. Both PLAN{sub 78-90} and PLAN{sub 72-90} had significantly higher TCP{sub PET} (P=.002 and .001) and TCP{sub path} (P<.001 and .014) values than PLAN{sub 78}. PLAN{sub 78-90} and PLAN{sub 72-90} were not significantly different in terms of TCP{sub PET} or TCP{sub path}. There were no significant differences in rectal NTCPs between the 3 plans. Conclusions: IMRT dose painting for

  11. Pleural Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, Kenneth E., E-mail: ken.rosenzweig@mountsinai.org [Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY (United States); Zauderer, Marjorie G. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Laser, Benjamin [Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI (United States); Krug, Lee M. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Sima, Camelia S. [Department of Epidemiology/Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Flores, Raja [Department of Surgery, Mount Sinai Medical Center, New York, NY (United States); Rusch, Valerie [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-07-15

    Purpose: In patients with malignant pleural mesothelioma who are unable to undergo pneumonectomy, it is difficult to deliver tumoricidal radiation doses to the pleura without significant toxicity. We have implemented a technique of using intensity-modulated radiotherapy (IMRT) to treat these patients, and we report the feasibility and toxicity of this approach. Methods and Materials: Between 2005 and 2010, 36 patients with malignant pleural mesothelioma and two intact lungs (i.e., no previous pneumonectomy) were treated with pleural IMRT to the hemithorax (median dose, 46.8 Gy; range, 41.4-50.4) at Memorial Sloan-Kettering Cancer Center. Results: Of the 36 patients, 56% had right-sided tumors. The histologic type was epithelial in 78%, sarcomatoid in 6%, and mixed in 17%, and 6% had Stage I, 28% had Stage II, 33% had Stage III, and 33% had Stage IV. Thirty-two patients (89%) received induction chemotherapy (mostly cisplatin and pemetrexed); 56% underwent pleurectomy/decortication before IMRT and 44% did not undergo resection. Of the 36 patients evaluable for acute toxicity, 7 (20%) had Grade 3 or worse pneumonitis (including 1 death) and 2 had Grade 3 fatigue. In 30 patients assessable for late toxicity, 5 had continuing Grade 3 pneumonitis. For patients treated with surgery, the 1- and 2-year survival rate was 75% and 53%, and the median survival was 26 months. For patients who did not undergo surgical resection, the 1- and 2-year survival rate was 69% and 28%, and the median survival was 17 months. Conclusions: Treating the intact lung with pleural IMRT in patients with malignant pleural mesothelioma is a safe and feasible treatment option with an acceptable rate of pneumonitis. Additionally, the survival rates were encouraging in our retrospective series, particularly for the patients who underwent pleurectomy/decortication. We have initiated a Phase II trial of induction chemotherapy with pemetrexed and cisplatin with or without pleurectomy

  12. Analysis of small-signal intensity modulation of semiconductor lasers taking account of gain suppression

    Indian Academy of Sciences (India)

    Moustafa Ahmed; Ali El-Lafi

    2008-07-01

    This paper demonstrates theoretical characterization of intensity modulation of semiconductor lasers (SL’s). The study is based on a small-signal model to solve the laser rate equations taking into account suppression of optical gain. Analytical forms of the small-signal modulation response and modulation bandwidth are derived. Influences of the bias current, modulation index and modulation frequency as well as gain suppression on modulation characteristics are examined. Computer simulation of the model is applied to 1.55-m InGaAsP lasers. The results show that when the SL is biased far-above threshold, the increase of gain suppression increases both the modulation response and its peak frequency. The modulation bandwidth also increases but the laser damping rate decreases. Quantitative description of the relationships of both modulation bandwidth vs. relaxation frequency and maximum modulation bandwidth vs. nonlinear gain coefficient are presented.

  13. Exercise-induced endocannabinoid signaling is modulated by intensity.

    Science.gov (United States)

    Raichlen, David A; Foster, Adam D; Seillier, Alexandre; Giuffrida, Andrea; Gerdeman, Gregory L

    2013-04-01

    Endocannabinoids (eCB) are endogenous ligands for cannabinoid receptors that are densely expressed in brain networks responsible for reward. Recent work shows that exercise activates the eCB system in humans and other mammals, suggesting eCBs are partly responsible for the reported improvements in mood and affect following aerobic exercise in humans. However, exercise-induced psychological changes reported by runners are known to be dependent on exercise intensity, suggesting that any underlying molecular mechanism should also change with varying levels of exercise intensity. Here, we examine circulating levels of eCBs following aerobic exercise (treadmill running) in recreationally fit human runners at four different intensities. We show that eCB signaling is indeed intensity dependent, with significant changes in circulating eCBs observed following moderate intensities only (very high and very low intensity exercises do not significantly alter circulating eCB levels). Our results are consistent with intensity-dependent psychological state changes with exercise and therefore support the hypothesis that eCB activity is related to neurobiological effects of exercise. Thus, future studies examining the role of exercise-induced eCB signaling on neurobiology or physiology must take exercise intensity into account.

  14. Five-year Results of Whole Breast Intensity Modulated Radiation Therapy for the Treatment of Early Stage Breast Cancer: The Fox Chase Cancer Center Experience

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Lanea M.M., E-mail: Lanea.Keller@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Sopka, Dennis M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Li Tianyu [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA (United States); Klayton, Tracy; Li Jinsheng; Anderson, Penny R. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Bleicher, Richard J.; Sigurdson, Elin R. [Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Freedman, Gary M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-11-15

    Purpose: To report the 5-year outcomes using whole-breast intensity-modulated radiation therapy (IMRT) for the treatment of early-stage-breast cancer at the Fox Chase Cancer Center. Methods and Materials: A total of 946 women with early-stage breast cancer (stage 0, I, or II) were treated with IMRT after surgery with or without systemic therapy from 2003-2010. Whole-breast radiation was delivered via an IMRT technique with a median whole-breast radiation dose of 46 Gy and median tumor bed boost of 14 Gy. Endpoints included local-regional recurrence, cosmesis, and late complications. Results: With a median follow-up of 31 months (range, 1-97 months), there were 12 ipsilateral breast tumor recurrences (IBTR) and one locoregional recurrence. The 5-year actuarial IBTR and locoregional recurrence rates were 2.0% and 2.4%. Physician-reported cosmestic outcomes were available for 645 patients: 63% were considered 'excellent', 33% 'good', and <1.5% 'fair/poor'. For physician-reported cosmesis, boost doses {>=}16 Gy, breast size >900 cc, or boost volumes >34 cc were significantly associated with a 'fair/poor' cosmetic outcome. Fibrosis, edema, erythema, and telangectasia were also associated with 'fair/poor' physician-reported cosmesis; erythema and telangectasia remained significant on multivariate analysis. Patient-reported cosmesis was available for 548 patients, and 33%, 50%, and 17% of patients reported 'excellent', 'good', and 'fair/poor' cosmesis, respectively. The use of a boost and increased boost volume: breast volume ratio were significantly associated with 'fair/poor' outcomes. No parameter for patient-reported cosmesis was significant on multivariate analysis. The chances of experiencing a treatment related effect was significantly associated with a boost dose {>=}16 Gy, receipt of chemotherapy and endocrine therapy, large breast size, and electron boost energy

  15. Influences of Modulated Noise on Normalized Intensity Fluctuation in a Single-Mode Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; CAO Li; WU Da-Jin

    2004-01-01

    @@ The influences of the two forms of modulated noises, i.e. the bias signal-modulated noise and the direct signalmodulated noise, on the normalized intensity fluctuation (NIF) are investigated, and the results of the two forms of modulation are compared in detail. We find that a minimum for the case of the bias signal modulation appears in the curve of the dependence of the NIF upon the quantum and pump noise intensities when the correlation coefficient between the quantum noise and the pump noise is negative. However, the NIF for the case of the direct signal modulation is independent of the correlation coefficient between the two noises. Moreover, at the same parameter region, the NIF for the bias signal modulation is only one-eighth as much as that for the direct signal modulation.

  16. Intensity modulated radiotherapy versus volumetric modulated arc therapy in breast cancer: A comparative dosimetric analysis

    Directory of Open Access Journals (Sweden)

    KR Muralidhar

    2015-01-01

    Full Text Available Purpose: Intensity modulated radiotherapy (IMRT and volumetric modulated arc therapy (VMAT has the capacity to optimize the dose distribution. We analyzed the dosimetric differences of plans in treatment planning system (TPS between VMAT and IMRT in treating breast cancer. Methods: Fourteen patients were simulated, planned, and treated with VMAT using single, double or partial arcs. IMRT treatments were generated using 4 to 5 tangential IMRT fields for the same patients. All treatment plans were planned for 50 Gy in 25 fractions. The VMAT and IMRT plans were compared using the planning target volume (PTV dose and doses to the other organs at risk (OARs. Results: For the PTV, comparable minimum, mean, maximum, median, and modal dose as well equivalent sphere diameter of the structure (Equis were observed between VMAT and IMRT plans and found that these values were significantly equal in both techniques. The right lung mean and modal doses were considerably higher in VMAT plans while maximum value was considerably lower when compared with IMRT plans. The left lung mean and modal doses were higher with VMAT while maximum doses were higher in IMRT plans. The mean dose to the heart and maximum dose to the spinal cord was lower with IMRT. The mean dose to the body was higher in VMAT plans while the maximum dose was higher in IMRT plans. Conclusion: Four field tangential IMRT delivered comparable PTV dose with generally less dose to normal tissues in our breast cancer treatment study. The IMRT plans typically had more favourable dose characteristics to the lung, heart, and spinal cord and body dose when compared with VMAT. The only minor advantage of VMAT for breast cases was slightly better PTV coverage.

  17. Ultra-fine metal gate operated graphene optical intensity modulator

    Science.gov (United States)

    Kou, Rai; Hori, Yosuke; Tsuchizawa, Tai; Warabi, Kaori; Kobayashi, Yuzuki; Harada, Yuichi; Hibino, Hiroki; Yamamoto, Tsuyoshi; Nakajima, Hirochika; Yamada, Koji

    2016-12-01

    A graphene based top-gate optical modulator on a standard silicon photonic platform is proposed for the future optical telecommunication networks. On the basis of the device simulation, we proposed that an electro-absorption light modulation can be realized by an ultra-narrow metal top-gate electrode (width less than 400 nm) directly located on the top of a silicon wire waveguide. The designed structure also provides excellent features such as carrier doping and waveguide-planarization free fabrication processes. In terms of the fabrication, we established transferring of a CVD-grown mono-layer graphene sheet onto a CMOS compatible silicon photonic sample followed by a 25-nm thick ALD-grown Al2O3 deposition and Source-Gate-Drain electrodes formation. In addition, a pair of low-loss spot-size converter for the input and output area is integrated for the efficient light source coupling. The maximum modulation depth of over 30% (1.2 dB) is observed at a device length of 50 μm, and a metal width of 300 nm. The influence of the initial Fermi energy obtained by experiment on the modulation performance is discussed with simulation results.

  18. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2005-01-01

    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  19. Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity

    Institute of Scientific and Technical Information of China (English)

    Tan Yi-Dong; Zhang Shu-Lian; Liu Wei-Xin; Mao Wei

    2007-01-01

    Intensity modulation induced by the asymmetric external cavity in single-mode microchip Nd:YAG lasers is presented. Two kinds of experimental results are discussed based on multiple feedback effects. In one case, the intensity modulation curve is a normal sine wave, whose fringe frequency is four times higher than that of a conventional optical feedback system, caused by multiple feedback effects. In the other case, the intensity modulation curve is the overlapping of the above quadruple-frequency signal and conventional optical feedback signal, which is determined by the additional phase difference induced by the asymmetric external cavity. The theoretical analyses are in good agreement with the experimental results. The quadruple-frequency modulation of the laser output intensity can greatly increase the resolution of displacement measurement of an optical feedback system.

  20. Patient Specification Quality Assurance for Glioblastoma Multiforme Brain Tumors Treated with Intensity Modulated Radiation Therapy

    OpenAIRE

    Al-Mohammed, H. I.

    2011-01-01

    The aim of this study was to evaluate the significance of performing patient specification quality assurance for patients diagnosed with glioblastoma multiforme treated with intensity modulated radiation therapy. The study evaluated ten intensity modulated radiation therapy treatment plans using 10 MV beams, a total dose of 60 Gy (2 Gy/fraction, five fractions a week for a total of six weeks treatment). For the quality assurance protocol we used a two-dimensional ionization-chamber array (2D-...

  1. Postoperative Intensity-Modulated Arc Therapy for Cervical and Endometrial Cancer: A Prospective Report on Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Katrien, E-mail: Katrien.Vandecasteele@uzgent.be [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Tummers, Philippe; Makar, Amin [Department of Gynecologic Oncology, Ghent University Hospital, Ghent (Belgium); Eijkeren, Marc van [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Delrue, Louke [Department of Radiology, Ghent University Hospital, Ghent (Belgium); Denys, Hannelore [Department of Medical Oncology, Ghent University Hospital, Ghent (Belgium); Lambert, Bieke [Department of Nuclear Medicine, Ghent University Hospital, Ghent (Belgium); Beerens, Anne-Sophie [Department of Pathology, Ghent University Hospital, Ghent (Belgium); Van den Broecke, Rudy [Department of Gynecologic Oncology, Ghent University Hospital, Ghent (Belgium); Lambein, Kathleen [Department of Pathology, Ghent University Hospital, Ghent (Belgium); Fonteyne, Valerie; De Meerleer, Gert [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium)

    2012-10-01

    Purpose: To report on toxicity after postoperative intensity-modulated arc therapy (IMAT) for cervical (CC) and endometrial cancer (EC). Methods and Materials: Twenty-four CC and 41 EC patients were treated with postoperative IMAT. If indicated, para-aortic lymph node irradiation (preventive or when affected, PALN) and/or concomitant cisplatin (40 mg/m Superscript-Two , weekly) was administered. The prescribed dose for IMAT was 45 Gy (CC, 25 fractions) and 46 Gy (EC, 23 fractions), followed by a brachytherapeutic boost if possible. Radiation-related toxicity was assessed prospectively. The effect of concomitant cisplatin and PALN irradiation was evaluated. Results: Regarding acute toxicity (n = 65), Grade 3 and 2 acute gastrointestinal toxicity was observed in zero and 63% of patients (79% CC, 54% EC), respectively. Grade 3 and 2 acute genitourinary toxicity was observed in 1% and 18% of patients, respectively. Grade 2 (21%) and 3 (12%) hematologic toxicity (n = 41) occurred only in CC patients. Seventeen percent of CC patients and 2% of EC patients experienced Grade 2 fatigue and skin toxicity, respectively. Adding cisplatin led to an increase in Grade >2 nausea (57% vs. 9%; p = 0.01), Grade 2 nocturia (24% vs. 4%; p = 0.03), Grade {>=}2 hematologic toxicity (38% vs. nil, p = 0.003), Grade {>=}2 leukopenia (33% vs. nil, p = 0.009), and a strong trend toward more fatigue (14% vs. 2%; p = 0.05). Para-aortic lymph node irradiation led to an increase of Grade 2 nocturia (31% vs. 4%, p = 0.008) and a strong trend toward more Grade >2 nausea (44% vs. 18%; p = 0.052). Regarding late toxicity (n = 45), no Grade 3 or 4 late toxicity occurred. Grade 2 gastrointestinal toxicity, genitourinary toxicity, and fatigue occurred in 4%, 9%, and 1% of patients. Neither concomitant cisplatin nor PALN irradiation increased late toxicity rates. Conclusions: Postoperative IMAT for EC or CC is associated with low acute and late toxicity. Concomitant chemotherapy and PALN irradiation

  2. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, Jimmi; Hoeyer, Morten; Wright, Pauliina; Grau, Cai; Muren, Ludvig Paul (Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)); Petersen, Joergen B. (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark))

    2009-02-15

    We have implemented an intensity-modulated radiotherapy (IMRT) protocol for simultaneous irradiation of bladder and lymph nodes. In this report, doses to normal tissue from IMRT and our previous conformal sequential boost technique are compared. Material and methods. Sixteen patients with urinary bladder cancer were treated using a six-field dynamic IMRT beam arrangement delivering 60 Gy to the bladder and 48 Gy to the pelvic lymph nodes. Dose-volume histogram (DVH) parameters for relevant normal tissues (bowel, bowel cavity, rectum and femoral heads) for the IMRT plans were compared with corresponding DVHs from our previous conformal sequential boost technique. Calculations of the generalized Equivalent Uniform Dose (gEUD) were performed for the bowel, with a reference volume of 200 cm3 and a volume effect parameter k = 4, as well as for the rectum, using k = 12. Acute gastrointestinal (GI) and genitourinary (GU) RTOG toxicity was recorded. Results. Statistical significant normal tissue sparing was obtained by IMRT. For the bowel, a significant reduction was obtained at all dose levels between 20 and 50 Gy (p < 0.05), e.g. from 180 to 121 cm3 at 50 Gy, while the gEUD was reduced from 58 to 53 Gy (p < 0.05). Similar patterns were seen for the bowel cavity. For the rectum, IMRT reduced the maximum dose as well as the volumes receiving more than 50 and 60 Gy (p < 0.05), e.g. from 72 to 48 cm3 at 50 Gy. The rectum gEUD was reduced from 55 to 53 Gy (p < 0.05). For the femoral heads, IMRT reduced the maximum dose as well as the volumes above all dose levels. The rate of acute peak Grade 2 GI RTOG complications was 38% after IMRT. Conclusion. IMRT to the urinary bladder and elective lymph nodes result in considerable normal tissue sparing compared to conformal sequential boost technique. This has paved the way for further studies combining IMRT with image-guided radiotherapy (IGRT) in bladder cancer.

  3. Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation

    Directory of Open Access Journals (Sweden)

    Zhong Pei

    2010-01-01

    Full Text Available Abstract Background The conventional treatment protocol in high-intensity focused ultrasound (HIFU therapy utilizes a dense-scan strategy to produce closely packed thermal lesions aiming at eradicating as much tumor mass as possible. However, this strategy is not most effective in terms of inducing a systemic anti-tumor immunity so that it cannot provide efficient micro-metastatic control and long-term tumor resistance. We have previously provided evidence that HIFU may enhance systemic anti-tumor immunity by in situ activation of dendritic cells (DCs inside HIFU-treated tumor tissue. The present study was conducted to test the feasibility of a sparse-scan strategy to boost HIFU-induced anti-tumor immune response by more effectively promoting DC maturation. Methods An experimental HIFU system was set up to perform tumor ablation experiments in subcutaneous implanted MC-38 and B16 tumor with dense- or sparse-scan strategy to produce closely-packed or separated thermal lesions. DCs infiltration into HIFU-treated tumor tissues was detected by immunohistochemistry and flow cytometry. DCs maturation was evaluated by IL-12/IL-10 production and CD80/CD86 expression after co-culture with tumor cells treated with different HIFU. HIFU-induced anti-tumor immune response was evaluated by detecting growth-retarding effects on distant re-challenged tumor and tumor-specific IFN-γ-secreting cells in HIFU-treated mice. Results HIFU exposure raised temperature up to 80 degrees centigrade at beam focus within 4 s in experimental tumors and led to formation of a well-defined thermal lesion. The infiltrated DCs were recruited to the periphery of lesion, where the peak temperature was only 55 degrees centigrade during HIFU exposure. Tumor cells heated to 55 degrees centigrade in 4-s HIFU exposure were more effective to stimulate co-cultured DCs to mature. Sparse-scan HIFU, which can reserve 55 degrees-heated tumor cells surrounding the separated lesions, elicited an

  4. Modulation of ionization on laser frequency in ultra-short pulse intense laser-gas-target

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing

    2006-01-01

    Based on the dispersion relation of intense laser pulse propagating in gradually ionized plasma, this paper discusses the frequency modulation induced by ionization of an ultra-short intense laser pulse interacting with a gas target.The relationship between the frequency modulation and the ionization rate, the plasmas frequency variation, and the polarization of atoms (ions) is analysed. The numerical results indicate that, at high frequency, the polarization of atoms (ions) plays a more important role than plasma frequency variation in modulating the laser frequency, and the laser frequency variation is different at different positions of the laser pulse.

  5. Modulation Depth Based on Frequency-shift Characteristic of LiNbO3 Waveguide Electro-optic Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    Hui-juan ZHOU; Zhou MENG; Yi LIAO

    2010-01-01

    The modulation depth,defined according to practical mod-ulation results,which changes with the microwave power and its fre-quency,is significant for systems utilizing the frequency-shift charac-teristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM).By analyzing the impedance mismatch between the micro-wave source and the EOIM,the effective voltage applied to the RF port of the EOIM is deprived frcm the microwave power and its fre-quency.Associating with analyses of the phase velocity mismatch be-tween the microwave and the optical wave,the theoretical modulation depth has been obtained,which is verified by experimental results.We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias far the system based an the frequency-shift characteristic of the EOIM.

  6. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  7. Implementation and validation of a commercial portal dosimetry software for intensity-modulated radiation therapy pre-treatment verification

    Directory of Open Access Journals (Sweden)

    Varatharaj C

    2010-01-01

    Full Text Available Electronic portal imaging devices (EPIDs are extensively used for obtaining dosimetric information of pre-treatment field verification and in-vivo dosimetry for intensity-modulated radiotherapy (IMRT. In the present study, we have implemented the newly developed portal dosimetry software using independent dose prediction algorithm EPIDose TM and evaluated this new tool for the pre-treatment IMRT plan quality assurance of Whole Pelvis with Simultaneous Integrated Boost (WP-SIB-IMRT of prostate cases by comparing with routine two-dimensional (2D array detector system (MapCHECK TM . We have investigated 104 split fields using g-distributions in terms of predefined g frequency parameters. The mean γ values are found to be 0.42 (SD: 0.06 and 0.44 (SD: 0.06 for the EPIDose and MapCHECK TM , respectively. The average g∆ for EPIDose and MapCHECK TM are found as 0.51 (SD: 0.06 and 0.53 (SD: 0.07, respectively. Furthermore, the percentage of points with g < 1, γ < 1.5, and γ > 2 are 97.4%, 99.3%, and 0.56%, respectively for EPIDose and 96.4%, 99.0% and 0.62% for MapCHECK TM . Based on our results obtained with EPIDose and strong agreement with MapCHECK TM , we may conclude that the EPIDose portal dosimetry system has been successfully implemented and validated with our routine 2D array detector

  8. Long-term results of forward intensity-modulated radiation therapy for patients with early-stage breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Boram; Suh, Hyun Suk; Lee, Ji Hae; Lee, Kyung Ja; Lee, Rena; Moon, Byung In [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    To observe long-term clinical outcomes for patients with early-stage breast cancer treated with forward intensity-modulated radiation therapy (IMRT), including local control and clinical toxicities. We retrospectively analyzed a total of 214 patients with stage I-II breast cancer who were treated with breast conserving surgery followed by adjuvant breast radiation therapy between 2001 and 2008. All patients were treated using forward IMRT. The whole breast was irradiated to a dose of 50 to 50.4 Gy followed by an 8 to 12 Gy electron boost to the surgical bed. The median age was 46 years (range, 21 to 82 years) and the medial follow-up time was 7.3 years (range, 2.4 to 11.7 years). Stage T1 was 139 (65%) and T2 was 75 (35%), respectively. Ipsilateral breast recurrence was observed in 3 patients. The 5- and 10-year local control rates were 99.1% and 97.8%, respectively. The cosmetic outcome was evaluated according to the Harvard scale and 89.4% of patients were scored as excellent or good. The whole breast radiation therapy as an adjuvant treatment using a forward IMRT technique showed excellent long-term local control as well as favorable outcomes of toxicity and cosmesis.

  9. Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases

    Energy Technology Data Exchange (ETDEWEB)

    Cilla, Savino, E-mail: savinocilla@gmail.com [Medical Physics Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Deodato, Francesco; Digesù, Cinzia; Macchia, Gabriella; Picardi, Vincenzo; Ferro, Marica [Radiation Oncology Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Sallustio, Giuseppina [Radiology Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); De Spirito, Marco; Piermattei, Angelo [Physics Institute, Università Cattolica del Sacro Cuore, Rome (Italy); Morganti, Alessio G. [Radiation Oncology Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy)

    2014-04-01

    Intensity-modulated radiotherapy (IMRT) allowed the simultaneous delivery of different doses to different target volumes within a single fraction, an approach called simultaneous integrated boost (SIB). As consequence, the fraction dose to the boost volume can be increased while keeping low doses to the elective volumes, and the number of fractions and overall treatment time will be reduced, translating into better radiobiological effectiveness. In recent years, volumetric-modulated arc therapy (VMAT) has been shown to provide similar plan quality with respect to fixed-field IMRT but with large reduction in treatment time and monitor units (MUs) number. However, the feasibility of VMAT when used with SIB strategy has few investigations to date. We explored the potential of VMAT in a SIB strategy for complex cancer sites. A total of 15 patients were selected, including 5 head-and-neck, 5 high-risk prostate, and 5 rectal cancer cases. Both a double-arc VMAT and a 7-field IMRT plan were generated for each case using Oncentra MasterPlan treatment planning system for an Elekta Precise linac. Dosimetric indexes for targets and organs at risk (OARs) were compared based on dose-volume histograms. Conformity index, homogeneity index, and dose-contrast index were used for target analyses. The equivalent uniform doses and the normal tissue complication probabilities were calculated for main OARs. MUs number and treatment time were analyzed to score treatment efficiency. Pretreatment dosimetry was performed using 2-dimensional (2D)-array dosimeter. SIB-VMAT plans showed a high level of fluence modulation needed for SIB treatments, high conformal dose distribution, similar target coverage, and a tendency to improve OARs sparing compared with the benchmark SIB-IMRT plans. The median treatment times reduced from 13 to 20 minutes to approximately 5 minutes for all cases with SIB-VMAT, with a MUs reduction up to 22.5%. The 2D-array ion-chambers' measurements reported an

  10. Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases.

    Science.gov (United States)

    Cilla, Savino; Deodato, Francesco; Digesù, Cinzia; Macchia, Gabriella; Picardi, Vincenzo; Ferro, Marica; Sallustio, Giuseppina; De Spirito, Marco; Piermattei, Angelo; Morganti, Alessio G

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) allowed the simultaneous delivery of different doses to different target volumes within a single fraction, an approach called simultaneous integrated boost (SIB). As consequence, the fraction dose to the boost volume can be increased while keeping low doses to the elective volumes, and the number of fractions and overall treatment time will be reduced, translating into better radiobiological effectiveness. In recent years, volumetric-modulated arc therapy (VMAT) has been shown to provide similar plan quality with respect to fixed-field IMRT but with large reduction in treatment time and monitor units (MUs) number. However, the feasibility of VMAT when used with SIB strategy has few investigations to date. We explored the potential of VMAT in a SIB strategy for complex cancer sites. A total of 15 patients were selected, including 5 head-and-neck, 5 high-risk prostate, and 5 rectal cancer cases. Both a double-arc VMAT and a 7-field IMRT plan were generated for each case using Oncentra MasterPlan treatment planning system for an Elekta Precise linac. Dosimetric indexes for targets and organs at risk (OARs) were compared based on dose-volume histograms. Conformity index, homogeneity index, and dose-contrast index were used for target analyses. The equivalent uniform doses and the normal tissue complication probabilities were calculated for main OARs. MUs number and treatment time were analyzed to score treatment efficiency. Pretreatment dosimetry was performed using 2-dimensional (2D)-array dosimeter. SIB-VMAT plans showed a high level of fluence modulation needed for SIB treatments, high conformal dose distribution, similar target coverage, and a tendency to improve OARs sparing compared with the benchmark SIB-IMRT plans. The median treatment times reduced from 13 to 20 minutes to approximately 5 minutes for all cases with SIB-VMAT, with a MUs reduction up to 22.5%. The 2D-array ion-chambers' measurements reported an agreement

  11. Patient Specification Quality Assurance for Glioblastoma Multiforme Brain Tumors Treated with Intensity Modulated Radiation Therapy

    Directory of Open Access Journals (Sweden)

    H. I. Al-Mohammed

    2011-01-01

    Full Text Available The aim of this study was to evaluate the significance of performing patient specification quality assurance for patients diagnosed with glioblastoma multiforme treated with intensity modulated radiation therapy. The study evaluated ten intensity modulated radiation therapy treatment plans using 10 MV beams, a total dose of 60 Gy (2 Gy/fraction, five fractions a week for a total of six weeks treatment. For the quality assurance protocol we used a two-dimensional ionization-chamber array (2D-ARRAY. The results showed a very good agreement between the measured dose and the pretreatment planned dose. All the plans passed >95% gamma criterion with pixels within 5% dose difference and 3 mm distance to agreement. We concluded that using the 2D-ARRAY ion chamber for intensity modulated radiation therapy is an important step for intensity modulated radiation therapy treatment plans, and this study has shown that our treatment planning for intensity modulated radiation therapy is accurately done.

  12. Phase retrieval based on cosine grating modulation and transport of intensity equation

    Science.gov (United States)

    Chen, Ya-ping; Zhang, Quan-bing; Cheng, Hong; Qian, Yi; Lv, Qian-qian

    2016-10-01

    In order to calculate the lost phase from the intensity information effectively, a new method of phase retrieval which based on cosine grating modulation and transport of intensity equation is proposed. Firstly, the cosine grating is loaded on the spatial light modulator in the horizontal and vertical direction respectively, and the corresponding amplitude of the light field is modulated. Then the phase is calculated by its gradient which is extracted from different direction modulation light illumination. The capability of phase recovery of the proposed method in the presence of noise is tested by simulation experiments. And the results show that the proposed algorithm has a better resilience than the traditional Fourier transform algorithm at low frequency noise. Furthermore, the phase object of different scales can be retrieved using the proposed algorithm effectively by changing the frequency of cosine grating, which can control the imaging motion expediently.

  13. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  14. Surface phase defects induced downstream laser intensity modulation in high-power laser facility

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Wei Zhou; Wanjun Dai; Dongxia Hu; Xuewei Deng; Wanqing Huang; Lidan Zhou; Qiang Yuan; Xiaoxia Huang; De’en Wang; Ying Yang

    2016-01-01

    Optics surface phase defects induced intensity modulation in high-power laser facility for inertial confinement fusion research is studied. Calculations and experiments reveal an exact mapping of the modulation patterns and the optics damage spot distributions from the surface phase defects. Origins are discussed during the processes of optics manufacturing and diagnostics, revealing potential improvements for future optics manufacturing techniques and diagnostic index, which is meaningful for fusion level laser facility construction and its operation safety.

  15. A Novel Temperature-Compensated, Intensity-Modulated Fiber Bragg Grating Sensor System

    Institute of Scientific and Technical Information of China (English)

    Xin-Yong Dong; Hwa-Yaw Tam

    2008-01-01

    An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflected from the sensing FBG and a reference one. Bragg wavelength shift of the sensing FBG changes intensity of the RF signal by changing phase difference between the two optical signals, with temperature effect being compensated automatically by the reference FBG. Strain measurement with a maximum sensitivity of -0.34 μV/με has been achieved.

  16. Volumetric Modulated Arc Therapy Planning for Primary Prostate Cancer With Selective Intraprostatic Boost Determined by {sup 18}F-Choline PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Yu [Department of Medical Physics, University of Nevada Las Vegas, Las Vegas, Nevada (United States); Wu, Lili [Department of Medical Physics, University of Nevada Las Vegas, Las Vegas, Nevada (United States); Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China); Hirata, Emily; Miyazaki, Kyle; Sato, Miles [Hamamatsu/Queen' s PET Imaging Center and Departments of Radiation Oncology and Oncology Research, The Queen' s Medical Center, Honolulu, Hawaii (United States); Kwee, Sandi A., E-mail: kwee@hawaii.edu [Hamamatsu/Queen' s PET Imaging Center and Departments of Radiation Oncology and Oncology Research, The Queen' s Medical Center, Honolulu, Hawaii (United States); John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii (United States)

    2015-04-01

    Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through

  17. Evaluation of a fast method of EPID-based dosimetry for intensity modulated radiation therapy

    OpenAIRE

    Nelms, Benjamin E.; Rasmussen, Karl H.; Tomé, Wolfgang A.

    2010-01-01

    Electronic portal imaging devices (EPIDs) could potentially be useful for Intensity Modulated Radiation Therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed to be effective imaging devices, but not dosimeters, and as a result they do not measure dose in tissue-equivalent materials.

  18. Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity.

    Science.gov (United States)

    Kidgell, Dawson J; Daly, Robin M; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22-45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  19. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    Directory of Open Access Journals (Sweden)

    Dawson J. Kidgell

    2013-01-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1. Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI. Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  20. Intensity-modulated radiation therapy for oropharyngeal cancer: radiation dosage constraint at the anterior mandible.

    NARCIS (Netherlands)

    Verdonck, H.W.; Jong, J.M. de; Granzier, M.E.; Nieman, F.H.; Baat, C. de; Stoelinga, P.J.W.

    2009-01-01

    Because the survival of endosseous implants in irradiated bone is lower than in non-irradiated bone, particularly if the irradiation dose exceeds 50Gy, a study was carried out to assess the irradiation dose in the anterior mandible, when intensity modulated radiation therapy (IMRT) is used. The hypo

  1. Image guided position verification for intensity modulated radiotherapy of prostate cancer

    NARCIS (Netherlands)

    Nederveen, A.J.

    2002-01-01

    The aim of this thesis is to provide a practical framework for dose escalation in the prostate using intensity modulated radiotherapy (IMRT) and to find out if marker based on-line position verification is clinically feasible and effective. We present a class solution for dose escalation in the pros

  2. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    Science.gov (United States)

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  3. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Witjes, Max J. H.; Langendijk, Johannes A.; van Winkelhoff, Arie J.; Vissink, Arjan; Spijkervet, Frederik K. L.

    2016-01-01

    Objectives: The introduction of intensity modulated radiation therapy (IMRT) has led to new possibilities in the treatment of head and neck cancer (HNC). Limited information is available on how this more advanced radiation technique affects the oral microflora. In a prospective study we assessed the

  4. Optimizing Planning and Delivery of High-Precision Robotic Radiotherapy and Intensity-Modulated Proton Therapy

    NARCIS (Netherlands)

    S. van de Water (Steven)

    2015-01-01

    markdownabstract__Abstract__ High-precision robotic radiotherapy and intensity-modulated proton therapy (IMPT) are two relatively new radiotherapy techniques that particularly aim at a highly localized delivery of a curative dose to the tumor, while achieving excellent sparing of the surrounding he

  5. Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment

    Science.gov (United States)

    Kato, Kentaro; Hirota, Osamu

    2011-08-01

    The quantum noise based direct encryption protocol Y-OO is expected to provide physical complexity based security, which is thought to be comparable to information theoretic security in mathematical cryptography, for the. physical layer of fiber-optic communication systems. So far, several randomization techniques for the quantum stream cipher by Y-OO protocol have been proposed, but most of them were developed under the assumption that phase shift keying is used as the modulation format. On the other hand, the recent progress in the experimental study on the intensity modulation based quantum stream cipher by Y-OO protocol raises expectations for its realization. The purpose of this paper is to present design and implementation methods of a composite model of the intensity modulation based quantum stream cipher with some randomization techniques. As a result this paper gives a viewpoint of how the Y-OO cryptosystem is miniaturized.

  6. Accommodating practical constraints for intensity-modulated radiation therapy by means of compensators

    CERN Document Server

    Meyer, J

    2001-01-01

    intensity distribution, inverse modelling of the radiation attenuation within the compensator is required. Two novel and independent approaches, based on deconvolution and system identification, respectively, are proposed to accomplish this. To compare the approach with the 'rival' state of the art beam modulation technique, theoretical and experimental examination of the modulated fields generated by manufactured compensators and multileaf collimators is presented. This comparison focused on the achievable resolution of the intensity modulated beams in lateral and longitudinal directions. To take into account the characteristics of a clinical environment, a comprehensive study has been carried out to investigate the suitability of the most common commercially available treatment couch systems for their suitability for IMRT treatments. In this context, an original rule based advisory system has been developed to alert the operator of any potential collision of the beam with the moveable supporting structures ...

  7. High-speed operation of optical exclusive OR circuit based on balanced detection and intensity modulation

    Directory of Open Access Journals (Sweden)

    Koichi Takiguchi

    2015-12-01

    Full Text Available We report the evaluated results of an optical exclusive OR (XOR circuit for high-speed binary signals, which operates based on balanced detection and intensity modulation. This circuit partly adopts simple electronics in order to achieve simple configuration and operation. Two input optical binary signals into a balanced photo detector produce an electrical signal for directly driving a modulator. The modulator modulates the lightwave from a laser diode and generates optical XOR output of the two input optical signals. After briefly explaining its configuration and operating principle, We demonstrate some experimental results to show its potential. We show its successful operation at 40 Gbit/s binary signals including bit error rate measurement.

  8. 一种非反相Buck-Boost功率变换器的调制方法研究%Research on Modulation Method for Non-inverting Buck-Boost Power Converter

    Institute of Scientific and Technical Information of China (English)

    徐坤; 杨宇; 吴春华; 许富强

    2011-01-01

    针对功率变换器现有调制方法的不足,提出了一种用于非反相Buck-Boost功率变换器的调制方法,结合脉冲宽度调制和脉冲频率调制,使该功率变换器平滑地在Buck、Buck-Boost、Boost三种模式之间切换,从而在输入电压低于、高于或近似等于输出电压给定值的情况下,使输出电压稳定在给定电压.试验结果验证了该算法的可行性和有效性.%Aiming at the drawbacks of modulation method for power converter, a modulation method which combines pulse width modulation (PWM) with pulse frequency modulation (PFM) for the non-inverting buck-boost converter is proposed in the paper.The power converter can switch smoothly among buck working mode, buck boost working mode and boost working mode in order to regulate the output voltage to the desired output voltage regardless of that the input voltage is less than, greater than or equal to the desired output voltage.The experimental results verify the feasibility and efficiency of the proposed algorithm.

  9. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT in combination with cetuximab and chemotherapy: the REACH protocol

    Directory of Open Access Journals (Sweden)

    Simon Christian

    2010-11-01

    Full Text Available Abstract Background Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival, combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux®. Radiation therapy (RT is carried out as intensity-modulated RT (IMRT to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues. Methods/Design The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU and the monoclonal epidermal growth factor-receptor (EGFR antibody cetuximab (Erbitux® as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx. Patients receive weekly chemotherapy infusions in the 1st and 5th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16 to a total dose of 69,9 Gy. Discussion Primary endpoint of the trial is local-regional control (LRC. Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer. Trial registration ISRCTN87356938

  10. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  11. Comparison of dose contribution to normal pelvic tissues among conventional, conformal and intensity-modulated radiotherapy techniques in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yungan Tao; Lefkopoulos, Dimitri; Ibrahima, Diallo; Bridier, Andre; Polizzi, Maria del Pilar; Wibault, Pierre; Crevoisier, Renaud de; Arriagada, Rodrigo; Bourhis, Jean (Dept. of Radiotherapy, Institut Gustave-Roussy, Villejuif (France))

    2008-03-15

    High-energy external radiotherapy has become one of the most common treatment in localized prostate cancer. We compared the difference of dose distribution, mainly at the 5-30 Gy dose level, in the irradiated pelvic volume among three modalities of radiotherapy for patients with prostate cancer: conventional, conformal and intensity-modulated radiotherapy (IMRT). We selected six patients with prostate cancer treated by conformal radiotherapy at the doses of 46 Gy to PTVN (prostate and seminal vesicles), and 70 Gy to PTV-T (prostate). The conventional technique: an 8-field arrangement was used; the conformal technique 4 fields with a boost through 6 fields. For IMRT, a five-beam arrangement was used. Dose-volume histograms (DVH) were analyzed and compared among the three techniques. The IMRT technique significantly increased the pelvic volume covered by the isodose surfaces below 15 Gy as compared with the conventional and conformal techniques. The mean absolute increase for the pelvic volume included between 5-30 Gy for the IMRT technique, was about 2 900 ml as compared with the conventional technique. However, IMRT significantly reduced the irradiated volume of the rectum in the dose range of 5 to 40 Gy, also significantly reduced the irradiated volume of bladder and femoral heads, and obtained a similar or improved isodose distribution in the PTVs. In addition, the use of IMRT slightly increased the relative dose delivered to the body volume outside the pelvis, as estimated by the use of specific software. A long-term follow-up will be needed to evaluate potential late treatment complications related to the use of IMRT and the low or moderate irradiation dose level obtained in the pelvis and in the whole body

  12. Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Shu-Lian Wang; Zhongxing Liao; Helen Liu; Jaffer Ajani; Stephen Swisher; James D Cox; Ritsuko Komaki

    2006-01-01

    AIM: To evaluate the dosimetry, efficacy and toxicity of intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with locally advanced cervical and upper thoracic esophageal cancer.METHODS: A retrospective study was performed on 7 patients who were definitively treated with IMRT and concurrent chemotherapy. Patients who did not receive IMRT radiation and concurrent chemotherapy were not included in this analysis. IMRT plans were evaluated to assess the tumor coverage and normal tissue avoidance. Treatment response was evaluated and toxicities were assessed.RESULTS: Five- to nine-beam IMRT were used to deliver a total dose of 59.4-66 Gy (median: 64.8 Gy) to the primary tumor with 6-MV photons. The minimum dose received by the planning tumor volume (PTV) of the gross tumor volume boost was 91.2%-98.2% of the prescription dose (standard deviation [SD]: 3.7%-5.7%).tumor volume was 93.8%-104.8% (SD: 4.3%-11.1%)of the prescribed dose. With a median follow-up of 15 mo (range: 3-21 mo), all 6 evaluable patients achieved complete response. Of them, 2 developed local recurrences and 2 had distant metastases, 3 survived with no evidence of disease. After treatment, 2 patients developed esophageal stricture requiring frequent dilation and 1 patient developed tracheal-esophageal fistula.CONCLUSION: Concurrent IMRT and chemotherapy resulted in an excellent early response in patients with locally advanced cervical and upper thoracic esophageal cancer. However, local and distant recurrence and toxicity remain to be a problem. Innovative approaches are needed to improve the outcome.

  13. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Water, Tara A. van de, E-mail: t.a.van.de.water@rt.umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Lomax, Antony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Bijl, Hendrik P.; Schilstra, Cornelis [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Hug, Eugen B. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Langendijk, Johannes A. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality

  14. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Michael, E-mail: mng@radoncvic.com.au [Radiation Oncology Victoria, Victoria (Australia); Leong, Trevor [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); University of Melbourne (Australia); Chander, Sarat; Chu, Julie [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); Kneebone, Andrew [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, NSW (Australia); University of Sydney (Australia); Carroll, Susan [Department of Radiation Oncology, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); University of Sydney (Australia); Wiltshire, Kirsty [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); Ngan, Samuel [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria (Australia); University of Melbourne (Australia); Kachnic, Lisa [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States)

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steering committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.

  15. A Two-Dimensional Signal Space for Intensity-Modulated Channels

    CERN Document Server

    Karout, Johnny; Kschischang, Frank R; Agrell, Erik

    2012-01-01

    A two-dimensional signal space for intensity- modulated channels is presented. Modulation formats using this signal space are designed to maximize the minimum distance between signal points while satisfying average and peak power constraints. The uncoded, high-signal-to-noise ratio, power and spectral efficiencies are compared to those of the best known formats. The new formats are simpler than existing subcarrier formats, and are superior if the bandwidth is measured as 90% in-band power. Existing subcarrier formats are better if the bandwidth is measured as 99% in-band power.

  16. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    Science.gov (United States)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  17. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    Science.gov (United States)

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise.

  18. MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels

    Science.gov (United States)

    Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich

    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.

  19. Optical Intensity Modulation in an LiNbO3 Slab-Coupled Waveguide

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Optical intensity modulation has been demonstrated through switching the optical beam between the main core waveguide and a closely attached leaky slab waveguide by applying a low-voltage electrical field. Theory for simulating such an LiNbO3 slab-coupled waveguide structure was suggested, and the result indicates the possibility of making the spatial guiding mode large, circular and symmetric, which further allows the potential to significantly reduce the coupling losses with adjacent lasers and optical networks. Optical intensity modulation using electro-optic effect was experimentally demonstrated in a 5 cm long waveguide fabricated by using a procedure of soft proton exchange and then an overgrowth of thin LN film on top of a c-cut LiNbO3 wafer.

  20. Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging

    Science.gov (United States)

    2005-05-01

    Dempsey, F.A. Lerma , K.T. Bae, M.W. Vannier, and J.F. ogy 198, 795-805 (1996). Williamson, "Image-based dose planning of intracavitary brachytherapy:8L... River displacement and collimator and gantry angle misalignment (NJ): Prentice Hall; 1977. on intensity modulated radiation therapy. Radiother Oncol 41...Saddle River (NJ): Prentice Hall; 1993. radiation therapy planning. Phys Med Biol2001;46:2637-63. 76. Wu Q, Mohan R. Algorithms and functionality of

  1. Wideband Analog Transmission System Based on the External Intensity Electro-Optic Modulator

    Directory of Open Access Journals (Sweden)

    Jiri Svarny

    2016-01-01

    Full Text Available The work deals with design and integration of an analog electro-optic transmission system suitable for some specialized tasks of diagnostics and measurements. The system is based on principle of external intensity modulation of fiber guided laser radiation. Besides wideband and almost lossless transmission the system tolerates extreme length of the transmitting medium and ensures ultimate galvanic barrier between the input and output.

  2. Study on the Optimization Algorithms for Intensity-Modulated Radiation Therapy

    Institute of Scientific and Technical Information of China (English)

    LI Yong-jie

    2005-01-01

    @@ Radiotherapy, together with the surgery and chemotherapy, are the three main means for tumor treatment. It is a historic advancement for tumor treatment that the classical three-dimensional (3D)conformal radiotherapy (3DCRT) evolved into the intensity-modulated radiotherapy (IMRT). Whereas,the advantages of IMRT have not yet been fully utilized, because of the complicated clinical conditions.The IMRT planning, one of the key issues of IMRT application, still has many problems open to be further studied.

  3. Simplified polarization demultiplexing based on Stokes vector analysis for intensity-modulation direct-detection systems

    Science.gov (United States)

    Zhou, Xinyu; Yan, Lianshan; Chen, Zhiyu; Yi, Anlin; Pan, Yan; Jiang, Lin; Pan, Wei; Luo, Bin

    2016-10-01

    A simple and effective polarization demultiplexing method is proposed based on the improved Stokes vector analysis and digital signal processor algorithm for the intensity-modulation direct-detection optical communication systems. Such a scheme could significantly simplify optical receivers with low system cost. The experimental results demonstrate the feasibility of our proposed method and show that only 1- and 1.7-dB power penalties are measured for 10- and 25-km transmissions compared to back-to-back case.

  4. A computational implementation and comparison of several intensity modulated proton therapy treatment planning algorithms.

    Science.gov (United States)

    Li, Haisen S; Romeijn, H Edwin; Fox, Christopher; Palta, Jatinder R; Dempsey, James F

    2008-03-01

    The authors present a comparative study of intensity modulated proton therapy (IMPT) treatment planning employing algorithms of three-dimensional (3D) modulation, and 2.5-dimensional (2.5D) modulation, and intensity modulated distal edge tracking (DET) [A. Lomax, Phys. Med. Biol. 44, 185-205 (1999)] applied to the treatment of head-and-neck cancer radiotherapy. These three approaches were also compared with 6 MV photon intensity modulated radiation therapy (IMRT). All algorithms were implemented in the University of Florida Optimized Radiation Therapy system using a finite sized pencil beam dose model and a convex fluence map optimization model. The 3D IMPT and the DET algorithms showed considerable advantages over the photon IMRT in terms of dose conformity and sparing of organs at risk when the beam number was not constrained. The 2.5D algorithm did not show an advantage over the photon IMRT except in the dose reduction to the distant healthy tissues, which is inherent in proton beam delivery. The influences of proton beam number and pencil beam size on the IMPT plan quality were also studied. Out of 24 cases studied, three cases could be adequately planned with one beam and 12 cases could be adequately planned with two beams, but the dose uniformity was often marginally acceptable. Adding one or two more beams in each case dramatically improved the dose uniformity. The finite pencil beam size had more influence on the plan quality of the 2.5D and DET algorithms than that of the 3D IMPT. To obtain a satisfactory plan quality, a 0.5 cm pencil beam size was required for the 3D IMPT and a 0.3 cm size was required for the 2.5D and the DET algorithms. Delivery of the IMPT plans produced in this study would require a proton beam spot scanning technique that has yet to be developed clinically.

  5. Cardiac autonomic modulation in healthy elderly after different intensities of dynamic exercise

    Science.gov (United States)

    Droguett, Viviane Santos López; Santos, Amilton da Cruz; de Medeiros, Carlos Eduardo; Marques, Douglas Porto; do Nascimento, Leone Severino; Brasileiro-Santos, Maria do Socorro

    2015-01-01

    Purpose To investigate the heart rate (HR) and its autonomic modulation at baseline and during dynamic postexercise (PEX) with intensities of 40% and 60% of the maximum HR in healthy elderly. Methods This cross-sectional study included ten apparently healthy people who had been submitted to a protocol on a cycle ergometer for 35 minutes. Autonomic modulation was evaluated by spectral analysis of HR variability (HRV). Results A relevant increase in HR response was observed at 15 minutes postexercise with intensities of 60% and 40% of the maximum HR (10±2 bpm versus 5±1 bpm, respectively; P=0.005), and a significant reduction in HRV was also noted with 40% and 60% intensities during the rest period, and significant reduction in HRV (RR variance) was also observed in 40% and 60% intensities when compared to the baseline, as well as between the post-exercise intensities (1032±32 ms versus 905±5 ms) (P<0.001). In the HRV spectral analysis, a significant increase in the low frequency component HRV and autonomic balance at 40% of the maximum HR (68±2 normalized units [nu] versus 55±1 nu and 2.0±0.1 versus 1.2±0.1; P<0.001) and at 60% of the maximum HR (77±1 nu versus 55±1 nu and 3.2±0.1 versus 1.2±0.1 [P<0.001]) in relation to baseline was observed. A significant reduction of high frequency component at 40% and 60% intensities, however, was observed when compared to baseline (31±2 nu and 23±1 nu versus 45±1 nu, respectively; P<0.001). Moreover, significant differences were observed for the low frequency and high frequency components, as well as for the sympathovagal balance between participants who reached 40% and 60% of the maximum HR. Conclusion There was an increase in the HR, sympathetic modulation, and sympathovagal balance, as well as a reduction in vagal modulation in the elderly at both intensities of the PEX. PMID:25653509

  6. 3D-conformal-intensity modulated radiotherapy with compensators for head and neck cancer: clinical results of normal tissue sparing

    Directory of Open Access Journals (Sweden)

    Koscielny Sven

    2006-06-01

    Full Text Available Abstract Background To investigate the potential of parotic gland sparing of intensity modulated radiotherapy (3D-c-IMRT performed with metallic compensators for head and neck cancer in a clinical series by analysis of dose distributions and clinical measures. Materials and methods 39 patients with squamous cell cancer of the head and neck irradiated using 3D-c-IMRT were evaluable for dose distribution within PTVs and at one parotid gland and 38 patients for toxicity analysis. 10 patients were treated primarily, 29 postoperatively, 19 received concomittant cis-platin based chemotherapy, 20 3D-c-IMRT alone. Initially the dose distribution was calculated with Helax ® and photon fluence was modulated using metallic compensators made of tin-granulate (n = 22. Later the dose distribution was calculated with KonRad ® and fluence was modified by MCP 96 alloy compensators (n = 17. Gross tumor/tumor bed (PTV 1 was irradiated up to 60–70 Gy, [5 fractions/week, single fraction dose: 2.0–2.2 (simultaneously integrated boost], adjuvantly irradiated bilateral cervical lymph nodes (PTV 2 with 48–54 Gy [single dose: 1.5–1.8]. Toxicity was scored according the RTOG scale and patient-reported xerostomia questionnaire (XQ. Results Mean of the median doses at the parotid glands to be spared was 25.9 (16.3–46.8 Gy, for tin graulate 26 Gy, for MCP alloy 24.2 Gy. Tin-granulate compensators resulted in a median parotid dose above 26 Gy in 10/22, MCP 96 alloy in 0/17 patients. Following acute toxicities were seen (°0–2/3: xerostomia: 87%/13%, dysphagia: 84%/16%, mucositis: 89%/11%, dermatitis: 100%/0%. No grade 4 reaction was encountered. During therapy the XQ forms showed °0–2/3: 88%/12%. 6 months postRT chronic xerostomia °0–2/3 was observed in 85%/15% of patients, none with °4 xerostomia. Conclusion 3D-c-IMRT using metallic compensators along with inverse calculation algorithm achieves sufficient parotid gland sparing in virtually all advanced

  7. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    Directory of Open Access Journals (Sweden)

    Clivio Alessandro

    2010-11-01

    Full Text Available Abstract Purpose A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA and fixed field intensity modulated therapy (IMRT for Whole Abdomen Radiotherapy (WAR after ovarian cancer. Methods and Materials Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV_WAR and 45 Gy to the pelvis and pelvic nodes (PTV_Pelvis with Simultaneous Integrated Boost (SIB technique. Plans were investigated for 6 MV (RA6, IMRT6 and 15 MV (RA15, IMRT15 photons. Objectives were: for both PTVs V90% > 95%, for PTV_Pelvis: Dmax Results IMRT and RapidArc resulted comparable for target coverage. For PTV_WAR, V90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV_Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U5-95% = D5%-D95%/Dmean. U5-95% for PTV_WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15, 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15; for PTV_Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6, 2841 ± 318 (IMRT15, 538 ± 29 (RA6, 635 ± 139 (RA15; the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15 and 4.8 ± 0.2 (RA6 and RA15. GAIIMRT6 = 97.3 ± 2.6%, GAIIMRT15 = 94.4 ± 2.1%, GAIRA6 = 98.7 ± 1.0% and GAIRA15 = 95.7 ± 3.7%. Conclusion RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT.

  8. SelfieBoost: A Boosting Algorithm for Deep Learning

    OpenAIRE

    2014-01-01

    We describe and analyze a new boosting algorithm for deep learning called SelfieBoost. Unlike other boosting algorithms, like AdaBoost, which construct ensembles of classifiers, SelfieBoost boosts the accuracy of a single network. We prove a $\\log(1/\\epsilon)$ convergence rate for SelfieBoost under some "SGD success" assumption which seems to hold in practice.

  9. System design of programmable 4f phase modulation techniques for rapid intensity shaping: a conceptual comparison

    Science.gov (United States)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2016-03-01

    The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.

  10. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer : a planning study

    NARCIS (Netherlands)

    Holt, Andrea; Van Gestel, Dirk; Arends, Mark P.; Korevaar, Erik W.; Schuring, Danny; Kunze-Busch, Martina C.; Louwe, Rob J. W.; van Vliet-Vroegindeweij, Corine

    2013-01-01

    Background: Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment planner-

  11. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study

    NARCIS (Netherlands)

    Holt, A.; Gestel, D. Van; Arends, M.P.; Korevaar, E.W.; Schuring, D.; Kunze-Busch, M.C.; Louwe, R.J.W.; Vliet-Vroegindeweij, C. van

    2013-01-01

    BACKGROUND: Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment planner-

  12. Intensity-modulated radiotherapy for cancers in childhood; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, Service de Radiotherapie, 35 - Rennes (France); Leseur, J.; Carrie, C.; Beneyton, V. [Centre Leon-Berard, Service de Radiotherapie, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, Service de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Beneyton, V. [Centre Paul-Strauss, Service de Radiotherapie, 67 - Strasbourg (France); Mahee, M.A.; Supiot, S. [Centre Rene-Gauducheau, Service de Radiotherapie, 44 - Nantes - Saint-Herblain (France)

    2009-10-15

    Approximately 40-50% of children with cancer will be irradiated during their treatment. Intensity-modulated radiotherapy (I.M.R.T.) by linear accelerator or helical tomo-therapy improves dose distribution in target volumes and normal tissue sparing. This technology could be particularly useful for pediatric patients to achieve an optimal dose distribution in complex volumes close to critical structures. The use of I.M.R.T. can increase the volume of tissue receiving low-dose radiation, and consequently carcinogenicity in childhood population with a good overall survival and long period of life expectancy. This review will present the current and potential I.M.R.T. indications for cancers in childhood, and discuss the benefits and problems of this technology aiming to define recommendations in the use of I.M.R.T. and specific doses constraints in Pediatrics. (authors)

  13. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  14. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  15. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  16. Modulation instability of an intense laser beam in an unmagnetized electron–positron–ion plasma

    Indian Academy of Sciences (India)

    San Qiu Liu; Wei Tang; Xiao Qing Li

    2012-03-01

    The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and the temporal growth rate are obtained analytically. In order to compare with the usual electron–ion plasmas, the effect of positron concentration is considered. It is found that the increase in positron-to-electron density ratio shifts the instability region towards higher vertical wave numbers but does not cause displacement along the parallel wave number direction, and the growth rate increases as the positron-to-electron density ratio increases.

  17. Intensity-dependent modulation of optically active signals in a chiral metamaterial

    Science.gov (United States)

    Rodrigues, Sean P.; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W.; Wang, Shengxiang; Urbas, Augustine M.; Cai, Wenshan

    2017-01-01

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation. PMID:28240288

  18. Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort

    Energy Technology Data Exchange (ETDEWEB)

    Combs, S.E.; Habermehl, D.; Kessel, K.; Brecht, I. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Bergmann, F.; Schirmacher, P. [Univ. Hospital of Heidelberg (Germany). Dept. of Pathology; Werner, J.; Buechler, M.W. [Univ. Hospital of Heidelberg (Germany). Dept. of Surgery; Jaeger, D. [National Center for Tumor Diseases (NCT), Heidelberg (Germany); Debus, J. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology

    2013-09-15

    Background: To evaluate outcome after intensity modulated radiotherapy (IMRT) compared to 3D conformal radiotherapy (3D-RT) as neoadjuvant treatment in patients with locally advanced pancreatic cancer (LAPC). Materials and methods: In total, 57 patients with LAPC were treated with IMRT and chemotherapy. A median total dose of 45 Gy to the PTV {sub baseplan} and 54 Gy to the PTV {sub boost} in single doses of 1.8 Gy for the PTV {sub baseplan} and median single doses of 2.2 Gy in the PTV {sub boost} were applied. Outcomes were evaluated and compared to a large cohort of patients treated with 3D-RT. Results: Overall treatment was well tolerated in all patients and IMRT could be completed without interruptions. Median overall survival was 11 months (range 5-37.5 months). Actuarial overall survival at 12 and 24 months was 36 % and 8 %, respectively. A significant impact on overall survival could only be observed for a decrease in CA 19-9 during treatment, patients with less pre-treatment CA 19-9 than the median, as well as weight loss during treatment. Local progression-free survival was 79 % after 6 months, 39 % after 12 months, and 13 % after 24 months. No factors significantly influencing local progression-free survival could be identified. There was no difference in overall and progression-free survival between 3D-RT and IMRT. Secondary resectability was similar in both groups (26 % vs. 28 %). Toxicity was comparable and consisted mainly of hematological toxicity due to chemotherapy. Conclusion: IMRT leads to a comparable outcome compared to 3D-RT in patients with LAPC. In the future, the improved dose distribution, as well as advances in image-guided radiotherapy (IGRT) techniques, may improve the use of IMRT in local dose escalation strategies to potentially improve outcome. (orig.)

  19. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    Energy Technology Data Exchange (ETDEWEB)

    Mosalaei, Homeira, E-mail: homeira.mosalaei@lhsc.on.ca [London Regional Cancer Program, London Health Science Centre, Ontario (Canada); Karnas, Scott [London Regional Cancer Program, London Health Science Centre, Ontario (Canada); University of Waterloo, Waterloo, Ontario (Canada); Shah, Sheel [University of Western Ontario, London, Ontario (Canada); Van Doodewaard, Sharon [McMaster University, Hamilton, Ontario (Canada); Foster, Tim [University of Western Ontario, London, Ontario (Canada); Chen, Jeff [London Regional Cancer Program, London Health Science Centre, Ontario (Canada); University of Waterloo, Waterloo, Ontario (Canada)

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  20. Measurement of Frequency Shift Characteristics Based on LiNbO3 Waveguide Electro-Optic Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    Zhou Meng; Hui-Juan Zhou; Yi Liao; Qiong Yao

    2008-01-01

    High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communi-cation and sensor. This paper reports the research results on the measurement of frequency shift character-istics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift character-istics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.

  1. Combining discrete cosine transform with clipping for PAPR reduction in intensity-modulated OFDM systems

    Science.gov (United States)

    Wang, Zhong-peng; Chen, Shou-fa; Zhou, Yang; Chen, Ming; Tang, Jin; Chen, Lin

    2014-09-01

    In this paper, the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal is reduced by combining the discrete cosine transform (DCT) with clipping in optical intensity-modulated direct-detection (IM/DD) OFDM systems. First, the data are transformed into new modified data by DCT. Second, the proposed scheme utilizes the clipping technique to further reduce the PAPR of OFDM signal. We experimentally demonstrate that the optical OFDM transmission system with this proposed scheme can achieve significant performance improvement in terms of PAPR and bit error rate (BER) compared with the original optical OFDM systems.

  2. MIMO Intensity-Modulation Channels: Capacity Bounds and High SNR Characterization

    KAUST Repository

    Chaaban, Anas

    2016-10-01

    The capacity of MIMO intensity modulation channels is studied. The nonnegativity of the transmit signal (intensity) poses a challenge on the precoding of the transmit signal, which limits the applicability of classical schemes in this type of channels. To resolve this issue, capacity lower bounds are developed by using precoding-free schemes. This is achieved by channel inversion or QR decomposition to convert the MIMO channel to a set of parallel channels. The achievable rate of a DC-offset SVD based scheme is also derived as a benchmark. Then, a capacity upper bound is derived and is shown to coincide with the achievable rate of the QR decomposition based scheme at high SNR, consequently characterizing the high-SNR capacity of the channel. The high-SNR gap between capacity and the achievable rates of the channel inversion and the DC-offset SVD based schemes is also characterized. Finally, the ergodic capacity of the channel is also briefly discussed.

  3. Approximated segmentation considering technical and dosimetric constraints in intensity-modulated radiation therapy with electrons

    CERN Document Server

    Kiesel, Antje

    2010-01-01

    In intensity-modulated radiation therapy, optimal intensity distributions of incoming beams are decomposed into linear combinations of leaf openings of a multileaf collimator (segments). In order to avoid inefficient dose delivery, the decomposition should satisfy a number of dosimetric constraints due to suboptimal dose characteristics of small segments. However, exact decomposition with dosimetric constraints is only in limited cases possible. The present work introduces new heuristic segmentation algorithms for the following optimization problem: Find a segmentation of an approximated matrix using only allowed fields and minimize the approximation error. Finally, the decomposition algorithms were implemented into an optimization programme in order to examine the assumptions of the algorithms for a clinical example. As a result, identical dose distributions with much fewer segments and a significantly smaller number of monitor units could be achieved using dosimetric constraints. Consequently, the dose deli...

  4. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    Directory of Open Access Journals (Sweden)

    Vasco Giovagnetti

    Full Text Available In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC and non-photochemical fluorescence quenching (NPQ, to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events with that of a slower increase (corresponding to the light diel cycle on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  5. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  6. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  7. Moderate hypofractionation and simultaneous integrated boost with volumetric modulated arc therapy (RapidArc) for prostate cancer. Report of feasibility and acute toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Alongi, F.; Navarria, P.; Tozzi, A.; Mancosu, P.; Lobefalo, F.; Reggiori, G.; Scorsetti, M. [Istituto Clinico Humanitas, Rozzano, Milan (Italy). Dept. of Radiotherapy; Fogliata, A.; Clivio, A.; Cozzi, L. [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland). Medical Physics Unit

    2012-11-15

    Purpose: In the present study, the acute toxicity profiles for prostate patients treated with simultaneous integrated boost (SIB) with volumetric modulated arcs in a hypofractionated regime are reported. Patients and methods: A total of 70 patients treated with RapidArc between May 2010 and September 2011 were retrospectively evaluated. Patients were stratified into low (36%), intermediate (49%), and high-risk (16%) groups. Target volumes (expanded to define the planning volumes (PTV)) were clinical target volume (CTV) 1: prostate; CTV2: CTV1 + seminal vesicles; CTV3: CTV2 + pelvic nodes. Low-risk patients received 71.4 Gy to PTV1; intermediate-risk 74.2 Gy to PTV1 and 61.6 or 65.5 Gy to PTV2; high-risk 74.2 Gy to PTV1, 61.6 or 65.5 Gy to PTV2, and 51.8 Gy to PTV3. All treatments were in 28 fractions. The median follow-up was 11 months (range 3.5-23 months). The acute rectal, gastrointestinal (GI) and genitourinary (GU) toxicities were scored according to EORTC/RTOG scales. Results: Acute toxicities were recorded for the GU [G0 = 31/70 (44%), G1 = 22/70 (31%); G2 = 16/70 (23%); G3 = 1/70 (1%)], the rectum [G0 = 46/70 (66%); G1 = 12/70 (17%); G2 = 12/70 (17%); no G3], and the GI [G0 = 54/69 (77%); G1 = 11/69 (16%); G2 = 4/69 (6%); no G3]. Median time to rectal, GU, and GI toxicities were 27, 30, and 33 days, respectively. Only the GI toxicity correlated with stage and pelvic irradiation. Univariate analysis presented significant correlations between GI toxicity and intestinal irradiation (V{sub 50} {sub Gy} and V{sub 60} {sub Gy}). In the multivariate analysis, the only significant dosimetric variable was V{sub 50} {sub Gy} for the intestinal cavity. Conclusion: Moderate hypofractionation with SIB and RapidArc was shown to be safe, with acceptable acute toxicity. Longer follow-up is needed to assess late toxicity and clinical outcome. (orig.)

  8. SCALING OF X-RAY-DIFFRACTION INTENSITIES FOR CRYSTALS WITH A ONE-DIMENSIONAL, INCOMMENSURATE, DISPLACIVE MODULATION

    NARCIS (Netherlands)

    LAM, EJW; BEURSKENS, PT; VANSMAALEN, S

    1992-01-01

    A statistical method is presented for the determination of the scale factor, an overall isotropic temperature factor and an overall modulation amplitude from the X-ray diffraction intensities of crystals with a one-dimensional, incommensurate, displacive modulation. Application to several compounds

  9. Volumetric intensity modulated arc therapy in lung cancer: Current literature review

    Directory of Open Access Journals (Sweden)

    Suresh B Rana

    2013-01-01

    Full Text Available The volumetric intensity modulated arc therapy (VMAT is a novel radiation technique that delivers a highly conformal radiation dose to the target by allowing the simultaneous variation of gantry rotation speed, dose rate and multiple-leaf collimators leaf positions. The aim of this study was to review the current literature on two VMAT systems, RapidArc and SmartArc with main focus on planning studies of lung cancer. A systematic review of available data was conducted using MEDLINE/PubMed with the keywords ′′lung′′ and "VMAT". The published data show that VMAT techniques have clear superiority over three-dimensional conformal radiation therapy with regard to improving dose conformity and sparing of organs at risks (OARs. The data indicates that for lung tumor VMAT and intensity modulated radiation therapy (IMRT provide equivalent dose homogeneity, dose conformity and target volume coverage; however, contradictory results were obtained in terms of OARs sparing. The major advantages of VMAT over IMRT are the reduction in the number of monitor units and faster treatment delivery times without compromising the quality of the treatment plans. Moreover, faster delivery time is more patient-friendly and it minimizes intra-fractional patient motion allowing treatment volumes stay within their respective treatment margins. Current literature data shows that VMAT can be a good option to treat lung cancer; however, data on clinical trials are still lacking. The clinical trials are essential to confirm the safety and efficacy of VMAT techniques.

  10. Binary Intensity Modulation and Hybrid Ternary Modulation Applied to Multiplexing Objects Using Holographic Data Storage on a PVA/AA Photopolymer

    Directory of Open Access Journals (Sweden)

    Elena Fernandez

    2014-01-01

    Full Text Available Holographic data pages were multiplexed in a polyvinyl alcohol/acrylamide photopolymer and a liquid crystal device was used to modify the object beam and store objects in the material. A peristrophic multiplexing method was used to store a large number of objects in the same spot of the material. The objects were stored using two different modulations: binary intensity modulation and hybrid ternary modulation. Moreover, the bit error rate (BER of the images was calculated in order to compare which modulation is most appropriate to be used for holographic data storage.

  11. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.

    Science.gov (United States)

    Schultze, Volkmar; Ijsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Meyer, Hans-Georg

    2012-06-18

    We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical M(x) method using B(1) field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

  12. A single-field integrated boost treatment planning technique for spot scanning proton therapy

    OpenAIRE

    Zhu, Xiaorong Ronald; Poenisch, Falk; LI, Heng; Zhang, Xiaodong; Sahoo, Narayan; Richard Y. Wu; Li, Xiaoqiang; Lee, Andrew K.; Chang, Eric L.; Choi, Seungtaek; Pugh, Thomas; Steven J. Frank; Gillin, Michael T.; Mahajan, Anita; Grosshans, David R.

    2014-01-01

    Purpose Intensity modulated proton therapy (IMPT) plans are normally generated utilizing multiple field optimization (MFO) techniques. Similar to photon based IMRT, MFO allows for the utilization of a simultaneous integrated boost in which multiple target volumes are treated to discrete doses simultaneously, potentially improving plan quality and streamlining quality assurance and treatment delivery. However, MFO may render plans more sensitive to the physical uncertainties inherent to partic...

  13. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  14. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Damen, Eugene M.F., E-mail: e.damen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  15. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S [Korea University, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Kim, D; Chung, W [Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion around the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.

  16. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC intensity modulated radiation therapy (IMRT plans with volumetric modulated arc therapy (VMAT plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI and the conformity index (CI of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases.

  17. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  18. Research of an active Buck-Boost Inverter Under Dual Mode Modulation%有源升降压逆变器双模式调制策略研究

    Institute of Scientific and Technical Information of China (English)

    何耀华; 汤雨; 董仙美

    2014-01-01

    The inverter used in new energy power generation system should have the ability to adapt a wide range of DC input voltage. Based on the active buck-boost inverter which consists of a full bridge and Boost AC/AC part, two modulation methods were compared: constant boost ratio modulation and dual mode modulation. Along with the relationship of the input DC voltage and the reference AC voltage, the converter completes buck or boost inversion with different equivalent circuits and there are fewer switches working at high frequency in dual mode modulation, which is in favor of the system with high efficiency. The current of the inductor and the current stress of the switches was analyzed in this paper. Experimental results were presented to verify that the proposed topology can achieve dual mode operation with wide range of input voltage.%新能源发电系统要求逆变器具有宽输入电压适应能力,该文基于有源升降压逆变器拓扑,对恒升压比调制和双模态调制两种调制方法进行对比。双模态调制根据不同的直流输入与瞬时的交流输出电压大小关系,使电路呈现出不同的等效电路结构,且每种结构均只有部分开关管高频工作,有利于提高变换效率。还对两种调制下电感电流、开关管电流应力进行分析比较。实验结果表明,该变换器可双模式工作,具有宽输入电压适应能力。

  19. Boosting foundations and algorithms

    CERN Document Server

    Schapire, Robert E

    2012-01-01

    Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

  20. An open-loop RFOG based on harmonic division technique to suppress LD's intensity modulation noise

    Science.gov (United States)

    Ying, Diqing; Wang, Zeyu; Mao, Jianmin; Jin, Zhonghe

    2016-11-01

    A harmonic division technique is proposed for an open-loop resonator fiber optic gyro (RFOG) to suppress semiconductor laser diode's (LD's) intensity modulation noise. The theoretical study indicates the RFOG with this technique is immune to the intensity noise. The simulation and experimental results show this technique would lead to a diminished linear region, which still could be acceptable for an RFOG applied to low rotation rate detection. The tests for the gyro output signal are carried out with/without noise suppressing methods, including the harmonic division technique and previously proposed signal compensation technique. With the harmonic division technique at the rotation rate of 10 deg/s, the stability of gyro output signal is improved from 1.07 deg/s to 0.0361 deg/s, whose noise suppressing ratio is more than 3 times as that of the signal compensation technique. And especially, a 3.12 deg/s signal jump is significantly removed with the harmonic division technique; in contrast, a residual 0.36 deg/s signal jump still exists with the signal compensation technique. It is concluded the harmonic division technique does work in intensity noise suppressing under dynamic condition, and it is superior to the signal compensation technique.

  1. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  2. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weiliang, E-mail: wdu@mdanderson.org; Cho, Sang Hyun; Zhang, Xiaodong; Kudchadker, Rajat J. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Hoffman, Karen E. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-02-15

    Purpose: Excessive complexity in intensity-modulated radiation therapy (IMRT) plans increases the dose uncertainty, prolongs the treatment time, and increases the susceptibility to changes in patient or target geometry. To date, the tools for quantitative assessment of IMRT beam complexity are still lacking. In this study, The authors have sought to develop metrics to characterize different aspects of beam complexity and investigate the beam complexity for IMRT plans of different disease sites. Methods: The authors evaluated the beam complexity scores for 65 step-and-shoot IMRT plans from three sites (prostate, head and neck, and spine) and 26 volumetric-modulated arc therapy (VMAT) plans for the prostate. On the basis of the beam apertures and monitor unit weights of all segments, the authors calculated the mean aperture area, extent of aperture shape irregularity, and degree of beam modulation for each beam. Then the beam complexity values were averaged to obtain the complexity metrics of the IMRT plans. The authors studied the correlation between the beam complexity metrics and the quality assurance (QA) results. Finally, the effects of treatment planning parameters on beam complexity were studied. Results: The beam complexity scores were not uniform among the prostate IMRT beams from different gantry angles. The lateral beams had larger monitor units and smaller shape irregularity, while the anterior-posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest aperture irregularity, beam modulation, and normalized monitor units; the head and neck IMRT plans had large beam irregularity and beam modulation; and the spine stereotactic radiation therapy plans often had small beam apertures, which may have been associated with the relatively large discrepancies between planned and QA measured doses. There were weak correlations between the beam complexity scores and the measured dose errors. The prostate VMAT beams showed

  3. Vertical intensity modulation for improved radiographic penetration and reduced exclusion zone

    Science.gov (United States)

    Bendahan, J.; Langeveld, W. G. J.; Bharadwaj, V.; Amann, J.; Limborg, C.; Nosochkov, Y.

    2016-09-01

    In the present work, a method to direct the X-ray beam in real time to the desired locations in the cargo to increase penetration and reduce exclusion zone is presented. Cargo scanners employ high energy X-rays to produce radiographic images of the cargo. Most new scanners employ dual-energy to produce, in addition to attenuation maps, atomic number information in order to facilitate the detection of contraband. The electron beam producing the bremsstrahlung X-ray beam is usually directed approximately to the center of the container, concentrating the highest X-ray intensity to that area. Other parts of the container are exposed to lower radiation levels due to the large drop-off of the bremsstrahlung radiation intensity as a function of angle, especially for high energies (>6 MV). This results in lower penetration in these areas, requiring higher power sources that increase the dose and exclusion zone. The capability to modulate the X-ray source intensity on a pulse-by-pulse basis to deliver only as much radiation as required to the cargo has been reported previously. This method is, however, controlled by the most attenuating part of the inspected slice, resulting in excessive radiation to other areas of the cargo. A method to direct a dual-energy beam has been developed to provide a more precisely controlled level of required radiation to highly attenuating areas. The present method is based on steering the dual-energy electron beam using magnetic components on a pulse-to-pulse basis to a fixed location on the X-ray production target, but incident at different angles so as to direct the maximum intensity of the produced bremsstrahlung to the desired locations. The details of the technique and subsystem and simulation results are presented.

  4. Exploring the Feasibility of Dose Escalation Positron Emission Tomography-Positive Disease with Intensity-Modulated Radiation Therapy and the Effects on Normal Tissue Structures for Thoracic Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Lehendrick M., E-mail: lehendrickt@yahoo.com [University of Texas M. D. Anderson Cancer Center School of Health Professions, Medical Dosimetry Program, Houston, TX (United States); Howard, Joshua A.; Dehghanpour, Pouya; Barrett, Renee D. [University of Texas M. D. Anderson Cancer Center School of Health Professions, Medical Dosimetry Program, Houston, TX (United States); Rebueno, Neal; Palmer, Matthew [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Vedam, Sastry [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Klopp, Ann; Komaki, Ritsuko; Welsh, James W. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-01-01

    The pattern of failure is one of the major causes of mortality among thoracic patients. Studies have shown a correlation between local control and dose. Intensity-modulated radiation therapy (IMRT) has resulted in conformal dose distributions while limiting dose to normal tissue. However, thoracic malignancies treated with IMRT to highly conformal doses up to 70 Gy still have been found to fail. Thus, the need for dose escalation through simultaneous integrated boost (SIB) may prove effective in minimizing reoccurrences. For our study, 28 thoracic IMRT plans were reoptimized via dose escalation to the gross tumor volume (GTV) and planning target volume (PTV) of 79.2 Gy and 68.4 Gy, respectively. Reoccurrences in surrounding regions of microscopic disease are rare therefore, dose-escalating regional nodes (outside GTV) were not included. Hence, the need to edit GTV margins was acceptable for our retrospective study. A median dose escalation of approximately 15 Gy (64.8-79.2 Gy) via IMRT using SIB was deemed achievable with minimal percent differences received by critical structures compared with the original treatment plan. The target's mean doses were significantly increased based on p-value analysis, while the normal tissue structures were not significantly changed.

  5. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  6. Implementation of intensity modulated radiotherapy for prostate cancer in a private radiotherapy service in Mexico

    Science.gov (United States)

    Poitevin-Chacón, María Adela; Reséndiz González, Gabriel; Alvarado Zermeño, Adriana; Flores Castro, Jesús Manuel; Flores Balcázar, Christian Haydée; Rosales Pérez, Samuel; Pérez Pastenes, Miguel Angel; Rodríguez Laguna, Alejandro; Vázquez Fernández, Patricio; Calvo Fernández, Alejandro; Bastida Ventura, Jorge

    2014-01-01

    Intensity modulated radiation therapy (IMRT) allows physicians to deliver higher conformal doses to the tumour, while avoiding adjacent structures. As a result the probability of tumour control is higher and toxicity may be reduced. However, implementation of IMRT is highly complex and requires a rigorous quality assurance (QA) program both before and during treatment. The present article describes the process of implementing IMRT for localized prostate cancer in a radiation therapy department. In our experience, IMRT implementation requires careful planning due to the need to simultaneously implement specialized software, multifaceted QA programs, and training of the multidisciplinary team. Establishing standardized protocols and ensuring close collaboration between a multidisciplinary team is challenging but essential. PMID:25535587

  7. Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gensheimer, Michael F. [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA (United States); Hummel-Kramer, Sharon M., E-mail: sharonhummel@comcast.net [Department of Radiation Oncology, VA Puget Sound Health Care System, Seattle, WA (United States); Cain, David; Quang, Tony S. [Department of Radiation Oncology, VA Puget Sound Health Care System, Seattle, WA (United States)

    2015-10-01

    Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.

  8. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  9. MIMO FSO communication using subcarrier intensity modulation over double generalized gamma fading

    Science.gov (United States)

    Yi, Xiang; Yao, Mingwu; Wang, Xiaoyang

    2017-01-01

    Atmospheric turbulence-induced fading is known to have a serious detrimental effect on the performance of free-space optical (FSO) communication. The involvement of multiple lasers and photodetectors in FSO systems offers an effective way to overcome fading. Very recently, a new generic fading model, called double-generalized gamma (double GG), is developed for accurately describing irradiance fading over a wide range of turbulence conditions. Therefore, for a general and exact study of the multiple-input multiple-output (MIMO) FSO system, the double GG fading model is adopted in this paper. We investigate the MIMO FSO systems using subcarrier intensity modulation. Two typical transmit diversity schemes, repetition code (RC) and orthogonal space-time block code (OSTBC), are considered. We first propose a new power series expression for the probability density function of the double GG fading. Then we derive the average error rate expressions for both schemes in terms of double power series. The truncated forms of the derived power series enable the rapid and accurate numerical computation of the error rates. Furthermore, we present the asymptotic error rate analyses at high electrical signal-to-noise ratio (SNR) for both schemes. Closed-form diversity order and coding gain for both schemes are also obtained. Our numerical results, verified by simulation, confirm that RC outperforms OSTBC for MIMO FSO systems with subcarrier intensity modulation in double GG fading. The asymptotic coding gain of the RC scheme over the OSTBC scheme is analytically quantified for varying degrees of the fading strength.

  10. Fast intensity-modulated arc therapy based on 2-step beam segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Bratengeier, Klaus; Gainey, Mark; Sauer, Otto A.; Richter, Anne; Flentje, Michael [Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg (Germany)

    2011-01-15

    Purpose: Single or few arc intensity-modulated arc therapy (IMAT) is intended to be a time saving irradiation method, potentially replacing classical intensity-modulated radiotherapy (IMRT). The aim of this work was to evaluate the quality of different IMAT methods with the potential of fast delivery, which also has the possibility of adapting to the daily shape of the target volume. Methods: A planning study was performed. Novel double and triple IMAT techniques based on the geometrical analysis of the target organ at risk geometry (2-step IMAT) were evaluated. They were compared to step and shoot IMRT reference plans generated using direct machine parameter optimization (DMPO). Volumetric arc (VMAT) plans from commercial preclinical software (SMARTARC) were used as an additional benchmark to classify the quality of the novel techniques. Four cases with concave planning target volumes (PTV) with one dominating organ at risk (OAR), viz., the PTV/OAR combination of the ESTRO Quasimodo phantom, breast/lung, spine metastasis/spinal cord, and prostate/rectum, were used for the study. The composite objective value (COV) and other parameters representing the plan quality were studied. Results: The novel 2-step IMAT techniques with geometry based segment definition were as good as or better than DMPO and were superior to the SMARTARC VMAT techniques. For the spine metastasis, the quality measured by the COV differed only by 3%, whereas the COV of the 2-step IMAT for the other three cases decreased by a factor of 1.4-2.4 with respect to the reference plans. Conclusions: Rotational techniques based on geometrical analysis of the optimization problem (2-step IMAT) provide similar or better plan quality than DMPO or the research version of SMARTARC VMAT variants. The results justify pursuing the goal of fast IMAT adaptation based on 2-step IMAT techniques.

  11. Feasibility of an online adaptive replanning method for cranial frameless intensity-modulated radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Juan Francisco, E-mail: jfcdrr@gmail.com [Departamento de Oncología Radioterápica, Hospital Quirón, Barcelona (Spain); San José, Sol [Departamento de Oncología Radioterápica, Hospital Quirón, Barcelona (Spain); Garrido, LLuís [Institut de Ciències del Cosmos i Departament ECM, Universitat de Barcelona, Barcelona (Spain); Puertas, Enrique; Moragues, Sandra; Pozo, Miquel [Departamento de Oncología Radioterápica, Hospital Quirón, Barcelona (Spain); Casals, Joan, E-mail: jfcdrr@yahoo.es [Departamento de Oncología Radioterápica, Hospital Quirón, Barcelona (Spain)

    2013-10-01

    To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.

  12. Progress on the 140 KV, 10 Megawatt Peak, 1 Megawatt Average Polyphase Quasi-Resonant Bridge, Boost Converter/Modulator for the Spallation Neutron Source (SNS) Klystron Power System

    CERN Document Server

    Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.

    2000-01-01

    This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...

  13. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.

    Science.gov (United States)

    Mills, Rebecca; Popple, Julie-Anne; Veidt, Martin; Merritt, David John

    2016-04-01

    Glowworms are larval fungus gnats that emit light from a specialised abdominal light organ. The light attracts small arthropod prey to their web-like silk snares. Larvae glow throughout the night and can modulate their bioluminescence in response to sensory input. To better understand light output regulation and its ecological significance, we examined the larvae's reaction to light exposure, vibration and sound. Exposure to a 5-min light pulse in the laboratory causes larvae to exponentially decrease their light output over 5-10 min until they completely switch off. They gradually return to pre-exposure levels but do not show a rebound. Larvae are most sensitive to ultraviolet light, then blue, green and red. Vibration of the larval snares results in a several-fold increase in bioluminescence over 20-30 s, followed by an exponential return to pre-exposure levels over 15-30 min. Under some conditions, larvae can respond to vibration by initiating bioluminescence when they are not glowing; however, the response is reduced compared to when they are glowing. We propose that inhibitory and excitatory mechanisms combine to modulate bioluminescence intensity by regulating biochemical reactions or gating the access of air to the light organ.

  14. Greatly enhanced intensity-difference squeezing via energy-level modulations in hot atomic media

    CERN Document Server

    Zhang, Da; Zhang, Zhaoyang; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    Narrow-band intensity-difference squeezing (IDS) beams have important applications in quantum metrology and quantum information. The best way to generate narrow-band IDS is to employ parametrically-amplified (PA) four-wave mixing (FWM) process in high-gain atomic media. Such IDS can be further enhanced by cascading multiple PA-FWM processes in separate atomic media. The complicated experimental setup, added losses and mechanical stability can limit the wide uses of such scheme in practical applications. Here, we show that by modulating/dressing the internal energy level(s) with additional laser(s), the degree of original IDS can be substantially increased. With an initial IDS of $-4.0\\pm0.1$ dB using PA-non-degenerate-FWM process in a three-level $\\Lambda$-type configuration, the degree of IDS can be enhanced to $-7.0\\pm0.1$ dB/$-8.1\\pm0.1$ dB when we use one/two laser beam(s) to modulate the involved ground/excited state(s). Our results show a low-loss, robust and efficient way to produce high degree of IDS ...

  15. Diode-Assisted Buck-Boost Current Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Cai, Liang; Loh, P.C.

    2007-01-01

    This paper presents a couple of novel current source inverters (CSIs) with the enhanced current buckboost capability. With the unique diode-inductor network added between current source inverter circuitry and current boost elements, the proposed buck-boost current source inverters demonstrate...... a double current boost capability when comparing with the recently reported buckboost CSIs. For modulating the presented CSIs, two modulation schemes are proposed for achieving either optimized harmonic performance or minimal commutation count, meanwhile keeping the important current buck-boost operation...

  16. Intensity modulated radiation therapy with field rotation--a time-varying fractionation study.

    Science.gov (United States)

    Dink, Delal; Langer, Mark P; Rardin, Ronald L; Pekny, Joseph F; Reklaitis, Gintaras V; Saka, Behlul

    2012-06-01

    This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.

  17. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  18. On the Capacity of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2016-01-12

    The capacity of the intensity-modulation directdetection optical broadcast channel (OBC) is investigated, under both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans’ approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian (TG) distributions or discrete distributions. While the discrete distribution achieves higher rates, the TG distribution leads to a simpler representation of the achievable rate region. At high signal-to-noise ratio (SNR), it is shown that the TG distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows. It also achieves the capacity region within a constant gap. At low SNR, it is shown that on-off keying (OOK) with time-division multipleaccess (TDMA) is optimal. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves fairly good performance.

  19. On the Capacity Region of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2015-08-11

    The capacity of the intensity-modulation direct-detection free-space optical broadcast channel (OBC) is investigated. The Gaussian model with input-independent Gaussian noise is used, with both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans\\' approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian distributions or discrete distributions. While the discrete input distribution achieves higher rates than the truncated-Gaussian distribution, the latter allows expressing the achievable rate region in a closed form. At high signal-to-noise ratio (SNR), it is shown that the truncated-Gaussian distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows large. It also achieves the capacity region within a constant gap, which depends on the number of users. At low SNR, it is shown that on-off keying with time-division multiple-access (TDMA) is optimal, as it achieves any point on the boundary of the developed outer bound. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves a fairly good performance in terms of symmetric rate.

  20. A Treatment Planning and Acute Toxicity Comparison of Two Pelvic Nodal Volume Delineation Techniques and Delivery Comparison of Intensity-Modulated Radiotherapy Versus Volumetric Modulated Arc Therapy for Hypofractionated High-Risk Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Myrehaug, Sten [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Chan, Gordon [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Craig, Tim [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Weinberg, Vivian [Biostatistics Core, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA (United States); Cheng, Chun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Roach, Mack [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Cheung, Patrick [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada)

    2012-03-15

    Purpose: To perform a comparison of two pelvic lymph node volume delineation strategies used in intensity-modulated radiotherapy (IMRT) for high risk prostate cancer and to determine the role of volumetric modulated arc therapy (VMAT). Methods and Materials: Eighteen consecutive patients accrued to an ongoing clinical trial were identified according to either the nodal contouring strategy as described based on lymphotropic nanoparticle-enhanced magnetic resonance imaging technology (9 patients) or the current Radiation Therapy Oncology Group (RTOG) consensus guidelines (9 patients). Radiation consisted of 45 Gy to prostate, seminal vesicles, and lymph nodes, with a simultaneous integrated boost to the prostate alone, to a total dose of 67.5 Gy delivered in 25 fractions. Prospective acute genitourinary and gastrointestinal toxicities were compared at baseline, during radiotherapy, and 3 months after radiotherapy. Each patient was retrospectively replanned using the opposite method of nodal contouring, and plans were normalized for dosimetric comparison. VMAT plans were also generated according to the RTOG method for comparison. Results: RTOG plans resulted in a significantly lower rate of genitourinary frequency 3 months after treatment. The dosimetric comparison showed that the RTOG plans resulted in both favorable planning target volume (PTV) coverage and lower organs at risk (OARs) and integral (ID) doses. VMAT required two to three arcs to achieve adequate treatment plans, we did not observe consistent dosimetric benefits to either the PTV or the OARs, and a higher ID was observed. However, treatment times were significantly shorter with VMAT. Conclusion: The RTOG guidelines for pelvic nodal volume delineation results in favorable dosimetry and acceptable acute toxicities for both the target and OARs. We are unable to conclude that VMAT provides a benefit compared with IMRT.

  1. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    Science.gov (United States)

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  2. The inaugural Frank Ellis Lecture--latrogenic cancer: the impact of intensity-modulated radiotherapy.

    Science.gov (United States)

    Hall, E J

    2006-05-01

    It is an honour and personal pleasure to give the inaugural Frank Ellis Lecture to celebrate his 100th birthday, and to acknowledge his enormous contributions to radiation oncology. Intensity-modulated radiotherapy (IMRT) allows dose to be concentrated in the tumour volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers because more fields are used which involves a bigger volume of normal tissue exposed to lower doses. It has been estimated that IMRT may double the incidence of solid cancers in long-term survivors. This may be acceptable in older patients if balanced by an improvement in local tumour control and reduced toxicity. On the other hand, the incidence of second cancers is higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children. First, they are more sensitive to radiation-induced cancer than adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, there is the question of genetic susceptibility, as many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs can be reduced, but the cost would be substantial. An alternative strategy is to replace X-rays with protons. This is an advantage only if the proton machine uses a pencil scanning beam, as passive modulation of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT.

  3. Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion.

    Science.gov (United States)

    Vanin, Evgeny

    2011-02-28

    Bit-Error-Ratio (BER) of intensity modulated optical orthogonal frequency division multiplexing (OFDM) system is analytically evaluated accounting for nonlinear digital baseband distortion in the transmitter and additive noise in the photo receiver. The nonlinear distortion that is caused by signal clipping and quantization is taken into consideration. The signal clipping helps to overcome the system performance limitation related to high peak-to-average power ratio (PAPR) of the OFDM signal and to minimize the value of optical power that is required for achieving specified BER. The signal quantization due to a limited bit resolution of the digital to analog converter (DAC) causes an optical power penalty in the case when the bit resolution is too low. By introducing an effective signal to noise ratio (SNR) the optimum signal clipping ratio, system BER and required optical power at the input to the receiver is evaluated for the OFDM system with multi-level quadrature amplitude modulation (QAM) applied to the optical signal subcarriers. Minimum required DAC bit resolution versus the size of QAM constellation is identified. It is demonstrated that the bit resolution of 7 and higher causes negligibly small optical power penalty at the system BER=10⁻³ when 256-QAM and a constellation of lower size is applied. The performance of the optical OFDM system is compared to the performance of the multi-level amplitude-shift keying (M-ASK) system for the same number of information bits transmitted per signal sample. It is demonstrated that in the case of the matched receiver the M-ASK system outperforms OFDM and requires 3-3.5 dB less of optical power at BER=10⁻³ when 1-4 data bits are transmitted per signal sample.

  4. CARDIORESPIRATORY FITNESS MODULATES THE ACUTE FLOW-MEDIATED DILATION RESPONSE FOLLOWING HIGH-INTENSITY BUT NOT MODERATE-INTENSITY EXERCISE IN ELDERLY MEN.

    Science.gov (United States)

    Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser D; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D

    2017-02-16

    Impaired endothelial function is observed with ageing and with low cardiorespiratory fitness (VO2peak) whilst improvements in both are suggested to be reliant on higher-intensity exercise in the elderly. This may be due to the flow-mediated dilation (FMD) response to acute exercise of varying intensity. We examined the hypothesis that exercise-intensity alters the FMD response in healthy elderly adults, and would be modulated by VO2peak Forty-seven elderly men were stratified into lower- (VO2peak = 24.3±2.9 ml.kg(-1)min(-1), n=27) and higher-fit groups (VO2peak = 35.4±5.5 ml.kg(-1)min(-1), n=20) after a test of cycling peak power output (PPO). In randomised order, participants undertook 27 min moderate-intensity continuous (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO), or no-exercise control. Brachial FMD was assessed at rest, 10 and 60 min after exercise. In control, FMD reduced in both groups (P=0.05). FMD increased after MICE in both groups [increase of 0.86 % (95% CI, 0.17 to 1.56), P=0.01], and normalised after 60 min. In the lower-fit, FMD reduced after HIIE [reduction of 0.85 % (95% CI, 0.12 to 1.58), P=0.02), and remained decreased at 60 min (P=0.05). In the higher-fit FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52 % (95% CI, 0.41 to 2.62), PExercise-intensity alters the FMD response in elderly adults, and VO2peak modulates the FMD response following HIIE, but not MICE. The sustained decrease in FMD in the lower-fit may represent a signal for vascular adaptation or endothelial fatigue.

  5. Progress in Y-00 physical cipher for Giga bit/sec optical data communications (intensity modulation method)

    Science.gov (United States)

    Hirota, Osamu; Futami, Fumio

    2014-10-01

    To guarantee a security of Cloud Computing System is urgent problem. Although there are several threats in a security problem, the most serious problem is cyber attack against an optical fiber transmission among data centers. In such a network, an encryption scheme on Layer 1(physical layer) with an ultimately strong security, a small delay, and a very high speed should be employed, because a basic optical link is operated at 10 Gbit/sec/wavelength. We have developed a quantum noise randomied stream cipher so called Yuen- 2000 encryption scheme (Y-00) during a decade. This type of cipher is a completely new type random cipher in which ciphertext for a legitimate receiver and eavesdropper are different. This is a condition to break the Shannon limit in theory of cryptography. In addition, this scheme has a good balance on a security, a speed and a cost performance. To realize such an encryption, several modulation methods are candidates such as phase-modulation, intensity-modulation, quadrature amplitude modulation, and so on. Northwestern university group demonstrated a phase modulation system (α=η) in 2003. In 2005, we reported a demonstration of 1 Gbit/sec system based on intensity modulation scheme(ISK-Y00), and gave a design method for quadratic amplitude modulation (QAM-Y00) in 2005 and 2010. An intensity modulation scheme promises a real application to a secure fiber communication of current data centers. This paper presents a progress in quantum noise randomized stream cipher based on ISK-Y00, integrating our theoretical and experimental achievements in the past and recent 100 Gbit/sec(10Gbit/sec × 10 wavelengths) experiment.

  6. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  7. Solar modulation of cosmic ray intensity and solar flare events inferred from (14)C contents in dated tree rings

    Science.gov (United States)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1985-01-01

    The delta 14C values in 42 rings of a white spruce grown in Mackenzie Delta was measured as a continuing effort of tracing the history of solar modulation of cosmic ray intensity. The delta 14C values in six rings were measured, in search of a 14C increase due to two large solar flares that occurred in 1942. The results are presented.

  8. RISK FACTORS FOR HEARING LOSS IN PATIENTS TREATED WITH INTENSITY-MODULATED RADIOTHERAPY FOR HEAD-AND-NECK TUMORS

    NARCIS (Netherlands)

    C.L. Zuur; Y.J. Simis; E.A. Lamers; A.A. Hart; W.A. Dreschler; A.J. Balm; C.R. Rasch

    2009-01-01

    Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz w

  9. The potential benefit of swallowing sparing intensity modulated radiotherapy to reduce swallowing dysfunction : An in silico planning comparative study

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Christianen, Miranda E M C; Bijl, Hendrik P; Schilstra, C; Langendijk, Johannes A

    2012-01-01

    PURPOSE: To apply recently developed predictive models for swallowing dysfunction to compare the predicted probabilities of swallowing dysfunction for standard intensity modulated radiotherapy (ST-IMRT) and swallowing sparing IMRT (SW-IMRT). MATERIALS AND METHODS: Thirty head and neck cancer patient

  10. A treatment planning study of the potential of geometrical tracking for intensity modulated proton therapy of lung cancer

    DEFF Research Database (Denmark)

    af Rosenschöld, Per Munck; Aznar, Marianne C; Nygaard, Ditte E;

    2010-01-01

    Proton therapy of lung cancer holds the potential for a reduction of the volume of irradiated normal lung tissue. In this work we investigate the robustness of intensity modulated proton therapy (IMPT) plans to motion, and evaluate a geometrical tumour tracking method to compensate for tumour...

  11. Shortening delivery times of intensity modulated proton therapy by reducing proton energy layers during treatment plan optimization

    NARCIS (Netherlands)

    S. van de Water (Steven); H.M. Kooy; B.J.M. Heijmen (Ben); M.S. Hoogeman (Mischa)

    2015-01-01

    textabstractPurpose To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment plann

  12. Non-Fragile H∞Control for Random Pulse Width Modulation of DCM Boost Converter%DCM Boost变换器随机PWM非脆弱H∞控制

    Institute of Scientific and Technical Information of China (English)

    冉华军; 李翔; 肖鹏

    2014-01-01

    引入两模态马尔科夫链随机PWM策略到DCM Boost变换器,推导建立了变换器的离散随机跳变模型,并基于随机跳变系统非脆弱H∞控制理论为Boost变换器设计了非脆弱H∞控制器,利用Simulink软件平台设计仿真电路进行验证。仿真分析表明,设计的控制器改善了Boost变换器的EMI品质,对控制器参数摄动表现出非脆弱性,使整个变换器系统具有较好的鲁棒性。%The two-state-Markov-chain random pulse width modulation (PWM) scheme was introduced into the DCM Boost converter. This paper derived the random discrete-time jumping model of the converter and designed the non-fragile H∞ con-troller based on non-fragile H∞ control theory of stochastic jumping system. The simulation was done to check the validity of non-fragile H∞controller on the Simulink platform. The simulation analysis indicates that the designed controller has improved the EMI quality of Boost converter along with non-fragility to its parameters uncertainty, and with better robust for the whole converter system.

  13. Adjuvant radiotherapy for gallbladder cancer: A dosimetric comparison of conformal radiotherapy and intensity-modulated radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Xiao-Nan Sun; Qi Wang; Ben-Xing Gu; Yan-Hong Zhu; Jian-Bin Hu; Guo-Zhi Shi; Shu Zheng

    2011-01-01

    AIM: To assess the efficacy and toxicity of conformal radiotherapy (CRT) and compare with intensity-modulated radiotherapy (IMRT) in the treatment of gallbladder cancer.METHODS: Between November 2003 and January 2010, 20 patients with gallbladder cancer were treated with CRT with or without chemotherapy after surgical resection. Preliminary survival data were collected and examined using both Kaplan-Meier and actuarial analysis. Demographic and treatment parameters were collected. All patients were planned to receive 46-56 Gy in 1.8 or 2.0 Gy per fraction. CRT planning was compared with IMRT.RESULTS: The most common reported acute toxicities requiring medication (Radiation Therapy Oncology Group, Radiation Therapy Oncology Group Grade2) were nausea (10/20 patients) and diarrhea (3/20).There were no treatment-related deaths. Compared with CRT planning, IMRT significantly reduced the volume of right kidney receiving > 20 Gy and the volume of liver receiving > 30 Gy. IMRT has a negligible impact on the volume of left kidney receiving > 20 Gy. The 95% of prescribed dose for a planning tumor volume using either 3D CRT or IMRT planning were 84.0% ±6.7%, 82.9% ± 6.1%, respectively (P > 0.05).CONCLUSION: IMRT achieves similar excellent target coverage as compared with CRT planning, while reducingthe mean liver dose and volume above threshold dose. IMRT offers better sparing of the right kidney compared with CRT planning, with a significantly lower mean dose and volume above threshold dose.

  14. Including robustness in multi-criteria optimization for intensity-modulated proton therapy

    CERN Document Server

    Chen, Wei; Trofimov, Alexei; Madden, Thomas; Kooy, Hanne; Bortfeld, Thomas; Craft, David

    2011-01-01

    We present a method to include robustness into a multi-criteria optimization (MCO) framework for intensity-modulated proton therapy (IMPT). The approach allows one to simultaneously explore the trade-off between different objectives as well as the trade-off between robustness and nominal plan quality. In MCO, a database of plans each emphasizing different treatment planning objectives, is pre-computed to approximate the Pareto surface. An IMPT treatment plan that strikes the best balance between the different objectives can be selected by navigating on the Pareto surface. In our approach, robustness is integrated into MCO by adding robustified objectives and constraints to the MCO problem. Uncertainties of the robust problem are modeled by pre-calculated dose-influence matrices for a nominal scenario and a number of pre-defined error scenarios. A robustified objective represents the worst objective function value that can be realized for any of the error scenarios. The optimization method is based on a linear...

  15. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, Warren D; Nazareth, Daryl P [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Zhang, Hao H; Shi Leyuan [Department of Industrial and Systems Engineering, University of Wisconsin, Madison, WI (United States); Meyer, Robert R [Computer Sciences Department, University of Wisconsin, Madison, WI (United States)], E-mail: dsouzaw@ohsu.edu

    2008-06-21

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.

  16. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    Science.gov (United States)

    D'Souza, Warren D.; Zhang, Hao H.; Nazareth, Daryl P.; Shi, Leyuan; Meyer, Robert R.

    2008-06-01

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.

  17. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    Directory of Open Access Journals (Sweden)

    Akbas Ugur

    2015-01-01

    Full Text Available Dosimetry of the Intensity Modulated Radiation Therapy (IMRT is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  18. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    Science.gov (United States)

    Akbas, Ugur; Okutan, Murat; Demir, Bayram; Koksal, Canan

    2015-07-01

    Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  19. SU-E-P-18: Intensity-Modulated Radiation Therapy for Cervical Esophageal Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, W; Qiao, X; Zhou, Z; Song, Y; Zhang, R; Zhen, C [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China)

    2015-06-15

    Purpose: To retrospectively analyze the outcomes and prognostic factors of cervical esophageal squamous cell carcinoma (SCC) treated with intensity modulated radiation therapy (IMRT). Methods: Thirty-seven patients with cervical esophageal SCC treated with IMRT were analyzed retrospectively. They received 54–66 Gy in 27–32 fractions. Nineteen patients received concurrent (n=12) or sequential (n=7) platinum-based two drugs chemoradiotherapy. Overall survival (OS), local control rates (LCR) and prognostic factors were evaluated. Acute toxicities and patterns of first failures were observed. Results: The median follow-up was 46 months for alive patients. The l-, 3-, 4- and 5-year OS of the all patients were 83.8%, 59.1%, 47.5% and 32.6% respectively. The median survival time was 46 months. The l-, 3-,4- and 5-year LCR were 82.9%, 63.0%, 54.5% and 54.5%, respectively. Univariate and Multivariate analysis all showed that size of GTV was an independent prognostic factor (p=0.033, p=0.039). There were no patients with Grade 3 acute radiation esophagitis and Grade 2–4 acute pneumonitis. The local failure accounted for 70.0% of all treatment-related failures. Conclusion: IMRT is safe and effective in the treatment of cervical esophageal squamous cell carcinoma. Size of GTV is an independent prognostic factor. Local failure still remains the main reason of treatment failures. The authors declare no conflicts of interest in preparing this article.

  20. Retrospective Estimation of the Quality of Intensity-Modulated Radiotherapy Plans for Lung Cancer

    CERN Document Server

    Koo, Jihye; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01

    This study estimated the planning quality of intensity-modulated radiotherapy in 42 lung cancer cases to provide preliminary data for the development of a planning quality assurance algorithm. Organs in or near the thoracic cavity (ipsilateral lung, contralateral lung, heart, liver, esophagus, spinal cord, and bronchus) were selected as organs at risk (OARs). Radiotherapy plans were compared using the conformity index (CI), coverage index (CVI), and homogeneity index (HI) of the planning target volume (PTV), OAR-PTV distance and OAR-PTV overlap volume, and the V10Gy, V20Gy, and equivalent uniform dose (EUD) of the OARs. The CI, CVI, and HI of the PTV were 0.54 - 0.89 , 0.90 - 1.00 , and 0.11 - 0.41, respectively. The mean EUDs (V10Gy, V20Gy) of the ipsilateral lung, contralateral lung, esophagus, cord, liver, heart, and bronchus were 8.07 Gy (28.06, 13.17), 2.59 Gy (6.53, 1.18), 7.02 Gy (26.17, 12.32), 3.56 Gy (13.56, 4.48), 0.72 Gy (2.15, 0.91), 5.14 Gy (19.68, 8.62), and 10.56 Gy (36.08, 19.79), respectivel...

  1. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation

    Science.gov (United States)

    Tsalach, A.; Metzger, Y.; Breskin, I.; Zeitak, R.; Shechter, R.

    2014-03-01

    Development of techniques for continuous measurement of regional blood flow, and in particular cerebral blood flow (CBF), is essential for monitoring critical care patients. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133 Xe SPECT1 and laser Doppler2. Coherent light is introduced into the tissue concurrently with an Ultrasound (US) field. Displacement of scattering centers within the sampled volume induced by Brownian motion, blood flow and the US field affects the photons' temporal correlation. Hence, the temporal fluctuations of the obtained speckle pattern provide dynamic information about the blood flow. We developed a comprehensive simulation, combining the effects of Brownian motion, US and flow on the obtained speckle pattern. Photons trajectories within the tissue are generated using a Monte-Carlo based model. Then, the temporal changes in the optical path due to displacement of scattering centers are determined, and the corresponding interference pattern over time is derived. Finally, the light intensity autocorrelation function of a single speckle is calculated, from which the tissue decorrelation time is determined. The simulation's results are compared with in-vitro experiments, using a digital correlator, demonstrating decorrelation time prediction within the 95% confidence interval. This model may assist in the development of optical based methods for blood flow measurements and particularly, in methods using the acousto-optic effect.

  2. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Phillip J; Howell, Rebecca M; Krishnan, Sunil; Scarboro, Sarah B; Mirkovic, Dragan; Newhauser, Wayne D, E-mail: ptaddei@mdanderson.or [Division of Radiation Oncology, Unit 1202, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States)

    2010-12-07

    Hepatocellular carcinoma (HCC), the sixth most common cancer in the world, is a global health concern. Radiotherapy for HCC is uncommon, largely because of the likelihood of radiation-induced liver disease, an acute side effect that is often fatal. Proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) may offer HCC patients a better option for treating the diseased liver tissue while largely sparing the surrounding tissues, especially the non-tumor liver. However, even advanced radiotherapies carry a risk of late effects, including second malignant neoplasms (SMNs). It is unclear whether PBT or IMRT confers less risk of an SMN than the other. The purpose of this study was to compare the predicted risk of developing an SMN for a patient with HCC between PBT and IMRT. For both treatments, radiation doses in organs and tissues from primary radiation were determined using a treatment planning system; doses in organs and tissues from stray radiation from PBT were determined using Monte Carlo simulations and from IMRT using thermo-luminescent dosimeter measurements. Risk models of SMN incidence were taken from the literature. The predicted absolute lifetime attributable risks of SMN incidence were 11.4% after PBT and 19.2% after IMRT. The results of this study suggest that using proton beams instead of photon beams for radiotherapy may reduce the risk of SMN incidence for some HCC patients.

  3. Use of scanning LIMM (Laser Intensity Modulation Method) to characterise polarisation variability in dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark; Cain, Markys, E-mail: mark.stewart@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2009-08-01

    The Laser Intensity Modulation Method (LIMM) has traditionally been used to characterise the depth dependence of polarisation of piezoelectric materials{sup 1}. Although the technique is simple, it is difficult to extract the polarisation / depth data from the measured pyroelectric current because of the complex mathematics pertaining to the physics of the technique. However, the laser probe may still be used as a comparative or qualitative tool in mapping out the polarisation across the surface of a material. A novel scanning LIMM system has been developed to map the variation in piezoelectric activity across a range of samples. The system has been upgraded with a galvanometer mirror scanner to increase speed and reduce sensitivity to acoustic noise. The improvements are discussed and tested on a range of case studies. The technique can be used to show differences in piezoelectric activity caused by features such as inhomogeneous material composition, porosity and mechanical damage. The method has application as a quality control tool for materials and device manufacturers.

  4. Extrapleural pneumonectomy, photodynamic therapy and intensity modulated radiation therapy for the treatment of malignant pleural mesothelioma.

    Science.gov (United States)

    Du, Kevin L; Both, Stefan; Friedberg, Joseph S; Rengan, Ramesh; Hahn, Stephen M; Cengel, Keith A

    2010-09-01

    Intensity modulated radiation therapy (IMRT) has recently been proposed for the treatment of malignant pleural mesothelioma (MPM). Here, we describe our experience with a multimodality approach for the treatment of mesothelioma, incorporating extrapleural pneumonectomy, intraoperative photodynamic therapy and postoperative hemithoracic IMRT. From 2004-2007, we treated 11 MPM patients with hemithoracic IMRT, 7 of whom had undergone porfimer sodium-mediated PDT as an intraoperative adjuvant to surgical debulking. The median radiation dose to the planning treatment volume (PTV) ranged from 45.4-54.5 Gy. For the contralateral lung, V20 ranged from 1.4-28.5%, V5 from 42-100% and MLD from 6.8-16.5 Gy. In our series, 1 patient experienced respiratory failure secondary to radiation pneumonitis that did not require mechanical ventilation. Multimodality therapy combining surgery with increased doses of radiation using IMRT, and newer treatment modalities such as PDT , appears safe. Future prospective analysis will be needed to demonstrate efficacy of this approach in the treatment of malignant mesothelioma. Efforts to reduce lung toxicity and improve dose delivery are needed and provide the promise of improved local control and quality of life in a carefully chosen multidisciplinary approach.

  5. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study

    Science.gov (United States)

    Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.

  6. Accounting for range uncertainties in the optimization of intensity modulated proton therapy.

    Science.gov (United States)

    Unkelbach, Jan; Chan, Timothy C Y; Bortfeld, Thomas

    2007-05-21

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be sensitive to range variations. The dose distribution may deteriorate substantially when the actual range of a pencil beam does not match the assumed range. We present two treatment planning concepts for IMPT which incorporate range uncertainties into the optimization. The first method is a probabilistic approach. The range of a pencil beam is assumed to be a random variable, which makes the delivered dose and the value of the objective function a random variable too. We then propose to optimize the expectation value of the objective function. The second approach is a robust formulation that applies methods developed in the field of robust linear programming. This approach optimizes the worst case dose distribution that may occur, assuming that the ranges of the pencil beams may vary within some interval. Both methods yield treatment plans that are considerably less sensitive to range variations compared to conventional treatment plans optimized without accounting for range uncertainties. In addition, both approaches--although conceptually different--yield very similar results on a qualitative level.

  7. Improved Outcomes with Intensity Modulated Radiation Therapy Combined with Temozolomide for Newly Diagnosed Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Noel J. Aherne

    2014-01-01

    Full Text Available Purpose. Glioblastoma multiforme (GBM is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months. We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  8. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma

    Science.gov (United States)

    Taddei, Phillip J.; Howell, Rebecca M.; Krishnan, Sunil; Scarboro, Sarah B.; Mirkovic, Dragan; Newhauser, Wayne D.

    2010-12-01

    Hepatocellular carcinoma (HCC), the sixth most common cancer in the world, is a global health concern. Radiotherapy for HCC is uncommon, largely because of the likelihood of radiation-induced liver disease, an acute side effect that is often fatal. Proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) may offer HCC patients a better option for treating the diseased liver tissue while largely sparing the surrounding tissues, especially the non-tumor liver. However, even advanced radiotherapies carry a risk of late effects, including second malignant neoplasms (SMNs). It is unclear whether PBT or IMRT confers less risk of an SMN than the other. The purpose of this study was to compare the predicted risk of developing an SMN for a patient with HCC between PBT and IMRT. For both treatments, radiation doses in organs and tissues from primary radiation were determined using a treatment planning system; doses in organs and tissues from stray radiation from PBT were determined using Monte Carlo simulations and from IMRT using thermo-luminescent dosimeter measurements. Risk models of SMN incidence were taken from the literature. The predicted absolute lifetime attributable risks of SMN incidence were 11.4% after PBT and 19.2% after IMRT. The results of this study suggest that using proton beams instead of photon beams for radiotherapy may reduce the risk of SMN incidence for some HCC patients.

  9. Meningioma Causing Visual Impairment: Outcomes and Toxicity After Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Maclean, Jillian, E-mail: jillian.maclean@uclh.nhs.uk [Radiotherapy Department, University College London Hospital, London (United Kingdom); Fersht, Naomi [Radiotherapy Department, University College London Hospital, London (United Kingdom); Bremner, Fion [Neuro-Ophthalmology Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom); Stacey, Chris; Sivabalasingham, Suganya [Radiotherapy Department, University College London Hospital, London (United Kingdom); Short, Susan [Radiotherapy Department, University College London Hospital, London (United Kingdom); Leeds Institute of Molecular Medicine, St James University Hospital, Leeds (United Kingdom)

    2013-03-15

    Purpose: To evaluate ophthalmologic outcomes and toxicity of intensity modulated radiation therapy (IMRT) in patients with meningiomas causing visual deficits. Methods and Materials: A prospective observational study with formal ophthalmologic and clinical assessment of 30 consecutive cases of meningioma affecting vision treated with IMRT from 2007 to 2011. Prescriptions were 50.4 Gy to mean target dose in 28 daily fractions. The median follow-up time was 28 months. Twenty-six meningiomas affected the anterior visual pathway (including 3 optic nerve sheath meningiomas); 4 were posterior to the chiasm. Results: Vision improved objectively in 12 patients (40%). Improvements were in visual field (5/16 patients), color vision (4/9 patients), acuity (1/15 patients), extraocular movements (3/11 patients), ptosis (1/5 patients), and proptosis (2/6 patients). No predictors of clinical response were found. Two patients had minor reductions in tumor dimensions on magnetic resonance imaging, 1 patient had radiological progression, and the other patients were stable. One patient experienced grade 2 keratitis, 1 patient had a minor visual field loss, and 5 patients had grade 1 dry eye. Conclusion: IMRT is an effective method for treating meningiomas causing ophthalmologic deficits, and toxicity is minimal. Thorough ophthalmologic assessment is important because clinical responses often occur in the absence of radiological change.

  10. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer.

    Science.gov (United States)

    Freilich, J; Hoffe, S E; Almhanna, K; Dinwoodie, W; Yue, B; Fulp, W; Meredith, K L; Shridhar, R

    2015-01-01

    Emerging data suggests a benefit for using intensity modulated radiation therapy (IMRT) for the management of esophageal cancer. We retrospectively reviewed patients treated at our institution who received definitive or preoperative chemoradiation with either IMRT or 3D conformal radiation therapy (3DCRT) between October 2000 and January 2012. Kaplan Meier analysis and the Cox proportional hazard model were used to evaluate survival outcomes. We evaluated a total of 232 patients (138 IMRT, 94 3DCRT) who received a median dose of 50.4 Gy (range, 44-64.8) to gross disease. Median follow up for all patients, IMRT patients alone, and 3DCRT patients alone was 18.5 (range, 2.5-124.2), 16.5 (range, 3-59), and 25.9 months (range, 2.5-124.2), respectively. We observed no significant difference based on radiation technique (3DCRT vs. IMRT) with respect to median overall survival (OS) (median 29 vs. 32 months; P = 0.74) or median relapse free survival (median 20 vs. 25 months; P = 0.66). On multivariable analysis (MVA), surgical resection resulted in improved OS (HR 0.444; P 20% weight loss (OR 0.51; P = 0.050). Our data suggest that while IMRT-based chemoradiation for esophageal cancer does not impact survival there was significantly less toxicity. In the IMRT group there was significant decrease in weight loss and grade ≥3 toxicity compared to 3DCRT.

  11. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  12. Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment

    Science.gov (United States)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.

    2016-08-01

    We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.

  13. Rational use of intensity-modulated radiation therapy: the importance of clinical outcome.

    Science.gov (United States)

    De Neve, Wilfried; De Gersem, Werner; Madani, Indira

    2012-01-01

    During the last 2 decades, intensity-modulated radiation therapy (IMRT) became a standard technique despite its drawbacks of volume delineation, planning, robustness of delivery, challenging quality assurance, and cost as compared with non-IMRT. The theoretic advantages of IMRT dose distributions are generally accepted, but the clinical advantages remain debatable because of the lack of clinical assessment of the effort that is required to overshadow the disadvantages. Rational IMRT use requires a positive advantage/drawback balance. Only 5 randomized clinical trials (RCTs), 3 in the breast and 2 in the head and neck, which compare IMRT with non-IMRT (2-dimensional technique in four fifths of the trials), have been published (as of March 2011), and all had toxicity as the primary endpoint. More than 50 clinical trials compared results of IMRT-treated patients with a non-IMRT group, mostly historical controls. RCTs systematically showed a lower toxicity in IMRT-treated patients, and the non-RCTs confirmed these findings. Toxicity reduction, counterbalancing the drawbacks of IMRT, was convincing for breast and head and neck IMRT. For other tumor sites, the arguments favoring IMRT are weaker because of the inability to control bias outside the randomized setting. For anticancer efficacy endpoints, like survival, disease-specific survival, or locoregional control, the balance between advantages and drawbacks is fraught with uncertainties because of the absence of robust clinical data.

  14. Intensity modulated radiotherapy with concurrent chemotherapy for larynx preservation of advanced resectable hypopharyngeal cancer

    Directory of Open Access Journals (Sweden)

    Chao Hsing-Lung

    2010-05-01

    Full Text Available Abstract Background To analyze the rate of larynx preservation in patients of locally advanced hypopharyngeal cancer treated with intensity modulated radiotherapy (IMRT plus concurrent chemotherapy, and compare the results with patients treated with primary surgery. Methods Between January 2003 and November 2007, 14 patients were treated with primary surgery and 33 patients were treated with concurrent chemoradiotherapy (CCRT using IMRT technique. Survival rate, larynx preservation rate were calculated with the Kaplan-Meier method. Multivariate analysis was conducted for significant prognostic factors with Cox-regression method. Results The median follow-up was 19.4 months for all patients, and 25.8 months for those alive. The 5-year overall survival rate was 33% and 44% for primary surgery and definitive CCRT, respectively (p = 0.788. The 5-year functional larynx-preservation survival after IMRT was 40%. Acute toxicities were common, but usually tolerable. The rates of treatment-related mucositis (≥ grade 2 and pharyngitis (≥ grade 3 were higher in the CCRT group. For multivariate analysis, treatment response and cricoid cartilage invasion strongly correlated with survival. Conclusions IMRT plus concurrent chemotherapy may preserve the larynx without compromising survival. Further studies on new effective therapeutic agents are essential.

  15. Organisational standards for the delivery of intensity-modulated radiation therapy in Ontario.

    Science.gov (United States)

    Whitton, A; Warde, P; Sharpe, M; Oliver, T K; Bak, K; Leszczynski, K; Etheridge, S; Fleming, K; Gutierrez, E; Favell, L; Green, E

    2009-04-01

    By minimising the effect of irradiation on surrounding tissue, intensity-modulated radiation therapy (IMRT) can deliver higher, more effective doses to the targeted tumour site, minimising treatment-related morbidity and possibly improving cancer control and cure. A multidisciplinary IMRT Expert Panel was convened to develop the organisational standards for the delivery of IMRT. The systematic literature search used MEDLINE, EMBASE, the Cochrane Database, the National Guidelines Clearing House and the Health Technology Assessment Database. An environmental scan of unpublished literature used the Google search engine to review the websites of key organisations, cancer agencies/centres and vendor sites in Canada, the USA, Australia and Europe. In total, 22 relevant guidance documents were identified; 12 from the published literature and 10 from the environmental scan. Professional and organisational standards for the provision of IMRT were developed through the analysis of this evidence and the consensus opinion of the IMRT Expert Panel. The resulting standards address the following domains: planning of new IMRT programmes, practice setting requirements, tools, devices and equipment requirements; professional training requirements; role of personnel; and requirements for quality assurance and safety. Here the IMRT Expert Panel offers organisational and professional standards for the delivery of IMRT, with the intent of promoting innovation, improving access and enhancing patient care.

  16. Comparison of coplanar and noncoplanar intensity-modulated radiation therapy and helical tomotherapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Tai Hung-Chi

    2010-05-01

    Full Text Available Abstract Background To compare the differences in dose-volume data among coplanar intensity modulated radiotherapy (IMRT, noncoplanar IMRT, and helical tomotherapy (HT among patients with hepatocellular carcinoma (HCC and portal vein thrombosis (PVT. Methods Nine patients with unresectable HCC and PVT underwent step and shoot coplanar IMRT with intent to deliver 46 - 54 Gy to the tumor and portal vein. The volume of liver received 30Gy was set to keep less than 30% of whole normal liver (V30 Results HT provided better uniformity for the planning-target volume dose coverage than both IMRT techniques. The noncoplanar IMRT technique reduces the V10 to normal liver with a statistically significant level as compared to HT. The constraints for the liver in the V30 for coplanar IMRT vs. noncoplanar IMRT vs. HT could be reconsidered as 21% vs. 17% vs. 17%, respectively. When delivering 50 Gy and 60-66 Gy to the tumor bed, the constraints of mean dose to the normal liver could be less than 20 Gy and 25 Gy, respectively. Conclusion Noncoplanar IMRT and HT are potential techniques of radiation therapy for HCC patients with PVT. Constraints for the liver in IMRT and HT could be stricter than for 3DCRT.

  17. Analysis of Factors Influencing the Development of Xerostomia during Intensity-Modulated Radiotherapy

    Science.gov (United States)

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E.; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J.; Miller, Craig S.

    2013-01-01

    OBJECTIVES Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. METHODS A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week two and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. RESULTS HNC subjects experienced mean SSFR decline of 36% by visit two (N=27; p=0.012) and 57% by visit three (N=20; p=0.0004), Concentrations of calcium and MUC5b increased, but not significantly during IMRT (p>0.05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (p<0.04) and linear mixed models (p<0.0001). CONCLUSIONS Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. PMID:23523462

  18. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    Science.gov (United States)

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  19. Learning Boost C++ libraries

    CERN Document Server

    Mukherjee, Arindam

    2015-01-01

    If you are a C++ programmer who has never used Boost libraries before, this book will get you up-to-speed with using them. Whether you are developing new C++ software or maintaining existing code written using Boost libraries, this hands-on introduction will help you decide on the right library and techniques to solve your practical programming problems.

  20. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    Science.gov (United States)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  1. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  2. Hemithoracic Intensity Modulated Radiation Therapy After Pleurectomy/Decortication for Malignant Pleural Mesothelioma: Toxicity, Patterns of Failure, and a Matched Survival Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chance, William W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rice, David C. [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tsao, Anne S. [Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Fontanilla, Hiral P. [Princeton Radiation Oncology, Monroe Township, New Jersey (United States); Liao, Zhongxing; Chang, Joe Y.; Tang, Chad; Pan, Hubert Y.; Welsh, James W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mehran, Reza J. [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-01-01

    Purpose: To investigate safety, efficacy, and recurrence after hemithoracic intensity modulated radiation therapy after pleurectomy/decortication (PD-IMRT) and after extrapleural pneumonectomy (EPP-IMRT). Methods and Materials: In 2009-2013, 24 patients with mesothelioma underwent PD-IMRT to the involved hemithorax to a dose of 45 Gy, with an optional integrated boost; 22 also received chemotherapy. Toxicity was scored with the Common Terminology Criteria for Adverse Events v4.0. Pulmonary function was compared at baseline, after surgery, and after IMRT. Kaplan-Meier analysis was used to calculate overall survival (OS), progression-free survival (PFS), time to locoregional failure, and time to distant metastasis. Failures were in-field, marginal, or out of field. Outcomes were compared with those of 24 patients, matched for age, nodal status, performance status, and chemotherapy, who had received EPP-IMRT. Results: Median follow-up time was 12.2 months. Grade 3 toxicity rates were 8% skin and 8% pulmonary. Pulmonary function declined from baseline to after surgery (by 21% for forced vital capacity, 16% for forced expiratory volume in 1 second, and 19% for lung diffusion of carbon monoxide [P for all = .01]) and declined still further after IMRT (by 31% for forced vital capacity [P=.02], 25% for forced expiratory volume in 1 second [P=.01], and 30% for lung diffusion of carbon monoxide [P=.01]). The OS and PFS rates were 76% and 67%, respectively, at 1 year and 56% and 34% at 2 years. Median OS (28.4 vs 14.2 months, P=.04) and median PFS (16.4 vs 8.2 months, P=.01) favored PD-IMRT versus EPP-IMRT. No differences were found in grade 4-5 toxicity (0 of 24 vs 3 of 24, P=.23), median time to locoregional failure (18.7 months vs not reached, P not calculable), or median time to distant metastasis (18.8 vs 11.8 months, P=.12). Conclusions: Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication produced little high-grade toxicity but

  3. LDA boost classification: boosting by topics

    Science.gov (United States)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  4. Heterologous Prime-Boost Vaccination

    OpenAIRE

    Lu, Shan

    2009-01-01

    An effective vaccine usually requires more than one time immunization in the form of prime-boost. Traditionally the same vaccines are given multiple times as homologous boosts. New findings suggested that prime-boost can be done with different types of vaccines containing the same antigens. In many cases such heterologous prime-boost can be more immunogenic than homologous prime-boost. Heterologous prime-boost represents a new way of immunization and will stimulate better understanding on the...

  5. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jia-Fu [Department of Radiation Physics, Taichung Veterans General Hospital, Taichung, Taiwan (China); Yeh, Dah-Cherng [Department of General Surgery, Taichung Veterans General Hospital, Taichung, Taiwan (China); Yeh, Hui-Ling, E-mail: hlyeh@vghtc.gov.tw [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Chang, Chen-Fa [Department of Radiation Physics, Taichung Veterans General Hospital, Taichung, Taiwan (China); Lin, Jin-Ching [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2015-10-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.

  6. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73104 (United States); Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-07-15

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V{sub 200} by 16.1% and 4.8%, respectively, compared to the original and the

  7. Gamma evaluation combined with isocenter optimal matching in intensity modulated radiation therapy quality assurance

    Science.gov (United States)

    Bak, Jino; Choi, Jin Hwa; Park, Suk Won; Park, Kwangwoo; Park, Sungho

    2015-12-01

    Two-dimensional (2D) dose comparisons are widely performed by using a gamma evaluation with patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) or dose delivery quality assurance (DQA). In this way, a pass/fail determination is made for a particular treatment plan. When gamma evaluation results are close to the failure criterion, the pass/fail decision may change applying a small shift to the center of the 2D dose distribution. In this study, we quantitatively evaluated the meaning of such a small relative shift in a 2D dose distribution comparison. In addition, we propose the use of a small shift for a pass/fail criterion in gamma analysis, where the concept of isocenter optimal matching (IOM) is applied to IMRT QA of 20 patients. Gamma evaluations were performed to compare two dose distributions, one with and the other without IOM. In-house software was developed in C++ in order to find IOM values including both translational and rotational shifts. Upon gamma evaluation failure, further investigation was initiated using IOM. In this way, three groups were categorized: group 1 for `pass' on gamma evaluation, group 21 for `fail' on the gamma evaluation and `pass' on the gamma the evaluation with IOM, and group 22 for `fail' on the both gamma evaluations and the IOM calculation. IOM results revealed that some failures could be considered as a `pass'. In group 21, 88.98% (fail) of the averaged gamma pass rate changed to 90.45% (pass) when IOM was applied. On average, a ratio of γ ≥ 1 was reduced by 11.06% in 20 patients. We propose that gamma evaluations that do not pass with a rate of 85% to 90% may be augmented with IOM to reveal a potential pass result.

  8. Intensity modulated whole pelvic radiotherapy in patients with cervix cancer: analysis of acute toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Min; Lee, Hyung Sik; Hur, Won Joo; Cha, Moon Seok; Kim, Hyun Ho [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2006-12-15

    To evaluate acute toxicities in cervix cancer patients receiving intensity modulated whole pelvic radiation therapy (IM-WPRT). Between August 2004 and April 2006, 17 patients who underwent IM-WPRT were analysed. An intravenous contrast agent was used for radiotherapy planning computed tomography (CT). The central clinical target volume (CTV) included the primary tumor, uterus, vagina, and parametrium. The nodal CTV was defined as the lymph nodes larger than 1 cm seen on CT and the contrased-enhanced pelvic vessels. The planning target volume (PTV) was the 1-cm expanded volume around the central CTV, except for a 5-mm expansion from the posterior vagina, and the nodal PTV was defined as the nodal CTV plus a 1.5 cm margin. IM-WPRT was prescribed to deliver a dose of 50 Gy to more than 95% of the PTV. Acute toxicity was assessed with common toxicity criteria up to 60 days after radiotherapy. Grade 1 nausea developed in 10 (58.9%) patients, and grade 1 and 2 diarrhea developed in 11 (64.7%) and 1 (5.9%) patients, respectively. No grade 3 or higher gastrointestinal toxicity was seen. Leukopenia, anemia, and thrombocytopenia occurred in 15 (88.2%). 7 (41.2%), and 2 (11.8%) patients, respectively, as hematologic toxicities. Grade 3 leukopenia developed in 2 patients who were treated with concurrent chemoradiotherapy. IM-WPRT can be a useful treatment for cervix cancer patients with decreased severe acute toxicities and a resultant improved compliance to whole pelvic irradiation.

  9. Patterns of Disease Recurrence Following Treatment of Oropharyngeal Cancer With Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garden, Adam S., E-mail: agarden@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Dong, Lei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Morrison, William H. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Stugis, Erich M. [Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Glisson, Bonnie S. [Department of Thoracic/Head and Neck Medicine, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J.; Beadle, Beth M.; Gunn, Gary B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Schwartz, David L. [Department of Radiation Medicine, Long Island Jewish Medical Center, New Hyde Park, NY (United States); Kies, Merill S. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Thoracic/Head and Neck Medicine, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Weber, Randal S. [Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ang, K. Kian; Rosenthal, David I. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2013-03-15

    Purpose: To report mature results of a large cohort of patients diagnosed with squamous cell carcinoma of the oropharynx who were treated with intensity modulated radiation therapy (IMRT). Methods and Materials: The database of patients irradiated at The University of Texas, M.D. Anderson Cancer Center was searched for patients diagnosed with oropharyngeal cancer and treated with IMRT between 2000 and 2007. A retrospective review of outcome data was performed. Results: The cohort consisted of 776 patients. One hundred fifty-nine patients (21%) were current smokers, 279 (36%) former smokers, and 337 (43%) never smokers. T and N categories and American Joint Committee on Cancer group stages were distributed as follows: T1/x, 288 (37%); T2, 288 (37%); T3, 113 (15%); T4, 87 (11%); N0, 88(12%); N1/x, 140 (18%); N2a, 101 (13%); N2b, 269 (35%); N2c, 122 (16%); and N3, 56 (7%); stage I, 18(2%); stage II, 40(5%); stage III, 150(19%); and stage IV, 568(74%). Seventy-one patients (10%) presented with nodes in level IV. Median follow-up was 54 months. The 5-year overall survival, locoregional control, and overall recurrence-free survival rates were 84%, 90%, and 82%, respectively. Primary site recurrence developed in 7% of patients, and neck recurrence with primary site control in 3%. We could only identify 12 patients (2%) who had locoregional recurrence outside the high-dose target volumes. Poorer survival rates were observed in current smokers, patients with larger primary (T) tumors and lower neck disease. Conclusions: Patients with oropharyngeal cancer treated with IMRT have excellent disease control. Locoregional recurrence was uncommon, and most often occurred in the high dose volumes. Parotid sparing was accomplished in nearly all patients without compromising tumor coverage.

  10. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Fu Yuchuan

    2010-07-01

    Full Text Available Abstract Purpose To study the impacts of multileaf collimators (MLC width [standard MLC width of 10 mm (sMLC and micro-MLC width of 4 mm (mMLC] in the intensity-modulated radiotherapy (IMRT planning for the upper thoracic esophageal cancer (UTEC. Methods and materials 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs and dose volume histogram-based parameters [conformity index (CI and homogeneous index (HI] were compared between the IMRT plans with sMLC and with mMLC. Results The IMRT plans with the mMLC were more efficient (average MUs: 703.1 ± 68.3 than plans with the sMLC (average MUs: 833.4 ± 73.8 (p p 5 (3260.3 ± 374.0 vs 3404.5 ± 374.4/gEUD (1815.1 ± 281.7 vs 1849.2 ± 297.6 of the spinal cord, the V10 (33.2 ± 6.5 vs 34.0 ± 6.7, V20 (16.0 ± 4.6 vs 16.6 ± 4.7, MLD (866.2 ± 174.1 vs 887.9 ± 172.1 and gEUD (938.6 ± 175.2 vs 956.8 ± 171.0 of the lungs were observed in the plans with the mMLC, respectively (p Conclusions Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.

  11. Duplicating a tandem and ovoids distribution with intensity-modulated radiotherapy: a feasibility study.

    Science.gov (United States)

    Malhotra, Harish K; Avadhani, Jaiteerth S; deBoer, Steven F; Jaggernauth, Wainwright; Kuettel, Michael R; Podgorsak, Matthew B

    2007-07-17

    Brachytherapy plays an important role in the definitive treatment of cervical cancers by radiotherapy. In the present study, we investigated whether sliding-window intensity-modulated radiation therapy (IMRT) can achieve a pear-shaped distribution with a similar sharp dose falloff identical to that of brachytherapy. The computed tomography scans of a tandem and ovoid patient were pushed to both a high dose rate (HDR) and an IMRT treatment planning system (TPS) after the rectum, bladder, and left and right femoral heads had been outlined, ensuring identical structures in both planning systems. A conventional plan (7 Gy in 5 fractions, defined as the average dose to the left and right point A) was generated for HDR treatment. The 150%, 125%, 100%, 75%, 50%, and 25% isodose curves were drawn on each slice and then transferred to the IMRT TPS. The 100% isodose envelope from the HDR plan was the target for IMRT planning. A 7-field IMRT plan using 6-MV X-ray beams was generated and compared with the HDR plan using isodose conformity to the target and 125% volume, dose-volume histograms, and integral dose. The resulting isodose distribution demonstrated good agreement between the HDR and IMRT plans in the 100% and 125% isodose range. The dose falloff in the HDR plan was much steeper than that in the IMRT plan, but it also had a substantially higher maximum dose. Integral dose for the target, rectum, and bladder were found to be 6.69 J, 1.07 J, and 1.02 J in the HDR plan; the respective values for IMRT were 3.47 J, 1.79 J, and 1.34 J. Our preliminary results indicate that the HDR dose distribution can be replicated using a standard sliding-window IMRT dose delivery technique for points lying closer to the three-dimensional isodose envelope surrounding point A. Differences in radiobiology and patient positioning between the two techniques merit further consideration.

  12. The impact of intensity modulated radiotherapy on the skin dose for deep seated tumors

    Institute of Scientific and Technical Information of China (English)

    H. S. Abou-Elenein; Ehab M. Attalla; Hany Ammar; Ismail Eldesoky; Mohamed Farouk; Shaimaa Shoer

    2013-01-01

    Objective: The purpose of this study was to investigate the impact of intensity modulated radiotherapy (IMRT) on surface doses for brain, abdomen and pelvis deep located tumors treated with 6 MV photon and to evaluate the skin dose calculation accuracy of the XIO 4.04 treatment planning system. Methods: More investigations for the influences of IMRT on skin doses would increase its applications for many treatment sites. Measuring skin doses in real treatment situations would reduce the uncertainty of skin dose prediction. In this work a pediatric human phantom was covered by a layer of 1 mm bolus at three treatment sites and thermoluminescent dosimeter (TLD) chips were inserted into the bolus at each treatment site before CT scan. Two different treatment plans [three-dimensional conformal radiation therapy (3DCRT) and IMRT] for each treatment sites were performed on XIO 4.04 treatment planning system using superposition algorism. Results: The results showed that the surface doses for 3DCRT were higher than the surface doses in IMRT by 1.6%, 2.5% and 3.2% for brain, abdomen and pelvis sites respectively. There was good agreement between measured and calculated surface doses, where the calculated surface dose was 15.5% for brain tumor calculated with 3DCRT whereas the measured surface dose was 12.1%. For abdomen site the calculated surface dose for IMRT treatment plan was 16.5% whereas the measured surface dose was 12.6%. Conclusion: The skin dose in IMRT for deep seated tumors is lower than that in 3DCRT which is another advantage for the IMRT. The TLD readings showed that the difference between the calculated and measured point dose is negligible. The superposition calculation algorism of the XIO 4.04 treatment planning system modeled the superficial dose well.

  13. Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection

    Science.gov (United States)

    Meyer, Jürgen; Phillips, Mark H.; Cho, Paul S.; Kalet, Ira; Doctor, Jason N.

    2004-05-01

    The purpose is to incorporate clinically relevant factors such as patient-specific and dosimetric information as well as data from clinical trials in the decision-making process for the selection of prostate intensity-modulated radiation therapy (IMRT) plans. The approach is to incorporate the decision theoretic concept of an influence diagram into the solution of the multiobjective optimization inverse planning problem. A set of candidate IMRT plans was obtained by varying the importance factors for the planning target volume (PTV) and the organ-at-risk (OAR) in combination with simulated annealing to explore a large part of the solution space. The Pareto set for the PTV and OAR was analysed to demonstrate how the selection of the weighting factors influenced which part of the solution space was explored. An influence diagram based on a Bayesian network with 18 nodes was designed to model the decision process for plan selection. The model possessed nodes for clinical laboratory results, tumour grading, staging information, patient-specific information, dosimetric information, complications and survival statistics from clinical studies. A utility node was utilized for the decision-making process. The influence diagram successfully ranked the plans based on the available information. Sensitivity analyses were used to judge the reasonableness of the diagram and the results. In conclusion, influence diagrams lend themselves well to modelling the decision processes for IMRT plan selection. They provide an excellent means to incorporate the probabilistic nature of data and beliefs into one model. They also provide a means for introducing evidence-based medicine, in the form of results of clinical trials, into the decision-making process.

  14. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Abraham J., E-mail: wua@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bosch, Walter R. [Washington University, St. Louis, Missouri (United States); Chang, Daniel T. [Stanford Cancer Institute, Stanford, California (United States); Hong, Theodore S. [Massachusetts General Hospital, Boston, Massachusetts (United States); Jabbour, Salma K. [Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Kleinberg, Lawrence R. [Johns Hopkins Medical Center, Baltimore, Maryland (United States); Mamon, Harvey J. [Brigham and Women' s Hospital, Boston, Massachusetts (United States); Thomas, Charles R. [Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon (United States); Goodman, Karyn A. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2015-07-15

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.

  15. Dosimetric Studies of Mixed Energy Intensity Modulated Radiation Therapy for Prostate Cancer Treatments

    Directory of Open Access Journals (Sweden)

    K. Abdul Haneefa

    2014-01-01

    Full Text Available Dosimetric studies of mixed field photon beam intensity modulated radiation therapy (IMRT for prostate cancer using pencil beam (PB and collapsed cone convolution (CCC algorithms using Oncentra MasterPlan treatment planning system (v. 4.3 are investigated in this study. Three different plans were generated using 6 MV, 15 MV, and mixed beam (both 6 and 15 MV. Fifteen patients with two sets of plans were generated: one by using PB and the other by using CCC for the same planning parameters and constraints except the beam energy. For each patient’s plan of high energy photons, one set of photoneutron measurements using solid state neutron track detector (SSNTD was taken for this study. Mean percentage of V66 Gy in the rectum is 18.55±2.8, 14.58±2.1, and 16.77±4.7 for 6 MV, 15 MV, and mixed-energy plans, respectively. Mean percentage of V66 Gy in bladder is 16.54±2.1, 17.42±2.1, and 16.94±41.9 for 6 MV, 15 MV, and mixed-energy plans, respectively. Mixed fields neutron contribution at the beam entrance surface is 45.62% less than at 15 MV photon beam. Our result shows that, with negligible neutron contributions, mixed field IMRT has considerable dosimetric advantage.

  16. Intensity modulated radiation therapy and chemotherapy for locally advanced pancreatic cancer: Results of feasibility study

    Institute of Scientific and Technical Information of China (English)

    Yong-Rui Bai; Guo-Hua Wu; Wei-Jian Guo; Xu-Dong Wu; Yuan Yao; Yin Chen; Ren-Hua Zhou; Dong-Qin Lu

    2003-01-01

    AIM: To explore whether intensity modulated radiation therapy (IMRT) in combination with chemotherapy could increase radiation dose to gross tumor volume without severe acute radiation related toxicity by decreasing the dose to the surrounding normal tissue in patients with locally advanced pancreatic cancer.METHODS: Twenty-one patients with locally advanced pancreatic cancer were evaluated in this clinical trial,Patients would receive the dose of IMRT from 21Gy to 30Gy in 7 to 10 fractions within two weeks after conventional radiotherapy of 30Gy in 15 fractions over 3 weeks. The total escalation tumor dose would be 51, 54,57, 60Gy, respectively. 5-fluororacil (5-FU) or gemcitabine was given concurrently with radiotherapy during the treatment course.RESULTS: Sixteen patients who had completed the radiotherapy plan with doses of 51Gy (3 cases), 54Gy (3 cases), 57Gy (3 cases) and 60Gy (7 cases) were included for evaluation. The median levels of CA19-9 prior to and after radiotherapy were 716 U/ml and 255 U/ml respectively (P<0.001) in 13 patients who demonstrated high levels of CA19-9 before radiotherapy. Fourteen patients who suffered from pain could reduce at least 1/3-1/2 amount of analgesic intake and 5 among these patients got complete relief of pain. Ten patients improved in Kamofsky performance status (KPS). The median follow-up period was 8 months and one-year survival rate was 35 %. No patient suffered more than grade Ⅲ acute toxicities induced by radiotherapy.CONCLUSION: Sixty Gy in 25 fractions over 5 weeks with late course IMRT technique combined with concurrent 5-FU chemotherapy can provide a definitely palliative benefit with tolerable acute radiation related toxicity for patients with advanced pancreatic cancer.

  17. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kwint, Margriet [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Uyterlinde, Wilma [Department of Thoracic Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Heuvel, Michel van den [Department of Thoracic Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Knegjens, Joost; Herk, Marcel van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Belderbos, Jose, E-mail: j.belderbos@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  18. Intensity-Modulated Radiation Therapy in the Salvage of Locally Recurrent Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Sufang [Department of Radiation Oncology, Cancer Hospital of Fujian Medical University, Fuzhou, Fujian (China); Department of Radiation Oncology, National University Cancer Institute, National University Health System, National University of Singapore (Singapore); Lin Shaojun [Department of Radiation Oncology, Cancer Hospital of Fujian Medical University, Fuzhou, Fujian (China); Tham, Ivan W.K. [Department of Radiation Oncology, National University Cancer Institute, National University Health System, National University of Singapore (Singapore); Pan Jianji; Lu Jun [Department of Radiation Oncology, Cancer Hospital of Fujian Medical University, Fuzhou, Fujian (China); Lu, Jiade J., E-mail: mdcljj@nus.edu.sg [Department of Radiation Oncology, National University Cancer Institute, National University Health System, National University of Singapore (Singapore)

    2012-06-01

    Purpose: Local recurrences of nasopharyngeal carcinoma (NPC) may be salvaged by reirradiation with conventional techniques, but with significant morbidity. Intensity-modulated radiation therapy (IMRT) may improve the therapeutic ratio by reducing doses to normal tissue. The aim of this study was to address the efficacy and toxicity profile of IMRT for a cohort of patients with locally recurrent NPC. Methods and Materials: Between August 2003 and June 2009, 70 patients with radiologic or pathologically proven locally recurrent NPC were treated with IMRT. The median time to recurrence was 30 months after the completion of conventional radiation to definitive dose. Fifty-seven percent of the tumors were classified asrT3-4. The minimum planned doses were 59.4 to 60 Gy in 1.8- to 2-Gy fractions per day to the gross disease with margins, with or without chemotherapy. Results: The median dose to the recurrent tumor was 70 Gy (range, 50-77.4 Gy). Sixty-five patients received the planned radiation therapy; 5 patients received between 50 and 60 Gy because of acute side effects. With a median follow-up time of 25 months, the rates of 2-year locoregional recurrence-free survival, disease-free survival, and overall survival were 65.8%, 65.8%, and 67.4%, respectively. Moderate to severe late toxicities were noted in 25 patients (35.7%). Eleven patients (15.7%) had posterior nasal space ulceration, 17 (24.3%) experienced cranial nerve palsies, 12 (17.1%) had trismus, and 12 (17.1%) experienced deafness. Extended disease-free interval (relative risk 2.049) and advanced T classification (relative risk 3.895) at presentation were adverse prognostic factors. Conclusion: Reirradiation with IMRT provides reasonable long-term control in patients with locally recurrent NPC.

  19. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    Science.gov (United States)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the

  20. Hypofractionated intensity-modulated radiotherapy in patients with localized prostate cancer: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin; Kay, Chul Seung; Son, Seok Hyun; Kim, Myung Soo; Jo, In Young; Lee, So Jung; Lee, Dong Hwan; Suh, Hong Jin; Choi, Yong Sun [Incheon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Incheon (Korea, Republic of)

    2016-03-15

    The aim of this work was to assess the efficacy and tolerability of hypofractionated intensity-modulated radiotherapy (IMRT) in patients with localized prostate cancer. Thirty-nine patients who received radical hypofractionated IMRT were retrospectively reviewed. Based on a pelvic lymph node involvement risk of 15% as the cutoff value, we decided whether to deliver treatment prostate and seminal vesicle only radiotherapy (PORT) or whole pelvis radiotherapy (WPRT). Sixteen patients (41%) received PORT with prostate receiving 45 Gy in 4.5 Gy per fraction in 2 weeks and the other 23 patients (59%) received WPRT with the prostate receiving 72 Gy in 2.4 Gy per fraction in 6 weeks. The median equivalent dose in 2 Gy fractions to the prostate was 79.9 Gy based on the assumption that the α/β ratio is 1.5 Gy. The median follow-up time was 38 months (range, 4 to 101 months). The 3-year biochemical failure-free survival rate was 88.2%. The 3-year clinical failure-free and overall survival rates were 94.5% and 96.3%, respectively. The rates of grade 2 acute genitourinary (GU) and gastrointestinal (GI) toxicities were 20.5% and 12.8%, respectively. None of the patients experienced grade ≥3 acute GU and GI toxicities. The grade 2-3 late GU and GI toxicities were found in 8.1% and 5.4% of patients, respectively. No fatal late toxicity was observed. Favorable biochemical control with low rates of toxicity was observed after hypofractionated IMRT, suggesting that our radiotherapy schedule can be an effective treatment option in the treatment of localized prostate cancer.

  1. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Twisha; Crane, Christopher H. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mansfield, Paul F. [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Briere, Tina M.; Beddar, A. Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mok, Henry; Reed, Valerie K.; Krishnan, Sunil; Delclos, Marc E. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Das, Prajnan, E-mail: PrajDas@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-06-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomy in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92-1.01). The median V{sub 30} (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V{sub 20} (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V{sub 40} (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate

  2. An Anatomically Validated Brachial Plexus Contouring Method for Intensity Modulated Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be [Department of Anatomy, Ghent University, Ghent (Belgium); Department of Radiotherapy, Ghent University, Ghent (Belgium); Audenaert, Emmanuel [Department of Physical Medicine and Orthopedic Surgery, Ghent University, Ghent (Belgium); Speleers, Bruno; Vercauteren, Tom; Mulliez, Thomas [Department of Radiotherapy, Ghent University, Ghent (Belgium); Vandemaele, Pieter; Achten, Eric [Department of Radiology, Ghent University, Ghent (Belgium); Kerckaert, Ingrid; D' Herde, Katharina [Department of Anatomy, Ghent University, Ghent (Belgium); De Neve, Wilfried [Department of Radiotherapy, Ghent University, Ghent (Belgium); Van Hoof, Tom [Department of Anatomy, Ghent University, Ghent (Belgium)

    2013-11-15

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validated the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.

  3. Perioperative intensity-modulated brachytherapy for refractory orbital rhabdomyosarcomas in children

    Energy Technology Data Exchange (ETDEWEB)

    Strege, Rainer Joachim; Mehdorn, Maximilian H. [Dept. of Neurosurgery, Univ. Clinic Schleswig-Holstein, Campus Kiel (Germany); Kovacs, Gyoergy [Interdisciplinary Brachytherapy Unit, Univ. Clinic Schleswig-Holstein, Campus Luebeck (Germany); Meyer, Jens Eduard [Dept. of Head-and-Neck Surgery, Univ. Clinic Schleswig-Holstein, Campus Luebeck (Germany); Holland, Detlef [Dept. of Ophthalmology, Univ. Clinic Schleswig-Holstein, Campus Kiel (Germany); Claviez, Alexander [Dept. of Pediatrics, Univ. Clinic Schleswig-Holstein, Campus Kiel (Germany)

    2009-12-15

    Purpose: to evaluate the feasibility and toxicity of perioperative intensity-modulated brachytherapy (IMBT) as well as functional outcome in children with therapy-refractory orbital rhabdomyosarcomas (RMS). Patients and methods: since 1993, children with therapy-refractory orbital RMS have been treated by a multidisciplinary approach combining function-preserving, mostly R1 tumor resection and perioperative IMBT at the University Hospital of Schleswig-Holstein, Germany. All children with orbital RMS, who were enrolled in this multidisciplinary treatment protocol between 1993 and 2002, were prospectively assessed with respect to evaluation of side effects and functional outcome. Results: ten children (six boys, four girls) were included. Median age was 6.5 years (range, 1-19 years) at the beginning of our treatment and 6.0 years (range 1-17 years) at diagnosis. All children were in Intergroup Rhabdomyosarcoma Study Group (IRSG) group III and had embryonal subtype. Estimated 5-year survival was 62% {+-} 18%. There was no radiation-related toxicity grade 3 or 4 observed. The eyes were primarily preserved in all cases. One child underwent secondary orbital exenteration 10 months after completion of IMBT. Visual acuity could be preserved apart from one child developing significant visual deterioration due to radiation cataract grade 2. The cosmetic results were good or very good in eight and moderate in two children. Four children died of their disease. Conclusion: this interdisciplinary, individually tailored and function-preserving treatment procedure has proven to be a well-tolerated therapeutic option in cases with refractory orbital RMS. It provides both improvement of local tumor control and quality of life. (orig.)

  4. Survival benefit of adding chemotherapy to intensity modulated radiation in patients with locoregionally advanced nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Xuemei Ji

    Full Text Available BACKGROUND: To evaluate the contribution of chemotherapy for patients with locoregionally advanced nasopharyngeal carcinoma (NPC treated by intensity modulated radiotherapy (IMRT and to identify the optimal combination treatment strategy. PATIENTS AND METHODS: Between 2006 and 2010, 276 patients with stage II-IVb NPC were treated by IMRT alone or IMRT plus chemotherapy. Cisplatin-based chemotherapy included neoadjuvant or concurrent, or neoadjuvant plus concurrent protocols. The IMRT alone and chemoradiotherapy groups were well-matched for prognostic factors, except N stage, with more advanced NPC in the chemoradiotherapy arm. RESULTS: With a mean follow-up of 33.8 months, the 3-year actuarial rates of overall survival (OS, metastasis-free survival (MFS, relapse-free survival (RFS, and disease-free survival (DFS were 90.3%, 84.2%, 80.3%, and 69.2% for all of the patients, respectively. Compared with the IMRT alone arm, patients treated by concurrent chemoradiotherapy had a significantly better DFS (HR = 2.64; 95% CI, 1.12-6.22; P = 0.03, patients with neoadjuvant-concurrent chemoradiotherapy had a significant improvement in RFS and DFS (HR = 4.03; 95% CI, 1.35-12.05; P = 0.01 and HR = 2.43; 95% CI, 1.09-5.44; P = 0.03, neoadjuvant chemoradiotherapy provided no significant benefit in OS, MFS, RFS, and DFS. Stage group and alcohol consumption were prognostic factors for OS and N stage was a significant predictor for DFS. CONCLUSIONS: Addition of concurrent or neoadjuvant-concurrent chemotherapy to IMRT is available to prolong RFS or DFS for locoregionally advanced NPC. Such work could be helpful to guide effective individualized therapy.

  5. Intensity-modulated radiation therapy for T4 nasopharyngeal carcinoma. Treatment results and locoregional

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.L.Y.; Tsai, C.L.; Chen, W.Y.; Wang, C.W. [National Taiwan Univ. Hospital, Taipei (China). Div. of Radiation Oncology; Huang, Y.S.; Chen, Y.F. [National Taiwan Univ. Hospital, Taipei (China). Dept. of Medical Imaging; Kuo, S.H. [National Taiwan Univ. Hospital, Taipei (China). Div. of Radiation Oncology; National Taiwan Univ. College of Medicine, Taipei (China). Graduate Inst. of Clinical Medicine; Hong, R.L. [National Taiwan Univ. Hospital, Taipei (China). Div. of Medical Oncology; Ko, J.Y.; Lou, P.J. [National Taiwan Univ. Hospital, Taipei (China). Dept. of Otolaryngology

    2013-12-15

    Purpose: The purpose of this work was to examine outcomes in patients with T4 nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Methods and materials: Between 2007 and 2010, 154 patients with nonmetastatic T4 NPC were treated with IMRT to a total dose of 70 Gy in 33-35 fractions. In addition, 97 % of patients received concurrent platinum-based chemotherapy. The median follow-up time was 52.8 months. Results: The rates of 5-year actuarial locoregional control, distant metastasis-free survival, progression free-survival, and overall survival (OS) were 81.2, 72.2, 61.9, and 78.1 %, respectively. A total of 27 patients had locoregional recurrence: 85.2 % in-field failures, 11.1 % marginal failures, and 3.7 % out-of-field failures. Fourteen patients with locoregional recurrence received aggressive treatments, including nasopharyngectomy, neck dissection, or re-irradiation, and the 5-year OS rate tended to be better (61.9 %) compared to those receiving conservative treatment (32.0 %, p = 0.051). In patients treated with 1 course of radiotherapy, grade {>=} 3 toxicities of ototoxicity, neck fibrosis, xerostomia, epistaxis, and radiographic temporal lobe necrosis occurred in 18.2, 9.8, 6.3, 2.1, and 5.6 % of patients, respectively. Increased ototoxicity, osteonecrosis, severe nasal bleeding, and temporal necrosis were observed in patients treated by re-irradiation. Conclusion: IMRT offers good locoregional control in patients with T4 NPC. For patients with locoregional recurrence after definitive radiotherapy, aggressive local treatment may be considered for a better outcome. (orig.)

  6. Interfractional variability in intensity-modulated radiotherapy of prostate cancer with or without thermoplastic pelvic immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.A.; Kim, C.Y.; Park, Y.J.; Yoon, W.S.; Lee, N.K.; Yang, D.S. [Korea University Guro Hospital, Korea University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2014-01-15

    To determine the variability of patient positioning errors associated with intensity-modulated radiotherapy (IMRT) for prostate cancer and to assess the impact of thermoplastic pelvic immobilization on these errors using kilovoltage (kV) cone-beam computed tomography (CBCT). From February 2012 to June 2012, the records of 314 IMRT sessions in 19 patients with prostate cancer, performed with or without immobilization at two different facilities in the Korea University Hospital were analyzed. The kV CBCT images were matched to simulation computed tomography (CT) images to determine the simulation-to-treatment variability. The shifts along the x (lateral)-, y (longitudinal)- and z (vertical)-axes were measured, as was the shift in the three dimensional (3D) vector. The measured systematic errors in the immobilized group during treatment were 0.46 ± 1.75 mm along the x-axis, - 0.35 ± 3.83 mm along the y-axis, 0.20 ± 2.75 mm along the z-axis and 4.05 ± 3.02 mm in the 3D vector. Those of nonimmobilized group were - 1.45 ± 7.50 mm along the x-axis, 1.89 ± 5.07 mm along the y-axis, 0.28 ± 3.81 mm along the z-axis and 8.90 ± 4.79 mm in the 3D vector. The group immobilized with pelvic thermoplastics showed reduced interfractional variability along the x- and y-axes and in the 3D vector compared to the nonimmobilized group (p < 0.05). IMRT with thermoplastic pelvic immobilization in patients with prostate cancer appears to be useful in stabilizing interfractional variability during the planned treatment course. (orig.)

  7. Automation and Intensity Modulated Radiation Therapy for Individualized High-Quality Tangent Breast Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Purdie, Thomas G., E-mail: Tom.Purdie@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada); Dinniwell, Robert E.; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Sharpe, Michael B. [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2014-11-01

    Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented

  8. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment - a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte (Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen, Copenhagen (Denmark)); Cattell, Herb; Svatos, Michelle (Varian Medical Systems, Palo Alto, CA (United States)); Sawant, Amit; Venkat, Raghu; Carlson, David; Keall, Paul (Stanford Univ., Stanford, CA (United States))

    2009-02-15

    Intensity modulated arc therapy offers great advantages with the capability of delivering a fast and highly conformal treatment. However, moving targets represent a major challenge. By monitoring a moving target it is possible to make the beam follow the motion, shaped by a Dynamic MLC (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArcTM (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. Material and methods. A Varian Clinac iX was equipped with a preclinical RapidArcTM and a 3D DMLC tracking application. A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors at state (0) 'static, no tracking'. Comparing measurements were made at state (1) 'motion, no tracking' and state (2) 'motion, tracking'. Results. Gamma analysis showed a significant improvement from measurements of state (1) to measurements of state (2) compared to the state (0) measurements: Lung plan; from 87 to 97% pass. Prostate plan; from 81 to 88% pass. Sub-beam information gave a much reduced pattern of periodically spatial deviating dose points for state (2) than for state (1). Iso-dose curve comparisons showed a slightly better agreement between state (0) and state (2) than between state (0) and state (1). Conclusions. DMLC tracking together with RapidArcTM make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application.

  9. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States); Mitra, Nandita [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA (United States); Efstathiou, Jason [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Liao Kaijun [Division of General Internal Medicine, University of Pennsylvania, Philadelphia, PA (United States); Sunderland, Robert; Yeboa, Deborah N. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Armstrong, Katrina [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Division of General Internal Medicine, University of Pennsylvania, Philadelphia, PA (United States); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States)

    2011-11-15

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753). The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79-0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64-0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83-1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83-1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14-1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.

  10. Carotid sparing intensity modulated radiotherapy on early glottic cancer: Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon Sik; Jeong, Bae Kwon; Jeong, Ho Jin; Song, Jin Ho; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon; Kang, Ki Mun [Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju (Korea, Republic of)

    2016-03-15

    To compare the dose distribution between carotid sparing intensity modulated radiotherapy (IMRT) and opposed lateral field technique (LAFT), and to determine the effects of carotid sparing IMRT in early glottic cancer patients who have risk factors for atherosclerosis. Ten early glottic cancer patients were treated with carotid sparing IMRT. For each patient, the conventional LAFT plan was developed for comparison. IMRT and LAFT plans were compared in terms of planning target volume (PTV) coverage, conformity index, homogeneity index, and the doses to planning organ at risk volume (PRV) for carotid arteries, spinal cord and pharyngeal constrictor muscle. Recurrence was not observed in any patients during the follow-up period. V95% for PTV showed no significant difference between IMRT and LAFT plans, while V100% was significantly higher in the IMRT plan (95.5% vs. 94.6%, p = 0.005). The homogeneity index (11.6%) and conformity index (1.4) in the IMRT plan were significantly better than those in the LAFT plans (8.5% and 5.1, respectively) (p = 0.005). The median V5Gy (90.0%), V25Gy (13.5%), and V50Gy (0%) for carotid artery PRV in the IMRT plan were significantly lower than those in the LAFT plan (99.1%, 89.0%, and 77.3%, respectively) (p = 0.005). Our study suggests that carotid sparing IMRT can significantly decrease the dose to carotid arteries compared to LAFT, and it would be considered for early glottic cancer patient with high risk of atherosclerosis.

  11. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning.

    Science.gov (United States)

    Fox, Christopher; Romeijn, H Edwin; Dempsey, James F

    2006-05-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique.

  12. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Samuelian, Jason M. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Callister, Matthew D., E-mail: Callister.matthew@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Ashman, Jonathan B. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Young-Fadok, Tonia M. [Division of Colorectal Surgery, Mayo Clinic, Scottsdale, AZ (United States); Borad, Mitesh J. [Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ (United States); Gunderson, Leonard L. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States)

    2012-04-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced {>=}Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, {>=}Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  13. Kilovoltage Intrafraction Monitoring for Prostate Intensity Modulated Arc Therapy: First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Jin Aun [Radiation Physics Laboratory, Sydney Medical School and Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Booth, Jeremy T. [Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Poulsen, Per R.; Fledelius, Walther; Worm, Esben Schjodt [Department of Oncology, Aarhus University Hospital, Denmark, and Institute of Clinical Medicine, Aarhus University (Denmark); Eade, Thomas; Hegi, Fiona; Kneebone, Andrew [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Kuncic, Zdenka [Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School and Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia)

    2012-12-01

    Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiring kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced {>=}3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of {>=}3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.

  14. Adoption of Intensity Modulated Radiation Therapy For Early-Stage Breast Cancer From 2004 Through 2011

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Elyn H. [Yale School of Medicine, New Haven, Connecticut (United States); Mougalian, Sarah S. [Yale School of Medicine, New Haven, Connecticut (United States); Yale Cancer Center, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Soulos, Pamela R. [Yale School of Medicine, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut (United States); Smith, Benjamin D. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Haffty, Bruce G. [Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Gross, Cary P. [Yale School of Medicine, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut (United States); Yu, James B., E-mail: james.b.yu@yale.edu [Yale School of Medicine, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (United States)

    2015-02-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base from 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status.

  15. Dosimetric validation of new semiconductor diode dosimetry system for intensity modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Rajesh Kinhikar

    2012-01-01

    Full Text Available Introduction: The new diode Isorad was validated for intensity modulated radiotherapy (IMRT and the observations during the validation are reported. Materials and Methods: The validation includes intrinsic precision, post-irradiation stability, dose linearity, dose-rate effect, angular response, source to surface (SSD dependence, field size dependence, and dose calibration. Results: The intrinsic precision of the diode was more than 1% (1 σ. The linearity found in the whole range of dose analyzed was 1.93% (R 2 = 1. The minimum and maximum variation in the measured and calculated dose were found to be 0.78% (with 25 MU at ioscentre and 4.8% (with 1000 MU at isocentre, respectively. The maximal variation in angular response with respect to arbitrary angle 0° found was 1.31%. The diode exhibited a 51.7% and 35% decrease in the response in the 35 cm and 20 cm SSD range, respectively. The minimum and the maximum variation in the measured dose from the diode and calculated dose were 0.82% (5 cm × 5 cm and 3.75% (30 cm × 30 cm, respectively. At couch 270°, the response of the diode was found to vary maximum by 1.4% with ΁ 60 gantry angle. Mean variation between measured dose with diode and planned dose by TPS was found to be 1.3% (SD 0.75 for IMRT patient-specific quality assurance. Conclusion: For the evaluation of IMRT, use of cylindrical diode is strongly recommended.

  16. Clinical Dosimetric Comparison among Different Intensity-Modulated Radiotherapy Plans for Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Changjiang Sun

    2014-03-01

    Full Text Available Objective: To compare the dosimetric differences of different intensity-modulated radiation therapy (IMRT plans for nasopharyngeal carcinoma (NPC. Methods: 5-, 7- and 9-fields of IMRT plans in 16 NPC patients were respectively designed and synchronous dimention technology was applied to compare the dosimetric differences in target areas and involved organs. Results: The recovery rate in target area was 95% while the plan was evidently worse in 5-field than in 7- and 9-fields (P < 0.05. Whereas the maximum dosage (Dmax, mean dosage (Dmean and minimum dosage (Dmin were similar between 7- and 9-fields (P > 0.05, which were obviously lower in 5-field, and the differences were both significant (P < 0.05. In addition, the conformity and homogeneity indexes in target area had no significant difference between 7- and 9-fields, but were markedly better than in 5-field (P < 0.05. Indexes in each involved organs were the lowest in 5-field than in other fields (P < 0.05, but were similar between 7- and 9-fields (P > 0.05, which were all lower than tolerant dosage. As for BODY, there were significant differences in V10 - V20 between 5-field and other fields (P < 0.05, but were similar in V25 - V30 (P > 0.05. However, 7- and 9-fields were similar in V10 - V20 (P > 0.05. Conclusion: 7-field IMRT plan is the optimal one for NPC on both clinical dosimetric requirements and field-establishment principles.

  17. The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Choi Beong; Deasy, Joseph O. [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, MO (United States)]. E-mail: deasy@castor.wustl.edu

    2002-10-21

    The efficiency of intensity-modulated radiation therapy (IMRT) treatment planning depends critically on the presence or absence of multiple local minima in the feasible search space. We analyse the convexity of the generalized equivalent uniform dose equation (Niemierko A 1999 Med. Phys. 26 1100) when used either in the objective function or in the constraints. The practical importance of this analysis is that convex objective functions minimized over convex feasibility spaces do not have multiple local minima; likewise for concave objective functions maximized over convex feasibility spaces. Both of these situations are referred to as 'convex problems' and computationally efficient local search methods can be used for their solution. We also show that the Poisson-based tumour control probability objective function is strictly concave (if one neglects inter-patient heterogeneity), and hence it implies a single local minimum if maximized over a convex feasibility space. Even when including inter-patient heterogeneity, multiple local minima, although theoretically possible, are expected to be of minimal concern. The generalized equivalent uniform dose function (EUD{sub a}) is proved to be convex or concave depending on its only parameter a: when a is equal to or greater than 1, minimizing EUD{sub a} on a convex feasibility space leads to a single minimum; when a is less than 1, maximizing EUD{sub a} on a convex feasibility space leads to a single minimum. We also study a recently proposed practical, yet difficult, IMRT treatment planning formulation: unconstrained optimization of the objective function proposed by Wu et al (2002 Int. J. Radiat. Oncol. Biol. Phys. 52 224-35), which is expressed in terms of the EUD{sub a} for the target and normal tissues. This formulation may theoretically lead to multiple local minima. We propose a procedure for improving resulting solutions based on the convexity properties of the underlying objective function terms

  18. The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning

    Science.gov (United States)

    Choi, Beong; Deasy, Joseph O.

    2002-10-01

    The efficiency of intensity-modulated radiation therapy (IMRT) treatment planning depends critically on the presence or absence of multiple local minima in the feasible search space. We analyse the convexity of the generalized equivalent uniform dose equation (Niemierko A 1999 Med. Phys. 26 1100) when used either in the objective function or in the constraints. The practical importance of this analysis is that convex objective functions minimized over convex feasibility spaces do not have multiple local minima; likewise for concave objective functions maximized over convex feasibility spaces. Both of these situations are referred to as 'convex problems' and computationally efficient local search methods can be used for their solution. We also show that the Poisson-based tumour control probability objective function is strictly concave (if one neglects inter-patient heterogeneity), and hence it implies a single local minimum if maximized over a convex feasibility space. Even when including inter-patient heterogeneity, multiple local minima, although theoretically possible, are expected to be of minimal concern. The generalized equivalent uniform dose function (EUDa) is proved to be convex or concave depending on its only parameter a: when a is equal to or greater than 1, minimizing EUDa on a convex feasibility space leads to a single minimum; when a is less than 1, maximizing EUDa on a convex feasibility space leads to a single minimum. We also study a recently proposed practical, yet difficult, IMRT treatment planning formulation: unconstrained optimization of the objective function proposed by Wu et al (2002 Int. J. Radiat. Oncol. Biol. Phys. 52 224-35), which is expressed in terms of the EUDa for the target and normal tissues. This formulation may theoretically lead to multiple local minima. We propose a procedure for improving resulting solutions based on the convexity properties of the underlying objective function terms.

  19. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Directory of Open Access Journals (Sweden)

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  20. Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel.

    Science.gov (United States)

    Faridzadeh, Monire; Gholami, Asghar; Ghassemlooy, Zabih; Rajbhandari, Sujan

    2012-08-01

    In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ(1)(2)>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 10(-6). The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.

  1. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    Science.gov (United States)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  2. Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer.

    Science.gov (United States)

    Duan, Lihong; Fang, Jiancheng; Li, Rujie; Jiang, Liwei; Ding, Ming; Wang, Wei

    2015-12-14

    The fluctuations of the probe light intensity seriously affect the performance of the sensitive atomic magnetometer. Here we propose a novel method for the intensity stabilization based on the second harmonic component of the photoelastic modulator (PEM) detection in the atomic magnetometer. The method not only could be used to eliminate the intensity fluctuations of the laser source, but also remove the fluctuations from the optical components caused by the environment. A relative fluctuation of the light intensity of 0.035% was achieved and the corresponding fluctuation of the output signal of the atomic magnetometer has decreased about two orders of magnitude from 4.06% to 0.041%. As the scheme proposed here only contains optical devices and does not require additional feedback controlled equipments, it is especially suitable for the integration of the atomic magnetometer.

  3. GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats.

    Science.gov (United States)

    Luan, Rui-Hong; Wu, Fei-Jian; Jen, Philip H-S; Sun, Xin-De

    2007-12-25

    The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain. By means of iontophoretic application of bicuculline, the effect of GABAergic inhibition on the intensity sensitivity of IC neurons responding to three different PRRs of 10, 30 and 90 pulses per second (pps) was examined. The rate-intensity functions (RIFs) were acquired. The dynamic range (DR) of RIFs was considered as a criterion of intensity sensitivity. Comparing the average DR of RIFs at different PRRs, we found that the intensity sensitivity of some neurons improved, but that of other neurons decayed when repetition rate of stimulus trains increased from 10 to 30 and 90 pps. During application of bicuculline, the number of impulses responding to the different pulse trains increased under all stimulating conditions, while the DR differences of RIFs at different PRRs were abolished. The results indicate that GABAergic inhibition was involved in modulating the intensity sensitivity of IC neurons responding to pulse trains at different PRRs. Before and during bicuculline application, the percentage of changes in responses was maximal in lower stimulus intensity near to the minimum threshold (MT), and decreased gradually with the increment of stimulus intensity. This observation suggests that GABAergic inhibition contributes more effectively to the intensity sensitivity of the IC neurons responding to pulse trains at lower sound level.

  4. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    Directory of Open Access Journals (Sweden)

    Murray JR

    2015-11-01

    Full Text Available Julia R Murray,1,2 Helen A McNair,2 David P Dearnaley1,2 1Academic Urology Unit, Institute of Cancer Research, London, 2Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. Keywords: radiotherapy, prostate cancer, post-prostatectomy, image-guided radiation therapy

  5. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    Science.gov (United States)

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small.

  6. Modulation-frequency dependencies of the intensity and the phase delay of photoinduced absorption from conjugated polymers

    Science.gov (United States)

    Furukawa, Yukio

    2000-03-01

    The modulation-frequency dependencies of the intensity and the phase delay of photoinduced infrared absorption from poly(p-phenylene) have been observed and simulated numerically on the basis of a model based on second-order kinetics involving a neutralization recombination process between the positive and negative charge carriers (polarons) that are formed from a photogenerated polaron pair (interchain charge-transfer exciton). The rate constant of the bimolecular recombination has been obtained.

  7. Studies on the interfacial charge transfer processes of nanocrystalline CdSe thin film electrodes by intensity modulated photocurrent spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Interfacial charge transfer kinetics of the nanocrystalline CdSe thin film electrodes have been studied in sodium polysulfide solutions by intensity modulated photocurrent spectroscopy (IMPS). The interfacial direct and indirect charge transfer and recombination processes were analyzed in terms of the parameters: normalized steady state photocurrents and surface state lifetimes obtained by measuring the IMPS responses under different applied potentials and different solution concentrations. IMPS responses of polycrystalline CdSe thin film electrodes were also presented for comparison.

  8. Continuous-time method and its discretization to inverse problem of intensity-modulated radiation therapy treatment planning

    Science.gov (United States)

    Fujimoto, Ken'ichi; Tanaka, Yoshihiro; Abou Al-Ola, Omar M.; Yoshinaga, Tetsuya

    2014-06-01

    We propose a novel approach for solving box-constrained inverse problems in intensity-modulated radiation therapy (IMRT) treatment planning based on the idea of continuous dynamical methods and split-feasibility algorithms. Our method can compute a feasible solution without the second derivative of an objective function, which is required for gradient-based optimization algorithms. We prove theoretically that a double Kullback-Leibler divergence can be used as the Lyapunov function for the IMRT planning system.

  9. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  10. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Seyedali [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Allahverdi, Mahmoud, E-mail: alahverdi@sina.tums.ac.ir [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nedaie, Hasan A. [Department of Radiotherapy—Oncology, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ay, Mohammadreza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shirazi, Alireza; Yarahmadi, Mehran [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  11. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeld, Jonathan D., E-mail: jdschoenfeld@partners.org [Department of Radiation Oncology, Harvard Radiation Oncology Program, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Norris, Charles M. [Department of Surgery, Division of Otolaryngology, Brigham and Women' s Hospital, Boston, MA (United States); Haddad, Robert I.; Posner, Marshall R. [Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Medicine, Brigham and Women' s Hospital, Boston, MA (United States); Balboni, Tracy A.; Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States)

    2012-01-01

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2-2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinoma in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions: Treatment of

  12. SU-F-BRD-06: Robust Dose Calculation in Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brosch, R [ASU, Tempe, AZ (United States); Liu, W [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2015-06-15

    Purpose: Commissioning data for intensity modulated proton therapy (IMPT) must be post-processed by fits to ad-hoc functions to derive the dose calculation kernel parameters in a treatment planning system (TPS). Whether from experimental measurement or Monte Carlo simulation, the limited and noisy nature of such data makes this task very challenging. We present a method to improve the modeling of the lateral dose distribution of clinical energy proton beams in water to commission an in-house IMPT dose calculation engine. Methods: A linear sum of three Gaussian distribution functions was fitted to the lateral dose data in logarithmic scale. Starting values of fitting solutions were determined from the Generalized Highland Approximation. We exhaustively optimized the combinations of data weights with upper bounds of the fitting solutions to minimize confidence intervals of the fitting solutions while maintaining the coefficient of determination (R{sup 2}). Results: Across all energies, average confidence bounds improved 72.88% [Max: 88.28%, Min: 55.05%] for small angle coulomb scattering, 114.25% [409.13%, 66.72%,] for nuclear scattering, and 68.66% [141.09%, 33.27%] for large angle coulomb scattering, while the coefficients of determination of the fits (R{sup 2}) remained comparable. On average R {sup 2} only changed 0.18% and were very close to 1 (approx. 0.999). Wilcoxon signed rank tests comparing unweighted/unbounded fits with weighted/bounded fits averaged 0.0146 (Max: 0.177, Min: 7.05×10−{sup 7}) for small angle Coulomb, 0.0903 (0.945, 7.05×10−{sup 7}) for nuclear, and 0.254 (0.871, 1.86×10−{sup 6}) for large angle Coulomb scattering. This allows rejection of the null hypothesis for small angle Coulomb scattering at the 0.015 level and nuclear interaction at the 0.1 level. Conclusion: Optimal weights assigned to IMPT lateral dose data minimized fitting to stochastic noise in the tail region. Optimizing the upper bounds of fitting parameters improved

  13. Factors influencing the incidence of sinusitis in nasopharyngeal carcinoma patients after intensity-modulated radiation therapy.

    Science.gov (United States)

    Su, Yan-xia; Liu, Lan-ping; Li, Lei; Li, Xu; Cao, Xiu-juan; Dong, Wei; Yang, Xin-hua; Xu, Jin; Yu, Shui; Hao, Jun-fang

    2014-12-01

    The aim of the study was to investigate the incidence of sinusitis in nasopharyngeal carcinoma (NPC) patients before and after intensity-modulated radiation therapy (IMRT) and to analyze factors associated with the incidence of sinusitis following IMRT. We retrospectively analyzed 283 NPC patients who received IMRT in our hospital from March 2009 to May 2011. The diagnostic criteria for sinusitis are based on computed tomography (CT) or magnetic resonance imaging (MRI) findings. CT or MRI scans were performed before and after IMRT to evaluate the incidence of sinusitis. Factors influencing the incidence of sinusitis were analyzed by log-rank univariate and logistic multivariate analyses. Among the 283 NPC patients, 128 (45.2 %) suffered from sinusitis before radiotherapy. The incidence rates of sinusitis in patients with T1, T2, T3, and T4 NPC before radiotherapy were 22.6, 37.5, 46.8, and 61.3 %, respectively (χ 2 = 14.548, p = 0.002). Among the 155 NPC patients without sinusitis before radiotherapy, the incidence rates of sinusitis at the end of radiotherapy and at 1, 3, 6, 9, 12, and 18 months after radiotherapy were 32.9, 43.2, 61.3, 68.4, 73.5, 69.7, and 61.3 %, respectively (χ 2 = 86.461, p sinusitis in NPC patients after IMRT (p = 0.003, 0.006, 0.002, and 0.020). Multivariate analysis showed that T stage, invasion of the nasal cavity, and nasal irrigation were influential factors for the incidence of sinusitis in NPC patients after IMRT (p = 0.002, 0.002, and 0.000). There was a higher incidence of sinusitis with higher T stage among NPC patients before radiotherapy, and the incidence of sinusitis in NPC patients after IMRT was high (45.2 %). The incidence of sinusitis increased rapidly within the first 3 months after IMRT, and the number of sinusitis cases peaked at 6-9 months after IMRT and showed a trend toward stabilization after 1 year. Advanced T stage, invasion of the nasal cavity, and nasal irrigation were positively associated with the incidence

  14. Multifield Optimization Intensity Modulated Proton Therapy for Head and Neck Tumors: A Translation to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Garden, Adam S.; Rosenthal, David I.; Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Weber, Randal S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lewin, Jan S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Palmer, Matthew B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sahoo, Narayan; Zhang, Xiaodong; Liu, Wei; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-07-15

    Background: We report the first clinical experience and toxicity of multifield optimization (MFO) intensity modulated proton therapy (IMPT) for patients with head and neck tumors. Methods and Materials: Fifteen consecutive patients with head and neck cancer underwent MFO-IMPT with active scanning beam proton therapy. Patients with squamous cell carcinoma (SCC) had comprehensive treatment extending from the base of the skull to the clavicle. The doses for chemoradiation therapy and radiation therapy alone were 70 Gy and 66 Gy, respectively. The robustness of each treatment plan was also analyzed to evaluate sensitivity to uncertainties associated with variations in patient setup and the effect of uncertainties with proton beam range in patients. Proton beam energies during treatment ranged from 72.5 to 221.8 MeV. Spot sizes varied depending on the beam energy and depth of the target, and the scanning nozzle delivered the spot scanning treatment “spot by spot” and “layer by layer.” Results: Ten patients presented with SCC and 5 with adenoid cystic carcinoma. All 15 patients were able to complete treatment with MFO-IMPT, with no need for treatment breaks and no hospitalizations. There were no treatment-related deaths, and with a median follow-up time of 28 months (range, 20-35 months), the overall clinical complete response rate was 93.3% (95% confidence interval, 68.1%-99.8%). Xerostomia occurred in all 15 patients as follows: grade 1 in 10 patients, grade 2 in 4 patients, and grade 3 in 1 patient. Mucositis within the planning target volumes was seen during the treatment of all patients: grade 1 in 1 patient, grade 2 in 8 patients, and grade 3 in 6 patients. No patient experienced grade 2 or higher anterior oral mucositis. Conclusions: To our knowledge, this is the first clinical report of MFO-IMPT for head and neck tumors. Early clinical outcomes are encouraging and warrant further investigation of proton therapy in prospective clinical trials.

  15. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    Science.gov (United States)

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human

  16. Leakage-Penumbra effect in intensity modulated radiation therapy step-and-shoot dose delivery

    Institute of Scientific and Technical Information of China (English)

    Grigor N Grigorov; James CL Chow

    2016-01-01

    AIM: To study the leakage-penumbra(LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy(IMRT).METHODS: Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator(MLC). For each treatment plan created by the Pinnacle3 treatment planning system,a 3-dimensional LP dose distribution generated by 5 coplanar photon beams,starting from 0o with equal separation of 72 o,was investigated. For each photon beam used in the stepand-shoot IMRT plans,the first beam segment was set to have the largest area in the MLC leaf-sequencing,and was equal to the planning target volume(PTV). The overshoot effect(OSE) and the segment positional errors were measured using a solid water phantom with Kodak(TL and X-OMAT V) radiographic films. Film dosimetric analysis and calibration were carried out using a film scanner(Vidar VXR-16). The LP dose profiles were determined by eliminating the OSE and segment positional errors with specific individual irradiations. RESULTS: A non-uniformly distributed leaf LP dose ranging from 3% to 5% of the beam dose was measured in clinical IMRT beams. An overdose at the gap between neighboring segments,represented as dose peaks of up to 10% of the total BP,was measured. The LP effect increased the dose to the PTV and surrounding critical tissues. In addition,the effectdepends on the number of beams and segments for each beam. Segment positional error was less than the maximum tolerance of 1 mm under a dose rate of 600 monitor units per minute in the treatment plans. The OSE varying with the dose rate was observed in all photon beams,and the effect increased from 1 to 1.3 Gy per treatment of the rectal intersection. As the dosimetric impacts from the LP effect and OSE may increase the rectal post-radiation effects,a correction of LP was proposed and demonstrated for

  17. Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mounessi, F.S.; Lehrich, P.; Haverkamp, U.; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Willich, N. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Muenster (Germany). RiSK - Registry for the Evaluation of Late Side Effects after Radiotherapy in Childhood and Adolescence; Boelling, T. [Center for Radiation Oncology, Osnabrueck (Germany)

    2013-04-15

    The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing's sarcoma. A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated. Results The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V{sub 95} > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 {+-} 0.12 vs. 0.54 {+-} 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 {+-} 0.03 vs. 0.07 {+-} 0.0, p = 0.035). For the bowel, D{sub mean} and D{sub 1%}, as well as V{sub 2} to V{sub 60} were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in D{sub mean}. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V{sub 30} to V{sub 50}) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V{sub 2}) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V{sub 30}) it was significantly lower. Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT. (orig.)

  18. Bile Acid Malabsorption After Pelvic and Prostate Intensity Modulated Radiation Therapy: An Uncommon but Treatable Condition

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Victoria [Academic Urology Unit, Institute of Cancer Research and The Royal Marsden Hospital, London and Sutton (United Kingdom); Benton, Barbara [Gastroenterology Unit, Institute of Cancer Research and The Royal Marsden Hospital, London and Sutton (United Kingdom); Sohaib, Aslam [Department of Radiology, Institute of Cancer Research and The Royal Marsden Hospital, London and Sutton (United Kingdom); Dearnaley, David [Academic Urology Unit, Institute of Cancer Research and The Royal Marsden Hospital, London and Sutton (United Kingdom); Andreyev, H. Jervoise N., E-mail: j@andreyev.demon.co.uk [Gastroenterology Unit, Institute of Cancer Research and The Royal Marsden Hospital, London and Sutton (United Kingdom)

    2012-12-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Methods and Materials: Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75 homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Results: Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an {alpha}/{beta} ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received {>=}45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Conclusions: Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede

  19. Lateral loss and dose discrepancies of multileaf collimator segments in intensity modulated radiation therapy.

    Science.gov (United States)

    Cheng, Chee W; Das, Indra J; Huq, M Saiful

    2003-11-01

    In the step-and-shoot technique delivery of intensity modulated radiation therapy (IMRT), each static field consists of a number of beamlets, some of which may be very small. In this study, we measured the dose characteristics for a range of field sizes: 2 x 2 to 12 x 10 cm2 for 6 and 15 MV x rays. For a given field length, a number of treatment fields are set up by sequentially increasing the field width using a multi leaf collimator. A set of fields is delivered with the accelerator operated in the IMRT mode. Using an ion chamber, the output factors at 1 cm and 3 cm laterally from a field edge are measured at different depths in a solid water phantom. Our results show that with insufficient lateral distance in at least one direction, the absorbed dose never reaches the equilibrium values, and can be significantly lower for very small field sizes. For example, the output factor of the 2 x 2 cm2 field relative to 10 x 10 cm2 at d(max0 is 0.832 and 0.790 for 6 MV and 15 MV x rays, respectively. Multiple output factor curves are obtained for different field lengths and different buildup conditions. Thus under nonequilibrium conditions, output factors are critically dependent on the field size and the conventional method of determining the equivalent square does not apply. Comparison of output factors acquired in the commissioning of the accelerator with those measured in the present study under conditions of nonequilibrium shows large discrepancies between the two sets of measurements. Thus monitor units generated by a treatment planning system using beam data commissioned with symmetric fields may be underestimated by > 5%, depending on the size and shape of the segments. To facilitate manual MU calculation as an independent check in step-and-shoot IMRT, the concept of effective equivalent square (EES) is introduced. Using EES, output factors can be calculated using existing beam data for fields with asymmetric collimator settings and under conditions of lateral

  20. Failure Patterns After Hemithoracic Pleural Intensity Modulated Radiation Therapy for Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Rimner, Andreas, E-mail: rimnera@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Spratt, Daniel E. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zauderer, Marjorie G. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York (United States); Rosenzweig, Kenneth E. [Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York (United States); Wu, Abraham J.; Foster, Amanda [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Adusumilli, Prasad; Rusch, Valerie W. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Krug, Lee M. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York (United States)

    2014-10-01

    Purpose: We previously reported our technique for delivering intensity modulated radiation therapy (IMRT) to the entire pleura while attempting to spare the lung in patients with malignant pleural mesothelioma (MPM). Herein, we report a detailed pattern-of-failure analysis in patients with MPM who were unresectable or underwent pleurectomy/decortication (P/D), uniformly treated with hemithoracic pleural IMRT. Methods and Materials: Sixty-seven patients with MPM were treated with definitive or adjuvant hemithoracic pleural IMRT between November 2004 and May 2013. Pretreatment imaging, treatment plans, and posttreatment imaging were retrospectively reviewed to determine failure location(s). Failures were categorized as in-field (within the 90% isodose line), marginal (<90% and ≥50% isodose lines), out-of-field (outside the 50% isodose line), or distant. Results: The median follow-up was 24 months from diagnosis and the median time to in-field local failure from the end of RT was 10 months. Forty-three in-field local failures (64%) were found with a 1- and 2-year actuarial failure rate of 56% and 74%, respectively. For patients who underwent P/D versus those who received a partial pleurectomy or were deemed unresectable, the median time to in-field local failure was 14 months versus 6 months, respectively, with 1- and 2-year actuarial in-field local failure rates of 43% and 60% versus 66% and 83%, respectively (P=.03). There were 13 marginal failures (19%). Five of the marginal failures (38%) were located within the costomediastinal recess. Marginal failures decreased with increasing institutional experience (P=.04). Twenty-five patients (37%) had out-of-field failures. Distant failures occurred in 32 patients (48%). Conclusions: After hemithoracic pleural IMRT, local failure remains the dominant form of failure pattern. Patients treated with adjuvant hemithoracic pleural IMRT after P/D experience a significantly longer time to local and distant failure than

  1. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bar Ad, Voichita, E-mail: voichita.bar-ad@jeffersonhospital.org [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Lin, Haibo [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Hwang, Wei-Ting [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Dutta, Pinaki R. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Tochner, Zelig; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  2. Elective Lymph Node Irradiation With Intensity-Modulated Radiotherapy: Is Conventional Dose Fractionation Necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Bedi, Meena; Firat, Selim; Semenenko, Vladimir A.; Schultz, Christopher; Tripp, Patrick; Byhardt, Roger [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Wang, Dian, E-mail: dwang@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-05-01

    Purpose: Intensity-modulated radiation therapy (IMRT) is the standard of care for head-and-neck cancer (HNC). We treated patients with HNC by delivering either a moderate hypofractionation (MHF) schedule (66 Gy at 2.2 Gy per fraction to the gross tumor [primary and nodal]) with standard dose fractionation (54-60 Gy at 1.8-2.0 Gy per fraction) to the elective neck lymphatics or a conventional dose and fractionation (CDF) schedule (70 Gy at 2.0 Gy per fraction) to the gross tumor (primary and nodal) with reduced dose to the elective neck lymphatics. We analyzed these two cohorts for treatment outcomes. Methods and Materials: Between November 2001 and February 2009, 89 patients with primary carcinomas of the oral cavity, larynx, oropharynx, hypopharynx, and nasopharynx received definitive IMRT with or without concurrent chemotherapy. Twenty patients were treated using the MHF schedule, while 69 patients were treated with the CDF schedule. Patient characteristics and dosimetry plans were reviewed. Patterns of failure including local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), overall survival (OS), and toxicities, including rate of feeding tube placement and percentage of weight loss, were reviewed and analyzed. Results: Median follow-up was 31.2 months. Thirty-five percent of patients in the MHF cohort and 77% of patients in the CDF cohort received chemotherapy. No RR was observed in either cohort. OS, DFS, LR, and DM rates for the entire group at 2 years were 89.3%, 81.4%, 7.1%, and 9.4%, respectively. Subgroup analysis showed no significant differences in OS (p = 0.595), DFS (p = 0.863), LR (p = 0.833), or DM (p = 0.917) between these two cohorts. Similarly, no significant differences were observed in rates of feeding tube placement and percentages of weight loss. Conclusions: Similar treatment outcomes were observed for MHF and CDF cohorts. A dose of 50 Gy at 1.43 Gy per fraction may be sufficient to electively

  3. Distant Metastases in Head-and-Neck Squamous Cell Carcinoma Treated With Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yao Min, E-mail: min.yao@uhhospitals.org [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States); Lu Minggen [School of Public Health, University of Nevada at Reno, Reno, NV (United States); Savvides, Panayiotis S. [Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (United States); Rezaee, Rod; Zender, Chad A.; Lavertu, Pierre [Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center, Cleveland, OH (United States); Buatti, John M. [Department of Radiation Oncology, University of Iowa, Iowa City, IA (United States); Machtay, Mitchell [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States)

    2012-06-01

    Purpose: To determine the pattern and risk factors for distant metastases in head-and-neck squamous cell carcinoma (HNSCC) after curative treatment with intensity-modulated radiotherapy (IMRT). Methods and Materials: This was a retrospective study of 284 HNSCC patients treated in a single institution with IMRT. Sites included were oropharynx (125), oral cavity (70), larynx (55), hypopharynx (17), and unknown primary (17). American Joint Committee on Cancer stage distribution includes I (3), II (19), III (42), and IV (203). There were 224 males and 60 females with a median age of 57. One hundred eighty-six patients were treated with definitive IMRT and 98 postoperative IMRT. One hundred forty-nine patients also received concurrent cisplatin-based chemotherapy. Results: The median follow-up for all patients was 22.8 months (range, 0.07-77.3 months) and 29.5 months (4.23-77.3 months) for living patients. The 3-year local recurrence-free survival, regional recurrence-free survival, locoregional recurrence-free survival, distant metastasis-free survival, and overall survival were 94.6%, 96.4%, 92.5%, 84.1%, and 68.95%, respectively. There were 45 patients with distant metastasis. In multivariate analysis, distant metastasis was strongly associated with N stage (p = 0.046), T stage (p < 0.0001), and pretreatment maximum standardized uptake value of the lymph node (p = 0.006), but not associated with age, gender, disease sites, pretreatment standardized uptake value of the primary tumor, or locoregional control. The freedom from distant metastasis at 3 years was 98.1% for no factors, 88.6% for one factor, 68.3% for two factors, and 41.7% for three factors (p < 0.0001 by log-rank test). Conclusion: With advanced radiation techniques and concurrent chemotherapy, the failure pattern has changed with more patients failing distantly. The majority of patients with distant metastases had no local or regional failures, indicating that these patients might have microscopic distant

  4. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer.

    Science.gov (United States)

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  5. Osteoradionecrosis of the mandible. Minimized risk profile following Intensity-Modulated Radiation Therapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Studer, G.; Huguenin, P.; Luetolf, U.M.; Glanzmann, C. [Dept. of Radiation Oncology, Univ. Hospital, Zurich (Switzerland); Studer, S.P.; Zwahlen, R.A.; Graetz, K.W. [Dept. of Craniomaxillofacial Surgery, Univ. Hospital, Zurich (Switzerland)

    2006-05-15

    Background and purpose: osteoradionecrosis (ON) of the mandible is a serious late complication of high-dose radiation therapy for tumors of the oropharynx and oral cavity. After doses between 60 and 72 Gy using standard fractionation, an incidence of ON between 5% and 15% is reported in a review from 1989, whereas in more recent publications using moderately accelerated or hyperfractionated irradiation and doses between 69 and 81 Gy, the incidence of ON is between < 1% and {proportional_to} 6%. Intensity-modulated radiation therapy (IMRT) is expected to translate into a further important reduction of ON. The aim of this descriptive study was to assess absolute and relative bone volumes exposed to high IMRT doses, related to observed bone tolerance. Patients and methods: between December 2001 and November 2004, 73 of 123 patients treated with IMRT were identified as subgroup ''at risk'' for ON (> 60 Gy for oropharyngeal or oral cavity cancer). 21/73 patients were treated in a postoperative setting, 52 patients underwent primary definitive irradiation. In 56 patients concomitant cisplatin-based chemotherapy was applied. Mean follow-up time was 22 months (12-46 months). Oral cavity including the mandible bone outside the planning target volume was contoured and dose-volume constraints were defined in order to spare bone tissue. Dose-volume histograms were obtained from contoured mandible in each patient and were analyzed and related to clinical mandible bone tolerance. Results: using IMRT with doses between 60 and 75 Gy (mean 67 Gy), on average 7.8, 4.8, 0.9, and 0.3 cm{sup 3} were exposed to doses > 60, 65, 70, and 75 Gy, respectively. These values are substantially lower than when using three-dimensional conformal radiotherapy. The difference has been approximately quantified by comparison with a historic series. Additional ON risk factors of the patients were also analyzed. Only one grade 3 ON of the lingual horizontal branch, treated with

  6. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, Jorge [EC Engineering Consultants, LLC 130, Forest Hill Drive, Los Gatos, CA (United States); Deasy, Joseph O [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (United States); Bortfeld, Thomas R [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 30 Fruit Street, Boston, MA (United States); Solberg, Timothy D [Department of Radiation Oncology, University of California, Los Angeles, CA (United States); Promberger, Claus [BrainLAB AG, Ammerthalstrasse 8, 85551 Heimstetten (Germany)

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  7. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    Science.gov (United States)

    Llacer, Jorge; Deasy, Joseph O.; Bortfeld, Thomas R.; Solberg, Timothy D.; Promberger, Claus

    2003-01-01

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  8. Correcting radiation survey data to account for increased leakage during intensity modulated radiotherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kairn, T. [Premion Cancer Care, Wesley Medical Centre, Suite 1, 40 Chasely St, Auchenflower Qld 4066, Australia and Science and Engineering Faculty, Queensland University of Technology, G.P.O. Box 2434, Brisbane Qld 4000 (Australia); Crowe, S. B.; Trapp, J. V. [Science and Engineering Faculty, Queensland University of Technology, G.P.O. Box 2434, Brisbane Qld 4000 (Australia)

    2013-11-15

    Purpose: Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially costly overestimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls, and other walls) by evaluating three different bunker designs.Methods: Radiation survey measurements of primary, scattered, and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0° to 330°, to assess the effects of radiation beam direction on the results.Results: For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage.Conclusions: Results of this study suggest that IMRT workload corrections are unnecessary, for survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in

  9. Bunching of an Intense Electron-Beam Extracted from a Triode Gun Modulated at 1 Ghz

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.

    1991-01-01

    We present measurements of the bunch length and emittance of a high-current electron beam, which is extracted from a triode modulated at 1 GHz and subsequently compressed by means of velocity modulation in a prebuncher cavity. The prebuncher is detuned by about 1 MHz in order to ensure that the tota

  10. Helical tomotherapy based intensity modulated radiotherapy for the management of difficult clinical situations in breast cancer

    Directory of Open Access Journals (Sweden)

    Animesh Saha

    2015-01-01

    Full Text Available Helical tomotherapy (HT can achieve a homogenous dose distribution in the planning target volume while minimizing the dose to the organ at risk. Tomotherapy has been used for complex breast cancer radiotherapy including bilateral breast irradiation, pectus excavatum, and internal mammary chain (IMC nodal irradiation. This report details our experience of using HT in breast cancers in newer clinical indications. Three patients with SCF nodal involvement (case 1, high level III axillary node recurrence (case 2, and composite irradiation of SCF, IMC, and whole breast (case 3 were treated using brachial plexus sparing HT. It was possible to boost the SCF, reirradiate the high level III axillary nodal recurrence and treat complex volume of breast, SCF, and IMC with acceptable and safe dose volume histogram constraints and with good homogeneity and conformity indices. The treatment was successful in controlling disease locoregionally at a 15 months follow-up. No patients reported symptoms suggestive of brachial plexopathy

  11. Analysis of autonomic modulation after an acute session of resistance exercise at different intensities in chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Nicolino J

    2015-01-01

    Full Text Available Juliana Nicolino,1 Dionei Ramos,1 Marceli Rocha Leite,1 Fernanda Maria Machado Rodrigues,1 Bruna Spolador de Alencar Silva,1 Guilherme Yassuyuki Tacao,1 Alessandra Choqueta de Toledo,2 Luiz Carlos Marques Vanderlei,1 Ercy Mara Cipulo Ramos1 1Department of Physiotherapy, Paulista State University (UNESP, Presidente Prudente, São Paulo, Brazil; 2Department of Pathology, School of Medicine of the University of São Paulo, São Paulo, Brazil Purpose: Physical exercises are employed as part of the treatment of patients with chronic obstructive pulmonary disease (COPD; however information regarding cardiac autonomic modulation after an acute session of resistance exercise (RE is unknown. The aim of this study was to evaluate the cardiac autonomic modulation, via heart rate variability after an acute session of RE applied at different intensities in COPD patients. Patients and methods: Twelve COPD patients underwent an acute session of RE with an intensity of 60% and another of 90% of the one repetition maximum test. For analysis of autonomic modulation, heart rate was recorded beat-by-beat for 20 minutes at rest and after the training session. Heart rate variability indexes were obtained in the time and frequency domains for the assessment of autonomic modulation. Results: Regardless of exercise intensity, RE acute sessions influenced the autonomic modulation when the recovery period was compared with the baseline. An increase in standard deviation of normal to normal RR intervals was observed throughout recovery time after the RE, as compared to baseline in both protocols: 60% and 90% of the one repetition maximum test. The spectral component of low frequency index (ms was higher throughout recovery when compared to baseline in both protocols. The same was also observed in the spectral component of high frequency index (ms for the protocols of 60% and 90%. Conclusion: RE sessions impact on the autonomic modulation of COPD patients by promoting

  12. Spectral Compression of Intense Femtosecond Pulses by Self Phase Modulation in Silica Glass

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zhou, Binbin; Bache, Morten

    2012-01-01

    We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation.......We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation....

  13. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  14. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    Directory of Open Access Journals (Sweden)

    Vincent Wing Cheung Wu

    2014-01-01

    Full Text Available This study compared the performance of volumetric modulated arc therapy (VMAT techniques: single arc volumetric modulated arc therapy (SA-VMAT and double arc volumetric modulated arc therapy (DA-VMAT with the static beam conventional intensity modulated radiotherapy (C-IMRT for non-small-cell lung carcinoma (NSCLC. Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV and organs at risk (OARs was used for planning. Using the same dose constraints and planning objectives, the C-IMRT, SA-VMAT, and DA-VMAT plans were optimized. C-IMRT consisted of 7 static beams, while SA-VMAT and DA-VMAT plans consisted of one and two full gantry rotations, respectively. No significant difference was found among the three techniques in target homogeneity and conformity. Mean lung dose in C-IMRT plan was significantly lower than that in DA-VMAT plan P=0.04. The ability of OAR sparing was similar among the three techniques, with no significant difference in V20, V10, or V5 of normal lungs, spinal cord, and heart. Less MUs were required in SA-VMAT and DA-VMAT. Besides, SA-VMAT required the shortest beam on time among the three techniques. In treatment of early stage NSCLC, no significant dosimetric superiority was shown by the VMAT techniques over C-IMRT and DA-VMAT over SA-VMAT.

  15. Dosimetric and radiobiological comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for early stage whole breast cancer

    Science.gov (United States)

    Moshiri Sedeh, Nader

    Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.

  16. Treatment of folliculitis decalvans using intensity-modulated radiation via tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Elsayad, Khaled; Kriz, Jan; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany); Plachouri, Kerasia-Maria; Jeskowiak, Antonia [University Hospital of Muenster, Department of Dermatology, Muenster (Germany); Sunderkoetter, Cord [University Hospital of Muenster, Department of Dermatology, Muenster (Germany); University Hospital of Muenster, Department of Translational Dermatoninfectiology, Muenster (Germany)

    2015-11-15

    Folliculitis decalvans (FD) is a form of primary neutrophilic scarring alopecia that is characterized clinically by chronic suppurative folliculitis and often associated with pruritus or even pain. Treatment of FD is often difficult. Herein, we report a case of recalcitrant and painful folliculitis decalvans refractory to antibiotic and anti-inflammatory therapies, which was successfully treated by intensity-modulated radiotherapy (IMRT) in order to irreversibly eliminate hair follicles that prove to be one etiological trigger. A 45-year-old male patient with a refractory FD presented with a crusting suppurative folliculitis and atrophic scarring patches on the scalp associated with pain and pruritus. We attempted relief of symptoms by reducing scalp inflammation and eliminating hair follicles through radiation. We delivered 11.0 Gy in two radiation series using tomotherapy, 5.0 Gy in 5 equivalent fractions as a first radiation course. The symptoms markedly decreased but did not totally disappear. Therefore, we delivered a second radiation series 4 months later with an additional 6 Gy. This led to almost complete epilation on the scalp and abolished pain and pruritus on the capillitium. The patient was regularly followed up until 26 months after radiotherapy. Draining lesions or exudation did not recur. He only experienced discrete hair regrowth in the occipital region with folliculitis 12 months after radiotherapy. These residual lesions are currently treated with laser epilation therapy. A radical approach to eliminating hair follicles by repeated radiation therapy may induce lasting relief of symptoms in chronic suppurative FD associated with persistent trichodynia. (orig.) [German] Die Folliculitis decalvans (FD) ist eine Form der primaer neutrophilen Alopezie, welche klinisch durch Schmerzen und eitrige Follikel gekennzeichnet ist. Da es bisher kein einheitliches Behandlungskonzept gibt, wird hier ueber eine FD berichtet, welche trotz mehrfacher antibiotischer

  17. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiayun; Chen, Xinyuan [Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences, Beijing (China); Huang, Manni, E-mail: dai_jianrong@163.com [Department of Gynecologic Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences, Beijing (China); Dai, Jianrong, E-mail: huangmanni@csco.org.cn [Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences, Beijing (China)

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle{sup 3} system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped by collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V{sub 20}, V{sub 30}, and V{sub 40} of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O-plan (3940

  18. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, James A. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R.; Fontenot, Jonas P.; Henkelmann, Gregory [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 and Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 (United States); Chu, Connel; Carver, Robert A. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 (United States)

    2013-02-15

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively, whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94

  19. Exercise intensity modulates capillary perfusion in correspondence with ACE I/D modulated serum angiotensin II levels

    Directory of Open Access Journals (Sweden)

    Sander van Ginkel

    2015-03-01

    Full Text Available During exercise the renin–angiotensin system is stimulated. We hypothesized that the increase in serum angiotensin II (AngII levels after exercise is dependent on exercise intensity and duration and secondly that people with the ACE-II genotype will show a higher increase in AngII serum levels. We also assumed that perfusion of upper limbs is transiently reduced with maximal cycling exercise and that subjects with the ACE-II compared to the ACE-ID/DD genotype will have a higher capillary perfusion due to lower AngII levels. Ten healthy subjects completed a maximal exercise test, a 12-min exercise test at ventilatory threshold and a 3-min test at the respiratory compensation point. AngII serum levels and capillary recruitment of the skin in the third finger were measured before and after exercise and breath-by-breath gas exchange during exercise was assessed. Baseline levels of AngII levels were lower prior to the 3-min test which took place on average 5 days after the last exercise. A two-fold increase compared to baseline levels was found for AngII only immediately after the 3-min test and not after the maximal exercise test and 12-min of exercise. Subjects without the I allele showed a decrease in AngII values after the maximal test in contrast to subjects with the ACE-II/ID genotype. Subjects with the ACE-II genotype had a 1.8 times significant higher capillary perfusion in the finger after exercise. A trend was observed for a 34.3% decreased capillary recruitment in the ACE-ID/DD genotype after exercise. We conclude that the rise in AngII after exercise is intensity dependent and that variability in serum AngII and capillary perfusion is related to the ACE I/D polymorphism.

  20. Exercise intensity modulates the change in cerebral blood flow following aerobic exercise in chronic stroke.

    Science.gov (United States)

    Robertson, Andrew D; Crane, David E; Rajab, A Saeed; Swardfager, Walter; Marzolini, Susan; Shirzadi, Zahra; Middleton, Laura E; MacIntosh, Bradley J

    2015-08-01

    The mechanisms supporting functional improvement by aerobic exercise following stroke remain incompletely understood. This study investigated how cycling intensity and aerobic fitness influence cerebral blood flow (CBF) following a single exercise session. Thirteen community-living stroke survivors performed 20 min of semi-recumbent cycling at low and moderate intensities (40-50 and 60-70 % of heart rate reserve, respectively) as determined from an exercise stress test. CBF was quantified by arterial spin labeling MRI at baseline, as well as 30 and 50 min post-exercise. An intensity-dependent effect was observed in the right post-central and supramarginal gyri up to 50 min after exercise (uncorrected p Aerobic fitness was directly related to posterior cingulate and thalamic CBF, and inversely related to precuneal CBF at rest (R (2) ≥ 0.75); however, no relationship between fitness and the post-exercise change in CBF was observed. Divergent changes in regional CBF were observed in the right parietal cortex following low- and moderate-intensity exercise, which suggests that intensity of prescribed exercise may be useful in optimizing rehabilitation.

  1. Influence of stimulus intensity on the soleus H-reflex amplitude and modulation during locomotion

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine; Raffalt, Peter C

    2013-01-01

    Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and runni...

  2. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  3. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DEFF Research Database (Denmark)

    Hansen, Anders T; Lukacova, Slavka; Lassen-Ramshad, Yasmin A.;

    2015-01-01

    patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique......When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar...... technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each...

  4. Suppression of phase-induced intensity noise in fibre optic delay line signal processors using an optical phase modulation technique.

    Science.gov (United States)

    Chan, Erwin H W

    2010-10-11

    A technique that can suppress the dominant phase-induced intensity noise in fibre optic delay line signal processors is presented. It is based on phase modulation of the optical carrier to distribute the phase noise at the information band into a high frequency band which can be filtered out. This technique is suitable for suppressing the phase noise in various delay line structures and for integrating in the conventional fibre optic links. It can also suppress the coherent interference effect at the same time. A model for predicting the amount of phase noise reduction in various delay line structures using the optical phase modulation technique is presented for the first time and is experimentally verified. Experimental results demonstrate the technique can achieve a large phase noise reduction in various fibre optic delay line signal processors.

  5. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure.

    Science.gov (United States)

    Sagioglou, Niki E; Manta, Areti K; Giannarakis, Ioannis K; Skouroliakou, Aikaterini S; Margaritis, Lukas H

    2016-01-01

    Present generations are being repeatedly exposed to different types and doses of non-ionizing radiation (NIR) from wireless technologies (FM radio, TETRA and TV stations, GSM and UMTS phones/base stations, Wi-Fi networks, DECT phones). Although there is controversy on the published data regarding the non-thermal effects of NIR, studies have convincingly demonstrated bioeffects. Their results indicate that modulation, intensity, exposure duration and model system are important factors determining the biological response to irradiation. Attempting to address the dependence of NIR bioeffectiveness on these factors, apoptosis in the model biological system Drosophila melanogaster was studied under different exposure protocols. A signal generator was used operating alternatively under Continuous Wave (CW) or Frequency Modulation (FM) emission modes, at three power output values (10 dB, 0, -10 dB), under four carrier frequencies (100, 395, 682, 900 MHz). Newly emerged flies were exposed either acutely (6 min or 60 min on the 6th day), or repeatedly (6 min or 60 min daily for the first 6 days of their life). All exposure protocols resulted in an increase of apoptotic cell death (ACD) observed in egg chambers, even at very low electric field strengths. FM waves seem to have a stronger effect in ACD than continuous waves. Regarding intensity and temporal exposure pattern, EMF-biological tissue interaction is not linear in response. Intensity threshold for the induction of biological effects depends on frequency, modulation and temporal exposure pattern with unknown so far mechanisms. Given this complexity, translating such experimental data into possible human exposure guidelines is yet arbitrary.

  6. Effect of intensiti modulated radiation therapy according to equivalent uniform dose optimization method on patients with lung cancer

    Institute of Scientific and Technical Information of China (English)

    Yu-Fu Zhou; Qian Sun; Ya-Jun Zhang; Geng-Ming Wang; Bin He; Tao Qi; An Zhou

    2016-01-01

    Objective:To analyze the effect of the intensity modulated radiation therapy according to equivalent uniform dose optimization method on patients with lung cancer.Methods:A total of 82 cases of non-small cell lung cancer were divided into observation group and control group according to the random number table method. Patients in the control group received conventional radiotherapy while observation group received intensity modulated radiotherapy based on equivalent uniform dose optimization method. The treatment effects, survival times, blood vessel-related factors, blood coagulation function and the levels of inflammatory factors and so on were compared between the two groups of patients.Results:The effective rate of the observation group after treatment was higher than that of the control group. Progression free survival and median overall survival times were longer than those of patients in the control group (P<0.05). The serum VEGF and HIF-αα levels as well as D-D, TT, PT, APTT and FIB levels were lower in observation group patients after treatment than those in the control group(P<0.05). At the same time point, serum TNF-αα, CRP and PCT levels in the observation group after treatment were lower than those in the control group (P<0.05). Serum M2-PK, CA125, CEA and SCC values of patients in the observation group after treatment were all significantly lower than those in the control group (P< 0.05).Conclusions:Intensity modulated radiation therapy based on equivalent uniform dose optimized method can improve the treatment effect, prolong the survival time, optimize micro inflammatory environment and inhibit tumor biological behavior at the same time.

  7. SU-E-T-353: Decoding the Beam Complexity in Intensity-Modulated Radiation Therapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Du, W; Cho, S; Zhang, X; Hoffman, K; Kudchadker, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Modern IMRT relies on computers to generate treatment plans of varied complexity. A highly complex treatment plan may use a large number of small and irregular beam apertures in order to achieve high dose conformity. However, excessive beam complexity can increase dosimetric uncertainty, prolong treatment time, and increase susceptibility to target or organ motion. In this study we sought to develop metrics to assess the complexity of IMRT beams and plans. Methods: Based the information of leaf positions and MU for each beam segment, we calculated the following beam complexity metrics: aperture area, shape irregularity, and beam modulation. Then these beam complexity metrics were averaged to obtain the corresponding plan complexity metrics, using the beam MUs as weighting factors. We evaluated and compared the beam and plan complexity scores for 65 IMRT plans from 3 sites (prostate, head and neck, and spine). We also studied how the plan complexity scores were affected by adjusting inverse planning parameters. Results: For prostate IMRT, the lateral beams had large MUs and smaller shape irregularity, while the anterior or posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest shape irregularity and beam modulation; the HN IMRT plans had the largest aperture area, shape irregularity, and beam modulation; and the spine stereotactic IMRT plans often had small aperture area, which may be associated with relatively large discrepancies between calculated and measures doses. The plan complexity increased as the number of optimization iterations and the number of beam segments increased and as the minimum segment area decreased. Conclusion: Complexity of IMRT beams and plans were quantified in terms of aperture area, shape irregularity and beam modulation. The complexity metrics varied among IMRT plans for different disease sites and were affected when the planning parameters were adjusted.

  8. Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gejl, K D; Hvid, L G; Willis, S J;

    2016-01-01

    The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether...... the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC...... I (17%, P exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II...

  9. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot Numbers and Tilt Angle

    Indian Academy of Sciences (India)

    Meera Gupta; V. K. Mishra; A. P. Mishra

    2006-12-01

    A detailed correlative analysis between sunspot numbers (SSN) and tilt angle (TA) with cosmic ray intensity (CRI) in the neutron monitor energy range has been performed for the solar cycles 21, 22 and 23. It is found that solar activity parameters (SSN and TA) are highly (positive) correlated with each other and have inverse correlation with cosmic ray intensity (CRI). The ‘running cross correlation coefficient’ between cosmic ray intensity and tilt angle has also been calculated and it is found that the correlation is positive during the maxima of odd cycles 21 and 23. Moreover, the time lag analysis between CRI and SSN, and between CRI and TA has also been performed and is supported by hysteresis curves, which are wide for odd cycles and narrow for even cycles.

  10. Simultaneous in-field boost for patients with 1 to 4 brain metastasis/es treated with volumetric modulated arc therapy: a prospective study on quality-of-life

    Directory of Open Access Journals (Sweden)

    Malek Karim

    2011-06-01

    Full Text Available Abstract Purpose To assess treatment toxicity and patients' survival/quality of life (QoL after volumetric modulated arc therapy (VMAT with simultaneous in-field boost (SIB for cancer patients with 1 - 4 brain metastases (BM treated with or without surgery. Methods and Materials Between March and December 2010, 29 BM patients (total volume BM, 3 aged Results As of April 2011 and after a mean FU of 5.4 ± 2.8 months, 14 (48.3% patients died. The 6-month overall survival was 55.1%. Alopecia was only observed in 9 (31% patients. In 3-month survivors, KPS was significantly (p = 0.01 decreased. MMSE score remained however stable (p = 0.33. Overall, QoL did decrease after VMAT. The mean QLQ-C30 global health status (p = 0.72 and emotional functional (p = 0.91 scores were decreased (low QoL. Physical (p = 0.05 and role functioning score (p = 0.01 were significantly worse and rapidly decreased during treatment. The majority of BN20 domains and single items worsened 3 months after VMAT except headaches (p = 0.046 and bladder control (p = 0.26 which improved. Conclusions The delivery of 40 Gy in 10 fractions to 1 - 4 BM using VMAT was achieved with no significant toxicity. QoL, performance status, but not MMSE, was however compromised 3 months after treatment in this selected cohort of BM patients.

  11. Unilateral and bilateral neck SIB for head and neck cancer patients. Intensity-modulated proton therapy, tomotherapy, and RapidArc

    Energy Technology Data Exchange (ETDEWEB)

    Stromberger, Carmen; Budach, Volker; Ghadjar, Pirus; Wlodarczyk, Waldemar; Marnitz, Simone [Charite - Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany); Cozzi, Luca; Fogliata, Antonella [Humanitas Cancer Center Milan, Radiotherapy and Radiosurgery Department, Milan (Italy); Jamil, Basil [Klinikum Frankfurt Oder, Praxis fuer Strahlentherapie, Frankfurt Oder (Germany); Raguse, Jan D. [Clinic for Oral and Maxillofacial Surgery, Berlin (Germany); Boettcher, Arne [Charite - Universitaetsmedizin Berlin, Department of Otorhinolaryngology, Berlin (Germany)

    2016-04-15

    To compare simultaneous integrated boost plans for intensity-modulated proton therapy (IMPT), helical tomotherapy (HT), and RapidArc therapy (RA) for patients with head and neck cancer. A total of 20 patients with squamous cell carcinoma of the head and neck received definitive chemoradiation with bilateral (n = 14) or unilateral (n = 6) neck irradiation and were planned using IMPT, HT, and RA with 54.4, 60.8, and 70.4 GyE/Gy in 32 fractions. Dose distributions, coverage, conformity, homogeneity to planning target volumes (PTV)s and sparing of organs at risk and normal tissue were compared. All unilateral and bilateral plans showed excellent PTV coverage and acceptable dose conformity. For unilateral treatment, IMPT delivered substantially lower mean doses to contralateral salivary glands (< 0.001-1.1 Gy) than both rotational techniques did (parotid gland: 6-10 Gy; submandibular gland: 15-20 Gy). Regarding the sparing of classical organs at risk for bilateral treatment, IMPT and HT were similarly excellent and RA was satisfactory. For unilateral neck irradiation, IMPT may minimize the dry mouth risk in this subgroup but showed no advantage over HT for bilateral neck treatment regarding classical organ-at-risk sparing. All methods satisfied modern standards regarding toxicity and excellent target coverage for unilateral and bilateral treatment of head and neck cancer at the planning level. (orig.) [German] Planvergleich von intensitaetsmodulierter Protonentherapie (IMPT), Tomotherapie (HT) und RapidArc-Therapie (RA) fuer Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region unter Anwendung des simultan integrierten Boost-Konzepts (SIB). Fuer 20 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region und bilateraler (n = 14) oder unilateraler (n = 6) zervikaler primaerer Radiochemotherapie erfolgte eine IMPT-, HT- und RA-Planung mit 54,4, 60,8 und 70,4 GyE/Gy in 32 Fraktionen. Die Dosisverteilung, Abdeckung, Konformitaet und Homogenitaet der PTVs sowie die

  12. Arcoterapia of intensity modulated with image-guided in the treatment of intracranial radiosurgery; Arcoterapia de intensidad modulada con imagen guiada en el tratamiento de radiocirugia intracraneal

    Energy Technology Data Exchange (ETDEWEB)

    Serna Berna, A.; Mata Colodro, F.; Puchades Puchades, V.; Ramos Amores, D.

    2013-07-01

    In this paper is presented the experience with the first 10 patients with cranial metastases treated with radiosurgery, using multiple non-coplanar arcs with RapidArc technique, arcoterapia of intensity modulated (VMAT). (Author)

  13. 11-year cycle solar modulation of cosmic ray intensity inferred from C-14 content variation in dated tree rings

    Science.gov (United States)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1983-01-01

    A liquid scintillation-photomultiplier tube counter system was used to measure the Delta-C-14 values of 60 tree rings, dating from 1866 to 1925, that were taken from a white spruce grown in Canada at 68 deg N, 130 deg W. A 10-percent variation is found which is anticorrelated with sunspot numbers, although the amplitude of the variation is 2-3 times higher than expected in trees grown at lower latitudes. A large dip in the data at about 1875 suggests an anomalously large modulation of cosmic ray intensity during the 1867-1878 AD solar cycle, which was the most active of the 19th century.

  14. First Experiences in Intensity Modulated Radiation Surgery at the National Institute of Neurology and Neurosurgery: A Dosimetric Point of View

    Science.gov (United States)

    Lárraga-Gutiérrez, José M.; Celis-López, Miguel A.

    2003-09-01

    The National Institute of Neurology and Neurosurgery in Mexico City has acquired a Novalis® shaped beam radiosurgery unit. The institute is pioneer in the use of new technologies for neuroscience. The Novalis® unit allows the use of conformal beam radiosurgery/therapy and the more advanced modality of conformal therapy: Intensity Modulated Radiation Therapy (IMRT). In the present work we present the first cases of treatments that use the IMRT technique and show its ability to protect organs at risk, such as brainstem and optical vias.

  15. Saturation Effect on Pump-to-Signal Intensity Modulation Transfer in Single-Pump Phase-Insensitive Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2011-01-01

    A numerical and experimental characterization of how signal gain saturation affects the transfer of the intensity modulation of the pump to the signal in single-pump phaseinsensitive fibre optic parametric amplifiers is presented.......A numerical and experimental characterization of how signal gain saturation affects the transfer of the intensity modulation of the pump to the signal in single-pump phaseinsensitive fibre optic parametric amplifiers is presented....

  16. Intermittent fasting modulates IgA levels in the small intestine under intense stress: a mouse model.

    Science.gov (United States)

    Lara-Padilla, Eleazar; Godínez-Victoria, Marycarmen; Drago-Serrano, Maria Elisa; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Campos-Rodríguez, Rafael

    2015-08-15

    Intermittent fasting prolongs the lifespan and unlike intense stress provides health benefits. Given the role of the immunoglobulin A (IgA) in the intestinal homeostasis, the aim of this study was to assess the impact of intermittent fasting plus intense stress on secretory IgA (SIgA) production and other mucosal parameters in the duodenum and ileum. Two groups of six mice, with intermittent fasting or fed ad libitum for 12weeks, were submitted to a session of intense stress by a bout of forced swimming. Unstressed ad libitum fed or intermittently fasted groups were included as controls. After sacrifice, we evaluated intestinal SIgA and plasma adrenal hormones, lamina propria IgA+ plasma-cells, mRNA expression of polymeric immunoglobulin receptor, α- and J-chains in the liver and intestinal mucosa, as well as pro- (tumor necrosis factor-α, interleukin-6 and Interferon-γ) and anti- (interleukin-2, -4, -10 and transforming growth factor-β) inflammatory cytokines in mucosal samples. Under intense stress, intermittent fasting down- or up-modulated the levels of most parameters in the duodenum and ileum, respectively while up-regulated corticosterone levels without affecting epinephrine. Our data suggest intermittent fasting plus intense stress elicited neuroendocrine pathways that differentially controlled IgA and pIgR expression in duodenum and ileum. These findings provide experimental foundations for a presumable impact of intermittent fasting under intense stress on the intestinal homeostasis or inflammation by triggering or reducing the IgA production in ileum or duodenum respectively.

  17. Upwelling intensity modulates N2O concentrations over the western Indian shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Sudheesh, V.; Gupta, G.V.M.; Sudharma, K.V.; Naik, H.; Shenoy, D.M.; Sudhakar, M.; Naqvi, S.W.A.

    by the natural origin of intense upwelling at Mangalore relative to Kochi wherein suboxic to anoxic oxygen minimum zone waters spread from offshore to the shelf of Mangalore, over which the runoff and terrestrial nutrients supply acts in unison. Following new...

  18. IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique

    OpenAIRE

    2011-01-01

    Abstract Background An advantage of the Intensity Modulated Radiotherapy (IMRT) technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB) technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED), i.e. IsoBED, compared to the standard fractionation....

  19. Degradation of target coverage due to inter-fraction motion during intensity-modulated proton therapy of prostate and elective targets

    Energy Technology Data Exchange (ETDEWEB)

    Thoernqvist, Sara; Hoeyer, Morten; Grau, Cai; Muren, Ludvig P.; Petersen, Joergen B. B. [Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark); Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)], e-mail: sarathoe@rm.dk; Bentzen, Lise [Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark); Hysing, Liv B. [Dept. of Oncology and Medical Physics, Haukeland Univ. Hospital, Bergen (Norway); Petersen, Joergen B. B. [Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark)

    2013-04-15

    Background: Internal target and organ motion during treatment is a challenge in radiotherapy (RT) of the prostate and the involved elective targets, with residual motion being present also following image-guidance strategies. Purpose: The aim of this study was to investigate organ motion-induced dose degradations for the prostate, seminal vesicle and the pelvic lymph node when treating these targets with proton therapy, using different image-guidance and delivery strategies. Material and methods: Four patients were selected from a larger series as they displayed large inter-fractional variation in bladder and rectum volume. Intensity-modulated proton therapy plans were generated using both simultaneous integrated and sequential boost delivery. For each technique, three isotropic margin expansions (in the range of 4-10 mm) were evaluated for the clinical target volume of prostate (CTV-p), seminal vesicles (CTV-sv) and lymph nodes (CTV-ln). Simulation of the dose degradations for all treatment plans were based on dose re-calculations for the 8-9 repeat CTs available for each patient, after applying rigid registrations to reproduce set-up based on either intra-prostatic fiducials or bony anatomy. Results: The simulated dose received by 99% of the target volume (D99) and generalized equivalent dose (gEUD) showed substantial inter-patient variations. For 40% of the investigated scenarios, the patient average simulated D99 for all targets were within 2 GyE from the planned dose. The largest difference between simulated and planned dose was seen for the CTV-sv when using SIB delivery, with an average relative reduction in D99 of 13% and 15% for the largest margin expansion, when positioned using fiducials and bony anatomy, respectively. Conclusions: The most severe dose degradations were found for CTV-sv, but they were also evident for CTV-ln. The degradations could not be completely resolved, neither by using the largest margin expansion nor with the choice of set

  20. SU-E-P-48: Evaluation of Intensity Modulated Radiotherapy (IMRT) with Three Different Commercial Planning Systems for the Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D; Chi, Z; Yang, H; Miao, M; Jing, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China)

    2015-06-15

    Purpose: To investigate the performances of three commercial treatment planning systems (TPS) for intensity modulated radiotherapy (IMRT) optimization regarding cervical cancer. Methods: For twenty cervical cancer patients, three IMRT plans were retrospectively re-planned: one with Pinnacle TPS,one with Oncentra TPS and on with Eclipse TPS. The total prescribed dose was 50.4 Gy delivered for PTV and 58.8 Gy for PTVnd by simultaneous integrated boost technique. The treatments were delivered using the Varian 23EX accelerator. All optimization schemes generated clinically acceptable plans. They were evaluated based on target coverage, homogeneity (HI) and conformity (CI). The organs at risk (OARs) were analyzed according to the percent volume under some doses and the maximum doses. The statistical method of the collected data of variance analysis was used to compare the difference among the quality of plans. Results: IMRT with Eclipse provided significant better HI, CI and all the parameters of PTV. However, the trend was not extension to the PTVnd, it was still significant better at mean dose, D50% and D98%, but plans with Oncentra showed significant better in the hight dosage volume, such as maximum dose and D2%. For the bladder wall, there were not notable difference among three groups, although Pinnacle and Oncentra systems provided a little lower dose sparing at V50Gy of bladder and rectal wall and V40Gy of bladder wall, respectively. V40Gy of rectal wall (p=0.037), small intestine (p=0.001 for V30Gy, p=0.010 for maximum dose) and V50Gy of right-femoral head (p=0.019) from Eclipse plans showed significant better than other groups. Conclusion: All SIB-IMRT plans were clinically acceptable which were generated by three commercial TPSs. The plans with Eclipse system showed advantages over the plans with Oncentra and Pinnacle system in the overwhelming majority of the dose coverage for targets and dose sparing of OARs in cervical cancer.

  1. Simultaneous Integrated Boost–Intensity Modulated Radiation Therapy With Concomitant Capecitabine and Mitomycin C for Locally Advanced Anal Carcinoma: A Phase 1 Study

    Energy Technology Data Exchange (ETDEWEB)

    Deenen, Maarten J. [Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Dewit, Luc [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Boot, Henk [Division of Gastroenterology and Hepatology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Beijnen, Jos H. [Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam (Netherlands); Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht University, Utrecht (Netherlands); Schellens, Jan H.M. [Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht University, Utrecht (Netherlands); Cats, Annemieke, E-mail: a.cats@nki.nl [Division of Gastroenterology and Hepatology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2013-04-01

    Purpose: Newer radiation techniques, and the application of continuous 5-FU exposure during radiation therapy using oral capecitabine may improve the treatment of anal cancer. This phase 1, dose-finding study assessed the feasibility and efficacy of simultaneous integrated boost–intensity modulated radiation therapy (SIB-IMRT) with concomitant capecitabine and mitomycin C in locally advanced anal cancer, including pharmacokinetic and pharmacogenetic analyses. Methods and Materials: Patients with locally advanced anal carcinoma were treated with SIB-IMRT in 33 daily fractions of 1.8 Gy to the primary tumor and macroscopically involved lymph nodes and 33 fractions of 1.5 Gy electively to the bilateral iliac and inguinal lymph node areas. Patients received a sequential radiation boost dose of 3 × 1.8 Gy on macroscopic residual tumor if this was still present in week 5 of treatment. Mitomycin C 10 mg/m{sup 2} (maximum 15 mg) was administered intravenously on day 1, and capecitabine was given orally in a dose-escalated fashion (500-825 mg/m{sup 2} b.i.d.) on irradiation days, until dose-limiting toxicity emerged in ≥2 of maximally 6 patients. An additional 8 patients were treated at the maximum tolerated dose (MTD). Results: A total of 18 patients were included. The MTD of capecitabine was determined to be 825 mg/m{sup 2} b.i.d. The predominant acute grade ≥3 toxicities included radiation dermatitis (50%), fatigue (22%), and pain (6%). Fifteen patients (83% [95%-CI: 66%-101%]) achieved a complete response, and 3 (17%) patients a partial response. With a median follow-up of 28 months, none of the complete responders, and 2 partial responders had relapsed. Conclusions: SIB-IMRT with concomitant single dose mitomycin C and capecitabine 825 mg/m{sup 2} b.i.d. on irradiation days resulted in an acceptable safety profile, and proved to be a tolerable and effective treatment regimen for locally advanced anal cancer.

  2. Dosimetric Predictors of Duodenal Toxicity After Intensity Modulated Radiation Therapy for Treatment of the Para-aortic Nodes in Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Jonathan [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Sulman, Erik P.; Jhingran, Anuja [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rauch, Gaiane M. [Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eifel, Patricia J. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Klopp, Ann H., E-mail: aklopp@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-02-01

    Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scored according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints

  3. Dosimetric study of RapidArc plans and conventional intensity modulated radiotherapy for prostate cancer involving seminal vesicles and pelvis lymph nodes

    Directory of Open Access Journals (Sweden)

    Birendra Rout

    2016-03-01

    Full Text Available Purpose: The main purpose of this study is to (1 identify the continual diversity between conventional fixed field intensity modulation radiotherapy (IMRT and RapidArc (RA for high-risk prostate cancer; and (2 determine potential benefits and drawbacks of using for this type of treatment.Methods: A cohort of 20 prostate cases including prostate, seminal vesicles and pelvic lymph nodes was selected for this study. The primary planning target volume (PTVP and boost planning target volume (PTVB were contoured. The total prescription dose was 75.6 Gy (45 Gy to PTVP and an additional 21.6 Gy to PTVB. Two plans were generated for each PTV: multiple 7-fields for IMRT and two arcs for RA.Results: A Sigma index (IMRT: 2.75 ± 0.581; RA: 2.8 ± 0.738 for PTVP and (IMRT: 2.0 ± 0.484; RA: 2.1 ± 0.464 for PTVB indicated similar dose homogeneity inside the PTV. Conformity index (IMRT: 0.96 ± 0.047; RA: 0.95 ± 0.059 for PTVP and (IMRT: 0.97 ± 0.015; RA: 0.96 ± 0.014 for PTVB was comparable for both the techniques. IMRT offered lower mean dose to organ at risks (OARs compared to RA plans. Normal tissue integral dose in IMRT plan resulted 0.87% lower than RA plans. All the plans displayed significant increase (2.50 times for PTVP and 1.72 for PTBB in the average number of necessary monitor units (MUs with IMRT beam. Treatment delivery time of RA was 2 ‒ 6 minutes shorter than IMRT treatment.Conclusion: For PTV including pelvic lymph nodes, seminal vesicles and prostate, IMRT offered a greater degree of OARs sparing. For PTV including seminal vesicles and prostate, RA with two arcs provided comparable plan with IMRT. RA also improved the treatment efficiency due to smaller number of MUs required.

  4. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser.

    Science.gov (United States)

    Ishizawa, Atsushi; Nishikawa, Tadashi; Mizutori, Akira; Takara, Hidehiko; Takada, Atsushi; Sogawa, Tetsuomi; Koga, Masafumi

    2013-12-02

    We investigated phase-noise characteristics of both a phase/intensity-modulated laser with 25-GHz mode spacing and a mode-locked fiber laser with carrier-envelope-offset (CEO) locking. As the separation from the frequency of the continuous wave (CW) laser diode (LD) for a seed light source increases, the integrated phase noise of each comb mode of both the phase/intensity-modulated laser and supercontinuum light originating from it increases with the same slope as a function of mode number. The dependence of the integrated phase noise on mode number with the phase/intensity-modulated laser is much larger than with the mode-locked fiber laser of the CEO locking. However, the phase noise of the phase/intensity-modulated laser is extremely lower than that of the mode-locked fiber laser with CEO locking in the frequency region around the CW LD. The phase noise of the phase/intensity-modulated laser with 25-GHz mode spacing and that of the mode-locked fiber laser with the CEO locking could be estimated and were found to be almost the same at the wavelengths required in an f-to-2f self-referencing interferometer. Our experimental results indicate the possibility of achieving an offset-frequency-locked frequency comb with the phase/intensity-modulated laser.

  5. Phase I-II study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments

    Directory of Open Access Journals (Sweden)

    Scorsetti Marta

    2012-08-01

    Full Text Available Abstract Background To report results in terms of feasibility and early toxicity of hypofractionated simultaneous integrated boost (SIB approach with Volumetric Modulated Arc Therapy (VMAT as adjuvant treatment after breast-conserving surgery. Methods Between September 2010 and May 2011, 50 consecutive patients presenting early-stage breast cancer were submitted to adjuvant radiotherapy with SIB-VMAT approach using RapidArc in our Institution (Istituto Clinico Humanitas ICH. Three out of 50 patients were irradiated bilaterally (53 tumours in 50 patients. All patients were enrolled in a phase I-II trial approved by the ICH ethical committee. All 50 patients enrolled in the study underwent VMAT-SIB technique to irradiate the whole breast with concomitant boost irradiation of the tumor bed. Doses to whole breast and surgical bed were 40.5 Gy and 48 Gy respectively, delivered in 15 fractions over 3 weeks. Skin toxicities were recorded during and after treatment according to RTOG acute radiation morbidity scoring criteria with a median follow-up of 12 months (range 8–16. Cosmetic outcomes were assessed as excellent/good or fair/poor. Results The median age of the population was 68 years (range 36–88. According to AJCC staging system, 38 breast lesions were classified as pT1, and 15 as pT2; 49 cases were assessed as N0 and 4 as N1. The maximum acute skin toxicity by the end of treatment was Grade 0 in 20/50 patients, Grade 1 in 32/50, Grade 2 in 0 and Grade 3 in 1/50 (one of the 3 cases of bilateral breast irradiation. No Grade 4 toxicities were observed. All Grade 1 toxicities had resolved within 3 weeks. No significant differences in cosmetic scores on baseline assessment vs. 3 months and 6 months after the treatment were observed: all patients were scored as excellent/good (50/50 compared with baseline; no fair/poor judgment was recorded. No other toxicities or local failures were recorded during follow-up. Conclusions The 3

  6. G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration

    Directory of Open Access Journals (Sweden)

    Fasold Mario

    2010-04-01

    Full Text Available Abstract Background The brightness of the probe spots on expression microarrays intends to measure the abundance of specific mRNA targets. Probes with runs of at least three guanines (G in their sequence show abnormal high intensities which reflect rather probe effects than target concentrations. This G-bias requires correction prior to downstream expression analysis. Results Longer runs of three or more consecutive G along the probe sequence and in particular triple degenerated G at its solution end ((GGG1-effect are associated with exceptionally large probe intensities on GeneChip expression arrays. This intensity bias is related to non-specific hybridization and affects both perfect match and mismatch probes. The (GGG1-effect tends to increase gradually for microarrays of later GeneChip generations. It was found for DNA/RNA as well as for DNA/DNA probe/target-hybridization chemistries. Amplification of sample RNA using T7-primers is associated with strong positive amplitudes of the G-bias whereas alternative amplification protocols using random primers give rise to much smaller and partly even negative amplitudes. We applied positional dependent sensitivity models to analyze the specifics of probe intensities in the context of all possible short sequence motifs of one to four adjacent nucleotides along the 25meric probe sequence. Most of the longer motifs are adequately described using a nearest-neighbor (NN model. In contrast, runs of degenerated guanines require explicit consideration of next nearest neighbors (GGG terms. Preprocessing methods such as vsn, RMA, dChip, MAS5 and gcRMA only insufficiently remove the G-bias from data. Conclusions Positional and motif dependent sensitivity models accounts for sequence effects of oligonucleotide probe intensities. We propose a positional dependent NN+GGG hybrid model to correct the intensity bias associated with probes containing poly-G motifs. It is implemented as a single-chip based calibration

  7. Radiotherapy Boost for the Dominant Intraprostatic Cancer Lesion-A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    von Eyben, Finn Edler; Kiljunen, Timo; Kangasmaki, Aki; Kairemo, Kalevi; von Eyben, Rie; Joensuu, Timo

    2016-06-01

    External beam radiotherapy (EBRT) for prostate cancer can be performed with a high dose of 86 Gy; however, one-tenth or more of the patients will develop recurrence. Prostate cancer is mainly multifocal, but a dominant intraprostatic lesion (DIL) is often the site of local recurrence after EBRT. We undertook a systematic review and meta-analysis to clarify whether functional imaging might identify the DIL and whether a RT boost to the DIL might be increased to an ultrahigh dose level of ≥ 90 Gy without increased toxicity. Of 62 selected studies, 13 reported the size of the DIL. The mean of the median DIL volumes was 2.4 cm(3) (95% confidence interval, 0.9-4.4 cm(3)). Eighteen diagnostic studies with 1205 patients evaluated the diagnostic accuracy using multiparametric magnetic resonance imaging for intraprostatic cancer lesions. Evaluating 14,654 prostate segments, the diagnostic accuracy was 77%. Eleven therapeutic studies with 988 patients reported a RT boost for the DIL. The summary boost dose for the DIL was a mean of 89 Gy in 5 studies using intensity modulated RT (calculated as the equivalent dose in 2-Gy fractions) and a mean of 141 Gy in 4 studies using a combination of EBRT and brachytherapy (P = .018, t test). In 1 therapeutic study, 239 patients had a 98% 10-year disease-free survival rate. Many of our therapeutic studies used a boost dose to the DIL of > 90 Gy. The reported boost for DIL is effective and safe.

  8. Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Wanlong Xu; Xibin Zhao; Qing Wang; Jungang Sun; Jiangbo Xu; Wenzheng Zhou; Hao Wang; Shigui Yan; Hong Yuan

    2014-01-01

    During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of ra-diotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subjected to radio-therapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no ob-vious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized withEchinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized withEchi-nococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease inMeriones meridiani without damaging the morphology or function of the sciatic nerve.

  9. Testing of the stability of intensity modulated beams generated with dynamic multileaf collimation, applied to the MM50 racetrack microtron.

    Science.gov (United States)

    Dirkx, M L; Heijmen, B J

    2000-12-01

    Recently, we have published a method for the calculation of required leaf trajectories to generate optimized intensity modulated x-ray beams by means of dynamic multileaf collimation [Phys. Med. Biol. 43, 1171-1184 (1998)]. For the MM50 Racetrack Microtron it has been demonstrated that the dosimetric accuracy of this method, in combination with the dose calculation algorithm of the Cadplan 3D treatment planning system, is adequate for a clinical application (within 2% or 0.2 cm). Prior to initiating patient treatment with dynamic multileaf collimation (DMLC), tests have been performed to investigate the stability of DMLC fields generated at the MM50, (i) in time, (ii) subject to gantry rotation and (iii) in case of treatment interrupts, e.g., caused by an error detected by the treatment machine. The stability of relative dose profiles, normalized to a reference point in a relatively flat part of the modulated beam profile, was assessed from measurements with an electronic portal imaging device (EPID), with a linear diode array attached to the collimator and with film. The dose in the reference point was monitored using an ionization chamber. Tests were performed for several intensity modulated fields using 10 and 25 MV photon beams. Based on film measurements for sweeping 0.1 cm leaf gaps it was concluded that in an 80 days period the variation in leaf positioning was within 0.05 cm, without requiring any recalibration. For a uniform 10x10 cm2 field, realized dynamically by a scanning 0.4x10 cm2 slit beam, a maximum variation in slit width of 0.01 cm was derived from ionization chamber measurements, both in time and for gantry rotation. For a clinical example, the dose in the reference point reproduced within 0.2% (1 SD) over a period of 100 days. Apart from regions with very large dose gradients, variations in the relative beam profiles measured with the EPID were generally less than 1% (1 SD). For different gantry angles the dose profiles also reproduced within 1

  10. SU-E-J-274: Responses of Medulloblastoma Cells to Radiation Dosimetric Parameters in Intensity-Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, J [Dept. of Pediatrics, Stanford University School of Medicine, Stanford, CA (United States); Molecular Imaging Program at Stanford, Stanford, CA (United States); Bio-X Program, Stanford, CA (United States); Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Park, J [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of); Rogalla, S; Contag, C [Dept. of Pediatrics, Stanford University School of Medicine, Stanford, CA (United States); Molecular Imaging Program at Stanford, Stanford, CA (United States); Bio-X Program, Stanford, CA (United States); Woo, D [Asan Institute for Life Sciences, Asan Medical Center, Seoul (Korea, Republic of); Lee, D [Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Asan Institute for Life Sciences, Asan Medical Center, Seoul (Korea, Republic of); Park, H [Dept. of Radiation Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Suh, T [Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Dept. of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/min was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.

  11. Cervix carcinomas: place of intensity-modulated radiotherapy; Les cancers du col uterin: place de la radiotherapie avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Barillot, I. [Centre Regional Universitaire de Cancerologie H.S.-Kaplan, Hopital Bretonneau, CHU de Tours, 37 - Tours (France); Universite Francois-Rabelais, 37 - Tours (France)

    2009-10-15

    While indications of modulated intensity radiation therapy (I.M.R.T.) are perfectly defined in head and neck and prostate cancer patients, this technique remains under evaluation for gynecologic tumours. The implementation of conformal three dimensional radiotherapy in the late 1990 has been the first important step for optimisation of treatment of cervix carcinomas, as it permitted a better target coverage with a significant reduction of the bladder dose. However, this technique often leads to an irradiation of a larger volume of rectum in locally advanced stages and could only spare a limited amount of intestine. I.R.M.T. is one of the optimisation methods potentially efficient for a better sparing of digestive tract during irradiation of cervix carcinomas. The aim of this literature review is to provide the arguments supporting this hypothesis, and to define the place of this technique for dose escalation. (authors)

  12. The AdaBoost Flow

    OpenAIRE

    Lykov, A.; Muzychka, S.; Vaninsky, K.

    2011-01-01

    We introduce a dynamical system which we call the AdaBoost flow. The flow is defined by a system of ODEs with control. We show that three algorithms of the AdaBoost family (i) the AdaBoost algorithm of Schapire and Freund (ii) the arc-gv algorithm of Breiman (iii) the confidence rated prediction of Schapire and Singer can be can be embedded in the AdaBoost flow. The nontrivial part of the AdaBoost flow equations coincides with the equations of dynamics of nonperiodic Toda system written in te...

  13. ARTICLES: Propagation of an intensity-modulated laser beam through a pulsed CO2 amplifier

    Science.gov (United States)

    Fedorov, S. V.; Yur'ev, M. S.

    1987-01-01

    A theoretical study was made (by a self-consistent solution of the equations of vibrational kinetics, hydrodynamics, and quasioptics) of the influence of self-interaction of laser radiation on the transmission of a beam through a CO2 amplifier. It was found that for times exceeding the time for collisional decay of the upper active level the radiation wavefront becomes unstable in the presence of small-scale perturbations of the transverse structure of the beam. It was shown that the harmful influence of the self-interaction on the divergence can be weakened by raising the intensity of the incident beam and the gain of the amplifier.

  14. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer.

    Science.gov (United States)

    Martin, Jeffrey M; Handorf, Elizabeth A; Price, Robert A; Cherian, George; Buyyounouski, Mark K; Chen, David Y; Kutikov, Alexander; Johnson, Matthew E; Ma, Chung-Ming Charlie; Horwitz, Eric M

    2015-01-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  15. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Handorf, Elizabeth A. [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA (United States); Price, Robert A.; Cherian, George [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chen, David Y.; Kutikov, Alexander [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Johnson, Matthew E.; Ma, Chung-Ming Charlie [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Horwitz, Eric M., E-mail: eric.horwitz@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-10-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  16. Demonstration of 48-Gb/s 16-QAM signal transmission using half cycle sub-carrier modulation in intensity modulation/direct detection system

    Science.gov (United States)

    Tang, Jin; He, Jing; Chen, Ming; Li, Danyu; Chen, Lin

    2015-01-01

    A simple spectral-efficiency intensity modulation/direct detection (IM/DD) system based on half cycle sub-carrier modulation (SCM) signal is proposed for short reach fiber communications in this paper. The signal impairment of frequency selective fading due to fiber chromatics dispersion (CD) is mathematically analyzed. To reduce the performance deterioration caused by the non-flat transfer function, digital pre- and post-equalization is applied in the system. The peak to average power ratio (PAPR) of the signal is also discussed in comparison with that of orthogonal frequency division multiplexing (OFDM). The transmission of 16-QAM half cycle SCM signal with a sub-carrier frequency of half the symbol rate and Nyquist pulse shaping is experimentally demonstrated. The bit-error rate (BER) of 48 Gb/s polarization multiplexing division (PDM) 16 QAM half cycle SCM signal is less than 7% forward-error-correction (FEC) threshold of 3.8 ×10-3 after transmission over 83 km standard single-mode fiber (SSMF).

  17. Boosting Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Elkin Eduardo García Díaz

    2006-11-01

    Full Text Available En este artículo, se presenta un algoritmo de clasificación binaria basado en Support Vector Machines (Máquinas de Vectores de Soporte que combinado apropiadamente con técnicas de Boosting consigue un mejor desempeño en cuanto a tiempo de entrenamiento y conserva características similares de generalización con un modelo de igual complejidad pero de representación más compacta./ In this paper we present an algorithm of binary classification based on Support Vector Machines. It is combined with a modified Boosting algorithm. It run faster than the original SVM algorithm with a similar generalization error and equal complexity model but it has more compact representation.

  18. Diversity-Based Boosting Algorithm

    Directory of Open Access Journals (Sweden)

    Jafar A. Alzubi

    2016-05-01

    Full Text Available Boosting is a well known and efficient technique for constructing a classifier ensemble. An ensemble is built incrementally by altering the distribution of training data set and forcing learners to focus on misclassification errors. In this paper, an improvement to Boosting algorithm called DivBoosting algorithm is proposed and studied. Experiments on several data sets are conducted on both Boosting and DivBoosting. The experimental results show that DivBoosting is a promising method for ensemble pruning. We believe that it has many advantages over traditional boosting method because its mechanism is not solely based on selecting the most accurate base classifiers but also based on selecting the most diverse set of classifiers.

  19. The AdaBoost Flow

    CERN Document Server

    Lykov, A; Vaninsky, K

    2011-01-01

    We introduce a dynamical system which we call the AdaBoost flow. The flow is defined by a system of ODEs with control. We show how by a suitable choice of control AdaBoost algorithm of Schapire and Freund and arc-gv algorithm of Breiman can be embedded in the AdaBoost flow. We also show how previously studied by Schapire and Singer confidence rated prediction can be obtained from our continuous time approach. We introduce a new continuous time algorithm which we call superBoost and describe its properties. The AdaBoost flow equations coincide with the equations of dynamics of the nonperiodic Toda system written in terms of spectral variables. This establishes a connection between two seemingly unrelated fields of boosting algorithms and classical integrable models. Finally we explain similarity of the AdaBoost flow with Perelman's ideas to control Ricci flow.

  20. Tests of modulated intensity small angle scattering in time of flight mode

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universitaet Muenchen, Lichtenbergstr. 1, 85747 Garching (Germany); Physik Department E21, Technische Universitaet Muenchen, James-Franck-Str., 85747 Garching (Germany); Lal, J. [Argonne National Laboratory, Materials Science Division, Argonne, IL 60439 (United States); Carpenter, J. [Argonne National Laboratory, Materials Science Division, Argonne, IL 60439 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831-6477 (United States); Crow, L.; Robertson, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6477 (United States); Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universitaet Muenchen, Lichtenbergstr. 1, 85747 Garching (Germany); Physik Department E21, Technische Universitaet Muenchen, James-Franck-Str., 85747 Garching (Germany); Boeni, P. [Physik Department E21, Technische Universitaet Muenchen, James-Franck-Str., 85747 Garching (Germany); Bleuel, M. [Technical University of Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2012-03-01

    We report results of tests of the MISANS technique at the CG-1D beamline at the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL). A chopper at 40 Hz simulated a pulsed neutron source at the beamline. A compact turn-key MISANS module operating with the pulsed beam was installed and a well characterized MnSi sample was tested. The feasibility of application of high magnetic fields at the sample position was also explored. These tests demonstrate the great potential of this technique, in particular for examining magnetic and depolarizing samples, under extreme sample environments at pulsed sources, such as the Spallation Neutron Source (SNS) or the planned European Spallation Source (ESS).

  1. Tests of Modulated Intensity Small Angle Scattering in time of flight mode

    CERN Document Server

    Brandl, G; Carpenter, J; Crow, L; Robertson, L; Georgii, R; Böni, P; Bleuel, M

    2011-01-01

    We report results of tests of the MISANS technique at the CG-1D beamline at High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL). A chopper at 40 Hz simulated a pulsed neutron source at the beamline. A compact turn-key MISANS module operating with the pulsed beam was installed and a well characterised MnSi sample was tested. The feasibility of application of high magnetic fields at the sample position was also explored. These tests demonstrate the great potential of this technique, in particular for examining magnetic and depolarizing samples, under extreme sample environments at pulsed sources, such as the Spallation Neutron Source (SNS) or the planned European Spallation Source (ESS).

  2. SUSY using boosted techniques

    CERN Document Server

    Stark, Giordon; The ATLAS collaboration

    2016-01-01

    In this talk, I present a discussion of techniques used in supersymmetry searches in papers published by the ATLAS Collaboration from late Run 1 to early Run 2. The goal is to highlight concepts the analyses have in common, why/how they work, and possible SUSY searches that could benefit from boosted studies. Theoretical background will be provided for reference to encourage participants to explore in depth on their own time.

  3. StructBoost: Boosting Methods for Predicting Structured Output Variables.

    Science.gov (United States)

    Chunhua Shen; Guosheng Lin; van den Hengel, Anton

    2014-10-01

    Boosting is a method for learning a single accurate predictor by linearly combining a set of less accurate weak learners. Recently, structured learning has found many applications in computer vision. Inspired by structured support vector machines (SSVM), here we propose a new boosting algorithm for structured output prediction, which we refer to as StructBoost. StructBoost supports nonlinear structured learning by combining a set of weak structured learners. As SSVM generalizes SVM, our StructBoost generalizes standard boosting approaches such as AdaBoost, or LPBoost to structured learning. The resulting optimization problem of StructBoost is more challenging than SSVM in the sense that it may involve exponentially many variables and constraints. In contrast, for SSVM one usually has an exponential number of constraints and a cutting-plane method is used. In order to efficiently solve StructBoost, we formulate an equivalent 1-slack formulation and solve it using a combination of cutting planes and column generation. We show the versatility and usefulness of StructBoost on a range of problems such as optimizing the tree loss for hierarchical multi-class classification, optimizing the Pascal overlap criterion for robust visual tracking and learning conditional random field parameters for image segmentation.

  4. First dose-map measured with a polycrystalline diamond 2D dosimeter under an intensity modulated radiotherapy beam

    Energy Technology Data Exchange (ETDEWEB)

    Scaringella, M., E-mail: scaringella@gmail.com [Università di Firenze, Dipartimento di Ingegneria dell’Informazione, Firenze (Italy); Zani, M. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Firenze (Italy); Baldi, A. [Università di Firenze, Dipartimento di Ingegneria Industriale, Firenze (Italy); Bucciolini, M. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Firenze (Italy); Pace, E.; Sio, A. de [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Firenze (Italy); Talamonti, C. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Firenze (Italy); Bruzzi, M. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Firenze (Italy)

    2015-10-01

    A prototype of bidimensional dosimeter made on a 2.5×2.5 cm{sup 2} active area polycrystalline Chemical Vapour Deposited (pCVD) diamond film, equipped with a matrix of 12×12 contacts connected to the read-out electronics, has been used to evaluate a map of dose under Intensity Modulated Radiation Therapy (IMRT) fields for a possible application in pre-treatment verifications of cancer treatments. Tests have been performed under a 6–10 MVRX beams with IMRT fields for prostate and breast cancer. Measurements have been taken by measuring the 144 pixels in different positions, obtained by shifting the device along the x/y axes to span a total map of 14.4×10 cm{sup 2}. Results show that absorbed doses measured by our pCVD diamond device are consistent with those calculated by the Treatment Planning System (TPS)

  5. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a (60)Co Magnetic Resonance Image Guidance Radiation Therapy System

    DEFF Research Database (Denmark)

    Wooten, H Omar; Green, Olga; Yang, Min

    2015-01-01

    PURPOSE: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. METHODS AND MATERIALS......: The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup......% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within...

  6. The impact of leaf width and plan complexity on DMLC tracking of prostate intensity modulated arc therapy

    DEFF Research Database (Denmark)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per Rugaard;

    2013-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is commonly used to treat prostate cancer. The purpose of this study was to evaluate the impact of leaf width and plan complexity on dynamic multileaf collimator (DMLC) tracking for prostate motion management during IMAT treatments.Methods: Prostate...... position constraints during plan optimization. A subset of the M-MLC plans was converted for delivery with the HDMLC, isolating the effect of the different leaf widths. The gamma index was used for evaluation. Tracking errors caused by target localization, leaf fitting, and leaf adjustment were analyzed.......Results: The gamma pass rate was significantly improved with DMLC tracking compared to no tracking (p gamma index pass rate was 98.6% (range 94.8%-100%) with the HDMLC and 98.1% (range 95.4%-99.7%) with the M-MLC, using 3%, 3 mm criteria and the planned dose as reference...

  7. A fast algorithm for solving a linear feasibility problem with application to Intensity-Modulated Radiation Therapy.

    Science.gov (United States)

    Herman, Gabor T; Chen, Wei

    2008-03-01

    The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.

  8. Performance analysis of subcarrier intensity modulation using rectangular QAM over Malaga turbulence channels with integer and non-integerβ

    KAUST Repository

    Alheadary, Wael G.

    2016-10-13

    In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results are derived for average bit error rate, achievable spectral efficiency, outage probability, and ergodic capacity by utilizing series expansion identity of modified Bessel function. Our asymptotic and analytical results based on series solutions with finite numbers highly matched to the numerical results. By exploiting the inherent nature of fading channel, the proposed adaptive scheme enhances the spectral efficiency without additional transmit power while satisfying the required bit error rate criterion. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. A model-aided segmentation in urethra identification based on an atlas human autopsy image for intensity modulated radiation therapy.

    Science.gov (United States)

    Song, Yan; Muller, Boris; Burman, Chandra; Mychalczak, Borys; Song, Yulin

    2007-01-01

    In order to protect urethra in radiation therapy of prostate cancer, the urethra must be identified and localized as an organ at risk (OAR) for the inverse treatment planning in intensity modulated radiation therapy (IMRT). Because the prostatic urethra and its surrounding prostate tissue have similar physical characteristics, such as linear attenuation coefficient and density, it is difficult to distinct the OAR from the target in CT images. To localize the urethra without using contrast agent or additional imaging modalities other than planning CT images, a different approach was developed using a standard atlas of human anatomy image. This paper reports an investigation, in which an adult urethra was modeled based on a human anatomic image. An elastic model was build to account for a uniform tissue deformation of the prostate. This model was then applied to patients to localize their urethras and preliminary results are presented.

  10. Computer simulations of optimum boost and buck-boost converters

    Science.gov (United States)

    Rahman, S.

    1982-01-01

    The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  11. Computer simulations of optimum boost and buck-boost converters

    Science.gov (United States)

    Rahman, S.

    1982-09-01

    The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  12. Detector modules and spectrometers for the TIME-Pilot [CII] intensity mapping experiment

    Science.gov (United States)

    Hunacek, Jonathon; Bock, James; Bradford, C. Matt; Bumble, Bruce; Chang, Tzu-Ching; Cheng, Yun-Ting; Cooray, Asantha; Crites, Abigail; Hailey-Dunsheath, Steven; Gong, Yan; Li, Chao-Te; O'Brient, Roger; Shirokoff, Erik; Shiu, Corwin; Sun, Jason; Staniszewski, Zachary; Uzgil, Bade; Zemcov, Michael

    2016-07-01

    This proceeding presents the current TIME-Pilot instrument design and status with a focus on the close-packed modular detector arrays and spectrometers. Results of laboratory tests with prototype detectors and spectrometers are discussed. TIME-Pilot is a new mm-wavelength grating spectrometer array under development that will study the Epoch of Reionization (the period of time when the first stars and galaxies ionized the intergalactic medium) by mapping the fluctuations of the redshifted 157:7 μm emission line of singly ionized carbon ([CII]) from redshift z 5:2 to 8:5. As a tracer of star formation, the [CII] power spectrum can provide information on the sources driving reionization and complements 21 cm data (which traces neutral hydrogen in the intergalactic medium). Intensity mapping provides a measure of the mean [CII] intensity without the need to resolve and detect faint sources individually. We plan to target a 1 degree by 0.35 arcminute field on the sky and a spectral range of 199-305 GHz, producing a spatial-spectral slab which is 140 Mpc by 0.9 Mpc on-end and 1230 Mpc in the redshift direction. With careful removal of intermediate-redshift CO sources, we anticipate a detection of the halo-halo clustering term in the [CII] power spectrum consistent with current models for star formation history in 240 hours on the JCMT. TIME-Pilot will use two stacks of 16 parallel-plate waveguide spectrometers (one stack per polarization) with a resolving power R 100 and a spectral range of 183 to 326 GHz. The range is divided into 60 spectral channels, of which 16 at the band edges on each spectrometer serve as atmospheric monitors. The diffraction gratings are curved to produce a compact instrument, each focusing the diffracted light onto an output arc sampled by the 60 bolometers. The bolometers are built in buttable dies of 8 (low freqeuency) or 12 (high frequency) spectral channels by 8 spatial channels and are mated to the spectrometer stacks. Each detector

  13. Radiosurgery of small skull-base lesions. No advantage for intensity-modulated stereotactic radiosurgery versus conformal arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Ernst-Stecken, A.; Sauer, R.; Grabenbauer, G. [Dept. of Radiation Therapy and Novalis Shaped Beam Surgery Center, Univ. of Erlangen-Nuremberg, Erlangen (Germany); Lambrecht, U.; Mueller, R. [Dept. of Radiation Therapy and Novalis Shaped Beam Surgery Center, Univ. of Erlangen-Nuremberg, Erlangen (Germany); Div. of Medical Physics, Dept. of Radiation Therapy, Univ. of Erlangen-Nuremberg, Erlangen (Germany); Ganslandt, O.; Fahlbusch, R. [Dept. of Neurosurgery, Univ. of Erlangen-Nuremberg, Erlangen (Germany)

    2005-05-01

    Background and purpose: intensity-modulated stereotactic radiotherapy (IMSRT) has shown the ability to conform the dose to concavities and to better avoid critical organs for large tumors. Given the availability of an electronically driven micro-multileaf collimator, both intensity-modulated stereotactic radiosurgery (IMSRS) and dynamic conformal arc (DCA) technique (DCA) can be performed at the Novalis Shaped Beam Surgery Center, University of Erlangen-Nuremberg, Germany, since 12/2002. This study evaluates both techniques in small skull-base tumors treated with radiosurgery. Material and methods: between 12/2002 and 04/2004, a total of 109 radiosurgical procedures were performed in 77 patients, equally distributed between patients with acoustic neuroma (AN), pituitary adenoma (PA) and meningeoma (M). Six index patients (n = 2 AN, n = 1 PA, n = 3 M) routinely planned for dynamic arc stereotactic radiosurgery were replanned using the IMSRS approach (BrainScan, BrainLAB, Heimstetten, Germany). The RTOG radiosurgery quality assurance guidelines, isodose volumes, doses to organs at risk (OAR), and dose delivery criteria were compared. Results: DCA was superior to IMSRS for homogeneity and coverage. IMSRS could keep the high-dose-irradiated volumes (90% isodose volume) lower than DCA in the PA and AN with very small volumes, but all other lower dose volumes were larger for IMSRS. Dose maxima to OAR were higher for IMSRS. Treatment delivery time for IMSRS would clearly exceed treatment time for DCA by a factor of 2-3. The integral absorbed dose to the brain was much higher in the IMSRS than in the DCA approach (factor 2-3). Conclusion: RTOG radiosurgery guidelines were best met by the DCA rather than IMSRS approach for the treatment of small skull-base lesions. The IMSRS approach will increase the time for planning, dose delivery and integral dose to the brain. Thus, IMSRT techniques are recommended for fractionated stereotactic radiotherapy to larger volumes rather

  14. Multimodal hypoxia imaging and intensity modulated radiation therapy for unresectable non-small-cell lung cancer: the HIL trial

    Directory of Open Access Journals (Sweden)

    Askoxylakis Vasileios

    2012-09-01

    Full Text Available Abstract Background Radiotherapy, preferably combined with chemotherapy, is the treatment standard for locally advanced, unresectable non-small cell lung cancer (NSCLC. The tumor response to different therapy protocols is variable, with hypoxia known to be a major factor that negatively influences treatment effectiveness. Visualisation of tumor hypoxia prior to the use of modern radiation therapy strategies, such as intensity modulated radiation therapy (IMRT, might allow optimized dose applications to the target volume, leading to improvement of therapy outcome. 18 F-fluoromisonidazole dynamic positron emission tomography and computed tomography (18 F-FMISO dPET-CT and functional magnetic resonance imaging (functional MRI are attractive options for imaging tumor hypoxia. Methods/design The HIL trial is a single centre study combining multimodal hypoxia imaging with 18 F-FMISO dPET-CT and functional MRI, with intensity modulated radiation therapy (IMRT in patients with inoperable stage III NSCLC. 15 patients will be recruited in the study. All patients undergo initial FDG PET-CT and serial 18 F-FMISO dPET-CT and functional MRI before treatment, at week 5 of radiotherapy and 6 weeks post treatment. Radiation therapy is performed as inversely planned IMRT based on 4D-CT. Discussion Primary objectives of the trial are to characterize the correlation of 18 F-FMISO dPET-CT and functional MRI for tumor hypoxia imaging in NSCLC and evaluate possible effects of radiation therapy on tumor re-oxygenation. Further objectives include the generation of data regarding the prognostic value of 18 F-FMISO dPET-CT and functional MRI for locoregional control, progression free survival and overall survival of NSCLC treated with IMRT, which will form the basis for larger clinical trials focusing on possible interactions between tumor oxygenation and radiotherapy outcome. Trial registration The ClinicalTrials.gov protocol ID is NCT01617980

  15. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Kim YJ

    2016-03-01

    Full Text Available Yeon Joo Kim, Jin-hong Park, In-Ha Yun, Young Seok KimDepartment of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of KoreaPurpose: To compare the acute intestinal toxicity of whole pelvic (WP and small field (SF intensity-modulated radiotherapy (IMRT for prostate cancer using dosimetric and metabolic parameters as well as clinical findings.Methods: Patients who received IMRT in either a definitive or postoperative setting were prospectively enrolled. Target volume and organs at risk including intestinal cavity (IC were delineated in every patient by a single physician. The IC volume that received a 10–50 Gy dose at 5-Gy intervals (V10–V50 and the percentage of irradiated volume as a fraction of total IC volume were calculated. Plasma citrulline levels, as an objective biological marker, were checked at three time points: baseline and after exposure to 30 Gy and 60 Gy.Results: Of the 41 patients, only six experienced grade 1 acute intestinal toxicity. Although all dose–volume parameters were significantly worse following WP than SF IMRT, there was no statistically significant relationship between these dosimetric parameters and clinical symptoms. Plasma citrulline levels did not show a serial decrease by radiotherapy volume difference (WP versus SF and were not relevant to the irradiated doses.Conclusion: Given that WP had comparable acute intestinal toxicities to those associated with SF, WP IMRT appears to be a feasible approach for the treatment of prostate cancer despite dosimetric disadvantages.Keywords: prostate cancer, intensity-modulated radiotherapy, intestinal toxicity, citrulline

  16. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fury, Matthew G. [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medicine, Weill Cornell Medical College, New York, New York (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Sherman, Eric; Ho, Alan L. [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medicine, Weill Cornell Medical College, New York, New York (United States); Rao, Shyam [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Heguy, Adriana [Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shen, Ronglai [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Korte, Susan; Lisa, Donna [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Haque, Sofia [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Katabi, Nora [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pfister, David G. [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medicine, Weill Cornell Medical College, New York, New York (United States)

    2013-11-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.

  17. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, Francisco Javier; Palma, Bianey Atriana; Leal, Antonio [Departamento de FisiologIa Medica y Biofisica, Universidad de Sevilla (Spain); Arrans, Rafael [Hospital Universitario Virgen Macarena, Sevilla (Spain)], E-mail: alplaza@us.es

    2010-03-07

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  18. On the Pulse Intensity Modulation of PSR B0823+26

    CERN Document Server

    Young, N J; Weltevrede, P; Lyne, A G; Kramer, M

    2012-01-01

    We investigate the radio emission behaviour of PSR B0823+26, a pulsar which is known to undergo pulse nulling, using an 153-d intensive sequence of observations. The pulsar is found to exhibit both short (~min) and unusually long-term (~hours or more) nulls, which not only suggest that the source possesses a distribution of nulling timescales, but that it may also provide a link between conventional nulling pulsars and longer-term intermittent pulsars. Despite seeing evidence for periodicities in the pulsar radio emission, we are uncertain whether they are intrinsic to the source, due to the influence of observation sampling on the periodicity analysis performed. Remarkably, we find evidence to suggest that the pulsar may undergo pre-ignition periods of 'emission flickering', that is rapid changes between radio-on (active) and -off (null) emission states, before transitioning to a steady radio-emitting phase. We find no direct evidence to indicate that the object exhibits any change in spin-down rate between ...

  19. The intensity of a fetal taste aversion is modulated by the anesthesia used during conditioning.

    Science.gov (United States)

    Mickley, G A; Lovelace, J D; Farrell, S T; Chang, K S

    1995-03-16

    Rat fetuses (E18) can learn a taste aversion in utero if experience with a sweet flavor (saccharin = Sac) is followed by a malaise-producing injection of lithium chloride (LiCl). Here we report that this phenomenon can be significantly modulated by the type of anesthesia administered to the pregnant dam before the conditioning procedure. Dams were anesthetized with one of the following drugs or drug combinations: (1) sodium pentobarbital; (2) ketamine hydrochloride and xylazine; or (3) sodium pentobarbital and ketamine hydrochloride. While under the influence of these anesthetics, rat fetuses received pairings of Sac + LiCl or one of the following sets of oral and systemic (i.p.) control injections: Sac + Saline, H2O + LiCl; H2O + Saline. At age 15 days neonatal rats were given a taste preference test by allowing them to select nipples painted with either saccharin or vehicle (H2O). After weaning, rats were given an additional taste preference test where they were allowed to drink from bottles filled with either 0.30% saccharin or water. Neonates that received Sac + LiCl injections avoided saccharin-painted nipples while neonates that received control injections in utero preferred saccharin-painted nipples. Rats that acquired the taste aversion under the influence of ketamine showed a significantly stronger conditioned taste aversion on the nipple preference test than did those from dams injected with sodium pentobarbital. The conditioned taste aversion was not detectable later during the bottle preference test. Since ketamine blocks N-methyl-D-aspartate (NMDA) glutamate receptors, and these receptors have been implicated in neural plasticity during development, our data suggest that NMDA antagonism can potentiate fetal learning. Ketamine has been used as an obstetrical and pediatric anesthetic.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    Science.gov (United States)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  1. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    Energy Technology Data Exchange (ETDEWEB)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk [Oral Rehabilitation, University of Hong Kong Faculty of Dentistry, Hong Kong Special Administrative Region (China); Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y. [Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region (Hong Kong)

    2012-06-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  2. Optimal matching of 3D film-measured and planned doses for intensity-modulated radiation therapy quality assurance.

    Science.gov (United States)

    Shin, Dongho; Yoon, Myonggeun; Park, Sung Yong; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm(3)) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.

  3. Dosimetric comparison of the simultaneous integrated boost in whole-breast irradiation after breast-conserving surgery: IMRT, IMRT plus an electron boost and VMAT.

    Directory of Open Access Journals (Sweden)

    Sangang Wu

    Full Text Available To compare the target volume coverage and doses to organs at risks (OARs using three techniques that simultaneous integrated boost (SIB in whole-breast irradiation (WBI after breast-conserving surgery, including intensity-modulated radiation therapy (IMRT, IMRT plus an electron boost (IMRT-EB, and volumetric-modulated arc therapy (VMAT.A total of 10 patients with early-stage left-sided breast cancer after breast-conserving surgery were included in this study. IMRT, IMRT-EB and VMAT plans were generated for each patient.The conformity index (CI of the planning target volumes evaluation (PTV-Eval of VMAT was significantly superior to those of IMRT and IMRT-EB (P 0.05.Considered the target volume coverage and radiation dose delivered to the OARs (especially the heart and lung, IMRT may be more suitable for the SIB in WBI than IMRT-EB and VMAT. Additional clinical studies with a larger sample size will be needed to assess the long-term feasibility and efficacy of SIB using different radiotherapy techniques.

  4. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals

    Science.gov (United States)

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one’s tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as “somewhat difficult” on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time. PMID:28248980

  5. IMRT with Stereotactic Body Radiotherapy Boost for High Risk Malignant Salivary Gland Malignancies : A Case Series

    Directory of Open Access Journals (Sweden)

    Sana D Karam

    2014-10-01

    Full Text Available Patients with high risk salivary gland malignancies are at increased risk of local failure. We present our institutional experience with dose escalation using hypofractionated Stereotactic Body Radiotherapy (SBRT in a subset of this rare disease. Over the course of 9 years, 10 patients presenting with skull base invasion, gross disease with one or more adverse features, or those treated with adjuvant radiation with three or more pathologic features were treated with intensity modulated radiation therapy followed by hypofractionated SBRT boost. Patients presented with variable tumor histologies, and in all but one, the tumors were classified as poorly differentiated high grade. Four patients had gross disease, 3 had gross residual disease, 3 had skull base invasion, and 2 patients had rapidly recurrent disease (≤ 6 months that had been previously treated with surgical resection. The median Stereotactic Radiosurgery boost dose was 17.5 Gy (range 10-30 Gy given in a median of 5 fractions (range 3-6 fractions for a total median cumulative dose of 81.2 Gy (range 73.2-95.6 Gy. The majority of the patients received platinum based concurrent chemotherapy with their radiation. At a median follow-up of 32 months (range 12-120 for all patients and 43 months for surviving patients (range 12-120, actuarial 3-year locoregional control, distant control, progression free survival, and overall survival were 88%, 81%, 68%, and 79%, respectively. Only one patient failed locally and two failed distantly. Serious late toxicity included graft ulceration in 1 patient and osteoradionecrosis in another patient, both of which underwent surgical reconstruction. Six patients developed fibrosis. In a subset of patients with salivary gland malignancies with skull base invasion, gross disease, or those treated adjuvantly with three or more adverse pathologic features, hypofractionated SBRT boost to Intensity Modulated Radiotherapy yields good local control rates and

  6. SU-E-T-809: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Locally Advanced Laryngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z; Yan, L-J [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided better CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.

  7. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pair, Matthew L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Du, Weiliang [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rojas, Hector D.; Kanke, James E.; McGuire, Sean E.; Lee, Andrew K.; Kuban, Deborah A. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2013-10-01

    Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclear when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1 cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.

  8. Volumetric modulated arc therapy is superior to conventional intensity modulated radiotherapy - a comparison among prostate cancer patients treated in an Australian centre

    Directory of Open Access Journals (Sweden)

    Haydu Lauren E

    2011-09-01

    Full Text Available Abstract Background Radiotherapy technology is expanding rapidly. Volumetric Modulated Arc Therapy (VMAT technologies such as RapidArc® (RA may be a more efficient way of delivering intensity-modulated radiotherapy-like (IM treatments. This study is an audit of the RA experience in an Australian department with a planning and economic comparison to IM. Methods 30 consecutive prostate cancer patients treated radically with RA were analyzed. Eight RA patients treated definitively were then completely re-planned with 3D conformal radiotherapy (3D; and a conventional sliding window IM technique; and a new RA plan. The acceptable plans and their treatment times were compared and analyzed for any significant difference. Differences in staff costs of treatment were computed and analyzed. Results Thirty patients had been treated to date with eight being treated definitely to at least 74 Gy, nine post high dose brachytherapy (HDR to 50.4Gy and 13 post prostatectomy to at least 64Gy. All radiotherapy courses were completed with no breaks. Acute rectal toxicity by the RTOG criteria was acceptable with 22 having no toxicity, seven with grade 1 and one had grade 2. Of the eight re-planned patients, none of the 3D (three-dimensional conformal radiotherapy plans were acceptable based on local guidelines for dose to organs at risk. There was no statistically significant difference in planning times between IM and RA (p = 0.792. IM had significantly greater MUs per fraction (1813.9 vs 590.2 p Conclusions 3D was incapable of covering a modern radiotherapy volume for the radical treatment of prostate cancer. These volumes can be treated via conventional IM and RA. RA was significantly more efficient, safe and cost effective than IM. VMAT technologies are a superior way of delivering IM-like treatments.

  9. Which T category of nasopharyngeal carcinoma may benefit most from volumetric modulated arc therapy compared with step and shoot intensity modulated radiation therapy.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available BACKGROUND: To compare volumetric modulated arc therapy (VMAT with conventional step and shoot intensity modulated radiation therapy (s-IMRT in nasopharyngeal carcinoma (NPC patients, and identify which T category patient gains the maximum benefit from VMAT. METHODS: Fifty-two patients that randomly selected from 205 patients received VMAT at a single center were retrospectively replanned with s-IMRT. For a fair comparison, the planning target volume (PTV coverage of the 2 plans was normalized to the same level. A standard planning constraint set was used; the constraints for the organs at risk (OARs were individually adapted. The calculated doses to the PTV and OARs were compared for s-IMRT and VMAT plans generated using the Monaco treatment planning system. RESULTS: VMAT and s-IMRT plans had similar PTV coverage and OAR sparing within all T categories. However, in stratified analysis, VMAT plans lead to better or similar sparing of the OARs in early T category patients; and lead to poorer sparing of the OARs in advanced T category patients (P<0.05. VMAT shows significant advantages for low dose burden (P<0.05 compared with s-IMRT. The delivery time per fraction for VMAT (424±64 s was shorter than s-IMRT (778 ± 126 s, p<0.01. CONCLUSIONS: VMAT provides similar dose coverage of the PTVs and similar/better normal tissue sparing in early T category NPC, and poorer OARs sparing in advanced T category NPC. And VMAT shows significant advantages for low dose burden and delivery time.

  10. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    Energy Technology Data Exchange (ETDEWEB)

    Riegel, Adam C.; Antone, Jeffrey [Department of Radiation Medicine, North Shore–LIJ Health System, New Hyde, Park, NY (United States); Schwartz, David L., E-mail: dschwartz3@nshs.edu [Department of Radiation Medicine, North Shore–LIJ Health System, New Hyde, Park, NY (United States); Hofstra–NSLIJ School of Medicine, Hempstead, NY (United States)

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed as low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.

  11. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time.

  12. Exercise boosts immune response.

    Science.gov (United States)

    Sander, Ruth

    2012-06-29

    Ageing is associated with a decline in normal functioning of the immune system described as 'immunosenescence'. This contributes to poorer vaccine response and increased incidence of infection and malignancy seen in older people. Regular exercise can enhance vaccination response, increase T-cells and boost the function of the natural killer cells in the immune system. Exercise also lowers levels of the inflammatory cytokines that cause the 'inflamm-ageing' that is thought to play a role in conditions including cardiovascular disease; type 2 diabetes; Alzheimer's disease; osteoporosis and some cancers.

  13. A Numerical Investigation of the Strain Effect on Saturation Optical Intensity in Electroabsorption Modulators Based on Asymmetric Intra-step-barrier Coupled Double Strained Quantum Wells

    Science.gov (United States)

    Abedi, Kambiz

    2011-12-01

    In this paper, the strain effect on saturation optical intensity in electroabsorption modulators (EAMs) based on asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQWs) active region is theoretically investigated and compared with intra-step quantum well (IQW) structure. For this purpose, the thermionic emission and tunneling escape processes are taken into account and the escape times of photogenerated carriers are calculated. Then, the electroabsorption coefficient is calculated for different well strains for TE input light polarization. Finally, the saturation optical intensity of electroabsorption modulators with AICD-SQW structures in comparison with IQW structure is evaluated. Numerical results show that the tensile strain of well has the most significant effect on the saturation optical intensity of electroabsorption modulators with AICD-SQW structures due to reduction in escape times.

  14. A theory of multiclass boosting

    CERN Document Server

    Mukherjee, Indraneel

    2011-01-01

    Boosting combines weak classifiers to form highly accurate predictors. Although the case of binary classification is well understood, in the multiclass setting, the "correct" requirements on the weak classifier, or the notion of the most efficient boosting algorithms are missing. In this paper, we create a broad and general framework, within which we make precise and identify the optimal requirements on the weak-classifier, as well as design the most effective, in a certain sense, boosting algorithms that assume such requirements.

  15. The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2008-09-01

    Full Text Available Abstract Background To expand and test the dosimetric procedure, known as GLAaS, for amorphous silicon detectors to the RapidArc intensity modulated arc delivery with Varian infrastructures and to test the RapidArc dosimetric reliability between calculation and delivery. Methods The GLAaS algorithm was applied and tested on a set of RapidArc fields at both low (6 MV and high (18 MV beam energies with a PV-aS1000 detector. Pilot tests for short arcs were performed on a 6 MV beam associated to a PV-aS500. RapidArc is a novel planning and delivery method in the category of intensity modulated arc therapies aiming to deliver highly modulated plans with variable MLC shapes, dose rate and gantry speed during rotation. Tests were repeated for entire (360 degrees gantry rotations on composite dose plans and for short partial arcs (of ~6 or 12 degrees to assess GLAaS and RapidArc mutual relationships on global and fine delivery scales. The gamma index concept of Low and the Modulation Index concept of Webb were applied to compare quantitatively TPS dose matrices and dose converted PV images. Results The Gamma Agreement Index computed for a Distance to Agreement of 3 mm and a Dose Difference (ΔD of 3% was, as mean ± 1 SD, 96.7 ± 1.2% at 6 MV and 94.9 ± 1.3% at 18 MV, over the field area. These findings deteriorated slightly is ΔD was reduced to 2% (93.4 ± 3.2% and 90.1 ± 3.1%, respectively and improved with ΔD = 4% (98.3 ± 0.8% and 97.3 ± 0.9%, respectively. For all tests a grid of 1 mm and the AAA photon dose calculation algorithm were applied. The spatial resolution of the PV-aS1000 is 0.392 mm/pxl. The Modulation Index for calculations resulted 17.0 ± 3.2 at 6 MV and 15.3 ± 2.7 at 18 MV while the corresponding data for measurements were: 18.5 ± 3.7 and 17.5 ± 3.7. Partial arcs findings were (for ΔD = 3%: GAI = 96.7 ± 0.9% for 6° rotations and 98.0 ± 1.1% for 12° rotations. Conclusion The GLAaS method can be considered as a valid

  16. Boost C++ application development cookbook

    CERN Document Server

    Polukhin, Antony

    2013-01-01

    This book follows a cookbook approach, with detailed and practical recipes that use Boost libraries.This book is great for developers new to Boost, and who are looking to improve their knowledge of Boost and see some undocumented details or tricks. It's assumed that you will have some experience in C++ already, as well being familiar with the basics of STL. A few chapters will require some previous knowledge of multithreading and networking. You are expected to have at least one good C++ compiler and compiled version of Boost (1.53.0 or later is recommended), which will be used during the exer

  17. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  18. Intensity-modulated radiation therapy for anal carcinoma; Radiotherapie conformationnelle avec modulation d'intensite des cancers de l'anus

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Moreau-Claeys, M.V.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V. [Departement de radiotherapie, centre Alexis-Vautrin, 6, avenue de Bourgogne, 54511 Vandoeuvre-les-Nancy cedex (France)

    2011-10-15

    Anal canal carcinoma are highly curable by irradiation, combined with chemotherapy in locally advanced disease, with preservation of sphincter function. The clinical target volume for the nodes is extended, often including the inguinal nodes, which is not usual for other pelvic tumours. Acute and late effects are correlated with the volume and dose delivered to organs at risk, i. e. small bowel, bladder and increased by concomitant chemotherapy. Intensity modulated irradiation (IMRT) makes it possible to optimize the dose distribution in this 'complex U shaped' volume, while maintaining the dose distribution for the target volumes. The conversion from conformal irradiation to IMRT necessitates good knowledge of the definition and skills to delineate target volumes and organs at risk, including new volumes needed to optimize the dose distribution. Dosimetric and clinical benefits of IMRT are described, based on early descriptions and evidence-based publication. The growing development of IMRT in anal canal radiotherapy must be encouraged, and long-term benefits should be soon published. Radiation oncologists should precisely learn IMRT recommendations before starting the technique, and evaluate its early and late results for adverse effects, but also for long-term tumour control. (authors)

  19. Intensity modulated radiation therapy: Analysis of patient specific quality control results, experience of Rene-Gauducheau Centre; Radiotherapie conformationnelle avec modulation d'intensite: analyse des resultats des controles precliniques, experience du centre Rene-Gauducheau

    Energy Technology Data Exchange (ETDEWEB)

    Chiavassa, S.; Brunet, G.; Gaudaire, S.; Munos-Llagostera, C.; Delpon, G.; Lisbona, A. [Service de physique medicale, centre Rene-Gauducheau, CLCC Nantes Atlantique, site hospitalier Nord, boulevard Jacques-Monod, 44805 Nantes Saint-Herblain cedex (France)

    2011-07-15

    Purpose. - Systematic verifications of patient's specific intensity-modulated radiation treatments are usually performed with absolute and relative measurements. The results constitute a database which allows the identification of potential systematic errors. Material and methods. - We analyzed 1270 beams distributed in 232 treatment plans. Step-and-shoot intensity-modulated radiation treatments were performed with a Clinac (6 and 23 MV) and sliding window intensity-modulated radiation treatments with a Novalis (6 MV). Results. - The distributions obtained do not show systematic error and all the control meet specified tolerances. Conclusion. - These results allow us to reduce controls specific patients for treatments performed under identical conditions (location, optimization and segmentation parameters of treatment planning system, etc.). (authors)

  20. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    Science.gov (United States)

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  1. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Falk, Alexander T. [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Auberdiac, Pierre [Department of Radiation Oncology, Clinique Claude Bernard, Albi (France); Cartier, Lysian; Vallard, Alexis [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Ollier, Edouard [Department of Pharmacology-Toxicology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest en Jarez (France); Trone, Jane-Chloé; Khodri, Moustapha [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, Hôpital d’instruction de Armées du Val-de-Grâce, Paris (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France)

    2016-04-01

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.

  2. Monte Carlo-Based Dose Calculation in Postprostatectomy Image-Guided Intensity Modulated Radiotherapy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ashley Rankine

    2015-01-01

    Full Text Available Step-and-shoot (S&S intensity-modulated radiotherapy (IMRT using the XiO treatment planning system (TPS has been routinely used for patients receiving postprostatectomy radiotherapy (PPRT. After installing the Monaco, a pilot study was undertaken with five patients to compare XiO with Monaco (V2.03 TPS for PPRT with respect to plan quality for S&S as well as volumetric-modulated arc therapy (VMAT. Monaco S&S showed higher mean clinical target volume (CTV coverage (99.85% than both XiO S&S (97.98%, P = 0.04 and Monaco VMAT (99.44, P = 0.02. Rectal V60Gy volumes were lower for Monaco S&S compared to XiO (46.36% versus 58.06%, P = 0.001 and Monaco VMAT (46.36% versus 54.66%, P = 0.02. Rectal V60Gy volume was lowest for Monaco S&S and superior to XiO (mean 19.89% versus 31.25%, P = 0.02. Rectal V60Gy volumes were lower for Monaco VMAT compared to XiO (21.09% versus 31.25%, P = 0.02. Other organ-at-risk (OAR parameters were comparable between TPSs. Compared to XiO S&S, Monaco S&S plans had fewer segments (78.6 versus 116.8 segments, P = 0.02, lower total monitor units (MU (677.6 MU versus 770.7 MU, P = 0.01, and shorter beam-on times (5.7 min versus 7.6 min, P = 0.03. This pilot study suggests that Monaco S&S improves CTV coverage, OAR doses, and planning and treatment times for PPRT.

  3. Esophageal Cancer Dose Escalation Using a Simultaneous Integrated Boost Technique

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew B. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Swisher, Steven G.; Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials: Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results: The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions: The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation.

  4. The Quality Control of Intensity Modulated Radiation Therapy (IMRT for ONCOR Siemens Linear Accelerators Using Film Dosimetry

    Directory of Open Access Journals (Sweden)

    Keyvan Jabbari

    2012-03-01

    Full Text Available Introduction Intensity Modulated Radiation Therapy (IMRT has made a significant progress in radiation therapy centers in recent years. In this method, each radiation beam is divided into many subfields that create a field with a modulated intensity. Considering the complexity of this method, the quality control for IMRT is a topic of interest for researchers. This article is about the various steps of planning and quality control of Siemens linear accelerators for IMRT, using film dosimetry. This article in addition to review of the techniques, discusses the details of experiments and possible sources of errors which are not mentioned in the protocols and other references. Materials and Methods This project was carried out in Isfahan Milad hospital which has two Siemens ONCOR linear accelerators. Both accelerators are equipped with Multi-Leaf Collimators (MLC which enables us to perform IMRT delivery in the step-and-shoot method. The quality control consists of various experiments related to the sections of radiation therapy. In these experiments, the accuracy of some components such as treatment planning system, imaging device (CT, MLC, control system of accelerator, and stability of the output are evaluated. The dose verification is performed using film dosimetry method. The films were KODAK-EDR2, which were calibrated before the experiments. One of the important steps is the comparison of the calculated dose with planning system and the measured dose in experiments. Results The results of the experiments in various steps have been acceptable according to the standard protocols. The calibration of MLC and evaluation of the leakage through the leaves of MLC was performed by using the film dosimetry and visual check. In comparison with calculated and measured dose, more that 80% of the points have to be in agreement within 3% of the value. In our experiments, between 85 and 90% of the points had such an agreement with IMRT delivery. Conclusion

  5. Phase II Study of Preoperative Helical Tomotherapy With a Simultaneous Integrated Boost for Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Benedikt; Tournel, Koen [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); Everaert, Hendrik [Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); Hoorens, Anne [Department of Pathology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); Sermeus, Alexandra [Department of Gastroenterology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); Christian, Nicolas; Storme, Guy; Verellen, Dirk [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2012-05-01

    Purpose: The addition of concomitant chemotherapy to preoperative radiotherapy is considered the standard of care for patients with cT3-4 rectal cancer. The combined treatment modality increases the complete response rate and local control (LC), but has no impact on survival or the incidence of distant metastases. In addition, it is associated with considerable toxicity. As an alternative strategy, we explored prospectively, preoperative helical tomotherapy with a simultaneous integrated boost (SIB). Methods and Materials: A total of 108 patients were treated with intensity-modulated and image-guided radiotherapy using the Tomotherapy Hi-Art II system. A dose of 46 Gy, in daily fractions of 2 Gy, was delivered to the mesorectum and draining lymph nodes, without concomitant chemotherapy. Patients with an anticipated circumferential resection margin (CRM) of less than 2 mm, based on magnetic resonance imaging, received a SIB to the tumor up to a total dose of 55.2 Gy. Acute and late side effects were scored using the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results: A total of 102 patients presented with cT3-4 tumors; 57 patients entered the boost group and 51 the no-boost group. One patient in the no-boost group developed a radio-hypersensitivity reaction, resulting in a complete tumor remission, a Grade 3 acute and Grade 5 late enteritis. No other Grade {>=}3 acute toxicities occurred. With a median follow-up of 32 months, Grade {>=}3 late gastrointestinal and urinary toxicity were observed in 6% and 4% of the patients, respectively. The actuarial 2-year LC, progression-free survival and overall survival were 98%, 79%, and 93%. Conclusions: Preoperative helical tomotherapy displays a favorable acute toxicity profile in patients with cT3-4 rectal cancer. A SIB can be safely administered in patients with a narrow CRM and resulted in a promising LC.

  6. Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geier, M.; Astner, S.T.; Duma, M.N.; Putzhammer, J.; Winkler, C.; Molls, M.; Geinitz, H. [Technische Univ. Muenchen (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie; Jacob, V. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde; Nieder, C. [Nordland Hospital, Bodoe (Norway). Dept. of Oncology and Palliative Care; Tromsoe Univ. (Norway). Inst. of Clinical Medicine

    2012-05-15

    The goal of this work was to assess the feasibility of moderately hypofractionated simultaneous integrated-boost intensity-modulated radiotherapy (SIB-IMRT) with helical tomotherapy in patients with localized prostate cancer regarding acute side effects and dose-volume histogram data (DVH data). Acute side effects and DVH data were evaluated of the first 40 intermediate risk prostate cancer patients treated with a definitive daily image-guided SIB-IMRT protocol via helical tomotherapy in our department. The planning target volume including the prostate and the base of the seminal vesicles with safety margins was treated with 70 Gy in 35 fractions. The boost volume containing the prostate and 3 mm safety margins (5 mm craniocaudal) was treated as SIB to a total dose of 76 Gy (2.17 Gy per fraction). Planning constraints for the anterior rectal wall were set in order not to exceed the dose of 76 Gy prescribed to the boost volume. Acute toxicity was evaluated prospectively using a modified CTCAE (Common Terminology Criteria for Adverse Events) score. SIB-IMRT allowed good rectal sparing, although the full boost dose was permitted to the anterior rectal wall. Median rectum dose was 38 Gy in all patients and the median volumes receiving at least 65 Gy (V65), 70 Gy (V70), and 75 Gy (V75) were 13.5%, 9%, and 3%, respectively. No grade 4 toxicity was observed. Acute grade 3 toxicity was observed in 20% of patients involving nocturia only. Grade 2 acute intestinal and urological side effects occurred in 25% and 57.5%, respectively. No correlation was found between acute toxicity and the DVH data. This institutional SIB-IMRT protocol using daily image guidance as a precondition for smaller safety margins allows dose escalation to the prostate without increasing acute toxicity. (orig.)

  7. Single arc volumetric-modulated arc therapy is sufficient for nasopharyngeal carcinoma: a dosimetric comparison with dual arc VMAT and dynamic MLC and step-and-shoot intensity-modulated radiotherapy

    OpenAIRE

    NING, ZHONG-HUA; Mu, Jin-Ming; Jin, Jian-Xue; Li, Xiao-Dong; LI, QI-LIN; GU, WEN-DONG; Huang, Jin; Han, Yang; PEI, HONG-LEI

    2013-01-01

    Background The performance of single arc VMAT (VMAT1) for nasopharyngeal carcinoma (NPC) on the Axesse linac has not been well described in previous studies. The purpose of this study is to assess the feasibility of VMAT1 for NPC by comparing the dosimetry, delivery efficiency, and accuracy with dual arc VMAT (VMAT2), dynamic MLC intensity-modulated radiotherapy (dIMRT), and step-and-shoot intensity-modulated radiotherapy (ssIMRT). Methods Twenty consecutive patients with non-metastatic NPC w...

  8. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma [Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States); Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York 11203 (United States); Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States)

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  9. MO-F-CAMPUS-T-02: Optimizing Orientations of Hundreds of Intensity-Modulated Beams to Treat Multiple Brain Targets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L; Dong, P; Larson, D [University of California San Francisco, San Francisco, CA (United States); Keeling, V; Hossain, S; Ahmad, S [University of Oklahoma Health Science Center, Oklahoma City, OK (United States); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanar and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal has

  10. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  11. SU-E-T-786: Utility of Gold Wires to Optimize Intensity Modulation Capacity of a Novel Directional Modulated Brachytherapy Tandem Applicator for Image Guided Cervical Cancer Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [University of California, San Diego, La Jolla, CA (United States); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Scanderbeg, D [University of California, San Diego, La Jolla, CA (United States); UCSD Medical Center, La Jolla, CA (United States); Liu, Z [University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To evaluate the impact of using gold wires to differentially fill various channels on plan quality compared with conventional T&R applicator, inside a novel directional modulated brachytherapy (DMBT) tandem applicator for cervical cancer brachytherapy. Materials and Methods: The novel DMBT tandem applicator has a 5.4-mm diameter MR-compatible tungsten alloy enclosed in a 0.3-mm thick plastic tubing that wraps around the tandem. To modulate the radiation intensity, 6 symmetric peripheral holes of 1.3-mm diameter are grooved along the tungsten alloy rod. These grooved holes are differentially filled with gold wires to generate various degrees of directional beams. For example, three different fill patterns of 1) all void, 2) all filled except the hole containing the 192-Ir source, and 3) two adjacent holes to the 192-Ir source filled were Monte Carlo simulated. The resulting 3D dose distributions were imported into an in-house-coded inverse optimization planning system to generate HDR brachytherapy clinical plans for 19 patient cases. All plans generated were normalized to the same D90 as the clinical plans and D2cc doses of OARs were evaluated. Prescription ranged between 15 and 17.5Gy. Results: In general, the plans in case 1) resulted in the highest D2cc doses for the OARs with 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for bladder, rectum, and sigmoid, respectively, although the differences were small. For the case 2), D2cc doses were 11.61±2.29Gy, 7.41±3.07Gy, and 9.75±2.45Gy, respectively. And, for the case 3), D2cc doses were 11.60±2.28Gy, 7.41±3.05Gy, and 9.74±2.45Gy, respectively. Difference between 1) and 2) cases were small with the average D2cc difference of <0.64%. Difference between 1) and 3) cases were even smaller with the average D2cc difference of <0.1%. Conclusions: There is a minimal clinical benefit by differentially filling grooved holes in the novel DMBT tandem applicator for image guided cervical cancer brachytherapy.

  12. SU-E-T-618: Plan Robustness Study of Volumetric-Modulated Arc Therapy Vs. Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Patel, S; Shen, J; Harrington, D; Stoker, J; Ding, X; Hu, Y; Wong, W; Halyard, M; Schild, S; Ezzell, G; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2015-06-15

    Purpose: Lack of plan robustness may contribute to local failure in volumetric-modulated arc therapy (VMAT) to treat head and neck (H&N) cancer. Thus we compared plan robustness of VMAT with intensity-modulated radiation therapy (IMRT). Methods: VMAT and IMRT plans were created for 9 H&N cancer patients. For each plan, six new perturbed dose distributions were computed — one each for ± 3mm setup deviations along the S-I, A-P and L-R directions. We used three robustness quantification tools: (1) worst-case analysis (WCA); (2) dose-volume histograms (DVHs) band (DVHB); and (3) root-mean-square-dose deviation (RMSD) volume histogram (DDVH). DDVH represents the relative volume (y) on the vertical axis and the RMSD (x) on the horizontal axis. Similar to DVH, this means that y% of the volume of the indicated structure has the RMSD at least x Gy[RBE].The width from the first two methods at different target DVH indices (such as D95 and D5) and the area under the DDVH curves (AUC) for the target were used to indicate plan robustness. In these robustness quantification tools, the smaller the value, the more robust the plan is. Plan robustness evaluation metrics were compared using Wilcoxon test. Results: DVHB showed the width at D95 from IMRT to be larger than from VMAT (unit Gy) [1.59 vs 1.18 (p=0.49)], while the width at D5 from IMRT was found to be slightly larger than from VMAT [0.59 vs 0.54 (p=0.84)]. WCA showed similar results [D95: 3.28 vs 3.00 (p=0.56); D5: 1.68 vs 1.95 (p=0.23)]. DDVH showed the AUC from IMRT to be slightly smaller than from VMAT [1.13 vs 1.15 (p=0.43)]. Conclusion: VMAT plan robustness is comparable to IMRT plan robustness. The plan robustness conclusions from WCA and DVHB are DVH parameter dependent. On the other hand DDVH captures the overall effect of uncertainties on the dose to a volume of interest. NIH/NCI K25CA168984; Eagles Cancer Research Career Development; The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research Mayo ASU Seed

  13. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de [Department of Radiotherapy, Regensburg University Medical Center, Regensburg (Germany); Pohl, Fabian; Weidner, Karin; Groeger, Christian; Koelbl, Oliver; Dobler, Barbara [Department of Radiotherapy, Regensburg University Medical Center, Regensburg (Germany)

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.

  14. Treatment of left sided breast cancer for a patient with funnel chest: volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy.

    Science.gov (United States)

    Haertl, Petra M; Pohl, Fabian; Weidner, Karin; Groeger, Christian; Koelbl, Oliver; Dobler, Barbara

    2013-01-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D(15%) of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D(15%) was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D(10%) of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.

  15. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Sakanaka, Katsuyuki [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2013-07-01

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  16. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Pawlik, Timothy M. [Department of Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Ford, Eric [Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA (United States); Herman, Joseph M., E-mail: jherma15@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States)

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  17. Boosted Higgs shapes

    Energy Technology Data Exchange (ETDEWEB)

    Schlaffer, Matthias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Spannowsky, Michael [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Takeuchi, Michihisa [King' s College London (United Kingdom). Theoretical Physics and Cosmology Group; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wymant, Chris [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Laboratoire d' Annecy-le-Vieux de Physique Theorique, Annecy-le-Vieux (France)

    2014-05-15

    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H→2l+p{sub T} via H→ττ and H→WW{sup *} could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.

  18. Boosted Higgs shapes

    Energy Technology Data Exchange (ETDEWEB)

    Schlaffer, Matthias [DESY, Hamburg (Germany); Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Takeuchi, Michihisa [King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Weiler, Andreas [DESY, Hamburg (Germany); CERN, Theory Division, Physics Department, Geneva 23 (Switzerland); Wymant, Chris [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Laboratoire d' Annecy-le-Vieux de Physique Theorique, 9 Chemin de Bellevue, 74940, Annecy-le-Vieux (France); Imperial College London, Department of Infectious Disease Epidemiology, London (United Kingdom)

    2014-10-15

    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H → 2l + p{sub T} via H → ττ and H → WW* could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to newphysics in the most challenging scenario of an exactly SM-like inclusive Higgs cross section. (orig.)

  19. Boosted Higgs Shapes

    CERN Document Server

    Schlaffer, Matthias; Takeuchi, Michihisa; Weiler, Andreas; Wymant, Chris

    2014-01-01

    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of $H\\to 2\\ell+\\mathbf{p}\\!\\!/_T$ via $H\\to \\tau\\tau$ and $H\\to WW^*$ could be performed and demonstrate that it offers a compelling alternative to the $t\\bar t H$ channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.

  20. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...

  1. Reconfigurable intensity modulation and direct detection optical transceivers for variable-rate wavelength-division-multiplexing passive optical networks utilizing digital signal processing-based symbol mapper

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Bingbing; Chen, Yanxu; Chen, Xue

    2017-01-01

    Variable-rate intensity modulation and direct detection-based optical transceivers with software-controllable reconfigurability and transmission performance adaptability are experimentally demonstrated, utilizing M-QAM symbol mapping implemented in MATLAB® programs. A frequency division multiplexing-based symbol demapping and wavelength management method is proposed for the symbol demapper and tunable laser management used in colorless optical network unit.

  2. Mixing intensity modulated electron and photon beams: combining a steep dose fall-off at depth with sharp and depth-independent penumbras and flat beam profiles.

    Science.gov (United States)

    Korevaar, E W; Heijmen, B J; Woudstra, E; Huizenga, H; Brahme, A

    1999-09-01

    For application in radiotherapy, intensity modulated high-energy electron and photon beams were mixed to create dose distributions that feature: (a) a steep dose fall-off at larger depths, similar to pure electron beams, (b) flat beam profiles and sharp and depth-independent beam penumbras, as in photon beams, and (c) a selectable skin dose that is lower than for pure electron beams. To determine the required electron and photon beam fluence profiles, an inverse treatment planning algorithm was used. Mixed beams were realized at a MM50 racetrack microtron (Scanditronix Medical AB, Sweden), and evaluated by the dose distributions measured in a water phantom. The multileaf collimator of the MM50 was used in a static mode to shape overlapping electron beam segments, and the dynamic multileaf collimation mode was used to realize the intensity modulated photon beam profiles. Examples of mixed beams were generated at electron energies of up to 40 MeV. The intensity modulated electron beam component consists of two overlapping concentric fields with optimized field sizes, yielding broad, fairly depth-independent overall beam penumbras. The matched intensity modulated photon beam component has high fluence peaks at the field edges to sharpen this penumbra. The combination of the electron and the photon beams yields dose distributions with the characteristics (a)-(c) mentioned above.

  3. A set cover approach to fast beam orientation optimization in intensity modulated radiation therapy for total marrow irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chieh-Hsiu Jason; Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Sharpe, Michael B, E-mail: chjlee@mie.utoronto.ca, E-mail: aleman@mie.utoronto.ca, E-mail: michael.sharpe@rmp.uhn.on.ca [Princess Margaret Hospital, Department of Radiation Oncology, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9 (Canada)

    2011-09-07

    The beam orientation optimization (BOO) problem in intensity modulated radiation therapy (IMRT) treatment planning is a nonlinear problem, and existing methods to obtain solutions to the BOO problem are time consuming due to the complex nature of the objective function and size of the solution space. These issues become even more difficult in total marrow irradiation (TMI), where many more beams must be used to cover a vastly larger treatment area than typical site-specific treatments (e.g., head-and-neck, prostate, etc). These complications result in excessively long computation times to develop IMRT treatment plans for TMI, so we attempt to develop methods that drastically reduce treatment planning time. We transform the BOO problem into the classical set cover problem (SCP) and use existing methods to solve SCP to obtain beam solutions. Although SCP is NP-Hard, our methods obtain beam solutions that result in quality treatments in minutes. We compare our approach to an integer programming solver for the SCP to illustrate the speed advantage of our approach.

  4. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Taunk, Neil Kanth; Yamada, Yoshiya [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Laufer, Ilya, E-mail: fymoraes@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Neurosurgery, New York, NY (United States)

    2016-02-15

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  5. Acute and late toxicity in prostate cancer patients treated by dose escalated intensity modulated radiation therapy and organ tracking

    Directory of Open Access Journals (Sweden)

    Behrensmeier Frank

    2008-10-01

    Full Text Available Abstract Background To report acute and late toxicity in prostate cancer patients treated by dose escalated intensity-modulated radiation therapy (IMRT and organ tracking. Methods From 06/2004 to 12/2005 39 men were treated by 80 Gy IMRT along with organ tracking. Median age was 69 years, risk of recurrence was low 18%, intermediate 21% and high in 61% patients. Hormone therapy (HT was received by 74% of patients. Toxicity was scored according to the CTC scale version 3.0. Median follow-up (FU was 29 months. Results Acute and maximal late grade 2 gastrointestinal (GI toxicity was 3% and 8%, late grade 2 GI toxicity dropped to 0% at the end of FU. No acute or late grade 3 GI toxicity was observed. Grade 2 and 3 pre-treatment genitourinary (GU morbidity (PGUM was 20% and 5%. Acute and maximal late grade 2 GU toxicity was 56% and 28% and late grade 2 GU toxicity decreased to 15% of patients at the end of FU. Acute and maximal late grade 3 GU toxicity was 8% and 3%, respectively. Decreased late ≥ grade 2 GU toxicity free survival was associated with higher age (P = .025, absence of HT (P = .016 and higher PGUM (P Discussion GI toxicity rates after IMRT and organ tracking are excellent, GU toxicity rates are strongly related to PGUM.

  6. Development and evaluation of a phantom for multi-purpose dosimetry in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of); Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Young Yih [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kum, O Yeon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    A LEGO-type multi-purpose dosimetry phantom was developed for intensity-modulated radiation therapy (IMRT), which requires various types of challenging dosimetry. Polystyrene, polyethylene, polytetrafluoroethylene (PTFE), and polyurethane foam (PU-F) were selected to represent muscle, fat, bone, and lung tissue, respectively, after considering the relevant mass densities, elemental compositions, effective atomic numbers, and photon interaction coefficients. The phantom, which is composed of numerous small pieces that are similar to LEGO blocks, provides dose and dose distribution measurements in homogeneous and heterogeneous media. The phantom includes dosimeter holders for several types of dosimeters that are frequently used in IMRT dosimetry. An ion chamber and a diode detector were used to test dosimetry in heterogeneous media under radiation fields of various sizes. The data that were measured using these dosimeters were in disagreement when the field sizes were smaller than 1.5 x 1.5 cm{sup 2} for polystyrene and PTFE, or smaller than 3 x 3 cm{sup 2} for an air cavity. The discrepancy was as large as 41% for the air cavity when the field size was 0.7 x 0.7 cm{sup 2}, highlighting one of the challenges of IMRT small field dosimetry. The LEGO-type phantom is also very useful for two-dimensional dosimetry analysis, which elucidates the electronic dis-equilibrium phenomena on or near the heterogeneity boundaries

  7. Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Chan Woo; Keam, Bhum Suk; Heo, Dae Seog; Sung, Myung Whun; Won, Tae Bin; Wu, Hong Gyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    The outcomes of locoregionally advanced nasopharyngeal carcinoma patients treated with concurrent chemoradiation (CCRT) using intensity-modulated radiotherapy (IMRT) with/without neoadjuvant chemotherapy (NCT) were evaluated. Eighty-three patients who underwent NCT followed by CCRT (49%) or CCRT with/without adjuvant chemotherapy (51%) were reviewed. To the gross tumor, 67.5 Gy was prescribed. Weekly cisplatin was used as concurrent chemotherapy. With a median follow-up of 49.4 months, the 5-year local control, regional control, distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival rates were 94.7%, 89.3%, 77.8%, 68.0%, and 81.8%, respectively. In multivariate analysis, the American Joint Committee on Cancer stage (p = 0.016) and N stage (p = 0.001) were negative factors for DMFS and DFS, respectively. Overall, NCT demonstrated no benefit and an increased risk of severe hematologic toxicity. However, compared to patients treated with CCRT alone, NCT showed potential of improving DMFS in stage IV patients. CCRT using IMRT resulted in excellent local control and survival outcome. Without evidence of survival benefit from phase III randomized trials, NCT should be carefully administered in locoregionally advanced nasopharyngeal carcinoma patients who are at high-risk of developing distant metastasis and radiotherapy-related mucositis. The results of ongoing trials are awaited.

  8. Intensity-Modulated Continuous-Wave Laser Absorption Spectrometer at 1.57 Micrometer for Atmospheric CO2 Measurements

    Science.gov (United States)

    Lin, Bing

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.

  9. Quality of life after intensity-modulated radiotherapy for prostate cancer with a hydrogel spacer. Matched-pair analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinkawa, M.; Piroth, M.D.; Holy, R.; Escobar-Corral, N.; Caffaro, M.; Djukic, V.; Klotz, J.; Eble, M.J. [RWTH Aachen Univ. (Germany). Dept. of Radiation Oncology

    2012-10-15

    Background: Hydrogel spacer is an innovative method to protect the rectal wall during prostate cancer radiotherapy. Clinical effects are not well known. Methods: Patients have been surveyed before, at the last day, and 2-3 months after radiotherapy using a validated questionnaire (Expanded Prostate Cancer Index Composite). Median dose to the prostate in the spacer subgroup (SP) was 78 Gy in 2 Gy fractions. The results were independently compared with two matched-pair subgroups (treated conventionally without spacer): 3D conformal 70.2 Gy in 1.8 Gy fractions (3DCRT) and intensity-modulated radiotherapy (IMRT) 76 Gy in 2 Gy fractions. There were 28 patients in each of the three groups. Results: Baseline mean bowel bother scores were 96 points in all subgroups. Similar mean changes (SP 16, 3DCRT 14, IMRT 17 points) were observed at the end of radiotherapy. The smallest difference resulted in the spacer subgroup 2-3 months after radiotherapy (SP 2, 3DCRT 8, IMRT 6 points). Bowel bother scores were only significantly different in comparison to baseline levels in the spacer subgroup. The percentage of patients reporting moderate/big bother with specific symptoms did not increase for any item (urgency, frequency, diarrhoea, incontinence, bloody stools, pain). Conclusion: Moderate bowel quality-of-life changes can be expected during radiotherapy irrespective of spacer application or total dose. Advantages with a spacer can be expected a few weeks after treatment. (orig.)

  10. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer

    Science.gov (United States)

    Kim, Yeon Joo; Park, Jin-hong; Yun, In-Ha; Kim, Young Seok

    2016-01-01

    Purpose To compare the acute intestinal toxicity of whole pelvic (WP) and small field (SF) intensity-modulated radiotherapy (IMRT) for prostate cancer using dosimetric and metabolic parameters as well as clinical findings. Methods Patients who received IMRT in either a definitive or postoperative setting were prospectively enrolled. Target volume and organs at risk including intestinal cavity (IC) were delineated in every patient by a single physician. The IC volume that received a 10–50 Gy dose at 5-Gy intervals (V10–V50) and the percentage of irradiated volume as a fraction of total IC volume were calculated. Plasma citrulline levels, as an objective biological marker, were checked at three time points: baseline and after exposure to 30 Gy and 60 Gy. Results Of the 41 patients, only six experienced grade 1 acute intestinal toxicity. Although all dose–volume parameters were significantly worse following WP than SF IMRT, there was no statistically significant relationship between these dosimetric parameters and clinical symptoms. Plasma citrulline levels did not show a serial decrease by radiotherapy volume difference (WP versus SF) and were not relevant to the irradiated doses. Conclusion Given that WP had comparable acute intestinal toxicities to those associated with SF, WP IMRT appears to be a feasible approach for the treatment of prostate cancer despite dosimetric disadvantages. PMID:27022287

  11. Evaluation of the dosimetric feasibility of hippocampal sparing intensity-modulated radiotherapy in patients with locally advanced nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Guang Han

    Full Text Available PURPOSE: The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC sparing intensity-modulated radiotherapy (IMRT in patients with locally advanced nasopharyngeal carcinoma (NPC. MATERIALS/METHODS: Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR per Radiation Therapy Oncology Group (RTOG 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. RESULTS: All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, D mean, D median, D98% and D min and volume (V5, V10, V15, V20, V30, V40 and V50 parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05, except for D min (P = 0.06 and V5 (P = 0.12. CONCLUSIONS: IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs.

  12. SU-E-T-07: 4DCT Robust Optimization for Esophageal Cancer Using Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liao, L [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Department of Industrial Engineering, University of Houston, Houston, TX (United States); Yu, J; Zhu, X; Li, H; Zhang, X [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Li, Y [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Varian Medical Systems, Houston, TX (United States); Lim, G [Department of Industrial Engineering, University of Houston, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a 4DCT robust optimization method to reduce the dosimetric impact from respiratory motion in intensity modulated proton therapy (IMPT) for esophageal cancer. Methods: Four esophageal cancer patients were selected for this study. The different phases of CT from a set of 4DCT were incorporated into the worst-case dose distribution robust optimization algorithm. 4DCT robust treatment plans were designed and compared with the conventional non-robust plans. Result doses were calculated on the average and maximum inhale/exhale phases of 4DCT. Dose volume histogram (DVH) band graphic and ΔD95%, ΔD98%, ΔD5%, ΔD2% of CTV between different phases were used to evaluate the robustness of the plans. Results: Compare to the IMPT plans optimized using conventional methods, the 4DCT robust IMPT plans can achieve the same quality in nominal cases, while yield a better robustness to breathing motion. The mean ΔD95%, ΔD98%, ΔD5% and ΔD2% of CTV are 6%, 3.2%, 0.9% and 1% for the robustly optimized plans vs. 16.2%, 11.8%, 1.6% and 3.3% from the conventional non-robust plans. Conclusion: A 4DCT robust optimization method was proposed for esophageal cancer using IMPT. We demonstrate that the 4DCT robust optimization can mitigate the dose deviation caused by the diaphragm motion.

  13. The application of distance transformation on parameter optimization of inverse planning in intensity-modulated radiation therapy.

    Science.gov (United States)

    Yan, Hui; Yin, Fang-Fang

    2008-04-16

    In inverse planning for intensity-modulated radiation therapy (IMRT), the dose specification and related weighting factor of an objective function for involved organs is usually predefined by a single value and then iteratively optimized, subject to a set of dose-volume constraints. Because the actual dose distribution is essentially non-uniform and considerably affected by the geometric shape and distribution of the anatomic structures involved, the spatial information regarding those structures should be incorporated such that the predefined parameter distribution is made to approach the clinically expected distribution. Ideally, these parameter distributions should be predefined on a voxel basis in a manual method. However, such an approach is too time-consuming to be feasible in routine use. In the present study, we developed a computer-aided method to achieve the goal described above, producing a non-uniform parameter distribution based on spatial information about the anatomic structures involved. The method consists of two steps: Use distance transformation technique to calculate the distance distribution of the structures. Based on the distance distribution, produce the parameter distribution via a function guided by prior knowledge. We use two simulated cases to examine the effectiveness of the method. The results indicate that application of a non-uniform parameter distribution produced by distance transformation clearly improves dose-sparing of critical organs without compromising dose coverage of the planning target.

  14. 3D radiation therapy or intensity-modulated radiotherapy for recurrent and metastatic cervical cancer: the Shanghai Cancer Hospital experience.

    Directory of Open Access Journals (Sweden)

    Su-Ping Liu

    Full Text Available We evaluate the outcomes of irradiation by using three-dimensional radiation therapy (3D-RT or intensity-modulated radiotherapy (IMRT for recurrent and metastatic cervical cancer. Between 2007 and 2010, 50 patients with recurrent and metastatic cervical cancer were treated using 3D-RT or IMRT. The median time interval between the initial treatment and the start of irradiation was 12 (6-51 months. Salvage surgery was performed before irradiation in 5 patients, and 38 patients received concurrent chemotherapy. Sixteen patients underwent 3D-RT, and 34 patients received IMRT. Median follow-up for all the patients was 18.3 months. Three-year overall survival and locoregional control were 56.1% and 59.7%, respectively. Three-year progression-free survival and disease-free survival were 65.3% and 64.3%, respectively. Nine patients developed grade 3 leukopenia. Grade 5 acute toxicity was not observed in any of the patients; however, 2 patients developed Grade 3 late toxicity. 3D-RT or IMRT is effective for the treatment of recurrent and metastatic cervical cancer, with the 3-year overall survival of 56.1%, and its complications are acceptable. Long-term follow-up and further studies are needed to confirm the role of 3D-RT or IMRT in the multimodality management of the disease.

  15. Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer

    Directory of Open Access Journals (Sweden)

    Savino Cilla

    2013-01-01

    Full Text Available This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned "field-in-field" IMRT technique (Co-FinF where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. D mean , D 98% , D 2% , V 95% , V 107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D 2% and high-dose volume (V 110% . Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries.

  16. Intensity-modulated radiation therapy for early-stage breast cancer: is it ready for prime time?

    Science.gov (United States)

    Chan, Tabitha Y; Tan, Poh Wee; Tang, Johann I

    2017-01-01

    Whole breast external beam radiotherapy (WBEBRT) is commonly used as an essential arm in the treatment management of women with early-stage breast cancer. Dosimetry planning for conventional WBEBRT typically involves a pair of tangential fields. Advancement in radiation technology and techniques has the potential to improve treatment outcomes with clinically meaningful long-term benefits. However, this advancement must be balanced with safety and improved efficacy. Intensity-modulated radiation therapy (IMRT) is an advanced technique that shows promise in improving the planning process and radiation delivery. Early data on utilizing IMRT for WBEBRT demonstrate more homogenous dose distribution with reduction in organs at risk doses. This translates to toxicities reduction. The two common descriptors for IMRT are forward-planning “fields in field” and inverse planning. Unlike IMRT for other organs, the aim of IMRT for breast planning is to achieve dose homogeneity and not organ conformality. The aim of this paper was to evaluate whether IMRT is ready for prime time based on these three points: 1) workload impact, 2) the clinical impact on the patient’s quality of life, and 3) the appropriateness and applicability to clinical practice.

  17. The Summary for Optimization of the Annular Coupled Structure Accelerating Module Physical Design for High Intensity Hadron Linac

    CERN Document Server

    Paramonov, Valentin

    2013-01-01

    The normal conducting Annular Coupled Structure (ACS) is applied for 190-400 MeV part of high intensity proton linac for the J-PARC. The ACS operating frequency is 972 MHz. The J-PARC ACS is strongly based on the results of previous investigations, especially results of Japan Hadron Project (JHP) research program in KEK. However, the design was revised and optimized to meet the requirements of reliability, operation efficiency and cost reduction. The cells shape of accelerating cells was optimized in total energy range to have high shunt impedance value together with the careful matching with the decreased coupling cells. The design of the bridge coupler cells was optimized to simplify mass production and shape of RF input cell together with matching window were optimized for higher operational reliability. Collected and adjusted all together, these modifications result in the significant effect. The ACS module design doesn't lose to another possible accelerating structures in RF parameters and dimensions. Pr...

  18. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  19. Prognostic scoring system for locoregional control among the patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Chang-Juan Tao; Ai-Hua Lin; Jun Ma; Ying Sun; Xu Liu; Ling-Long Tang; Yan-Ping Mao; Lei Chen; Wen-Fei Li; Xiao-Li Yu; Li-Zhi Liu; Rong Zhang

    2013-01-01

    The prognostic value of T category for locoregional control in patients with nasopharyngeal carcinoma (NPC) has decreased with the extensive use of intensity-modulated radiotherapy (IMRT). We aimed to develop a prognostic scoring system (PSS) that incorporated tumor extension and clinical characteristics for locoregional control in NPC patients treated with IMRT. The magnetic resonance imaging scans and medical records of 717 patients with nonmetastatic NPC treated with IMRT at Sun Yat-sen University Cancer Center between January 2003 and January 2008 were reviewed. Age, pathologic classification, primary tumor extension, primary gross tumor volume (GTV-p), T and N categories, and baseline lactate dehydrogenase (LDH) level were analyzed. Hierarchical cluster analysis as well as univariate and multivariate analyses were used to develop the PSS. Independent prognostic factors for locoregional relapse included N2-3 stage, GTV-p≥26.8 mL, and involvement of one or more structures within cluster 3. We calculated a risk score derived from the regression coefficient of each factor and classified patients into four groups:low risk (score 0), intermediate risk (score>0 and≤1), high risk (score>1 and≤2), and extremely high risk (score>2). The 5-year locoregional control rates for these groups were 97.4%, 93.6%, 85.2%, and 78.6%, respectively (P<0.001). We have developed a PSS that can help identify NPC patients who are at high risk for locoregional relapse and can guide individualized treatments for NPC patients.

  20. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham [Andrew Love Cancer Centre, Geelong Hospital, Geelong, Victoria (Australia)

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  1. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    Science.gov (United States)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  2. Is there a role for an external beam boost in cervical cancer radiotherapy?

    Directory of Open Access Journals (Sweden)

    Rajni A. Sethi

    2013-01-01

    Full Text Available AbstractObjectives: Some patients are medically unfit for or averse to undergoing a brachytherapy boost as part of cervical cancer radiotherapy. In order to be able to definitively treat these patients, we assessed whether we could achieve a boost plan that would mimic our brachytherapy plans using external beam radiotherapy.Methods: High dose rate brachytherapy plans of 20 patients with stage IIB cervical cancer treated with definitive chemoradiotherapy were included in this study. Patients had undergone CT simulations with tandem and ovoids in place. Point A dose was 600-700 cGy. We attempted to replicate the boost dose distribution from brachytherapy plans using intensity-modulated radiotherapy (IMRT, Varian Medical Systems, Palo Alto, CA, volumetric modulate