WorldWideScience

Sample records for boost intensity modulated

  1. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    International Nuclear Information System (INIS)

    Hurkmans, Coen W.; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Sangen, Maurice J. van der; Cassee, Jorien

    2006-01-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced

  2. Intensity modulated radiotherapy with simultaneous integrated boost vs. conventional radiotherapy with sequential boost for breast cancer - A preliminary result.

    Science.gov (United States)

    Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen

    2015-10-01

    This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hypofractionated Accelerated Radiotherapy Using Concomitant Intensity-Modulated Radiotherapy Boost Technique for Localized High-Risk Prostate Cancer: Acute Toxicity Results

    International Nuclear Information System (INIS)

    Lim, Tee S.; Cheung, Patrick; Loblaw, D. Andrew; Morton, Gerard; Sixel, Katharina E.; Pang, Geordi; Basran, Parminder; Zhang Liying; Tirona, Romeo; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Thomas, Gillian

    2008-01-01

    Purpose: To evaluate the acute toxicities of hypofractionated accelerated radiotherapy (RT) using a concomitant intensity-modulated RT boost in conjunction with elective pelvic nodal irradiation for high-risk prostate cancer. Methods and Materials: This report focused on 66 patients entered into this prospective Phase I study. The eligible patients had clinically localized prostate cancer with at least one of the following high-risk features (Stage T3, Gleason score ≥8, or prostate-specific antigen level >20 ng/mL). Patients were treated with 45 Gy in 25 fractions to the pelvic lymph nodes using a conventional four-field technique. A concomitant intensity-modulated radiotherapy boost of 22.5 Gy in 25 fractions was delivered to the prostate. Thus, the prostate received 67.5 Gy in 25 fractions within 5 weeks. Next, the patients underwent 3 years of adjuvant androgen ablative therapy. Acute toxicities were assessed using the Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment and at 3 months after RT. Results: The median patient age was 71 years. The median pretreatment prostate-specific antigen level and Gleason score was 18.7 ng/L and 8, respectively. Grade 1-2 genitourinary and gastrointestinal toxicities were common during RT but most had settled at 3 months after treatment. Only 5 patients had acute Grade 3 genitourinary toxicity, in the form of urinary incontinence (n = 1), urinary frequency/urgency (n = 3), and urinary retention (n = 1). None of the patients developed Grade 3 or greater gastrointestinal or Grade 4 or greater genitourinary toxicity. Conclusion: The results of the present study have indicated that hypofractionated accelerated RT with a concomitant intensity-modulated RT boost and pelvic nodal irradiation is feasible with acceptable acute toxicity

  4. Radiochemoimmunotherapy with intensity-modulated concomitant boost: interim analysis of the REACH trial

    International Nuclear Information System (INIS)

    Jensen, Alexandra D; Krauss, Jürgen; Potthoff, Karin; Simon, Christian; Nikoghosyan, Anna V; Lossner, Karen; Debus, Jürgen; Münter, Marc W

    2012-01-01

    To evaluate efficacy and toxicity clinical in the intensified treatment of locally advanced squamous cell carcinoma of the head and neck (SCCHN) with the combination of chemotherapy, the EGFR antibody cetuximab, and intensity-modulated radiation therapy (IMRT) in a concomitant boost concept. REACH is a prospective, bi-centric phase II trial of carboplatin/5-FU and cetuximab weekly combined with IMRT. Primary endpoint is locoregional control, secondary endpoints include acute radiation effects and adverse events. Evaluation of disease response is carried out according to the Response Evaluation Criteria in Solid Tumors (RECIST); toxicity is assessed using NCI CTC v 3.0. Treatment was tolerated moderately well, acneiforme erythema occurred in 74.1% (grade II/III), mucositis grade III in 28.6%, and radiation dermatitis grade III in 14.3%. Higher-grade side-effects resolved quickly until the first follow-up post treatment. Objective response rates were promising with 28.6% CR at first follow-up and 92.9% thereafter. The combination of standard carboplatin/5-FU and cetuximab is feasible and results in promising objective response rates. The use of an IMRT concomitant boost is practicable in a routine clinical setting resulting in only moderate overall toxicity of the regimen.

  5. Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V.; Schilstra, Cornelis; Korevaar, Erik W.; Bock, Geertruida H. de; Maduro, John H.; Langendijk, Johannes A.

    2010-01-01

    Background and purpose: To examine whether in breast-conserving radiotherapy (RT) with simultaneously integrated boost (SIB), application of inversely planned intensity-modulated radiotherapy (IMRT-SIB) instead of three-dimensional RT (3D-CRT-SIB) has benefits that justify the additional costs, and to evaluate whether a potential benefit of IMRT-SIB depends on specific patient characteristics. Material and methods: 3D-CRT-SIB and various IMRT-SIB treatment plans were constructed and optimised for 30 patients with early stage left-sided breast cancer. Coverage of planning target volumes (PTVs) and dose delivered to organs at risk (OARs) were determined for each plan. Overlap between heart and breast PTV (OHB), size of breast and boost PTVs and boost location were examined in their ability to identify patients that might benefit from IMRT-SIB. Results: All plans had adequate PTV coverage. IMRT-SIB generally reduced dose levels delivered to heart, lungs, and normal breast tissue relative to 3D-CRT-SIB. However, IMRT-SIB benefit differed per patient. For many patients, comparable results were obtained with 3D-CRT-SIB, while patients with OHB > 1.4 cm and a relatively large boost PTV volume (>125 cm 3 ) gained most from the use of IMRT-SIB. Conclusions: In breast-conserving RT, results obtained with 3D-CRT-SIB and IMRT-SIB are generally comparable. Patient characteristics could be used to identify patients that are most likely to benefit from IMRT-SIB.

  6. Dosimetric comparison of the related parameters between simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy for postoperative malignant glioma of the brain

    International Nuclear Information System (INIS)

    Shao Qian; Lu Jie; Li Jianbin; Sun Tao; Bai Tong; Liu Tonghai; Yin Yong

    2011-01-01

    Objective: To compare the dosimetric of different parameter of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) with sequential boost conformal radiotherapy (SB-CRT) for postoperative malignant glioma of the brain. Methods: Ten patients with malignant glioma of brain were selected to study. Each patient was simulated all by CT and MRI, and the imagings of CT and MRI were all sent to Pinnacle 3 planning system. The fusion technology with MR-CT imaging was used on Pinnacle 3 planning system. The target volume was delineated and defined based on MRI. The postoperative residual lesion and resection cavity were defined as gross tumor volume (GTV) and expanded GTV some scope was defined as clinical target volume (CTV). The margins of GTV expanded 10 mm and 25 mm were defined as CTV1 and CTV2 respectively. CTV1 and CTV2 all enlarged 5 mm were defined as PTV1 and PTV2 respectively. The plans of simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy were respectively designed for each patient using Pinnacle 3 planning system and the dosimetric of different parameter was compared. The prescribe dose of SIB-IMRT was PTV1: 62.5 Gy/25 f, PTV2: 50.0 Gy/25 f; and SB-CRT was PTV1: 66.0 Gy/33 f, PTV2: 50.0 Gy/25 f. The dosimetries of different parameters of SIB-IMRT and SB-CRT were compared by using Paired-Samples T Test. Results: The maximum and mean dose of PTV1, PTV2, and brainstem were of significant difference (P 0.05). Conclusion: The SIB-IMRT plan is better than the SB-CRT plan. The CI and HI of SIB-IMRT are superior to SB-CRT. At the same time, it can preserve the important organs such as brainstem and reduce the mean dose of whole brain. On the other hand it can shorten the total period of therapy time. (authors)

  7. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  8. Intensity-Modulated Radiotherapy With Use of Cone-Down Boost for Pediatric Head-and-Neck Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Esiashvili, Natia; George, Bradley A.; Katzenstein, Howard M.; Olson, Thomas A.; Rapkin, Louis B.; Marcus, Robert B.

    2008-01-01

    Purpose: To report our initial experience using intensity-modulated radiotherapy (IMRT) with a cone-down boost for pediatric head-and-neck rhabdomyosarcoma (RMS). Methods and Materials: A review of institutional treatment records identified children treated with IMRT for head-and-neck RMS between January 2000 and February 2007. All patients had undergone chemotherapy according to cooperative group RMS protocols. The initial planning target volume (PTV) covered the prechemotherapy tumor extent with variable margins, generally 1-2 cm. The boost PTV covered the postchemotherapy tumor volume, usually with a margin of 0.5-1 cm. Results: A total of 20 patients were treated with IMRT for head-and-neck RMS. Of these 20 patients, 4 had Group II, 15 Group III, and 1 Group IV disease. The site was parameningeal in 12, nonparameningeal in 6, and orbit primary in 2. Of the 20 patients, 14 were treated with a cone-down boost after a median dose of 36 Gy (range, 30-45.6). The mean initial PTV was 213.5 cm 3 , and the mean boost PTV was 76.9 cm 3 . Patients received a median total dose of 50.4 Gy. The median follow-up time was 29 months. The 3-year Kaplan-Meier local control rate was 100%, although 1 patient developed an in-field recurrence 50 months after IMRT. The 3-year event-free survival rate, overall survival rate, and risk of central nervous system failure was 74%, 76%, and 7%, respectively. Conclusions: Our preliminary follow-up of pediatric head-and-neck RMS patients treated with IMRT revealed excellent local control. The initial targeting of the prechemotherapy tumor volume with 1-2-cm margin to 30.6 or 36 Gy followed by a cone-down boost to the postchemotherapy tumor volume with a 0.5-1-cm margin allowed for significant sparing of normal tissues and provided good local control

  9. Endoscope-guided interstitial intensity-modulated brachytherapy and intracavitary brachytherapy as boost radiation for primary early T stage nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Xiang-Bo Wan

    Full Text Available BACKGROUND: Intracavitary brachytherapy (ICBT is usually applied as boost radiotherapy for superficial residual of nasopharyngeal carcinoma (NPC after primary extern-beam radiptherapy (ERT. Here, we evaluated the outcome of endoscope-guided interstitial intensity-modulated brachytherapy (IMBT boost radiation for deep-seated residual NPC. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred and thirteen patients with residual NPC who were salvaged with brachytherapy boost radiation during 2005-2009 were analyzed retrospectively. Among these patients, 171 patients had superficial residual NPC (≤1 cm below the nasopharyngeal epithelium were treated with ICBT boost radiation, and interstitial IMBT boost radiation was delivered to 42 patients with deep-seated residual NPC (>1 cm below the nasopharyngeal epithelium. We found that IMBT boost subgroup had a higher ratio of T2b (81.0% VS 34.5%, P<0.001 and stage II (90.5% VS 61.4%, P = 0.001 than that of ICBT boost subgroup. The dosage of external-beam radiotherapy in the nasopharyngeal (63.0±3.8 VS 62.6±4.3 Gray (Gy, P = 0.67 and regional lymph nodes (55.8±5.0 VS 57.5±5.7 Gy, P = 0.11 was comparable in both groups. For brachytherapy, IMBT subgroup had a lower boost radiation dosage than ICBT subgroup (11.0±2.9 VS 14.8±3.2 Gy, P<0.01. Though the IMBT group had deeper residual tumors and received lower boost radiation dosages, both subgroups had the similar 5-year actuarial overall survival rate (IMBT VS ICBT group: 96.8% VS 93.6%, P = 0.87, progression-free survival rate (92.4% VS 86.5%, P = 0.41 and distant metastasis-free survival rate (94.9% VS 92.7%, P = 0.64. Moreover, IMBT boost radiation subgroup had a similar local (97.4% VS 94.4%, P = 0.57 and regional (95.0% VS 97.2%, P = 0.34 control to ICBT subgroup. The acute and late toxicities rates were comparable between the both subgroups. CONCLUSIONS/SIGNIFICANCE: IMBT boost radiation may be a promising therapeutic

  10. Conformal radiotherapy with intensity modulation and integrated boost in the head and neck cancers: experience of the Curie Institute

    International Nuclear Information System (INIS)

    Toledano, I.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P.; Graff, P.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P.

    2009-01-01

    The modulated intensity radiotherapy (I.M.R.T.) is used in the treatment of cancers in superior aero digestive tracts to reduce the irradiation of parotids and to reduce the delayed xerostomia. This retrospective study presents the results got on the fourteen first patients according an original technique of I.M.R.T. with integrated boost. It appears that this technique is feasible and allows to reduce the xerostomia rate without modifying the local control rate. To limit the average dose to the parotids under 30 Gy seems reduce the incidence of severe xerostomia. (N.C.)

  11. Three-Year Outcomes of Breast Intensity-Modulated Radiation Therapy With Simultaneous Integrated Boost

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Godette, Karen D.; Whitaker, Daisy J.; Davis, Lawrence W.; Johnstone, Peter A.S.

    2010-01-01

    Purpose: To report our clinical experience using breast intensity-modulated radiation therapy with simultaneous integrated boost (SIB-IMRT). Methods and Materials: Retrospective review identified 354 Stage 0 to III breast cancer patients treated with SIB-IMRT after conservative surgery between 2003 and 2006. The most common fractionation (89%) simultaneously delivered 1.8 Gy to the ipsilateral breast tissue and 2.14 Gy to the resection cavity, yielding a breast dose of 45 Gy (25 fractions) and cavity dose 59.92 Gy (28 fractions), biologically equivalent for tumor control to 45 Gy to the breast with sequential 16-Gy boost (33 fractions). Results: A total of 356 breasts in 354 patients were treated: 282 with invasive breast cancer, and 74 with ductal carcinoma in situ (DCIS). For left breast radiation, median cardiac V 15 was 2.9% and left ventricular V 15 1.7%. Median follow-up was 33 months (range, 4-73 months). Acute toxicity was Grade 1 in 57% of cases, Grade 2 in 43%, and Grade 3 in <1%. For invasive breast cancer, the 3-year overall survival was 97.6% and risk of any locoregional recurrence was 2.8%. For ductal carcinoma in situ, 3-year overall survival was 98% and risk of locoregional recurrence 1.4%. In 142 cases at a minimum of 3 years follow-up, global breast cosmesis was judged by physicians as good or excellent in 96.5% and fair in 3.5%. Conclusions: Breast SIB-IMRT reduced treatment duration by five fractions with a favorable acute toxicity profile and low cardiac dose for left breast treatment. At 3 years, locoregional control was excellent, and initial assessment suggested good or excellent cosmesis in a high percentage of evaluable patients.

  12. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    International Nuclear Information System (INIS)

    Penoncello, Gregory P.; Ding, George X.

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm"3 for head and neck plans and brain plans and a contiguous volume of 5 cm"3 for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  13. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Tao HM

    2016-03-01

    Full Text Available Hengmin Tao,1,2 Yumei Wei,1 Wei Huang,1 Xiujuan Gai,1,2 Baosheng Li11Department of 6th Radiation Oncology, Shandong Cancer Hospital and Institute, 2School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, People’s Republic of ChinaAim: In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF have been involved in the treatment of nasopharyngeal carcinoma (NPC. However, the potential clinical effects and toxicities are still controversial.Methods: Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS, 5-year progression-free survival (PFS, 5-year locoregional recurrence-free survival (LRFS, and relevant toxicities were analyzed.Results: In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months. The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568. In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773 and 5-year LRFS (88.1% vs 90.8%, P=0.903. Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all P<0.05.Conclusion: Both IMRT-SIB and IMRT-CF techniques are effective in treating locally advanced NPC, with similar OS, PFS, and LRFS. However, IMRT-CF has more advantages than IMRT-SIB in protecting spinal cord, brainstem, and parotid gland from acute and late toxicities, such as xerostomia. Further prospective study is warranted to confirm our findings.Keywords: intensity-modulated

  14. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung Kee; Lee, Hyung Sik; Hur, Won Joo; Chai, Gyu Young; Kang, Ki Mun

    2005-01-01

    Purpose: To investigate the feasibility of intensity-modulated radiotherapy (IMRT) as a method of boost radiotherapy after the initial irradiation by the conventional anterior/posterior opposed beams for centrally located non-small-cell lung cancer through the evaluation of dose distributions according to the various boost methods. Methods and Materials: Seven patients with T3 or T4 lung cancer and mediastinal node enlargement who previously received radiotherapy were studied. All patients underwent virtual simulation retrospectively with the previous treatment planning computed tomograms. Initial radiotherapy plans were designed to deliver 40 Gy to the primary tumor and involved nodal regions with the conventional anterior/posterior opposed beams. Two radiation dose levels, 24 and 30 Gy, were used for the boost radiotherapy plans, and four different boost methods (a three-dimensional conformal radiotherapy [3DCRT], five-, seven-, and nine-beam IMRT) were applied to each dose level. The goals of the boost plans were to deliver the prescribed radiation dose to 95% of the planning target volume (PTV) and minimize the volumes of the normal lungs and spinal cord irradiated above their tolerance doses. Dose distributions in the PTVs and lungs, according to the four types of boost plans, were compared in the boost and sum plans, respectively. Results: The percentage of lung volumes irradiated >20 Gy (V20) was reduced significantly in the IMRT boost plans compared with the 3DCRT boost plans at the 24- and 30-Gy dose levels (p 0.007 and 0.0315 respectively). Mean lung doses according to the boost methods were not different in the 24- and 30-Gy boost plans. The conformity indexes (CI) of the IMRT boost plans were lower than those of the 3DCRT plans in the 24- and 30-Gy plans (p = 0.001 in both). For the sum plans, there was no difference of the dose distributions in the PTVs and lungs according to the boost methods. Conclusions: In the boost plans the V20s and CIs were

  15. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    Science.gov (United States)

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by

  16. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, Sebastien, E-mail: sebastien.clavel@umontreal.ca [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen, David H.A.; Fortin, Bernard [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Despres, Philippe [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Khaouam, Nader [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis [Department of Head and Neck Surgery, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada)

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  17. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Clavel, Sébastien; Nguyen, David H.A.; Fortin, Bernard; Després, Philippe; Khaouam, Nader; Donath, David; Soulières, Denis; Guertin, Louis; Nguyen-Tan, Phuc Felix

    2012-01-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  18. Intensity Modulated Radiation Therapy With Simultaneous Integrated Boost in Patients With Brain Oligometastases: A Phase 1 Study (ISIDE-BM-1)

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Marica [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Chiesa, Silvia [Department of Radiotherapy, Fondazione Policlinico Universitario “A. Gemelli,” Catholic University of Sacred Heart, Rome (Italy); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Cilla, Savino [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Bertini, Federica [Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy); Frezza, Giovanni [Radiotherapy Department, Ospedale Bellaria, Bologna (Italy); Farioli, Andrea [Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy); Cammelli, Silvia [Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy); Balducci, Mario [Department of Radiotherapy, Fondazione Policlinico Universitario “A. Gemelli,” Catholic University of Sacred Heart, Rome (Italy); Ianiro, Anna [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Angelini, Anna Lisa; Compagnone, Gaetano [Medical Physics Unit, S. Orsola-Malpighi Hospital, Bologna (Italy); and others

    2017-01-01

    Purpose: To investigate the maximum tolerated dose of intensity modulated radiation therapy simultaneous integrated boost whole-brain radiation therapy for palliative treatment of patients with <5 brain metastases using a standard linear accelerator. Materials and Methods: The whole brain plus 3-mm margin was defined as the planning target volume (PTV{sub wb}), whereas each brain metastasis, defined as the contrast-enhancing tumor on MRI T1 scans, plus a 3-mm isotropic margin, was defined as metastases PTV (PTV{sub m}). Radiation therapy was delivered in 10 daily fractions (2 weeks). Only the dose to PTV{sub m} was progressively increased in the patient cohorts (35 Gy, 40 Gy, 45 Gy, 50 Gy), whereas the PTV{sub wb} was always treated with 30 Gy (3 Gy per fraction) in all patients. The dose-limiting toxicity was evaluated providing that 3 months of follow-up had occurred after the treatment of a 6-patient cohort. Results: Thirty patients were enrolled in the study (dose PTV{sub m}: 35 Gy, 8 patients; 40 Gy, 6 patients; 45 Gy, 6 patients; 50 Gy, 10 patients). The number of treated brain metastases was 1 in 18 patients, 2 in 5 patients, 3 in 6 patients, and 4 in 1 patient. Three patients experienced dose-limiting toxicity: 1 patient at dose level 2 presented grade 3 (G3) skin toxicity; 1 patient at dose level 4 presented G3 neurologic toxicity; and 1 patient at the same level showed brain hemorrhage. Most patients showed G1 to 2 acute toxicity, in most cases skin (n=19) or neurologic (n=10). Twenty-seven were evaluable for response: 6 (22%) stable disease, 18 (67%) partial response, and 3 (11%) complete response. Median survival and 1-year overall survival were 12 months and 53%, respectively. No patient showed late toxicity. Conclusions: In this first prospective trial on the use of intensity modulated radiation therapy simultaneous integrated boost delivered with a standard linear accelerator in patients with brain oligometastases, a boost dose up to 50

  19. Simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Studer, Gabriela [Dept. of Radiation Oncology, Univ. Hospital, Zurich (Switzerland); Peponi, Evangelia; Glanzmann, Christoph; Kunz, Guntram; Renner, Christoph; Tomuschat, Katja

    2010-03-15

    Purpose: To assess the efficacy and safety of using simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) to treat nasopharyngeal cancer (NPC) in a Caucasian cohort. Outcome was analyzed with respect to dose-volume histogram (DVH) values. Patients and Methods: Between 03/2002 and 01/2008, 39 NPC patients underwent SIB-IMRT (37 Caucasians; 31 males; mean age 53 years [16-78 years]). 41% presented with WHO (World Health Organization) type 1 unfavorable histology, 85% with stage III/IV disease. 19 patients had total gross tumor volume (GTV) 16-70 cm{sup 3} (mean 36 cm{sup 3}), while 16 had GTV > 70 cm{sup 3} (73-217 cm{sup 3}; mean 115 cm{sup 3}). All patients with stage II-IV disease received concomitant cisplatin. The prescribed SIB dose delivered to the planning target volume (PTV) was 70 Gy (2.00 Gy/fraction) in 17, 69.6 Gy (2.11 Gy/fraction) in 19, and 66 Gy (2.20 Gy/fraction) in three patients. Results: 3-year local relapse-free, nodal relapse-free, distant metastases-free, disease-free rates and overall survival were 86%, 89%, 85%, 72%, and 85% (median follow-up 30 months [8-71 months]). Histology was a significant prognostic factor concerning overall survival, with worst prognosis in WHO type 1 compared to type 2/3 (75% vs. 93%; p = 0.03). There was a trend in favor of WHO type 2/3 regarding local control (74% vs. 94%; p = 0.052). The PTV DVHs showed a slight left shift compared to reported series. Three patients developed grade 3 late effects (xerostomia [n=2], dysphagia [n=1], hearing loss [n=1]). Conclusion: In comparison with predominantly Asian NPC IMRT series in the literature, chemo-IMRT in the own Caucasian cohort, characterized by less radioresponsive WHO type 1, was equally effective. Treatment tolerance was excellent. (orig.)

  20. Phase I Trial of Preoperative Hypofractionated Intensity-Modulated Radiotherapy with Incorporated Boost and Oral Capecitabine in Locally Advanced Rectal Cancer

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Meropol, Neal J.; Sigurdson, Elin R.; Hoffman, John; Callahan, Elaine; Price, Robert; Cheng, Jonathan; Cohen, Steve; Lewis, Nancy; Watkins-Bruner, Deborah; Rogatko, Andre; Konski, Andre

    2007-01-01

    Purpose: To determine the safety and efficacy of preoperative hypofractionated radiotherapy using intensity-modulated radiotherapy (IMRT) and an incorporated boost with concurrent capecitabine in patients with locally advanced rectal cancer. Methods and Materials: The eligibility criteria included adenocarcinoma of the rectum, T3-T4 and/or N1-N2 disease, performance status 0 or 1, and age ≥18 years. Photon IMRT and an incorporated boost were used to treat the whole pelvis to 45 Gy and the gross tumor volume plus 2 cm to 55 Gy in 25 treatments within 5 weeks. The study was designed to escalate the dose to the gross tumor volume in 5-Gy increments in 3-patient cohorts. Capecitabine was given orally 825 mg/m 2 twice daily for 7 days each week during RT. The primary endpoint was the maximal tolerated radiation dose, and the secondary endpoints were the pathologic response and quality of life. Results: Eight patients completed RT at the initial dose level of 55 Gy. The study was discontinued because of toxicity-six Grade 3 toxicities occurred in 3 (38%) of 8 patients. All patients went on to definitive surgical resection, and no patient had a pathologically complete response. Conclusion: This regimen, using hypofractionated RT with an incorporated boost, had unacceptable toxicity despite using standard doses of capecitabine and IMRT. Additional research is needed to determine whether IMRT is able to reduce the side effects during and after pelvic RT with conventional dose fractionation

  1. Intensity-modulated radiotherapy with simultaneous modulated accelerated boost technique and chemotherapy in patients with nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fareed, Muhammad M; AlAmro, Abdullah S; Bayoumi, Yasser; Tunio, Mutahir A; Ismail, Abdul S; Akasha, Rashad; Mubasher, Mohamed; Al Asiri, Mushabbab

    2013-01-01

    To present our experience of intensity-modulated radiotherapy (IMRT) with simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Sixty eight patients of NPC were treated between April 2006 and December 2011 including 45 males and 23 females with mean age of 46 (range 15–78). Stage distribution was; stage I 3, stage II 7, stage III 26 and stage IV 32. Among 45 (66.2%) evaluated patients for presence of Epstein-Barr virus (EBV), 40 (88.8%) were positive for EBV. Median radiation doses delivered to gross tumor volume (GTV) and positive neck nodes were 66–70 Gy, 63 Gy to clinical target volume (CTV) and 50.4 Gy to clinically negative neck. In addition 56 (82.4%) patients with bulky tumors (T4/N2+) received neoadjuvant chemotherapy 2–3 cycles (Cisplatin/Docetaxel or Cisplatin/Epirubicin or Cisplatin/5 Flourouracil). Concurrent chemotherapy with radiation was weekly Cisplatin 40 mg/m 2 (40 patients) or Cisplatin 100 mg/m 2 (28 patients). With a median follow up of 20 months (range 3–43), one patient developed local recurrence, two experienced regional recurrences and distant failure was seen in 3 patients. Estimated 3 year disease free survival (DFS) was 94%. Three year DFS for patients with EBV was 100% as compared to 60% without EBV (p = 0.0009). Three year DFS for patients with undifferentiated histology was 98% as compared to 82% with other histologies (p = 0.02). Acute grade 3 toxicity was seen as 21 (30.9%) having G-III mucositis and 6 (8.8%) with G-III skin reactions. Late toxicity was minimal and loss of taste was seen in 3 patients (7.5%) at time of analysis. IMRT with SMART in combination with chemotherapy is feasible and effective in terms of both the clinical response and safety profile. EBV, histopathology and nodal involvement were found important prognostic factors for locoregional recurrence

  2. To boost or not boost in radiotherapy

    International Nuclear Information System (INIS)

    Maciejewski, B.; Suwinski, R.; Withers, H.R.; Fowler, J.; Fijuth, J.

    2004-01-01

    The aim of this paper it to analyse and discuss standard definition of the 'boost' procedure in relation to clinical results and new forms of the boost designed on physical and radiobiological bases. Seventeen sets of clinical data including over 5000 cases cancer with different tumour stages and locations and treated with various forms of 'boost' method have been subtracted from literature. Effectiveness of boost is analyzed regarding its place in combined treatment, timing and subvolume involved. Radiobiological parameter of D10 and normalization method for biologically equivalent doses and dose intensity are used to simulated cold and not subvolumes (hills and dales) and its influence of effectiveness on the boost delivery. Sequential and concomitant boost using external irradiation, although commonly used, offers LTC benefit lower than expected. Brachytherapy, intraoperative irradiation and concurrent chemotherapy boost methods appear more effective. Conformal radiotherapy, with or without dose-intensity modulation, allows heterogeneous increase in dose intensity within the target volume and can be used to integrate the 'boost dose' into baseline treatment (Simultaneous Integrated Boost and SIB). Analysis of interrelationships between boost-dose; boost volume and its timing shows that a TCP benefit from boosting can be expected when a relatively large part of the target volume is involved. Increase in boost dose above 1.2-1.3 of baseline dose using 'standard' methods does not substantially further increase the achieved TCP benefit unless hypoxic cells are a problem. Any small uncertainties in treatment planning can ruin all potential beneficial effect of the boost. For example, a 50% dose deficit in a very small (e.g. 1%) volume of target can decrease TCP to zero. Therefore boost benefits should be carefully weighed against any risk of cold spots in the target volume. Pros and cons in discussion of the role of boost in radiotherapy lead to the important

  3. Clinical results of conformal versus intensity-modulated radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit patients.

    Science.gov (United States)

    Lutkenhaus, Lotte J; van Os, Rob M; Bel, Arjan; Hulshof, Maarten C C M

    2016-03-18

    For elderly or medically unfit patients with muscle-invasive bladder cancer, cystectomy or chemotherapy are contraindicated. This leaves radical radiotherapy as the only treatment option. It was the aim of this study to retrospectively analyze the treatment outcome and associated toxicity of conformal versus intensity-modulated radiotherapy (IMRT) using a focal simultaneous tumor boost for muscle-invasive bladder cancer in patients not suitable for cystectomy. One hundred eighteen patients with T2-4 N0-1 M0 bladder cancer were analyzed retrospectively. Median age was 80 years. Treatment consisted of either a conformal box technique or IMRT and included a simultaneous boost to the tumor. To enable an accurate boost delivery, fiducial markers were placed around the tumor. Patients were treated with 40 Gy in 20 fractions to the elective treatment volumes, and a daily tumor boost up to 55-60 Gy. Clinical complete response was seen in 87 % of patients. Three-year overall survival was 44 %, with a locoregional control rate of 73 % at 3 years. Toxicity was low, with late urinary and intestinal toxicity rates grade ≥ 2 of 14 and 5 %, respectively. The use of IMRT reduced late intestinal toxicity, whereas fiducial markers reduced acute urinary toxicity. Radical radiotherapy using a focal boost is feasible and effective for elderly or unfit patients, with a 3-year locoregional control of 73 %. Toxicity rates were low, and were reduced by the use of IMRT and fiducial markers.

  4. Normal tissue complication probability: Does simultaneous integrated boost intensity-modulated radiotherapy score over other techniques in treatment of prostate adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Jothy Basu K

    2009-01-01

    Full Text Available Aim: The main objective of this study was to analyze the radiobiological effect of different treatment strategies on high-risk prostate adenocarcinoma. Materials and Methods: Ten cases of high-risk prostate adenocarcinoma were selected for this dosimetric study. Four different treatment strategies used for treating prostate cancer were compared. Conventional four-field box technique covering prostate and nodal volumes followed by three-field conformal boost (3D + 3DCRT, four-field box technique followed by intensity-modulated radiotherapy (IMRT boost (3D + IMRT, IMRT followed by IMRT boost (IMRT + IMRT, and simultaneous integrated boost IMRT (SIBIMRT were compared in terms of tumor control probability (TCP and normal tissue complication probability (NTCP. The dose prescription except for SIBIMRT was 45 Gy in 25 fractions for the prostate and nodal volumes in the initial phase and 27 Gy in 15 fractions for the prostate in the boost phase. For SIBIMRT, equivalent doses were calculated using biologically equivalent dose assuming the α/β ratio of 1.5 Gy with a dose prescription of 60.75 Gy for the gross tumor volume (GTV and 45 Gy for the clinical target volume in 25 fractions. IMRT plans were made with 15-MV equispaced seven coplanar fields. NTCP was calculated using the Lyman-Kutcher-Burman (LKB model. Results: An NTCP of 10.7 ± 0.99%, 8.36 ± 0.66%, 6.72 ± 0.85%, and 1.45 ± 0.11% for the bladder and 14.9 ± 0.99%, 14.04 ± 0.66%, 11.38 ± 0.85%, 5.12 ± 0.11% for the rectum was seen with 3D + 3DCRT, 3D + IMRT, IMRT + IMRT, and SIBIMRT respectively. Conclusions: SIBIMRT had the least NTCP over all other strategies with a reduced treatment time (3 weeks less. It should be the technique of choice for dose escalation in prostate carcinoma.

  5. Clinical results of conformal versus intensity-modulated radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit patients

    International Nuclear Information System (INIS)

    Lutkenhaus, Lotte J.; Os, Rob M. van; Bel, Arjan; Hulshof, Maarten C. C. M.

    2016-01-01

    For elderly or medically unfit patients with muscle-invasive bladder cancer, cystectomy or chemotherapy are contraindicated. This leaves radical radiotherapy as the only treatment option. It was the aim of this study to retrospectively analyze the treatment outcome and associated toxicity of conformal versus intensity-modulated radiotherapy (IMRT) using a focal simultaneous tumor boost for muscle-invasive bladder cancer in patients not suitable for cystectomy. One hundred eighteen patients with T2-4 N0-1 M0 bladder cancer were analyzed retrospectively. Median age was 80 years. Treatment consisted of either a conformal box technique or IMRT and included a simultaneous boost to the tumor. To enable an accurate boost delivery, fiducial markers were placed around the tumor. Patients were treated with 40 Gy in 20 fractions to the elective treatment volumes, and a daily tumor boost up to 55–60 Gy. Clinical complete response was seen in 87 % of patients. Three-year overall survival was 44 %, with a locoregional control rate of 73 % at 3 years. Toxicity was low, with late urinary and intestinal toxicity rates grade ≥ 2 of 14 and 5 %, respectively. The use of IMRT reduced late intestinal toxicity, whereas fiducial markers reduced acute urinary toxicity. Radical radiotherapy using a focal boost is feasible and effective for elderly or unfit patients, with a 3-year locoregional control of 73 %. Toxicity rates were low, and were reduced by the use of IMRT and fiducial markers. The online version of this article (doi:10.1186/s13014-016-0618-6) contains supplementary material, which is available to authorized users

  6. Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooijen, D.; Van de Kamer, J.; Hulshof, M.; Koning, C.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)

    2010-06-01

    The aim of this study is to investigate to what extent IMRT can decrease the dose to the organs at risk in bladder cancer treatment compared with conformal treatment while making separate treatment plans for the elective field and the boost. Special attention is paid to sparing small intestines. Twenty patients who were treated with the field-in-field technique (FiF) were re-planned with intensity modulated radiotherapy (IMRT) using five and seven beams, respectively. Separate treatment plans were made for the elective field (including the pelvic lymph nodes) and the boost, which enables position correction for bone and tumour separately. The prescribed dose was 40 Gy to the elective field and 55 or 60 Gy to the planning target volume (PTV). For bladder and rectum, V{sub 45}Gy and V{sub 55}Gy were compared, and for small intestines, V{sub 25}Gy and V{sub 40}Gy. The dose distribution with IMRT conformed better to the shape of the target. There was no significant difference between the techniques in dose to the healthy bladder. The median V{sub 40}Gy of the small intestines decreased from 114 to 66 cc (P = 0.001) with five beam IMRT, and to 55 cc (P = 0.001) with seven beam IMRT compared with FiF. V{sub 45}Gy for rectum decreased from 34.2% to 17.5% (P = 0.004) for both five and seven beam plans, while V{sub 55}Gy for rectum remained the same. With IMRT, a statistically significant dose decrease to the small intestines can be achieved while covering both tumour and elective PTV adequately.

  7. Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields

    International Nuclear Information System (INIS)

    Van Rooijen, D.; Van de Kamer, J.; Hulshof, M.; Koning, C.; Bel, A.

    2010-01-01

    The aim of this study is to investigate to what extent IMRT can decrease the dose to the organs at risk in bladder cancer treatment compared with conformal treatment while making separate treatment plans for the elective field and the boost. Special attention is paid to sparing small intestines. Twenty patients who were treated with the field-in-field technique (FiF) were re-planned with intensity modulated radiotherapy (IMRT) using five and seven beams, respectively. Separate treatment plans were made for the elective field (including the pelvic lymph nodes) and the boost, which enables position correction for bone and tumour separately. The prescribed dose was 40 Gy to the elective field and 55 or 60 Gy to the planning target volume (PTV). For bladder and rectum, V 45 Gy and V 55 Gy were compared, and for small intestines, V 25 Gy and V 40 Gy. The dose distribution with IMRT conformed better to the shape of the target. There was no significant difference between the techniques in dose to the healthy bladder. The median V 40 Gy of the small intestines decreased from 114 to 66 cc (P = 0.001) with five beam IMRT, and to 55 cc (P = 0.001) with seven beam IMRT compared with FiF. V 45 Gy for rectum decreased from 34.2% to 17.5% (P = 0.004) for both five and seven beam plans, while V 55 Gy for rectum remained the same. With IMRT, a statistically significant dose decrease to the small intestines can be achieved while covering both tumour and elective PTV adequately.

  8. Dosimetric comparison of intensity-modulated, conformal, and four-field pelvic radiotherapy boost plans for gynecologic cancer: a retrospective planning study

    International Nuclear Information System (INIS)

    Chan, Philip; Yeo, Inhwan; Perkins, Gregory; Fyles, Anthony; Milosevic, Michael

    2006-01-01

    To evaluate intensity-modulated radiation therapy (IMRT) as an alternative to conformal radiotherapy (CRT) or 4-field box boost (4FB) in women with gynecologic malignancies who are unsuitable for brachytherapy for technical or medical reasons. Dosimetric and toxicity information was analyzed for 12 patients with cervical (8), endometrial (2) or vaginal (2) cancer previously treated with external beam pelvic radiotherapy and a CRT boost. Optimized IMRT boost treatment plans were then developed for each of the 12 patients and compared to CRT and 4FB plans. The plans were compared in terms of dose conformality and critical normal tissue avoidance. The median planning target volume (PTV) was 151 cm 3 (range 58–512 cm 3 ). The median overlap of the contoured rectum with the PTV was 15 (1–56) %, and 11 (4–35) % for the bladder. Two of the 12 patients, both with large PTVs and large overlap of the contoured rectum and PTV, developed grade 3 rectal bleeding. The dose conformity was significantly improved with IMRT over CRT and 4FB (p ≤ 0.001 for both). IMRT also yielded an overall improvement in the rectal and bladder dose-volume distributions relative to CRT and 4FB. The volume of rectum that received the highest doses (>66% of the prescription) was reduced by 22% (p < 0.001) with IMRT relative to 4FB, and the bladder volume was reduced by 19% (p < 0.001). This was at the expense of an increase in the volume of these organs receiving doses in the lowest range (<33%). These results indicate that IMRT can improve target coverage and reduce dose to critical structures in gynecologic patients receiving an external beam radiotherapy boost. This dosimetric advantage will be integrated with other patient and treatment-specific factors, particularly internal tumor movement during fractionated radiotherapy, in the context of a future image-guided radiation therapy study

  9. Pulse width modulated buck-boost five-level current source inverters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Gao, F.; Loh, P.C.

    2008-01-01

    , resulting in the natural balance of input current. For maintaining the normalized volt-sec average unchanged, the alternative phase opposition disposition (APOD) modulation scheme with typical gating signal mapping technique from voltage source inverter (VSI) to CSI can be assumed to control the five......This paper presents new five-level current source inverters (CSIs) with voltage/current buck-boost capability. Being different from the existing multilevel CSI, the proposed CSIs were first designed to regulate the flowing path of dc input current by controlling two additional active switches......-level buck-boost CSIs. Next by observing the hidden current charging path during inductive charging interval under APOD modulation, it is noted that the buck-boost five-level CSI can then be further modified with lesser active component without degrading output performance. To verify the theoretical findings...

  10. Simultaneous integrated boost-intensity modulated radiation therapy for inoperable hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Park, Joong-Won; Kim, Yeon-Joo; Kim, Bo Hyun; Woo, Sang Myung; Moon, Sung Ho; Kim, Sang Soo; Lee, Woo Jin; Kim, Dae Yong; Kim, Chang-Min [National Cancer Center, Center for Liver Cancer, Research Institute and Hospital, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2014-10-15

    The aim of this work was to evaluate the clinical efficacy and safety of simultaneous integrated boost-intensity modulated radiation therapy (SIB-IMRT) in patients with inoperable hepatocellular carcinoma (HCC). A total of 53 patients with inoperable HCC underwent SIB-IMRT using two dose-fractionation schemes, depending on the proximity of gastrointestinal structures. The 41 patients in the low dose-fractionation (LD) group, with internal target volume (ITV) < 1 cm from gastrointestinal structures, received total doses of 55 and 44 Gy in 22 fractions to planning target volume 1 (PTV1) and 2 (PTV2), respectively. The 12 patients in the high dose-fractionation (HD) group, with ITV ≥ 1 cm from gastrointestinal structures, received total doses of 66 and 55 Gy in 22 fractions to the PTV1 and PTV2, respectively. Overall, treatment was well tolerated, with no grade > 3 toxicity. The LD group had larger sized tumors (median: 6 vs. 3.4 cm) and greater frequencies of vascular invasion (80.6 vs. 16.7 %) than patients in the HD group (p < 0.05 each). The median overall survival (OS) was 25.1 months and the actuarial 2-year local progression-free survival (LPFS), relapse-free survival (RFS), and OS rates were 67.3, 14.7, and 54.7 %, respectively. The HD group tended to show better tumor response (100 vs. 62.2 %, p = 0.039) and 2-year LPFS (85.7 vs. 59 %, p = 0.119), RFS (38.1 vs. 7.3 %, p = 0.063), and OS (83.3 vs. 44.3 %, p = 0.037) rates than the LD group. Multivariate analysis showed that tumor response was significantly associated with OS. SIB-IMRT is feasible and safe for patients with inoperable HCC. (orig.) [German] Ziel der Arbeit war es, die klinische Wirksamkeit und die Sicherheit der intensitaetsmodulierten Radiotherapie mit simultanem integriertem Boost (SIB-IMRT) fuer Patienten mit einem inoperablen hepatozellulaeren Karzinom (HCC) zu evaluieren. Bei 53 Patienten mit inoperablem HCC wurden zwei unterschiedliche Dosierungskonzepte je nach Lagebeziehung des

  11. Topological Design and Modulation Strategy for Buck-Boost Three-Level Inverters

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus

    2009-01-01

    To date, designed topologies for dc-ac inversion with both voltage buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable...... can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage boost section of the circuits...... buck-boost threelevel inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the C´ ukderived buck-boost two-level inverter, and by using the "alternative phase opposition disposition" modulation scheme, the buck-boost three-level inverters...

  12. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Anderson, Penny R.; Bleicher, Richard J.; Litwin, Samuel; Li Tianyu; Swaby, Ramona F.; Ma, Chang-Ming Charlie; Li Jinsheng; Sigurdson, Elin R.; Watkins-Bruner, Deborah; Morrow, Monica; Goldstein, Lori J.

    2012-01-01

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged ≥18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  13. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Gary M., E-mail: Gary.Freedman@uphs.upenn.edu [Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Anderson, Penny R. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Bleicher, Richard J. [Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Litwin, Samuel; Li Tianyu [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Swaby, Ramona F. [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Ma, Chang-Ming Charlie; Li Jinsheng [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Sigurdson, Elin R. [Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Watkins-Bruner, Deborah [School of Nursing, Emory University, Atlanta, Georgia (United States); Morrow, Monica [Department of Surgical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goldstein, Lori J. [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)

    2012-11-15

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  14. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-01-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age ≥18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules

  15. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    Science.gov (United States)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  16. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    International Nuclear Information System (INIS)

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-01-01

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm 3 , mean 19.65 cm 3 . In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm 3 , mean 1.59 cm 3 . There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation

  17. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    Energy Technology Data Exchange (ETDEWEB)

    Osa, Etin-Osa O.; DeWyngaert, Keith [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Roses, Daniel [Department of Surgery, New York University School of Medicine, New York, New York (United States); Speyer, James [Department of Medical Oncology, New York University School of Medicine, New York, New York (United States); Guth, Amber; Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York, New York (United States); Fenton Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Department of Population Health, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: Silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  18. A randomized phase III study between sequential versus simultaneous integrated boost intensity-modulated radiation therapy in nasopharyngeal carcinoma.

    Science.gov (United States)

    Lertbutsayanukul, Chawalit; Prayongrat, Anussara; Kannarunimit, Danita; Chakkabat, Chakkapong; Netsawang, Buntipa; Kitpanit, Sarin

    2018-05-01

    This study was performed to compare the acute and late toxicities between sequential (SEQ) and simultaneous integrated boost (SIB) intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). Stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT. SEQ-IMRT consisted of two plans: 2 Gy × 25 fractions to low-risk planning target volume (PTV) followed by a sequential boost (2 Gy × 10 fractions) to high-risk PTV, while SIB-IMRT treated low- and high-risk PTVs with doses of 56 and 70 Gy in 33 fractions. Toxicities and survival outcomes were analyzed. Between October 2010 and September 2015, of the 209 patients who completed treatment, 102 in the SEQ and 107 in the SIB arm were analyzed. The majority had undifferentiated squamous cell carcinoma (82%). Mucositis and dysphagia were the most common grade 3-5 acute toxicities. There were no statistically significant differences in the cumulative incidence of grade 3-4 acute toxicities between the two arms (59.8% in SEQ vs. 58.9% in SIB; P = 0.892). Common grade 3-4 late toxicities for SEQ and SIB included hearing loss (2.9 vs. 8.4%), temporal lobe injury (2.9 vs. 0.9%), cranial nerve injury (0 vs. 2.8%), and xerostomia (2 vs. 0.9%). With the median follow-up of 41 months, 3‑year progression-free and overall survival rates were 72.7 vs. 73.4% (P = 0.488) and 86.3 vs. 83.6% (P = 0.938), respectively. SEQ and SIB provide excellent survival outcomes with few late toxicities. According to our study, SIB with a satisfactory dose-volume constraint to nearby critical organs is the technique of choice for NPC treatment due to its convenience.

  19. Ototoxicity evaluation in medulloblastoma patients treated with involved field boost using intensity-modulated radiation therapy (IMRT): a retrospective review

    International Nuclear Information System (INIS)

    Vieira, Wilson Albieri; Nadalin, Wladimir; Odone Filho, Vicente; Petrilli, Antonio Sergio; Weltman, Eduardo; Chen, Michael Jenwei; Silva, Nasjla Saba da; Cappellano, Andrea Maria; Pereira, Liliane Desgualdo; Gonçalves, Maria Ines Rabelo; Ferrigno, Robson; Hanriot, Rodrigo Morais

    2014-01-01

    Ototoxicity is a known side effect of combined radiation therapy and cisplatin chemotherapy for the treatment of medulloblastoma. The delivery of an involved field boost by intensity modulated radiation therapy (IMRT) may reduce the dose to the inner ear when compared with conventional radiotherapy. The dose of cisplatin may also affect the risk of ototoxicity. A retrospective study was performed to evaluate the impact of involved field boost using IMRT and cisplatin dose on the rate of ototoxicity. Data from 41 medulloblastoma patients treated with IMRT were collected. Overall and disease-free survival rates were calculated by Kaplan-Meier method Hearing function was graded according to toxicity criteria of Pediatric Oncology Group (POG). Doses to inner ear and total cisplatin dose were correlated with hearing function by univariate and multivariate data analysis. After a mean follow-up of 44 months (range: 14 to 72 months), 37 patients remained alive, with two recurrences, both in spine with CSF involvement, resulting in a disease free-survival and overall survival of 85.2% and 90.2%, respectively. Seven patients (17%) experienced POG Grade 3 or 4 toxicity. Cisplatin dose was a significant factor for hearing loss in univariate analysis (p < 0.03). In multivariate analysis, median dose to inner ear was significantly associated with hearing loss (p < 0.01). POG grade 3 and 4 toxicity were uncommon with median doses to the inner ear bellow 42 Gy (p < 0.05) and total cisplatin dose of less than 375 mg/m 2 (p < 0.01). IMRT leads to a low rate of severe ototoxicity. Median radiation dose to auditory apparatus should be kept below 42 Gy. Cisplatin doses should not exceed 375 mg/m 2

  20. Intensity Modulated Radiation Therapy with Simultaneously Integrated Boost at University Hospital Centre Zagreb (KBC Zagreb)

    International Nuclear Information System (INIS)

    Barisic, L.; Bibic, J.; Grego, T.; Hrsak, H.; Kovacevic, N.

    2013-01-01

    Intensity Modulated Radiation Therapy technique (IMRT) is state of art in modern radiotherapy for bilateral Head and Neck (H and N) malignancies. IMRT of real patients is implemented at KBC Zagreb since June 2012. Our method is inspired partly by Hull IMRT technique. It differs from standard IMRT beam layout (7 beams, gantry angles in 51° steps) and it avoids direct irradiation of OARs. We also use simultaneous integrated boost (SIB IMRT) fractionation. The aim of this paper is to present in some details the whole process of our SIB IMRT including plan quality assurance. Results for several patients together with comparison with ConPas and standard IMRT are presented. In our department, in last several years, routine method for H and N cancer RT was ConPas. During this period we (together with ConPas plans) produced standard IMRT plans with seven equidistant fields for actual patients. Our comparative analysis showed clear superiority of IMRT over ConPas for H and N radiotherapy. Since spring 2012 we have produced also non-standard IMRT plans that are based on Hull (U.K.) experience, with beam gantry angles at 0, 50, 80, 150, 210, 280 and 310 degrees. Also, in this method, direct irradiation of OARs (particularly spinal cord) is avoided by shielding as initial constraint. This approach proved to be better than standard IMRT in all analyzed cases. Having all this in mind, we decided to implement 'our' IMRT technique on real patients. Second essential point of our method is SIB fractionation. It has dosimetric, logistic and radiobiological advantages over standard fractionation. IMRT plan QA is routinely performed using Seven29 and Gamma index method. We take 3 mm/3 % Gamma index and 85 % of passed points as passing rate.(author)

  1. Quality of Life After Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Quon, Harvey; Cheung, Patrick C.F.; Loblaw, D. Andrew; Morton, Gerard; Pang, Geordi; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Kiss, Alex; Mamedov, Alexandre; Deabreu, Andrea

    2012-01-01

    Purpose: To evaluate the change in health-related quality of life (QOL) of patients with high-risk prostate cancer treated using hypofractionated radiotherapy combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I–II study enrolled patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level ≥20 ng/mL, or Gleason score 8–10. Radiotherapy consisted of 45 Gy (1.8 Gy per fraction) to the pelvic lymph nodes with a concomitant 22.5 Gy intensity-modulated radiotherapy boost to the prostate, for a total of 67.5 Gy (2.7 Gy per fraction) in 25 fractions over 5 weeks. Daily image guidance was performed using three gold seed fiducials. Quality of life was measured using the Expanded Prostate Cancer Index Composite (EPIC), a validated tool that assesses four primary domains (urinary, bowel, sexual, and hormonal). Results: From 2004 to 2007, 97 patients were treated. Median follow-up was 39 months. Compared with baseline, at 24 months there was no statistically significant change in the mean urinary domain score (p = 0.99), whereas there were decreases in the bowel (p < 0.01), sexual (p < 0.01), and hormonal (p < 0.01) domains. The proportion of patients reporting a clinically significant difference in EPIC urinary, bowel, sexual, and hormonal scores at 24 months was 27%, 31%, 55%, and 60%, respectively. However, moderate and severe distress related to these symptoms was minimal, with increases of only 3% and 5% in the urinary and bowel domains, respectively. Conclusions: Hypofractionated radiotherapy combined with long-term androgen deprivation therapy was well tolerated. Although there were modest rates of clinically significant patient-reported urinary and bowel toxicity, most of this caused only mild distress, and moderate and severe effects on QOL were limited. Additional follow-up is ongoing to characterize long-term QOL.

  2. Intensity-modulated radiotherapy using simultaneous-integrated boost for definitive treatment of locally advanced mucosal head and neck cancer: outcomes from a single-institution series

    International Nuclear Information System (INIS)

    Johnston, Meredith; Guo, Linxin; Hanna, Catherine; Back, Michael; Guminski, Alex; Lee, Adrian; Eade, Thomas; Veivers, David; Wignall, Andrew

    2013-01-01

    The study aims to report outcomes for patients treated using intensity-modulated radiotherapy (IMRT) with simultaneous-integrated boost and weekly cisplatin for American Joint Committee on Cancer stage III/IV mucosal head and neck squamous cell carcinomas (HNSCCs). Records for 67 patients treated definitively with IMRT for HNSCC were reviewed. By including only those treated with weekly cisplatin, 45 patients were eligible for analysis. Treatment outcomes, effect of patient, tumour and treatment characteristics on disease recurrence were analysed. All patients completed IMRT to 7000cGy in 35 fractions, with concurrent weekly cisplatin 40mg/m 2 (median 6 cycles). Median follow-up was 28 months for living patients. Two-year loco-regional recurrence-free, metastasis-free and overall survival were 85.4, 81.0 and 87.4%, respectively. Local recurrence occurred in three patients, and distant recurrence in eight patients. Our results show efficacy of IMRT and weekly cisplatin in the treatment of stage III/IV HNSCC at our institution with respect to loco-regional control.

  3. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    International Nuclear Information System (INIS)

    Reass, W.A.; Doss, J.D.; Gribble, R.F.

    2001-01-01

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented

  4. Simultaneous integrated boost intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy in preoperative concurrent chemoradiotherapy for locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Bong Kyung; Kang, Min Kyul; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Kim, Min Young; Choi, Gyu Seog; Kim, Jong Gwang; Kang, Byung Woog; Kim, Hye Jin; Park, Soo Yeun [Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2017-09-15

    To evaluate the feasibility of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for preoperative concurrent chemoradiotherapy (PCRT) in locally advanced rectal cancer (LARC), by comparing with 3-dimensional conformal radiotherapy (3D-CRT). Patients who were treated with PCRT for LARC from 2015 January to 2016 December were retrospectively enrolled. Total doses of 45 Gy to 50.4 Gy with 3D-CRT or SIB-IMRT were administered concomitantly with 5-fluorouracil plus leucovorin or capecitabine. Surgery was performed 8 weeks after PCRT. Between PCRT and surgery, one cycle of additional chemotherapy was administered. Pathologic tumor responses were compared between SIB-IMRT and 3D-CRT groups. Acute gastrointestinal, genitourinary, hematologic, and skin toxicities were compared between the two groups based on the RTOG toxicity criteria. SIB-IMRT was used in 53 patients, and 3D-CRT in 41 patients. After PCRT, no significant differences were noted in tumor responses, pathologic complete response (9% vs. 7%; p = 1.000), pathologic tumor regression Grade 3 or higher (85% vs. 71%; p = 0.096), and R0 resection (87% vs. 85%; p = 0.843). Grade 2 genitourinary toxicities were significantly lesser in the SIB-IMRT group (8% vs. 24%; p = 0.023), but gastrointestinal toxicities were not different across the two groups. SIB-IMRT showed lower GU toxicity and similar tumor responses when compared with 3D-CRT in PCRT for LARC.

  5. Ototoxicity After Intensity-Modulated Radiation Therapy and Cisplatin-Based Chemotherapy in Children With Medulloblastoma

    International Nuclear Information System (INIS)

    Paulino, Arnold C.; Lobo, Mark; Teh, Bin S.; Okcu, M. Fatih; South, Michael; Butler, E. Brian; Su, Jack; Chintagumpala, Murali

    2010-01-01

    Purpose: To report the incidence of Pediatric Oncology Group (POG) Grade 3 or 4 ototoxicity in a cohort of patients treated with craniospinal irradiation (CSI) followed by posterior fossa (PF) and/or tumor bed (TB) boost using intensity-modulated radiation therapy (IMRT). Methods and Materials: From 1998 to 2006, 44 patients with medulloblastoma were treated with CSI followed by IMRT to the PF and/or TB and cisplatin-based chemotherapy. Patients with standard-risk disease were treated with 18 to 23.4 Gy CSI followed by either a (1) PF boost to 36 Gy and TB boost to 54 to 55.8 Gy or (2) TB boost to 55.8 Gy. Patients with high-risk disease received 36 to 39.6 Gy CSI followed by a (1) PF boost to 54 to 55.8 Gy, (2) PF boost to 45 Gy and TB boost to 55.8 Gy, or (3) TB boost to 55.8 Gy. Median audiogram follow-up was 41 months (range, 11-92.4 months). Results: POG Grade Ototoxicity 0, 1, 2, 3. and 4 was found in 29, 32, 11, 13. and 3 ears. respectively, with POG Grade 3 or 4 accounting for 18.2% of cases. There was a statistically significant difference in mean radiation dose (D mean ) cochlea according to degree of ototoxicity, with D mean cochlea increasing with severity of hearing loss (p = 0.027). Conclusions: Severe ototoxicity was seen in 18.2% of ears in children treated with IMRT boost and cisplatin-based chemotherapy. Increasing dose to the cochlea was associated with increasing severity of hearing loss.

  6. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1996-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  7. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1997-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  8. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    Science.gov (United States)

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  9. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  10. Serial tomotherapy vs. MLC-IMRT (Multileaf Collimator Intensity Modulated Radiotherapy) for simultaneous boost treatment large intracerebral lesions

    International Nuclear Information System (INIS)

    Wolff, Dirk; Lohr, Frank; Mai, Sabine; Polednik, Martin; Wenz, Frederik; Dobler, Barbara

    2009-01-01

    Introduction: Recent data suggest that a radiosurgery boost treatment for up to three brain metastases in addition to whole brain radiotherapy (WBRT) is beneficial. Sequential treatment of multiple metastatic lesions is time-consuming and optimal normal tissue sparing is not trivial for larger metastases when separate plans are created and are only superimposed afterwards. Sequential Tomotherapy with noncoplanar arcs and Multi-field IMRT may streamline the process and enable easy simultaneous treatment. We compared plans for 2-3 intracerebral targets calculated with Intensity Modulated Radiotherapy (IMRT) based on treatment with MLC or sequential Tomotherapy using the Peacock-System. Treatment time was not to exceed 90 min on a linac with standart dose rate. MIMiC plans without treatment-time restrictions were created as a benchmark. Materials and methods: Calculations are based on a Siemens KD2 linac with a dose rate of 200 MU/min. Step-and-Shoot IMRT is performed with a standard MLC (2 x 29 leaves, 1 cm), serial Tomotherapy with the Multivane-Collimator MIMiC (NOMOS Inc. USA). Treatment plans are created with Corvus 5.0. To create plans with good conformity we chose a noncoplanar beam- and arc geometry for each approach (IMRT 4-, MIMiC 5-couch angles). The benchmark MIMiC plans with maximally steep dose gradients had 9 couch angles. For plan comparison reasons, 10Gy were prescribed to 90% of the PTV. Steepness of dose gradients, homogeneity and conformity were assessed by the following parameters: Volume encompassed by certain isodoses outside the target as well as homogeneity and conformity as indicated by Homogeneity- and Conformity-Index. Results: Plans without treatment-time restrictions had slightest dose to organ at risk (OAR), normal tissue and least Conformity-index. MIMiC- and MLC-IMRT based plans can be treated within the intended period of 90 min, all plans met the required dose. MLC based plans resulted in higher dose to organs at risk (OAR) and dose

  11. Component-Minimized Buck-Boost Voltage Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Loh, P.C.; Blaabjerg, Frede

    2007-01-01

    This paper presents the design of buck-boost B4 inverters that can be derived from either Ćuk- or SEPIC-derived buck-boost B6 inverters. Unlike traditional inverters, the integration of front-end voltage boost circuitry and inverter circuitry allows it to perform buck-boost voltage inversion...... between capacitors. Modulation wise, the proposed buck-boost B4 inverters can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that will always ensure balanced threephase outputs as desired, while simultaneously achieving minimal voltage stress across...

  12. Preoperative intensity-modulated and image-guided radiotherapy with a simultaneous integrated boost in locally advanced rectal cancer: Report on late toxicity and outcome

    International Nuclear Information System (INIS)

    Engels, Benedikt; Platteaux, Nele; Van den Begin, Robbe; Gevaert, Thierry; Sermeus, Alexandra; Storme, Guy; Verellen, Dirk; De Ridder, Mark

    2014-01-01

    Background and purpose: The addition of chemotherapy to preoperative radiotherapy has been established as the standard of care for patients with cT3-4 rectal cancer. As an alternative strategy, we explored intensity-modulated and image-guided radiotherapy (IMRT–IGRT) with a simultaneous integrated boost (SIB) in a prospective phase II study. Here, we report outcome and late toxicity after a median follow-up of 54 months. Methods and materials: A total of 108 patients were treated preoperatively with IMRT–IGRT, delivering a dose of 46 Gy in fractions of 2 Gy. Patients (n = 57) displaying an anticipated circumferential resection margin (CRM) of less than 2 mm based on magnetic resonance imaging received a SIB to the tumor up to a total dose of 55.2 Gy. Results: The absolute incidence of grade ⩾3 late gastrointestinal and urinary toxicity was 9% and 4%, respectively, with a 13% rate of any grade ⩾3 late toxicity. The actuarial 5-year local control (LC), progression-free survival (PFS) and overall survival (OS) were 97%, 57%, and 68%. On multivariate analysis, R1 resection and pN2 disease were associated with significantly impaired OS. Conclusions: The use of preoperative IMRT–IGRT with a SIB resulted in a high 5-year LC rate and non-negligible late toxicity

  13. Studying the effect of over-modulation on the output voltage of three-phase single-stage grid-connected boost inverter

    Directory of Open Access Journals (Sweden)

    A. Abbas Elserougi

    2013-09-01

    Full Text Available Voltage boosting is very essential issue in renewable-energy fed applications. The classical two-stage power conversion process is typically used to interface the renewable energy sources to the grid. For better efficiency, single-stage inverters are recommended. In this paper, the performance of single-stage three-phase grid-connected boost inverter is investigated when its gain is extended by employing over-modulation technique. Using of over-modulation is compared with the employment of third order harmonic injection. The latter method can increase the inverter gain by 15% without distorting the inverter output voltage. The performance of extended gain grid-connected boost inverter is also tested during normal operation as well as in the presence of grid side disturbances. Simulation and experimental results are satisfactory.

  14. A Prospective Trial of Intensity Modulated Radiation Therapy (IMRT) Incorporating a Simultaneous Integrated Boost for Prostate Cancer: Long-term Outcomes Compared With Standard Image Guided IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Schild, Michael H. [Midwestern University, Glendale, Arizona (United States); Schild, Steven E., E-mail: sschild@mayo.edu [Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona (United States); Wong, William W.; Vora, Sujay A.; Keole, Sameer R.; Vargas, Carlos E.; Daniels, Thomas B.; Ezzell, Gary A. [Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona (United States); Nguyen, Ba D.; Roarke, Michael C. [Department of Radiology, Mayo Clinic, Scottsdale, Arizona (United States)

    2017-04-01

    Purpose: This report describes the long-term outcomes of a prospective trial of intensity modulated radiation therapy (IMRT), integrating a {sup 111}In capromab pendetide (ProstaScint) scan-directed simultaneous integrated boost (SIB) for localized prostate cancer. Methods and Materials: Seventy-one patients with T1N0M0 to T4N0M0 prostate cancer were enrolled, and their ProstaScint and pelvic computed tomography scans were coregistered for treatment planning. The entire prostate received 75.6 Gy in 42 fractions with IMRT, whereas regions of increased uptake on ProstaScint scans received 82 Gy as an SIB. Patients with intermediate- and high-risk disease also received 6 months and 12 months of adjuvant hormonal therapy, respectively. Results: The study enrolled 31 low-, 30 intermediate-, and 10 high-risk patients. The median follow-up was 120 months (range, 24-150 months). The 10-year biochemical control rates were 85% for the entire cohort and 84%, 84%, and 90% for patients with low-, intermediate-, and high-risk disease, respectively. The 10-year survival rate of the entire cohort was 69%. Pretreatment prostate-specific antigen level >10 ng/mL and boost volume of >10% of the prostate volume were significantly associated with poorer biochemical control and survival. The outcomes were compared with those of a cohort of 302 patients treated similarly but without the SIB and followed up for a median of 91 months (range, 6-138 months). The 5- and 10-year biochemical control rates were 86% and 61%, respectively, in patients without the SIB compared with 94% and 85%, respectively, in patients in this trial who received the SIB (P=.02). The cohort that received an SIB did not have increased toxicity. Conclusions: The described IMRT strategy, integrating multiple imaging modalities to administer 75.6 Gy to the entire prostate with a boost dose of 82 Gy, was feasible. The addition of the SIB was associated with greater biochemical control but not toxicity. Modern

  15. Preliminary analysis of the sequential simultaneous integrated boost technique for intensity-modulated radiotherapy for head and neck cancers.

    Science.gov (United States)

    Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki

    2016-07-01

    The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    International Nuclear Information System (INIS)

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B.

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range ( 10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for

  17. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Katrien; De Neve, Wilfried; De Gersem, Werner; Paelinck, Leen; Fonteyne, Valerie; De Wagter, Carlos; De Meerleer, Gert [Dept. of Radiotherapy, Ghent Univ. Hospital (Belgium); Delrue, Louke; Villeirs, Geert [Dept. of Radiology, Ghent Univ. Hospital (Belgium); Makar, Amin [Dept. of Gynecology, Ghent Univ. Hospital (Belgium)

    2009-12-15

    Purpose: to report on the planning procedure, quality control, and clinical implementation of intensity-modulated arc therapy (IMAT) delivering a simultaneous integrated boost (SIB) in patients with primary irresectable cervix carcinoma. Patients and methods: six patients underwent PET-CT (positron emission tomography-computed tomography) and MRI (magnetic resonance imaging) before treatment planning. Prescription (25 fractions) was (1) a median dose (D{sub 50}) of 62, 58 and 56 Gy to the primary tumor (GTVcervix), primary clinical target volume (CTVcervix) and its planning target volume (PTVcervix), respectively; (2) a D{sub 50} of 60 Gy to the PET-positive lymph nodes (GTVnodes); (3) a minimal dose (D{sub 98}) of 45 Gy to the planning target volume of the elective lymph nodes (PTVnodes). IMAT plans were generated using an anatomy-based exclusion tool with the aid of weight and leaf position optimization. The dosimetric delivery of IMAT was validated preclinically using radiochromic film dosimetry. Results: five to nine arcs were needed to create valid IMAT plans. Dose constraints on D{sub 50} were not met in two patients (both GTVcervix: 1 Gy and 3 Gy less). D{sub 98} for PTVnodes was not met in three patients (1 Gy each). Film dosimetry showed excellent gamma evaluation. There were no treatment interruptions. Conclusion: IMAT allows delivering an SIB to the macroscopic tumor without compromising the dose to the elective lymph nodes or the organs at risk. The clinical implementation is feasible. (orig.)

  18. Dosimetric comparison between intensity modulated brachytherapy versus external beam intensity modulated radiotherapy for cervix cancer: a treatment planning study

    International Nuclear Information System (INIS)

    Subramani, V.; Sharma, D.N.; Jothy Basu, K.S.; Rath, G.K.; Gopishankar, N.

    2008-01-01

    To evaluate the dosimetric superiority of intensity modulated brachytherapy (IMBT) based on inverse planning optimization technique with classical brachytherapy optimization and also with external beam intensity modulated radiotherapy planning technique in patients of cervical carcinoma

  19. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes [Gemeinschaftspraxis fuer Strahlentherapie Singen-Friedrichshafen, Singen (Germany)

    2011-12-15

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle {sup copyright} planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% {gamma} criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  20. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes

    2011-01-01

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle copyright planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% γ criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  1. Comparison study of intensity modulated arc therapy using single or multiple arcs to intensity modulated radiation therapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    Ashamalla, Hani; Tejwani, Ajay; Parameritis, Loannis; Swamy, Uma; Luo, Pei Ching; Guirguis, Adel; Lavaf, Amir

    2013-01-01

    Intensity modulated arc therapy (IMAT) is a form of intensity modulated radiation therapy (IMRT) that delivers dose in single or multiple arcs. We compared IMRT plans versus single-arc field (1ARC) and multi-arc fields (3ARC) IMAT plans in high-risk prostate cancer. Sixteen patients were studied. Prostate (PTV P ), right pelvic (PTV RtLN ) and left pelvic lymph nodes (PTV LtLN ), and organs at risk were contoured. PTVP, PTV RtLN , and PTV LtLN received 50.40 Gy followed by a boost to PTV B of 28.80 Gy. Three plans were per patient generated: IMRT, 1ARC, and 3ARC. We recorded the dose to the PTV, the mean dose (D MEAN ) to the organs at risk, and volume covered by the 50% isodose. Efficiency was evaluated by monitor units (MU) and beam on time (BOT). Conformity index (CI), Paddick gradient index, and homogeneity index (HI) were also calculated. Average Radiation Therapy Oncology Group CI was 1.17, 1.20, and 1.15 for IMRT, 1ARC, and 3ARC, respectively. The plans' HI were within 1% of each other. The D MEAN of bladder was within 2% of each other. The rectum D MEAN in IMRT plans was 10% lower dose than the arc plans (p < 0.0001). The GI of the 3ARC was superior to IMRT by 27.4% (p = 0.006). The average MU was highest in the IMRT plans (1686) versus 1ARC (575) versus 3ARC (1079). The average BOT was 6 minutes for IMRT compared to 1.3 and 2.9 for 1ARC and 3ARC IMAT (p < 0.05). For high-risk prostate cancer, IMAT may offer a favorable dose gradient profile, conformity, MU and BOT compared to IMRT.

  2. Prospective Randomized Trial of Prone Accelerated Intensity Modulated Breast Radiation Therapy With a Daily Versus Weekly Boost to the Tumor Bed

    International Nuclear Information System (INIS)

    Cooper, Benjamin T.; Formenti-Ujlaki, George F.; Li, Xiaochun; Shin, Samuel M.; Fenton-Kerimian, Maria; Guth, Amber; Roses, Daniel F.; Hitchen, Christine J.; Rosenstein, Barry S.; Dewyngaert, J. Keith; Goldberg, Judith D.; Formenti, Silvia C.

    2016-01-01

    Purpose: To report the results of a prospective randomized trial comparing a daily versus weekly boost to the tumor cavity during the course of accelerated radiation to the breast with patients in the prone position. Methods and Materials: From 2009 to 2012, 400 patients with stage 0 to II breast cancer who had undergone segmental mastectomy participated in an institutional review board–approved trial testing prone breast radiation therapy to 40.5 Gy in 15 fractions 5 d/wk to the whole breast, after randomization to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy, on Friday. The present noninferiority trial tested the primary hypothesis that a weekly boost produced no more acute toxicity than did a daily boost. The recurrence-free survival was estimated for both treatment arms using the Kaplan-Meier method; the relative risk of recurrence or death was estimated, and the 2 arms were compared using the log-rank test. Results: At a median follow-up period of 45 months, no deaths related to breast cancer had occurred. The weekly boost regimen produced no more grade ≥2 acute toxicity than did the daily boost regimen (8.1% vs 10.4%; noninferiority Z = −2.52; P=.006). No statistically significant difference was found in the cumulative incidence of long-term fibrosis or telangiectasia of grade ≥2 between the 2 arms (log-rank P=.923). Two local and two distant recurrences developed in the daily treatment arm and three local and one distant developed in the weekly arm. The 4-year recurrence-free survival rate was not different between the 2 treatment arms (98% for both arms). Conclusions: A tumor bed boost delivered either daily or weekly was tolerated similarly during accelerated prone breast radiation therapy, with excellent control of disease and comparable cosmetic results.

  3. Prospective Randomized Trial of Prone Accelerated Intensity Modulated Breast Radiation Therapy With a Daily Versus Weekly Boost to the Tumor Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Benjamin T.; Formenti-Ujlaki, George F. [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Li, Xiaochun [Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York (United States); Shin, Samuel M.; Fenton-Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Guth, Amber; Roses, Daniel F. [Department of Surgery, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Hitchen, Christine J. [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Rosenstein, Barry S. [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York (United States); Dewyngaert, J. Keith [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Goldberg, Judith D. [Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: formenti@med.cornell.edu [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States)

    2016-06-01

    Purpose: To report the results of a prospective randomized trial comparing a daily versus weekly boost to the tumor cavity during the course of accelerated radiation to the breast with patients in the prone position. Methods and Materials: From 2009 to 2012, 400 patients with stage 0 to II breast cancer who had undergone segmental mastectomy participated in an institutional review board–approved trial testing prone breast radiation therapy to 40.5 Gy in 15 fractions 5 d/wk to the whole breast, after randomization to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy, on Friday. The present noninferiority trial tested the primary hypothesis that a weekly boost produced no more acute toxicity than did a daily boost. The recurrence-free survival was estimated for both treatment arms using the Kaplan-Meier method; the relative risk of recurrence or death was estimated, and the 2 arms were compared using the log-rank test. Results: At a median follow-up period of 45 months, no deaths related to breast cancer had occurred. The weekly boost regimen produced no more grade ≥2 acute toxicity than did the daily boost regimen (8.1% vs 10.4%; noninferiority Z = −2.52; P=.006). No statistically significant difference was found in the cumulative incidence of long-term fibrosis or telangiectasia of grade ≥2 between the 2 arms (log-rank P=.923). Two local and two distant recurrences developed in the daily treatment arm and three local and one distant developed in the weekly arm. The 4-year recurrence-free survival rate was not different between the 2 treatment arms (98% for both arms). Conclusions: A tumor bed boost delivered either daily or weekly was tolerated similarly during accelerated prone breast radiation therapy, with excellent control of disease and comparable cosmetic results.

  4. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  5. Comparison of three concomitant boost techniques for early-stage breast cancer

    International Nuclear Information System (INIS)

    Horton, Janet K.; Halle, Jan S.; Chang, Sha X.; Sartor, Carolyn I.

    2006-01-01

    Purpose: Whole breast radiotherapy (RT) followed by a tumor bed boost typically spans 5-6 weeks of treatment. Interest is growing in RT regimens, such as concomitant boost, that decrease overall treatment time, lessening the time/cost burden to patients and facilities. Methods and Materials: Computed tomography (CT) scans from 20 cases were selected for this retrospective, dosimetric study to compare three different techniques of concomitant boost delivery: (1) standard tangents plus an electron boost (2) intensity-modulated RT (IMRT) tangents using custom compensators plus an electron boost, and (3) IMRT tangents plus a conformal photon boost. The equivalent uniform dose model was used to compare the plans. Results: The average breast equivalent uniform dose value for the three techniques (standard, IMRT plus electrons, and IMRT plus photons) was 48.6, 47.9, and 48.3, respectively. The plans using IMRT more closely approximated the prescribed dose of 46 Gy to the whole breast. The breast volume receiving >110% of the dose was less with the IMRT tangents than with standard RT (p 0.037), but no significant difference in the maximal dose or other evaluated parameters was noted. Conclusion: Although the IMRT techniques delivered the prescribed dose with better dose uniformity, the small improvement seen did not support a goal of improved resource use

  6. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  7. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  8. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  9. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Wu Binbin, E-mail: binbin.wu@gunet.georgetown.edu [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); McNutt, Todd [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Zahurak, Marianna [Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland (United States); Simari, Patricio [Autodesk Research, Toronto, ON (Canada); Pang, Dalong [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); Taylor, Russell [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland (United States); Sanguineti, Giuseppe [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States)

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  10. Phase I/II trial of single-fraction high-dose-rate brachytherapy-boosted hypofractionated intensity-modulated radiation therapy for localized adenocarcinoma of the prostate.

    Science.gov (United States)

    Myers, Michael A; Hagan, Michael P; Todor, Dorin; Gilbert, Lynn; Mukhopadhyay, Nitai; Randolf, Jessica; Heimiller, Jeffrey; Anscher, Mitchell S

    2012-01-01

    A Phase I/II protocol was conducted to examine the toxicity and efficacy of the combination of intensity-modulated radiation therapy (IMRT) with a single-fraction high-dose-rate (HDR) brachytherapy implant. From 2001 through 2006, 26 consecutive patients were treated on the trial. The primary objective was to demonstrate a high rate of completion without experiencing a treatment-limiting toxicity. Eligibility was limited to patients with T stage ≤2b, prostate-specific antigen (PSA) ≤20, and Gleason score ≤7. Treatment began with a single HDR fraction of 6Gy to the entire prostate and 9Gy to the peripheral zone, followed by IMRT optimized to deliver in 28 fractions with a normalized total dose of 70Gy. Patients received 50.4Gy to the pelvic lymph node. The prostate dose (IMRT and HDR) resulted in an average biologic equivalent dose >128Gy (α/β=3). Patients whose pretreatment PSA was ≥10ng/mL, Gleason score 7, or stage ≥T2b received short-term androgen ablation. Median followup was 53 months (9-68 months). There were no biochemical failures by either the American Society of Therapeutic Radiology and Oncology or the Phoenix definitions. The median nadir PSA was 0.32ng/mL. All the 26 patients completed the treatment as prescribed. The rate of Grade 3 late genitourinary toxicity was 3.8% consisting of a urethral stricture. There was no other Grade 3 or 4 genitourinary or gastrointestinal toxicities. Single-fraction HDR-boosted IMRT is a safe effective method of dose escalation for localized prostate cancer. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. Light intensity modulation in phototherapy

    Science.gov (United States)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  12. Comparison between intensity modulated radiotherapy (IMRT) and 3D tangential beams technique used in patients with early-stage breast cancer who received breast-conserving therapy

    International Nuclear Information System (INIS)

    Sas-Korczynska, B.; Kokoszka, A.; Korzeniowski, S.; Sladowska, A.; Rozwadowska-Bogusz, B.; Lesiak, J.; Dyczek, S.

    2010-01-01

    Background: The most often found complications in patients with breast cancer who received radiotherapy are cardiac and pulmonary function disorders and development of second malignancies. Aim: To compare the intensity modulated radiotherapy with the 3D tangential beams technique in respect of dose distribution in target volume and critical organs they generate in patients with early-stage breast cancer who received breast-conserving therapy. Materials and methods: A dosimetric analysis was performed to assess the three radiotherapy techniques used in each of 10 consecutive patients with early-stage breast cancer treated with breast-conserving therapy. Radiotherapy was planned with the use of all the three techniques: 3D tangential beams with electron boost, IMRT with electron boost, and intensity modulated radiotherapy with simultaneous integrated boost. Results: The use of the IMRT techniques enables more homogenous dose distribution in target volume. The range of mean and median dose to the heart and lung was lower with the IMRT techniques in comparison to the 3D tangential beams technique. The range of mean dose to the heart amounted to 0.3 - 3.5 Gy for the IMRT techniques and 0.4 - 4.3 for the tangential beams technique. The median dose to the lung on the irradiated side amounted to 4.9 - 5 Gy for the IMRT techniques and 5.6 Gy for the 3D tangential beams technique. Conclusion: The application of the IMRT techniques in radiotherapy patients with early-stage breast cancer allows to obtain more homogenous dose distribution in target volume, while permitting to reduce the dose to critical organs. (authors)

  13. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan

    2002-01-01

    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive

  14. Intensity modulated radiation therapy for head and neck cancer: The standard; Radiotherapie avec modulation d'intensite pour les cancers de la tete et du cou: le standard

    Energy Technology Data Exchange (ETDEWEB)

    Maingon, P.; Crehange, G.; Chamois, J.; Khoury, C.; Truc, G. [Departement de radiotherapie, centre Georges-Francois-Leclerc, 1, rue du Pr-Marion, 21079 Dijon cedex (France)

    2011-10-15

    Combined radical radiation therapy for head and neck carcinoma should be planned with intensity modulated beams to provide a rapid answer to patients' requirements in terms of quality of treatment. The most frequent late toxicity of radiation therapy is xerostomia, which may be prevented by using this technique able to significantly spare salivary glands irradiation. Selection of indications is a very important step. The objective of sparing salivary functions, strongly associated with optimization criteria of quality of life should be considered as a main objective in irradiation of head and neck tumours. The various possibilities offered by this technique allowing to boost a target volume included in prophylactically irradiated regions could offer the possibility to escalate the dose in selected patients. The feasibility of this process is currently validated in prospective studies. Finally, routine implementation of intensity modulated radiation therapy should be performed with strong and robust quality assurance procedures, ensuring that the expected benefit could be increased with the current developments by using rotational techniques. (authors)

  15. Is there room for combined modality treatments? Dosimetric comparison of boost strategies for advanced head and neck and prostate cancer

    International Nuclear Information System (INIS)

    Gora, Joanna; Hopfgartner, Johannes; Kuess, Peter; Paskeviciute, Brigita; Georg, Dietmar

    2013-01-01

    The purpose of the study was to determine the dosimetric difference between three emerging treatment modalities-volumetric-modulated arc therapy (VMAT), intensity-modulated proton beam therapy (IMPT) and intensity-modulated carbon ion beam therapy (IMIT)-for two tumour sites where selective boosting of the tumour is applied. For 10 patients with locally advanced head and neck (H and N) cancer and 10 with high-risk prostate cancer (PC) a VMAT plan was generated for PTV initial that included lymph node regions, delivering 50 Gy (IsoE) for H and N and 50.4 Gy (IsoE) for PC patients. Furthermore, separate boost plans (VMAT, IMPT and IMIT) were created to boost PTV boost up to 70 Gy (IsoE) and 78 Gy (IsoE) for H and N and PC cases, respectively. Doses to brainstem, myelon, larynx and parotid glands were assessed for H and N cases. Additionally, various organs at risk (OARs) (e.g. cochlea, middle ear, masticator space) were evaluated that are currently discussed with respect to quality of life after treatment. For PC cases, bladder, rectum and femoral heads were considered as OARs. For both tumour sites target goals were easily met. Looking at OAR sparing, generally VMAT + VMAT was worst. VMAT + IMIT had the potential to spare some structures in very close target vicinity (such as cochlea, middle ear, masticator space) significantly better than VMAT + IMPT. Mean doses for rectal and bladder wall were on average 4 Gy (IsoE) and 1.5 Gy (IsoE) higher, respectively, compared to photons plus particles scenarios. Similar results were found for parotid glands and larynx. Concerning target coverage, no significant differences were observed between the three treatment concepts. Clear dosimetric benefits were observed for particle beam therapy as boost modality. However, the clinical benefit of combined modality treatments remains to be demonstrated. (author)

  16. Buck-Boost Current-Source Inverters With Diode-Inductor Network

    DEFF Research Database (Denmark)

    Gao, Feng; Liang, Chao; Loh, Poh Chiang

    2009-01-01

    This paper presents a number of novel currentsource inverters (CSIs) with enhanced current buck-boost capability. By adding a unique diode-inductor network between the inverter circuitry and current-boost elements, the proposed buck-boost CSIs demonstrate a doubling of current-boost capability......, as compared with other recently reported buck-boost CSIs. For controlling the proposed CSIs, two modulation schemes are designed for achieving either optimized harmonic performance or minimized commutation count without influencing the inverter current buck-boost gain. These theoretical findings were...

  17. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2011-01-01

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  18. Accelerated Intensity-Modulated Radiotherapy to Breast in Prone Position: Dosimetric Results

    International Nuclear Information System (INIS)

    De Wyngaert, J. Keith; Jozsef, Gabor; Mitchell, James; Rosenstein, Barry; Formenti, Silvia C.

    2007-01-01

    Purpose: To report the physics and dosimetry results of a trial of accelerated intensity-modulated radiotherapy to the whole breast with a concomitant boost to the tumor bed in patients treated in the prone position. Methods and Materials: Patients underwent computed tomography planning and treatment in the prone position on a dedicated treatment platform. The platform has an open aperture on the side to allow for the index breast to fall away from the chest wall. Noncontrast computed tomography images were acquired at 2.5- or 3.75-mm-thick intervals, from the level of the mandible to below the diaphragm. A dose of 40.5 Gy was delivered to the entire breast at 2.7-Gy fractions in 15 fractions. An additional dose of 0.5 Gy was delivered as a concomitant boost to the lumpectomy site, with a 1-cm margin, using inverse planning, for a total dose of 48 Gy in 15 fractions. No more than 10% of the heart and lung volume was allowed to receive >18 and >20 Gy, respectively. Results: Between September 2003 and August 2005, 91 patients were enrolled in the study. The median volume of heart that received ≥18 Gy was 0.5%, with a maximal value of 4.7%. The median volume of ipsilateral lung that received ≥20 Gy was 0.8%, with a maximum of 7.2%. Conclusion: This technique for whole breast radiotherapy is feasible and enables an accelerated regimen in the prone position while sparing the lung and heart

  19. Implementation of intensity modulation with dynamic multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J W; Yu, C; Jaffray, D [William Beaumont Hospital, Royal Oak, MI (United States)

    1995-12-01

    The computer-controlled multileaf collimator (MLC) marks one of the most important advances in radiation therapy. The device efficiently replaces manual blocking to shape fields and can be used to modulate beam intensity. The results of a research programme at William Beaumont Hospital, aimed at bringing dynamic intensity modulation into clinical use, are discussed.

  20. Sequentially delivered boost plans are superior to simultaneously delivered plans in head and neck cancer when the boost volume is located further away from the parotid glands

    International Nuclear Information System (INIS)

    Lamers-Kuijper, Emmy; Heemsbergen, Wilma; Mourik, Anke van; Rasch, Coen

    2011-01-01

    Purpose: To find parameters that predict which head and neck patients benefit from a sequentially delivered boost treatment plan compared to a simultaneously delivered plan, with the aim to spare the salivary glands. Methods and materials: We evaluated 50 recently treated head and neck cancer patients. Apart from the clinical plan with a sequentially (SEQ) given boost using an Intensity Modulated Radiotherapy Technique (IMRT), a simultaneous integrated boost (SIB) technique plan was constructed with the same beam set-up. The mean dose to the parotid glands was calculated and compared. The elective nodal areas were bilateral in all cases, with a boost on either one side or both sides of the neck. Results: When the parotid gland volume and the Planning Target Volume (PTV) for the boost overlap there is on average a lower dose to the parotid gland with a SIB technique (-1.2 Gy), which is, however, not significant (p = 0.08). For all parotid glands with no boost PTV overlap, there is a benefit from a SEQ technique compared to a SIB technique for the gland evaluated (on average a 2.5 Gy lower dose to the parotid gland, p < 0.001). When the distance between gland and PTV is 0-1 cm, this difference is on average 0.8 Gy, for 1-2 cm distance 2.9 Gy and for glands with a distance greater than 2 cm, 3.3 Gy. When the lymph nodes on the evaluated side are also included in the boost PTV, however, this relationship between the distance and the gain of a SEQ seems less clear. Conclusions: A sequentially delivered boost technique results in a better treatment plan for most cases, compared to a simultaneous integrated boost IMRT technique, if the boost PTV is more than 1 cm away from at least one parotid gland.

  1. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  2. SU-E-P-21: Impact of MLC Position Errors On Simultaneous Integrated Boost Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chengqiang, L; Yin, Y; Chen, L [Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117 (China)

    2015-06-15

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans. Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.

  3. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  4. Intensity modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Forster, K.; Lee, H.; Lutz, W.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1997-01-01

    Purpose/Objective: The purpose of this study was to evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. The primary goal was to develop an intensity modulated treatment which would substantially decrease the dose to coronary arteries, lung and contralateral breast while still using a standard tangential beam arrangement. Improved target dose homogeneity, within the limits imposed by opposed fields, was also desired. Since a major goal of the study was the development of a technique which was practical for use on a large population of patients, the design of 'standard' intensity profiles analogous in function to conventional wedges was also investigated. Materials and Methods: Three dimensional treatment planning was performed using both conventional and intensity modulated tangential beams. Plans were developed for both the right and left breast for a range of patient sizes and shapes. For each patient, PTV, lung, heart, origin and peripheral branches of the coronary artery, and contralateral breast were contoured. Optimum tangential beam direction and shape were designed using Beams-Eye-View display and then used for both the conventional and intensity modulated plans. For the conventional plan, the optimum wedge combination and beam weighting were chosen based on the dose distribution in a single transverse plane through the field center. Intensity modulated plans were designed using an algorithm which allows the user to specify the prescribed, maximum and minimum acceptable doses and dose volume constraints for each organ of interest. Plans were compared using multiple dose distributions and DVHs. Results: Significant improvements in the doses to critical structures were achieved using the intensity modulated plan. Coronary artery dose decreased substantially for patients treated to the left breast. Ipsilateral lung and contralateral breast doses decreased for all patients. For one patient treated to

  5. CyberKnife Boost for Patients with Cervical Cancer Unable to Undergo Brachytherapy

    International Nuclear Information System (INIS)

    Haas, Jonathan Andrew; Witten, Matthew R.; Clancey, Owen; Episcopia, Karen; Accordino, Diane; Chalas, Eva

    2012-01-01

    Standard radiation therapy for patients undergoing primary chemosensitized radiation for carcinomas of the cervix usually consists of external beam radiation followed by an intracavitary brachytherapy boost. On occasion, the brachytherapy boost cannot be performed due to unfavorable anatomy or because of coexisting medical conditions. We examined the safety and efficacy of using CyberKnife stereotactic body radiotherapy (SBRT) as a boost to the cervix after external beam radiation in those patients unable to have brachytherapy to give a more effective dose to the cervix than with conventional external beam radiation alone. Six consecutive patients with anatomic or medical conditions precluding a tandem and ovoid boost were treated with combined external beam radiation and CyberKnife boost to the cervix. Five patients received 45 Gy to the pelvis with serial intensity-modulated radiation therapy boost to the uterus and cervix to a dose of 61.2 Gy. These five patients received an SBRT boost to the cervix to a dose of 20 Gy in five fractions of 4 Gy each. One patient was treated to the pelvis to a dose of 45 Gy with an external beam boost to the uterus and cervix to a dose of 50.4 Gy. This patient received an SBRT boost to the cervix to a dose of 19.5 Gy in three fractions of 6.5 Gy. Five percent volumes of the bladder and rectum were kept to ≤75 Gy in all patients (i.e., V75 Gy ≤ 5%). All of the patients remain locally controlled with no evidence of disease following treatment. Grade 1 diarrhea occurred in 4/6 patients during the conventional external beam radiation. There has been no grade 3 or 4 rectal or bladder toxicity. There were no toxicities observed following SBRT boost. At a median follow-up of 14 months, CyberKnife radiosurgical boost is well tolerated and efficacious in providing a boost to patients with cervix cancer who are unable to undergo brachytherapy boost. Further follow-up is required to see if these results remain durable.

  6. Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT

    Directory of Open Access Journals (Sweden)

    Mavtratzas Athanasios

    2011-05-01

    Full Text Available Abstract Background Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT and carbon ion therapy (C12 are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity. Methods/design The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions and 50 Gy IMRT (2.0 Gy/fraction in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL analyses. Discussion The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN. Trial Registration

  7. Analysis of small-signal intensity modulation of semiconductor ...

    Indian Academy of Sciences (India)

    This paper demonstrates theoretical characterization of intensity modulation of semiconductor lasers (SL's). The study is based on a small-signal model to solve the laser rate equations taking into account suppression of optical gain. Analytical forms of the small-signal modulation response and modulation bandwidth are ...

  8. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  9. Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: Potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance

    International Nuclear Information System (INIS)

    Hendrickson, Kristi; Phillips, Mark; Smith, Wade; Peterson, Lanell; Krohn, Kenneth; Rajendran, Joseph

    2011-01-01

    Background and purpose: Positron emission tomography (PET) imaging with [F-18] fluoromisonidazole (FMISO) has been validated as a hypoxic tracer . Head and neck cancer exhibits hypoxia, inducing aggressive biologic traits that impart resistance to treatment. Delivery of modestly higher radiation doses to tumors with stable areas of chronic hypoxia can improve tumor control . Advanced radiation treatment planning (RTP) and delivery techniques such as intensity modulated radiation therapy (IMRT) can deliver higher doses to a small volume without increasing morbidity. We investigated the utility of co-registered FMISO-PET and CT images to develop clinically feasible RTPs with higher tumor control probabilities (TCP). Materials and methods: FMISO-PET images were used to determine hypoxic sub-volumes for boost planning. Example plans were generated for 10 of the patients in the study who exhibited significant hypoxia. We created an IMRT plan for each patient with a simultaneous integrated boost (SIB) to the hypoxic sub-volumes. We also varied the boost for two patients. Result: A significant (mean 17%, median 15%) improvement in TCP is predicted when the modest additional boost dose to the hypoxic sub-volume is included. Conclusion: Combined FMISO-PET imaging and IMRT planning permit delivery of higher doses to hypoxic regions, increasing the predicted TCP (mean 17%) without increasing expected complications.

  10. BENEFITS OF INTENSITY-MODULATED RADIOTHERAPY (IMRT IN PATIENTS WITH HEAD AND NECK MALIGNANCIES- A SINGLE INSTITUTION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Sherry Seasor Abraham

    2017-09-01

    Full Text Available BACKGROUND Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional twodimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. IntensityModulated Radiotherapy (IMRT can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This study reveals the role of IMRT in head and neck cancer in view of normal tissue sparing with good tumour control. MATERIALS AND METHODS Radical radiotherapy was given using linear accelerator up to a dose of 66 to 70 gray in 30 to 33 fractions (intensity-modulated radiotherapy with simultaneous integrated boost over 6 to 7 weeks to 56 eligible patients. Concurrent cisplatin was given to patients with locally-advanced disease up to a dose of 40 mg/m2 weekly once along with radiation. The patients were monitored weekly once during the treatment for acute skin and mucosal toxicities using the RTOG scoring criteria. After the treatment, locoregional response was assessed and recorded at 6 weeks, 3 months and 6 months intervals. RESULTS Severe skin toxicity (grade III or more was seen in approximately 7% patients. Severe mucosal toxicity (grade III or more was seen in approximately 80% of patients. IMRT technique showed better skin sparing compared to 3D conformal radiotherapy. Severe mucosal toxicity was slightly higher in this study due to the simultaneous integrated boost technique used for dose intensification to the mucosa, which results in better primary tumour control. At the end of 6 months, 75% patients achieved locoregional control and residual/recurrent disease was seen in 25% of patients. IMRT offered good locoregional control with less skin toxicity and acceptable mucosal toxicity. The results were similar to the previous study reports using IMRT. CONCLUSION IMRT is a better treatment option in locally-advanced head and neck malignancies providing good

  11. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    International Nuclear Information System (INIS)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B; Anuradha, C

    2015-01-01

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  12. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B [Omega Hospitals, Hyderabad, Telangana (India); Anuradha, C [Vit University, Vellore, Tamil Nadu (India)

    2015-06-15

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  13. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Davis, J. Bernard; Ciernik, I. Frank

    2006-01-01

    Background and purpose: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. Materials and methods: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and 'equivalent uniform dose' (EUD). Results: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (±2.0) Gy was observed (p 0.002), the mean dose to the larynx was reduced by 6.9 (±2.9) Gy (p 0.003), the oral mucosa by 2.4 (±1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (±1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (±1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (±0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. Conclusion: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer

  14. Patterns of local-regional failure after primary intensity modulated radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kong, Fangfang; Ying, Hongmei; Du, Chengrun; Huang, Shuang; Zhou, Junjun; Chen, Junchao; Sun, Lining; Chen, Xiaohui; Hu, Chaosu

    2014-01-01

    To analyze patterns of local-regional failure after primary intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). A total of 370 non-metastatic NPC patients consecutively treated with IMRT (with or without chemotherapy) were analyzed. Radiotherapy was administered using a simultaneous integrated boost (SIB) technique at the total prescribed dose of 66-70.4Gy (2.0-2.2Gy per fraction). The location and extent of local-regional failures were transferred to the pretreatment planning computed tomography (CT) for dosimetric analysis. The dose of radiation received by V recur (volume of recurrence) was calculated and analyzed with dose-volume histogram (DVH). Failures were classified as: 'in field' if 95% of V recur was within the 95% isodose, 'marginal' if 20% to 95% of V recur was within the 95% isodose, or 'outside' if less than 20% of V recur was inside the 95% isodose. With a median follow up of 26 months, 25 local-regional failures were found in 18 patients. The 1- and 2-year actuarial local-regional control rates for all patients were 99.7% and 95.5% respectively. Among the 22 local–regional failures with available diagnostic images, 16 (64%) occurred within the 95% isodose lines and were considered in-field failures; 3 (12%) were marginal and 3 (12%) were outside-field failures. Intensity-modulated radiotherapy provides excellent local-regional control for NPC. In-field failures are the main patterns for local-regional recurrence. Reducing the coverage of critical adjacent tissues in CTV purposefully for potential subclinical diseases was worth of study. Great attention in all IMRT steps is necessary to reduce potential causes of marginal failures. More studies about radioresistance are needed to reduce in-field failures

  15. Intensity modulated radiotherapy (IMRT) with compensators

    International Nuclear Information System (INIS)

    Salz, H.; Wiezorek, T.; Scheithauer, M.; Kleen, W.; Schwedas, M.; Wendt, T.G.

    2002-01-01

    The irradiation with intensity-modulated fields is possible with static as well as dynamic methods. In our university hospital, the intensity-modulated radiotherapy (IMRT) with compensators was prepared and used for the first time for patient irradiation in July 2001. The compensators consist of a mixture of tin granulate and wax, which is filled in a milled negative mould. The treatment planning is performed with Helax-TMS (MDS Nordion). An additional software is used for editing the modulation matrix ('Modifix'). Before irradiation of the first patient, extensive measurements have been carried out in terms of quality assurance of treatment planning and production of compensators. The results of the verification measurements have shown that IMRT with compensators possesses high spatial and dosimetric exactness. The calculated dose distributions are applied correctly. The accuracy of the calculated monitor units is normally better than 3%; in small volumes, further dosimetric inaccuracies between calculated and measured dose distributions are mostly less than 3%. Therefore, the compensators contribute to the achievement of high-level IMRT even when apparatuses without MLC are used. This paper describes the use of the IMRT with compensators, presents the limits of this technology, and discusses the first practical experiences. (orig.) [de

  16. A method of simulating intensity modulation-direct detection WDM systems

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YAO Jian-quan; LI En-bang

    2005-01-01

    In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.

  17. A comparison of radiation treatment techniques for carcinomas of the larynx and hypopharynx using 3-D dose distributions and intensity modulation

    International Nuclear Information System (INIS)

    Morris, David; Miller, Elizabeth P.; Rosenman, Julian; Sailer, Scott; Tepper, Joel

    1997-01-01

    Purpose/Objective: Patients with carcinomas of the larynx and hypopharynx often cannot be treated effectively with a lateral/low anterior neck combination because the midline block will cover the tumor bed. Common alternatives to this approach often produce serious dose inhomogeneities. Our study was to determine whether modern 3D treatment planning techniques with intensity modulation could overcome these dose inhomogeneities and also allow us to omit the problematic posterior neck electron boost which often gives poor nodal coverage. Materials and Methods: Dose distribution studies were performed on patients who had received post-operative radiation following laryngectomy for advanced staged cancer. The clinical tumor volume or CTV (surgical bed and at-risk nodal stations) was defined on planning CT images. Four commonly used alternative plans, the MGH 'minimantle', 'kicked-out' laterals, the University of Florida 3-field, and a standard 3 field with a lateral cord block were evaluated using the Plan UNC (PLUNC) treatment planning software. New plans that might also preclude the use of posterior neck electrons were also evaluated. The plans were then intensity modulated to reduce the well known cold spots as described previously in IJROBP August 1991, Vol. 21, No. 3. All dose distributions were evaluated for dose homogeneity, minimum and maximum CTV dose, and dose to normal critical structures. The inhomogeneities were determined using standard dose-volume histogram (DVH) techniques but positional information was gathered by dividing the CTV into sensible anatomic regions and studying the DVH for each separately. Results: For the mini-mantle approach, intensity modulation substantially improved the dose inhomogeneities but did not affect the minimum CTV dose and had no effect on the cord dose. Intensity modulation decreased the maximum CTV dose (110% vs. 130%) but had the undesirable effect of lessening the dose difference between cord and CTV. For the kicked

  18. Enhanced Buck-Boost Three-Level Neutral-Point-Clamped Inverters

    DEFF Research Database (Denmark)

    Tan, K. K.; Gao, F.; Chiang Loh, Poh

    2009-01-01

    In traditional three-level neutral-point-clamped (NPC) inverters, a major issue is capacitor voltage imbalance, which results in low order harmonics. The compensation of the capacitor voltages often require additional control complexity, which cannot be conveniently implemented. The "alternative...... phase opposition disposition" (APOD) modulation method used in traditional NPC topologies also has lower harmonics performance as compared to the "phase disposition" (PD) modulation method.In this paper, we introduce a new three-level NPC topology that utilises the harmonically superior PD modulation...... method, with the ability to easily adjust for capacitor voltage imbalances. To further improve the boost capability of the three-level NPC inverters, another new topology introduces 2 additional diodes,achieving higher boost performance while totally eliminating thepossibility of capacitor voltage...

  19. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha; Efe, Esma

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from the intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.

  20. A PIPO Boost Converter with Low Ripple and Medium Current Application

    Science.gov (United States)

    Bandri, S.; Sofian, A.; Ismail, F.

    2018-04-01

    This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.

  1. Intensity-modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Spirou, S.; Forster, K.; Lee, H.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1999-01-01

    Purpose: To evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. Methods and Materials: Three-dimensional treatment planning was performed on five left and five right breasts using standard wedged and intensity modulated (IM) tangential beams. Optimal beam parameters were chosen using beams-eye-view display. For the standard plans, the optimal wedge angles were chosen based on dose distributions in the central plane calculated without inhomogeneity corrections, according to our standard protocol. Intensity-modulated plans were generated using an inverse planning algorithm and a standard set of target and critical structure optimization criteria. Plans were compared using multiple dose distributions and dose volume histograms for the planning target volume (PTV), ipsilateral lung, coronary arteries, and contralateral breast. Results: Significant improvements in the doses to critical structures were achieved using intensity modulation. Compared with a standard-wedged plan prescribed to 46 Gy, the dose from the IM plan encompassing 20% of the coronary artery region decreased by 25% (from 36 to 27 Gy) for patients treated to the left breast; the mean dose to the contralateral breast decreased by 42% (from 1.2 to 0.7 Gy); the ipsilateral lung volume receiving more than 46 Gy decreased by 30% (from 10% to 7%); the volume of surrounding soft tissue receiving more than 46 Gy decreased by 31% (from 48% to 33%). Dose homogeneity within the target volume improved greatest in the superior and inferior regions of the breast (approximately 8%), although some decrease in the medial and lateral high-dose regions (approximately 4%) was also observed. Conclusion: Intensity modulation with a standard tangential beam arrangement significantly reduces the dose to the coronary arteries, ipsilateral lung, contralateral breast, and surrounding soft tissues. Improvements in dose homogeneity throughout the target volume can also be

  2. Intensity Modulated Radiation Therapy Dose Painting for Localized Prostate Cancer Using 11C-choline Positron Emission Tomography Scans

    International Nuclear Information System (INIS)

    Chang, Joe H.; Lim Joon, Daryl; Lee, Sze Ting; Gong, Sylvia J.; Anderson, Nigel J.; Scott, Andrew M.; Davis, Ian D.; Clouston, David; Bolton, Damien; Hamilton, Christopher S.; Khoo, Vincent

    2012-01-01

    Purpose: To demonstrate the technical feasibility of intensity modulated radiation therapy (IMRT) dose painting using 11 C-choline positron emission tomography PET scans in patients with localized prostate cancer. Methods and Materials: This was an RT planning study of 8 patients with prostate cancer who had 11 C-choline PET scans prior to radical prostatectomy. Two contours were semiautomatically generated on the basis of the PET scans for each patient: 60% and 70% of the maximum standardized uptake values (SUV 60% and SUV 70% ). Three IMRT plans were generated for each patient: PLAN 78 , which consisted of whole-prostate radiation therapy to 78 Gy; PLAN 78-90 , which consisted of whole-prostate RT to 78 Gy, a boost to the SUV 60% to 84 Gy, and a further boost to the SUV 70% to 90 Gy; and PLAN 72-90 , which consisted of whole-prostate RT to 72 Gy, a boost to the SUV 60% to 84 Gy, and a further boost to the SUV 70% to 90 Gy. The feasibility of these plans was judged by their ability to reach prescription doses while adhering to published dose constraints. Tumor control probabilities based on PET scan-defined volumes (TCP PET ) and on prostatectomy-defined volumes (TCP path ), and rectal normal tissue complication probabilities (NTCP) were compared between the plans. Results: All plans for all patients reached prescription doses while adhering to dose constraints. TCP PET values for PLAN 78 , PLAN 78-90 , and PLAN 72-90 were 65%, 97%, and 96%, respectively. TCP path values were 71%, 97%, and 89%, respectively. Both PLAN 78-90 and PLAN 72-90 had significantly higher TCP PET (P=.002 and .001) and TCP path (P 78 . PLAN 78-90 and PLAN 72-90 were not significantly different in terms of TCP PET or TCP path . There were no significant differences in rectal NTCPs between the 3 plans. Conclusions: IMRT dose painting for localized prostate cancer using 11 C-choline PET scans is technically feasible. Dose painting results in higher TCPs without higher NTCPs.

  3. IMRT with Stereotactic Body Radiotherapy Boost for High Risk Malignant Salivary Gland Malignancies : A Case Series

    Directory of Open Access Journals (Sweden)

    Sana D Karam

    2014-10-01

    Full Text Available Patients with high risk salivary gland malignancies are at increased risk of local failure. We present our institutional experience with dose escalation using hypofractionated Stereotactic Body Radiotherapy (SBRT in a subset of this rare disease. Over the course of 9 years, 10 patients presenting with skull base invasion, gross disease with one or more adverse features, or those treated with adjuvant radiation with three or more pathologic features were treated with intensity modulated radiation therapy followed by hypofractionated SBRT boost. Patients presented with variable tumor histologies, and in all but one, the tumors were classified as poorly differentiated high grade. Four patients had gross disease, 3 had gross residual disease, 3 had skull base invasion, and 2 patients had rapidly recurrent disease (≤ 6 months that had been previously treated with surgical resection. The median Stereotactic Radiosurgery boost dose was 17.5 Gy (range 10-30 Gy given in a median of 5 fractions (range 3-6 fractions for a total median cumulative dose of 81.2 Gy (range 73.2-95.6 Gy. The majority of the patients received platinum based concurrent chemotherapy with their radiation. At a median follow-up of 32 months (range 12-120 for all patients and 43 months for surviving patients (range 12-120, actuarial 3-year locoregional control, distant control, progression free survival, and overall survival were 88%, 81%, 68%, and 79%, respectively. Only one patient failed locally and two failed distantly. Serious late toxicity included graft ulceration in 1 patient and osteoradionecrosis in another patient, both of which underwent surgical reconstruction. Six patients developed fibrosis. In a subset of patients with salivary gland malignancies with skull base invasion, gross disease, or those treated adjuvantly with three or more adverse pathologic features, hypofractionated SBRT boost to Intensity Modulated Radiotherapy yields good local control rates and

  4. 68Ga-PSMA-PET/CT imaging of localized primary prostate cancer patients for intensity modulated radiation therapy treatment planning with integrated boost.

    Science.gov (United States)

    Thomas, Lena; Kantz, Steffi; Hung, Arthur; Monaco, Debra; Gaertner, Florian C; Essler, Markus; Strunk, Holger; Laub, Wolfram; Bundschuh, Ralph A

    2018-07-01

    The purpose of our study was to show the feasibility and potential benefits of using 68 Ga-PSMA-PET/CT imaging for radiation therapy treatment planning of patients with primary prostate cancer using either integrated boost on the PET-positive volume or localized treatment of the PET-positive volume. The potential gain of such an approach, the improvement of tumor control, and reduction of the dose to organs-at-risk at the same time was analyzed using the QUANTEC biological model. Twenty-one prostate cancer patients (70 years average) without previous local therapy received 68 Ga-PSMA-PET/CT imaging. Organs-at-risk and standard prostate target volumes were manually defined on the obtained datasets. A PET active volume (PTV_PET) was segmented with a 40% of the maximum activity uptake in the lesion as threshold followed by manual adaption. Five different treatment plan variations were calculated for each patient. Analysis of derived treatment plans was done according to QUANTEC with in-house developed software. Tumor control probability (TCP) and normal tissue complication probability (NTCP) was calculated for all plan variations. Comparing the conventional plans to the plans with integrated boost and plans just treating the PET-positive tumor volume, we found that TCP increased to (95.2 ± 0.5%) for an integrated boost with 75.6 Gy, (98.1 ± 0.3%) for an integrated boost with 80 Gy, (94.7 ± 0.8%) for treatment of PET-positive volume with 75 Gy, and to (99.4 ± 0.1%) for treating PET-positive volume with 95 Gy (all p PET/CT image information allows for more individualized prostate treatment planning. TCP values of identified active tumor volumes were increased, while rectum and bladder NTCP values either remained the same or were even lower. However, further studies need to clarify the clinical benefit for the patients applying these techniques.

  5. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Whalley, D.; Caine, H.; McCloud, P.; Guo, L.; Kneebone, A.; Eade, T.

    2015-01-01

    To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity

  6. Emotional Intensity Modulates the Integration of Bimodal Angry Expressions: ERP Evidence

    Directory of Open Access Journals (Sweden)

    Zhihui Pan

    2017-06-01

    Full Text Available Integration of information from face and voice plays a central role in social interactions. The present study investigated the modulation of emotional intensity on the integration of facial-vocal emotional cues by recording EEG for participants while they were performing emotion identification task on facial, vocal, and bimodal angry expressions varying in emotional intensity. Behavioral results showed the rates of anger and reaction speed increased as emotional intensity across modalities. Critically, the P2 amplitudes were larger for bimodal expressions than for the sum of facial and vocal expressions for low emotional intensity stimuli, but not for middle and high emotional intensity stimuli. These findings suggested that emotional intensity modulates the integration of facial-vocal angry expressions, following the principle of Inverse Effectiveness (IE in multimodal sensory integration.

  7. MIMO Intensity-Modulation Channels: Capacity Bounds and High SNR Characterization

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    The capacity of MIMO intensity modulation channels is studied. The nonnegativity of the transmit signal (intensity) poses a challenge on the precoding of the transmit signal, which limits the applicability of classical schemes in this type

  8. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  9. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  10. Extended Field Intensity Modulated Radiation Therapy With Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Kim, Hayeon; Choi, Serah [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Sukumvanich, Paniti; Olawaiye, Alexander B.; Kelley, Joseph L.; Edwards, Robert P.; Comerci, John T. [Department of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)

    2014-12-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence

  11. The pitfalls of dosimetric commissioning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Tohyama, Naoki; Kodama, Takashi; Hatano, K.

    2013-01-01

    Intensity modulated radiation therapy (IMRT) allows higher radiation dose to be focused to the target volumes while minimizing the dose to OAR. To start of clinical treatment in IMRTvwe must perform commissioning strictly than 3D-conformal radiotherapy (CRT). In this report, pitfalls of dosimetric commissioning for intensity modulated radiation therapy were reviewed. Multileaf collimator (MLC) offsets and MLC transmissions are important parameters in commissioning of RTPS for IMRT. Correction of depth scaling and fluence scaling is necessary for dose measurement using solid phantom. (author)

  12. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Soendergaard, Jimmi; Hoeyer, Morten; Wright, Pauliina; Grau, Cai; Muren, Ludvig Paul; Petersen, Joergen B.

    2009-01-01

    We have implemented an intensity-modulated radiotherapy (IMRT) protocol for simultaneous irradiation of bladder and lymph nodes. In this report, doses to normal tissue from IMRT and our previous conformal sequential boost technique are compared. Material and methods. Sixteen patients with urinary bladder cancer were treated using a six-field dynamic IMRT beam arrangement delivering 60 Gy to the bladder and 48 Gy to the pelvic lymph nodes. Dose-volume histogram (DVH) parameters for relevant normal tissues (bowel, bowel cavity, rectum and femoral heads) for the IMRT plans were compared with corresponding DVHs from our previous conformal sequential boost technique. Calculations of the generalized Equivalent Uniform Dose (gEUD) were performed for the bowel, with a reference volume of 200 cm 3 and a volume effect parameter k = 4, as well as for the rectum, using k = 12. Acute gastrointestinal (GI) and genitourinary (GU) RTOG toxicity was recorded. Results. Statistical significant normal tissue sparing was obtained by IMRT. For the bowel, a significant reduction was obtained at all dose levels between 20 and 50 Gy (p 3 at 50 Gy, while the gEUD was reduced from 58 to 53 Gy (p 3 at 50 Gy. The rectum gEUD was reduced from 55 to 53 Gy (p < 0.05). For the femoral heads, IMRT reduced the maximum dose as well as the volumes above all dose levels. The rate of acute peak Grade 2 GI RTOG complications was 38% after IMRT. Conclusion. IMRT to the urinary bladder and elective lymph nodes result in considerable normal tissue sparing compared to conformal sequential boost technique. This has paved the way for further studies combining IMRT with image-guided radiotherapy (IGRT) in bladder cancer

  13. Electroactive subwavelength gratings (ESWGs) from conjugated polymers for color and intensity modulation

    Science.gov (United States)

    Bhuvana, Thiruvelu; Kim, Byeonggwan; Yang, Xu; Shin, Haijin; Kim, Eunkyoung

    2012-05-01

    Subwavelength gratings with electroactive polymers such as poly(3-hexylthiophene) (P3HT) and poly(3,4-propylenedioxythiophene-phenylene) (P(ProDOT-Ph)) controlled the color intensity for various visible colors of diffracted light in a single device. Under the illumination of a white light, at a fixed angle of incidence, the color intensity of the diffracted light was reversibly switched from the maximum value down to 15% (85% decrease) by applying -2 to 2 V due to electrochemical (EC) reaction. All spectral colors including red, green, and blue were generated by changing the angle of incidence, and the intensity of each color was modulated electrochemically at a single EC device. With electroactive subwavelength gratings (ESWGs) of P3HT, the maximum modulation of the color intensity was observed in the red-yellow quadrant in the CIE color plot, whereas for the ESWGs of P(ProDOT-Ph), the maximum modulation of the color intensity was observed in the yellow-green and green-blue quadrants. Both ESWGs showed a memory effect, keeping their color and intensity even after power was turned off for longer than 40 hours.Subwavelength gratings with electroactive polymers such as poly(3-hexylthiophene) (P3HT) and poly(3,4-propylenedioxythiophene-phenylene) (P(ProDOT-Ph)) controlled the color intensity for various visible colors of diffracted light in a single device. Under the illumination of a white light, at a fixed angle of incidence, the color intensity of the diffracted light was reversibly switched from the maximum value down to 15% (85% decrease) by applying -2 to 2 V due to electrochemical (EC) reaction. All spectral colors including red, green, and blue were generated by changing the angle of incidence, and the intensity of each color was modulated electrochemically at a single EC device. With electroactive subwavelength gratings (ESWGs) of P3HT, the maximum modulation of the color intensity was observed in the red-yellow quadrant in the CIE color plot, whereas for the

  14. Modulation instability of an intense laser beam in an unmagnetized ...

    Indian Academy of Sciences (India)

    The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and ...

  15. SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J [Purdue University, West Lafayette, IN (United States); Wu, H [IUPUI, Indianapolis, IN (United States); Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boost combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.

  16. Design of a high efficiency 30 kW boost composite converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeokjin [Univ. of Colorado, Boulder, CO (United States); Chen, Hua [Univ. of Colorado, Boulder, CO (United States); Maksimovic, Dragan [Univ. of Colorado, Boulder, CO (United States); Erickson, Robert W. [Univ. of Colorado, Boulder, CO (United States)

    2015-09-20

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module and system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.

  17. Detection of an intense polychromatic gamma beam modulated at 3000 MHz; Detection d'un faisceau intense de gammas polychromatiques module a 3000 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Beil, H; Veyssiere, A; Daujat, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This paper presents two methods of detection of a {gamma} beam modulated at very high frequencies. The intense modulated beam is created by means of Bremsstrahlung in a gold-target, the latter having been placed in the emerging electron beam of the Linac at Saclay. A tentative interpretation of the physical phenomena involved in the detection processes is also given. The empirical data agree reasonably well with numerical evaluations based on well established theoretical concepts concerning these phenomena. (authors) [French] Cet article presente deux facons de detecter un faisceau de {gamma} module a haute frequence. Le faisceau intense de {gamma} est cree par l'impact d'electrons (acceleres dans un accelerateur lineaire) sur une cible en or. Une tentative d'interpretation des phenomenes physiques mis en cause dans le processus de detection est donnee et les valeurs experimentales trouvees s'accordent raisonnablement bien avec les valeurs calculees a partir des considerations theoriques des phenomenes. (auteurs)

  18. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...

    Indian Academy of Sciences (India)

    it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...

  19. Five-Level Current-Source Inverters With Buck–Boost and Inductive-Current Balancing Capabilities

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This paper presents new five-level current-source inverters (CSIs) with voltage/current buck–boost capability, unlike existing five-level CSIs where only voltage–boost operation is supported. The proposed inverters attain self-inductive-currentbalancing per switching cycle at their dc front ends...... without having to include additional balancing hardware or complex control manipulation. The inverters can conveniently be controlled by using the well-established phase-shifted carrier modulation scheme with only two additional linear references and a mapping logic table needed. Existing modulators can...

  20. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-01-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  1. Intensity modulated radiotherapy (IMRT) with concurrent chemotherapy as definitive treatment of locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Roeder, Falk; Nicolay, Nils H; Nguyen, Tam; Saleh-Ebrahimi, Ladan; Askoxylakis, Vasilis; Bostel, Tilman; Zwicker, Felix; Debus, Juergen; Timke, Carmen; Huber, Peter E

    2014-01-01

    To report our experience with increased dose intensity-modulated radiation and concurrent systemic chemotherapy as definitive treatment of locally advanced esophageal cancer. We analyzed 27 consecutive patients with histologically proven esophageal cancer, who were treated with increased-dose IMRT as part of their definitive therapy. The majority of patients had T3/4 and/or N1 disease (93%). Squamous cell carcinoma was the dominating histology (81%). IMRT was delivered in step-and-shoot technique in all patients using an integrated boost concept. The boost volume was covered with total doses of 56-60 Gy (single dose 2-2.14 Gy), while regional nodal regions received 50.4 Gy (single dose 1.8 Gy) in 28 fractions. Concurrent systemic therapy was scheduled in all patients and administered in 26 (96%). 17 patients received additional adjuvant systemic therapy. Loco-regional control, progression-free and overall survival as well as acute and late toxicities were retrospectively analyzed. In addition, quality of life was prospectively assessed according to the EORTC QLQs (QLQ-OG25, QLQ-H&N35 and QLQ-C30). Radiotherapy was completed as planned in all but one patient (96%), and 21 patients received more than 80% of the planned concurrent systemic therapy. We observed ten locoregional failures, transferring into actuarial 1-, 2- and 3-year-locoregional control rates of 77%, 65% and 48%. Seven patients developed distant metastases, mainly to the lung (71%). The actuarial 1-, 2- and 3-year-disease free survival rates were 58%, 48% and 36%, and overall survival rates were 82%, 61% and 56%. The concept was well tolerated, both in the clinical objective examination and also according to the subjective answers to the QLQ questionnaire. 14 patients (52%) suffered from at least one acute CTC grade 3/4 toxicity, mostly hematological side effects or dysphagia. Severe late toxicities were reported in 6 patients (22%), mostly esophageal strictures and ulcerations. Severe side effects to

  2. Energy and intensity modulated radiation therapy with electrons

    OpenAIRE

    Olofsson, Lennart

    2005-01-01

    In recent years intensity modulated radiation therapy with photons (xIMRT) has gained attention due to its ability to reduce the dose in the tissues close to the tumour volume. However, this technique also results in a large low dose volume. Electron IMRT (eIMRT) has the potential to reduce the integral dose to the patient due to the dose fall off in the electron depth dose curves. This dose fall off makes it possible to modulate the dose distribution in the direction of the beam by selecting...

  3. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  4. Acute Toxicity and Tumor Response in Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy With Shortening of the Overall Treatment Time Using Intensity-Modulated Radiation Therapy With Simultaneous Integrated Boost: A Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    But-Hadzic, Jasna, E-mail: jbut@onko-i.si [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Anderluh, Franc [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Brecelj, Erik; Edhemovic, Ibrahim [Division of Surgery, Institute of Oncology, Ljubljana (Slovenia); Secerov-Ermenc, Ajra; Hudej, Rihard; Jeromen, Ana [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Kozelj, Miran; Krebs, Bojan [Division of Surgery, University Medical Centre Maribor, Maribor (Slovenia); Oblak, Irena [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Omejc, Mirko [Division of Surgery, University Medical Centre Lubljana, Ljubljana (Slovenia); Vogrin, Andrej [Division of Diagnostics, Institute of Oncology, Ljubljana (Slovenia); Velenik, Vaneja [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia)

    2016-12-01

    Background and Purpose: This phase 2 study investigated the efficacy and safety of preoperative intensity modulated radiation therapy with a simultaneous integrated boost (IMRT-SIB) without dose escalation, concomitant with standard capecitabine chemotherapy in locally advanced rectal cancer. Methods and Materials: Between January 2014 and March 2015, 51 patients with operable stage II-III rectal adenocarcinoma received preoperative IMRT with pelvic dose of 41.8 Gy and simultaneously delivered 46.2 Gy to T2/3 and 48.4 Gy to T4 tumor in 22 fractions, concomitant with capecitabine, 825 mg/m{sup 2}/12 hours, including weekends. The primary endpoint was pathologic complete response (pCR). Results: Fifty patients completed preoperative treatment according to the protocol, and 47 underwent surgical resection. The sphincter preservation rate for the low rectal tumors was 62%, and the resection margins were free in all but 1 patient. Decrease in tumor and nodal stage was observed in 32 (68%) and 39 (83%) patients, respectively, with pCR achieved in 12 (25.5%) patients. There were only 2 G ≥ 3 acute toxicities, with infectious enterocolitis in 1 patient and dermatitis over the sacral area caused by the bolus effect of the treatment table in the second patient. Conclusions: Preoperative IMRT-SIB without dose escalation is well tolerated, with a low acute toxicity profile, and can achieve a high rate of pCR and downstaging.

  5. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  6. Intensity position modulation for free-space laser communication system

    Science.gov (United States)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  7. Postoperative Intensity Modulated Radiation Therapy in High Risk Prostate Cancer: A Dosimetric Comparison

    International Nuclear Information System (INIS)

    Digesu, Cinzia; Cilla, Savino; De Gaetano, Andrea; Massaccesi, Mariangela; Macchia, Gabriella; Ippolito, Edy; Deodato, Francesco; Panunzi, Simona; Iapalucci, Chiara; Mattiucci, Gian Carlo; D'Angelo, Elisa; Padula, Gilbert D.A.; Valentini, Vincenzo; Cellini, Numa

    2011-01-01

    The aim of this study was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal technique (3D-CRT), with respect to target coverage and irradiation of organs at risk for high dose postoperative radiotherapy (PORT) of the prostate fossa. 3D-CRT and IMRT treatment plans were compared with respect to dose to the rectum and bladder. The dosimetric comparison was carried out in 15 patients considering 2 different scenarios: (1) exclusive prostate fossa irradiation, and (2) pelvic node irradiation followed by a boost on the prostate fossa. In scenario (1), a 3D-CRT plan (box technique) and an IMRT plan were calculated and compared for each patient. In scenario (2), 3 treatment plans were calculated and compared for each patient: (a) 3D-CRT box technique for both pelvic (prophylactic nodal irradiation) and prostate fossa irradiation (3D-CRT only); (b) 3D-CRT box technique for pelvic irradiation followed by an IMRT boost to the prostatic fossa (hybrid 3D-CRT and IMRT); and (c) IMRT for both pelvic and prostate fossa irradiation (IMRT only). For exclusive prostate fossa irradiation, IMRT significantly reduced the dose to the rectum (lower Dmean, V50%, V75%, V90%, V100%, EUD, and NTCP) and the bladder (lower Dmean, V50%, V90%, EUD and NTCP). When prophylactic irradiation of the pelvis was also considered, plan C (IMRT only) performed better than plan B (hybrid 3D-CRT and IMRT) as respect to both rectum and bladder irradiation (reduction of Dmean, V50%, V75%, V90%, equivalent uniform dose [EUD], and normal tissue complication probability [NTCP]). Plan (b) (hybrid 3D-CRT and IMRT) performed better than plan (a) (3D-CRT only) with respect to dose to the rectum (lower Dmean, V75%, V90%, V100%, EUD, and NTCP) and the bladder (Dmean, EUD, and NTCP). Postoperative IMRT in prostate cancer significantly reduces rectum and bladder irradiation compared with 3D-CRT.

  8. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  9. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David

    2003-01-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations

  10. Subcarrier intensity modulation for MIMO visible light communications

    Science.gov (United States)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  11. Quality of Life in Women Undergoing Breast Irradiation in a Randomized, Controlled Clinical Trial Evaluating Different Tumor Bed Boost Fractionations

    International Nuclear Information System (INIS)

    Finkel, Morgan A.; Cooper, Benjamin T.; Li, Xiaochun; Fenton-Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2016-01-01

    Purpose: To identify differences in breast cancer patient-reported quality of life (QOL) between 2 radiation tumor bed boost dose regimens. Methods and Materials: Four hundred patients with stage 0, I, or II breast cancer who underwent segmental mastectomy with sentinel node biopsy and/or axillary node dissection were treated with either a daily or weekly boost. Patients were treated prone to 40.5 Gy/15 fractions to the whole breast, 5 days per week. Patients were randomized to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy on Friday. Patients completed 6 validated QOL survey instruments at baseline, last week of treatment (3 weeks), 45-60 days from the completion of radiation treatment, and at 2-year follow-up. Results: There were no statistically significance differences in responses to the 6 QOL instruments between the daily and weekly radiation boost regimens, even after adjustment for important covariates. However, several changes in responses over time occurred in both arms, including worsening functional status, cosmetic status, and breast-specific pain at the end of treatment as compared with before and 45 to 60 days after the conclusion of treatment. Conclusions: Whole-breast, prone intensity modulated radiation has similar outcomes in QOL measures whether given with a daily or weekly boost. This trial has generated the foundation for a current study of weekly versus daily radiation boost in women with early breast cancer in which 3-dimensional conformal radiation is allowed as a prospective stratification factor.

  12. Quality of Life in Women Undergoing Breast Irradiation in a Randomized, Controlled Clinical Trial Evaluating Different Tumor Bed Boost Fractionations

    Energy Technology Data Exchange (ETDEWEB)

    Finkel, Morgan A.; Cooper, Benjamin T. [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Li, Xiaochun [Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York (United States); Fenton-Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: formenti@med.cornell.edu [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2016-06-01

    Purpose: To identify differences in breast cancer patient-reported quality of life (QOL) between 2 radiation tumor bed boost dose regimens. Methods and Materials: Four hundred patients with stage 0, I, or II breast cancer who underwent segmental mastectomy with sentinel node biopsy and/or axillary node dissection were treated with either a daily or weekly boost. Patients were treated prone to 40.5 Gy/15 fractions to the whole breast, 5 days per week. Patients were randomized to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy on Friday. Patients completed 6 validated QOL survey instruments at baseline, last week of treatment (3 weeks), 45-60 days from the completion of radiation treatment, and at 2-year follow-up. Results: There were no statistically significance differences in responses to the 6 QOL instruments between the daily and weekly radiation boost regimens, even after adjustment for important covariates. However, several changes in responses over time occurred in both arms, including worsening functional status, cosmetic status, and breast-specific pain at the end of treatment as compared with before and 45 to 60 days after the conclusion of treatment. Conclusions: Whole-breast, prone intensity modulated radiation has similar outcomes in QOL measures whether given with a daily or weekly boost. This trial has generated the foundation for a current study of weekly versus daily radiation boost in women with early breast cancer in which 3-dimensional conformal radiation is allowed as a prospective stratification factor.

  13. Fixed or adapted conditioning intensity for repeated conditioned pain modulation.

    Science.gov (United States)

    Hoegh, M; Petersen, K K; Graven-Nielsen, T

    2017-12-29

    Aims Conditioned pain modulation (CPM) is used to assess descending pain modulation through a test stimulation (TS) and a conditioning stimulation (CS). Due to potential carry-over effects, sequential CPM paradigms might alter the intensity of the CS, which potentially can alter the CPM-effect. This study aimed to investigate the difference between a fixed and adaptive CS intensity on CPM-effect. Methods On the dominant leg of 20 healthy subjects the cuff pressure detection threshold (PDT) was recorded as TS and the pain tolerance threshold (PTT) was assessed on the non-dominant leg for estimating the CS. The difference in PDT before and during CS defined the CPM-effect. The CPM-effect was assessed four times using a CS with intensities of 70% of baseline PTT (fixed) or 70% of PTT measured throughout the session (adaptive). Pain intensity of the conditioning stimulus was assessed on a numeric rating scale (NRS). Data were analyzed with repeated-measures ANOVA. Results No difference was found comparing the four PDTs assessed before CSs for the fixed and the adaptive paradigms. The CS pressure intensity for the adaptive paradigm was increasing during the four repeated assessments (P CPM-effect was higher using the fixed condition compared with the adaptive condition (P CPM paradigms using a fixed conditioning stimulus produced an increased CPM-effect compared with adaptive and increasing conditioning intensities.

  14. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Karthick Raj [Research and Development Centre, Bharathiar University, Tamilnadu (India); Upadhayay, Sagar [Radiation Oncology, Kathmandu Cancer Center, Bhaktapur (Nepal); Das, K. J. Maria [Dept. of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh (India)

    2017-03-15

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation (x¯x¯ ± σx¯σx¯) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  15. Quality assurance of intensity-modulated radiation therapy.

    Science.gov (United States)

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  16. Quality Assurance of Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery

  17. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT) in combination with cetuximab and chemotherapy: the REACH protocol

    International Nuclear Information System (INIS)

    Habl, Gregor; Münter, Marc W; Jensen, Alexandra D; Potthoff, Karin; Uhl, Matthias; Hof, Holger; Hajda, Jacek; Simon, Christian; Debus, Jürgen; Krempien, Robert

    2010-01-01

    Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival), combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux ® ). Radiation therapy (RT) is carried out as intensity-modulated RT (IMRT) to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues. The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU) and the monoclonal epidermal growth factor-receptor (EGFR) antibody cetuximab (Erbitux ® ) as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx. Patients receive weekly chemotherapy infusions in the 1 st and 5 th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16) to a total dose of 69,9 Gy. Primary endpoint of the trial is local-regional control (LRC). Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer. ISRCTN87356938

  18. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT in combination with cetuximab and chemotherapy: the REACH protocol

    Directory of Open Access Journals (Sweden)

    Simon Christian

    2010-11-01

    Full Text Available Abstract Background Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival, combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux®. Radiation therapy (RT is carried out as intensity-modulated RT (IMRT to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues. Methods/Design The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU and the monoclonal epidermal growth factor-receptor (EGFR antibody cetuximab (Erbitux® as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx. Patients receive weekly chemotherapy infusions in the 1st and 5th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16 to a total dose of 69,9 Gy. Discussion Primary endpoint of the trial is local-regional control (LRC. Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer. Trial registration ISRCTN87356938

  19. A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events.

    Science.gov (United States)

    Songthong, Anussara P; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit

    2015-08-08

    To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2 Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2 Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12 Gy and 1.7 Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3-5 acute toxicities were mucositis (15.4% vs 13.6%, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6% vs 9.1%, p = 1.000) and xerostomia (9.6% vs 7.6%, p = 0.748). During the adjuvant chemotherapy period, 25.6% and 32.7% experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8% and 95.5% in SEQ-IMRT and 98% and 90.2% in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising.

  20. A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events

    International Nuclear Information System (INIS)

    Songthong, Anussara P.; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit

    2015-01-01

    To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12Gy and 1.7Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3–5 acute toxicities were mucositis (15.4 % vs 13.6 %, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6 % vs 9.1 %, p = 1.000) and xerostomia (9.6 % vs 7.6 %, p = 0.748). During the adjuvant chemotherapy period, 25.6 % and 32.7 % experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8 % and 95.5 % in SEQ-IMRT and 98 % and 90.2 % in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising

  1. Predicting the effects of organ motion on the dose delivered by dynamic intensity modulation

    International Nuclear Information System (INIS)

    Yu, C.X.; Jaffray, David; Martinez, A.A.; Wong, J.W.

    1997-01-01

    Purpose: Computer-optimized treatment plans, aimed to enhance tumor control and reduce normal tissue complication, generally require non-uniform beam intensities. One of the techniques for delivering intensity-modulated beams is the use of dynamic multileaf collimation, where the beam aperture and field shape change during irradiation. When intensity-modulated beams are delivered with dynamic collimation, intra-treatment organ motion may not only cause geometric misses at the field boundaries but also create hot and cold spots in the target. The mechanism for producing such effects has not been well understood. This study analyzes the dosimetric effects of intra-treatment organ motion on dynamic intensity modulation. A numerical method is developed for predicting the intensity distributions in a moving target before dose is delivered with dynamic intensity modulation. Material and Methods: In the numerical algorithm, the change in position and shape of the beam aperture with time were modeled as a three-dimensional 'tunnel', with the shape of the field aperture described in the x-y plane and its temporal position shown in the z-dimension. A point in the target had to be in the tunnel in order to receive irradiation and the dose to the point was proportional to the amount of time that this point stayed in the tunnel. Since each point in the target were analyzed separately, non-rigid body variations could easily be handled. The dependency of the dose variations on all parameters involved, including the speed of collimator motion, the frequency and amplitude of the target motion, and the size of the field segments, was analyzed. The algorithm was verified by irradiating moving phantoms with beams of dynamically modulated intensities. Predictions were also made for a treatment of a thoracic tumor using a dynamic wedge. The changes of target position with time were based on the MRI images of the chest region acquired using fast MRI scans in a cine fashion for a duration

  2. Preliminary results of a phase I/II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, Sang-wook; Back, Geum Mun; Yi, Byong Yong; Choi, Eun Kyung; Ahn, Seung Do; Shin, Seong Soo; Kim, Jung-hun; Kim, Sang Yoon; Lee, Bong-Jae; Nam, Soon Yuhl; Choi, Seung-Ho; Kim, Seung-Bae; Park, Jin-hong; Lee, Kang Kyoo; Park, Sung Ho; Kim, Jong Hoon

    2006-01-01

    Purpose: To present preliminary results of intensity-modulated radiotherapy (IMRT) with the simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: Twenty patients who underwent IMRT for nondisseminated NPC at the Asan Medical Center between September 2001 and December 2003 were prospectively evaluated. Intensity-modulated radiotherapy was delivered with the 'step and shoot' SMART technique at prescribed doses of 72 Gy (2.4 Gy/day) to the gross tumor volume, 60 Gy (2 Gy/day) to the clinical target volume and metastatic nodal station, and 46 Gy (2 Gy/day) to the clinically negative neck region. Eighteen patients also received cisplatin once per week. Results: The median follow-up period was 27 months. Nineteen patients completed the treatment without interruption; the remaining patient interrupted treatment for 2 weeks owing to severe pharyngitis and malnutrition. Five patients (25%) had Radiation Therapy Oncology Group Grade 3 mucositis, whereas 9 (45%) had Grade 3 pharyngitis. Seven patients (35%) lost more than 10% of their pretreatment weight, whereas 11 (55%) required intravenous fluids and/or tube feeding. There was no Grade 3 or 4 xerostomia. All patients showed complete response. Two patients had distant metastases and locoregional recurrence, respectively. Conclusion: Intensity-modulated radiotherapy with the SMART boost technique allows parotid sparing, as shown clinically and by dosimetry, and might also be more effective biologically. A larger population of patients and a longer follow-up period are needed to evaluate ultimate tumor control and late toxicity

  3. Pump-To-Signal Intensity Modulation Transfer Characteristics in FOPAs: Modulation Frequency and Saturation Effect

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Lund-Hansen, Toke

    2012-01-01

    This paper reports a comprehensive study of pump- to-signal intensity modulation transfer (IMT) in single-pump fiber optic parametric amplifiers (FOPAs). In particular, the IMT is studied for the first time for high-frequency fluctuations of the pump as well as in the saturated gain regime. The IMT...... cut-off frequency in typical single-pump FOPAs is around 100–200 GHz. The possibilities to shift this frequency based on dispersion and nonlinearities involved in the parametric gain are discussed. The severe IMT to the signal at low modulation frequencies can be suppressed by more than 50...

  4. Measuring performance in health care: case-mix adjustment by boosted decision trees.

    Science.gov (United States)

    Neumann, Anke; Holstein, Josiane; Le Gall, Jean-Roger; Lepage, Eric

    2004-10-01

    The purpose of this paper is to investigate the suitability of boosted decision trees for the case-mix adjustment involved in comparing the performance of various health care entities. First, we present logistic regression, decision trees, and boosted decision trees in a unified framework. Second, we study in detail their application for two common performance indicators, the mortality rate in intensive care and the rate of potentially avoidable hospital readmissions. For both examples the technique of boosting decision trees outperformed standard prognostic models, in particular linear logistic regression models, with regard to predictive power. On the other hand, boosting decision trees was computationally demanding and the resulting models were rather complex and needed additional tools for interpretation. Boosting decision trees represents a powerful tool for case-mix adjustment in health care performance measurement. Depending on the specific priorities set in each context, the gain in predictive power might compensate for the inconvenience in the use of boosted decision trees.

  5. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Flentje, Michael; Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-01-01

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade ≥ 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade ≥ 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade ≥ 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  6. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flentje, Michael [Dept. of Radiotherapy, Univ. Hospital Wuerzburg (Germany); Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-10-15

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade {>=} 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade {>=} 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade {>=} 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  7. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  8. Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geier, M.; Astner, S.T.; Duma, M.N.; Putzhammer, J.; Winkler, C.; Molls, M.; Geinitz, H. [Technische Univ. Muenchen (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie; Jacob, V. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde; Nieder, C. [Nordland Hospital, Bodoe (Norway). Dept. of Oncology and Palliative Care; Tromsoe Univ. (Norway). Inst. of Clinical Medicine

    2012-05-15

    The goal of this work was to assess the feasibility of moderately hypofractionated simultaneous integrated-boost intensity-modulated radiotherapy (SIB-IMRT) with helical tomotherapy in patients with localized prostate cancer regarding acute side effects and dose-volume histogram data (DVH data). Acute side effects and DVH data were evaluated of the first 40 intermediate risk prostate cancer patients treated with a definitive daily image-guided SIB-IMRT protocol via helical tomotherapy in our department. The planning target volume including the prostate and the base of the seminal vesicles with safety margins was treated with 70 Gy in 35 fractions. The boost volume containing the prostate and 3 mm safety margins (5 mm craniocaudal) was treated as SIB to a total dose of 76 Gy (2.17 Gy per fraction). Planning constraints for the anterior rectal wall were set in order not to exceed the dose of 76 Gy prescribed to the boost volume. Acute toxicity was evaluated prospectively using a modified CTCAE (Common Terminology Criteria for Adverse Events) score. SIB-IMRT allowed good rectal sparing, although the full boost dose was permitted to the anterior rectal wall. Median rectum dose was 38 Gy in all patients and the median volumes receiving at least 65 Gy (V65), 70 Gy (V70), and 75 Gy (V75) were 13.5%, 9%, and 3%, respectively. No grade 4 toxicity was observed. Acute grade 3 toxicity was observed in 20% of patients involving nocturia only. Grade 2 acute intestinal and urological side effects occurred in 25% and 57.5%, respectively. No correlation was found between acute toxicity and the DVH data. This institutional SIB-IMRT protocol using daily image guidance as a precondition for smaller safety margins allows dose escalation to the prostate without increasing acute toxicity. (orig.)

  9. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  10. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  11. Diode-Assisted Buck-Boost Voltage-Source Inverters

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus

    2009-01-01

    , a number of diode-assisted inverter variants can be designed with each having its own operational principle and voltage gain expression. For controlling them, a generic modulation scheme that can be used for controlling all diode-assisted variants with minimized harmonic distortion and component stress......This paper proposes a number of diode-assisted buck-boost voltage-source inverters with a unique X-shaped diode-capacitor network inserted between the inverter circuitry and dc source for producing a voltage gain that is comparatively higher than those of other buck-boost conversion techniques....... Using the diode-assisted network, the proposed inverters can naturally configure themselves to perform capacitive charging in parallel and discharging in series to give a higher voltage multiplication factor without compromising waveform quality. In addition, by adopting different front-end circuitries...

  12. Role of beam orientation optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Li, Jonathan G.; Boyer, Arthur L.; Hancock, Steven L.; Le, Quynh-Thu; Donaldson, Sarah S.; Lei Xing

    2001-01-01

    Purpose: To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. Methods and Materials: A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. Results: For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. Conclusion: The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans

  13. Dosimetric Uncertainties in Verification of Intensity Modulated Photon Beams

    International Nuclear Information System (INIS)

    Jurkovic, S.

    2010-01-01

    The doctoral thesis presents method for the calculation of the compensators' shape to modulate linear accelerators' beams. Characteristic of the method is more strict calculation of the scattered radiation in beams with an inhomogeneous cross-section than it was before. Method could be applied in various clinical situations. It's dosimetric verification was made in phantoms, measuring dose distributions using ionization chambers as well as radiographic film. Therefore, ionization chambers were used for the evaluation of modulator shape and film was used for the evaluation of two-dimensional dose distributions. It is well known that dosimetry of the intensity modulated photon beams is rather complicated regarding inhomogeneity of the dose distribution. The main reason for that is the beam modulator which changes spectral distribution of the beam. Possibility of use different types of detectors for the measurements of dose distributions in modulated photon beams and their accuracy were examined. Small volume ionization chambers, different diodes and amorphus silicon detector and radigraphic film were used. Measured dose distributions were compared between each other as well as with distributions simulated using Monte Carlo particle transport algorithm. In this way the most accurate method for the verification of modulate photon beams is suggested. (author)

  14. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  15. Intensity modulated conformal radiotherapy

    International Nuclear Information System (INIS)

    Noel, Georges; Moty-Monnereau, Celine; Meyer, Aurelia; David, Pauline; Pages, Frederique; Muller, Felix; Lee-Robin, Sun Hae; David, Denis Jean

    2006-12-01

    This publication reports the assessment of intensity-modulated conformal radiotherapy (IMCR). This assessment is based on a literature survey which focussed on indications, efficiency and safety on the short term, on the risk of radio-induced cancer on the long term, on the role in the therapeutic strategy, on the conditions of execution, on the impact on morbidity-mortality and life quality, on the impact on the health system and on public health policies and program. This assessment is also based on the opinion of a group of experts regarding the technical benefit of IMCR, its indications depending on the cancer type, safety in terms of radio-induced cancers, and conditions of execution. Before this assessment, the report thus indicates indications for which the use of IMCR can be considered as sufficient or not determined. It also proposes a technical description of IMCR and helical tomo-therapy, discusses the use of this technique for various pathologies or tumours, analyses the present situation of care in France, and comments the identification of this technique in foreign classifications

  16. Description and operation of the LEDA beam-position/intensity measurement module

    International Nuclear Information System (INIS)

    Rose, C.R.; Stettler, M.W.

    1997-01-01

    This paper describes the specification, design and preliminary operation of the beam-position/intensity measurement module being built for the Low Energy Demonstration Accelerator (LEDA) and Accelerator Production of Tritium (APT) projects at Los Alamos National Laboratory. The module, based on the VXI footprint, is divided into three sections: first, the analog front-end which consists of logarithmic amplifiers, anti-alias filters, and digitizers; second, the digital-to-analog section for monitoring signals on the front panel; and third, the DSP, error correction, and VXI-interface section. Beam position is calculated based on the log-ratio transfer function. The module has four, 2-MHz, IF inputs suitable for two-axis position measurements. It has outputs in both digital and analog format for x- and y-position and beam intensity. Real-time error-correction is performed on the four input signals after they are digitized and before calculating the beam position to compensate for drift, offsets, gain non-linearities, and other systematic errors. This paper also describes how the on-line error-correction is implemented digitally and algorithmically

  17. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    International Nuclear Information System (INIS)

    Vordermark, Dirk

    2006-01-01

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 μg/l in 3-DC boost patients and 8.1 μg/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles

  18. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  19. Intensity modulated radiation therapy: Analysis of patient specific quality control results, experience of Rene-Gauducheau Centre

    International Nuclear Information System (INIS)

    Chiavassa, S.; Brunet, G.; Gaudaire, S.; Munos-Llagostera, C.; Delpon, G.; Lisbona, A.

    2011-01-01

    Purpose. - Systematic verifications of patient's specific intensity-modulated radiation treatments are usually performed with absolute and relative measurements. The results constitute a database which allows the identification of potential systematic errors. Material and methods. - We analyzed 1270 beams distributed in 232 treatment plans. Step-and-shoot intensity-modulated radiation treatments were performed with a Clinac (6 and 23 MV) and sliding window intensity-modulated radiation treatments with a Novalis (6 MV). Results. - The distributions obtained do not show systematic error and all the control meet specified tolerances. Conclusion. - These results allow us to reduce controls specific patients for treatments performed under identical conditions (location, optimization and segmentation parameters of treatment planning system, etc.). (authors)

  20. Normalization of prostate specific antigen in patients treated with intensity modulated radiotherapy for clinically localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Schmitz Matthew D

    2010-09-01

    Full Text Available Abstract Background The purpose of this study was to determine the expected time to prostate specific antigen (PSA normalization with or without neoadjuvant androgen deprivation (NAAD therapy after treatment with intensity modulated radiotherapy (IMRT for patients with clinically localized prostate cancer. Methods A retrospective cohort research design was used. A total of 133 patients with clinical stage T1c to T3b prostate cancer (2002 AJCC staging treated in a community setting between January 2002 and July 2005 were reviewed for time to PSA normalization using 1 ng/mL and 2 ng/mL as criteria. All patients received IMRT as part of their management. Times to PSA normalization were calculated using the Kaplan-Meier method. Significance was assessed at p Results Fifty-six of the 133 patients received NAAD (42.1%. Thirty-one patients (23.8% received radiation to a limited pelvic field followed by an IMRT boost, while 99 patients received IMRT alone (76.2%. The times to serum PSA normalization 0.05, and 303 ± 24 and 405 ± 46 days, respectively, for PSA Conclusions Use of NAAD in conjunction with IMRT leads to a significantly shortened time to normalization of serum PSA

  1. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)

    2006-09-15

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  2. Accommodating practical constraints for intensity modulated radiation therapy by means of compensators

    International Nuclear Information System (INIS)

    Meyer, Juergen

    2002-01-01

    The thesis deals with the practical implementation of intensity modulated radiation therapy (IMRT) generated by means of patient specific metal compensators. An elaborate comparison between several compensator-machining techniques, with respect to their suitability for production within a hospital workshop, is presented. The limitations associated with the selected compensator manufacturing technique are identified and implemented as constraints in an existing inverse treatment-planning algorithm. In order to obtain the profile of a compensator, which produces a desired intensity distribution, inverse modeling of the radiation attenuation within the compensator is required. Two novel and independent approaches, based on deconvolution and system identification, are proposed to accomplish this. To compare the approach with the 'rival' state of the art beam modulation technique, a theoretical and experimental examination of the modulated fields generated by manufactured compensators and multileaf collimators is presented. This comparison focused on the achievable resolution of the intensity modulated beams in lateral and longitudinal directions. To take into account the characteristics of a clinical environment the suitability of the most common commercially available treatment couch systems for IMRT treatments is studied. An original rule based advisory system is developed to alert the operator of any potential collision of the beam with the movable supporting structures of the treatment couch. The system is capable of finding alternative positions for the supporting frames and, if necessary, can suggest alternative beam directions. Finally, a head and neck phantom is designed for gel dosimetry to assess IMRT treatment delivery techniques. The phantom is based on a simplistic but realistic design and contains the main anatomical features

  3. A more general expression for the average X-ray diffraction intensity of crystals with an incommensurate one-dimensional modulation

    International Nuclear Information System (INIS)

    Lam, E.J.W.; Beurskens, P.T.; Smaalen, S. van

    1994-01-01

    Statistical methods are used to derive an expression for the average X-ray diffraction intensity, as a function of (sinθ)/λ, of crystals with an incommensurate one-dimensional modulation. Displacive and density modulations are considered, as well as a combination of these two. The atomic modulation functions are given by truncated Fourier series that may contain higher-order harmonics. The resulting expression for the average X-ray diffraction intensity is valid for main reflections and low-order satellite reflections. The modulation of individual atoms is taken into account by the introduction of overall modulation amplitudes. The accuracy of this expression for the average X-ray diffraction intensity is illustrated by comparison with model structures. A definition is presented for normalized structure factors of crystals with an incommensurate one-dimensional modulation that can be used in direct-methods procedures for solving the phase problem in X-ray crystallography. A numerical fitting procedure is described that can extract a scale factor, an overall temperature parameter and overall modulation amplitudes from experimental reflection intensities. (orig.)

  4. Optical Intensity Modulation in an LiNbO3 Slab-Coupled Waveguide

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Optical intensity modulation has been demonstrated through switching the optical beam between the main core waveguide and a closely attached leaky slab waveguide by applying a low-voltage electrical field. Theory for simulating such an LiNbO3 slab-coupled waveguide structure was suggested, and the result indicates the possibility of making the spatial guiding mode large, circular and symmetric, which further allows the potential to significantly reduce the coupling losses with adjacent lasers and optical networks. Optical intensity modulation using electro-optic effect was experimentally demonstrated in a 5 cm long waveguide fabricated by using a procedure of soft proton exchange and then an overgrowth of thin LN film on top of a c-cut LiNbO3 wafer.

  5. Comparison of simple and complex liver intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lee, Mark T; Purdie, Thomas G; Eccles, Cynthia L; Sharpe, Michael B; Dawson, Laura A

    2010-01-01

    Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence. An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans. Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001). Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity

  6. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  7. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  8. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  9. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    Directory of Open Access Journals (Sweden)

    T. Ajith Bosco Raj

    2014-01-01

    Full Text Available The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level inverter for a grid-connected photovoltaic system. The primary goal of these systems is to increase the energy injected to the grid by keeping track of the maximum power point of the panel, by reducing the switching frequency, and by providing high reliability. The maximum power has been tracked experimentally. It is compared with parallel boost converter. Also this model is based on mathematical equations and is described through an equivalent circuit including a PV source with MPPT, a diode, a series resistor, a shunt resistor, and dual boost converter with active snubber circuit. This model can extract PV power and boost by using dual boost converter with active snubber. By using this method the overall system efficiency is improved thereby reducing the switching losses and cost.

  10. The influence of the boost in breast-conserving therapy on cosmetic outcome in the EORTC 'boost versus no boost' trial

    International Nuclear Information System (INIS)

    Vrieling, Conny; Collette, Laurence; Fourquet, Alain; Hoogenraad, Willem J.; Horiot, Jean-Claude; Jager, Jos J.; Pierart, Marianne; Poortmans, Philip M.; Struikmans, Henk; Hulst, Marleen van der; Schueren, Emmanuel van der; Bartelink, Harry

    1999-01-01

    Purpose: To evaluate the influence of a radiotherapy boost on the cosmetic outcome after 3 years of follow-up in patients treated with breast-conserving therapy (BCT). Methods and Materials: In EORTC trial 22881/10882, 5569 Stage I and II breast cancer patients were treated with tumorectomy and axillary dissection, followed by tangential irradiation of the breast to a dose of 50 Gy in 5 weeks, at 2 Gy per fraction. Patients having a microscopically complete tumor excision were randomized between no boost and a boost of 16 Gy. The cosmetic outcome was evaluated by a panel, scoring photographs of 731 patients taken soon after surgery and 3 years later, and by digitizer measurements, measuring the displacement of the nipple of 3000 patients postoperatively and of 1141 patients 3 years later. Results: There was no difference in the cosmetic outcome between the two treatment arms after surgery, before the start of radiotherapy. At 3-year follow-up, both the panel evaluation and the digitizer measurements showed that the boost had a significant adverse effect on the cosmetic result. The panel evaluation at 3 years showed that 86% of patients in the no-boost group had an excellent or good global result, compared to 71% of patients in the boost group (p = 0.0001). The digitizer measurements at 3 years showed a relative breast retraction assessment (pBRA) of 7.6 pBRA in the no-boost group, compared to 8.3 pBRA in the boost group, indicating a worse cosmetic result in the boost group at follow-up (p = 0.04). Conclusions: These results showed that a boost dose of 16 Gy had a negative, but limited, impact on the cosmetic outcome after 3 years

  11. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Sio, Terence T. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Lin, Huei-Kai; Shi, Qiuling [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cleeland, Charles S. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, J. Jack; Hernandez, Mike [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mendoza, Tito R. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Xin Shelley [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  12. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    International Nuclear Information System (INIS)

    Sio, Terence T.; Lin, Huei-Kai; Shi, Qiuling; Gunn, G. Brandon; Cleeland, Charles S.; Lee, J. Jack; Hernandez, Mike; Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David; Mendoza, Tito R.; Mohan, Radhe; Wang, Xin Shelley; Frank, Steven J.

    2016-01-01

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  13. The field-matching problem as it applies to the peacock three dimensional conformal system for intensity modulation

    International Nuclear Information System (INIS)

    Carol, Mark; Grant, Walter H.; Bleier, Alan R.; Kania, Alex A.; Targovnik, Harris S.; Butler, E. Brian; Shiao, W. Woo

    1996-01-01

    Purpose: Intensity modulated beam systems have been developed as a means of creating a high-dose region that closely conforms to the prescribed target volume while also providing specific sparing of organs at risk within complex treatment geometries. The slice-by-slice treatment paradigm used by one such system for delivering intensity modulated fields introduces regions of dose nonuniformity where each pair of treatment slices abut. A study was designed to evaluate whether or not the magnitude of the nonuniformity that results from this segmental delivery paradigm is significant relative to the overall dose nonuniformity present in the intensity modulation technique itself. An assessment was also made as to the increase in nonuniformity that would result if errors were made in indexing during treatment delivery. Methods and Materials: Treatment plans were generated to simulate correctly indexed and incorrectly indexed treatments of 4, 10, and 18 cm diameter targets. Indexing errors of from 0.1 to 2.0 mm were studied. Treatment plans were also generated for targets of the same diameter but of lengths that did not require indexing of the treatment couch. Results: The nonuniformity that results from the intensity modulation delivery paradigm is 11-16% for targets where indexing is not required. Correct indexing of the couch adds an additional 1-2% in nonuniformity. However, a couch indexing error of as little as 1 mm can increase the total nonuniformity to as much as 25%. All increases in nonuniformity from indexing are essentially independent of target diameter. Conclusions: The dose nonuniformity introduced by the segmental strip delivery paradigm is small relative to the nonuniformity present in the intensity modulation paradigm itself. A positioning accuracy of better than 0.5 mm appears to be required when implementing segmental intensity modulated treatment plans

  14. IMRT With Simultaneous Integrated Boost and Concurrent Chemotherapy for Locoregionally Advanced Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Montejo, Michael E.; Shrieve, Dennis C. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah (United States); Bentz, Brandon G.; Hunt, Jason P.; Buchman, Luke O. [Division of Otolaryngology-Head Neck Surgery, Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah (United States); Agarwal, Neeraj [Department of Internal Medicine, Oncology Division, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah (United States); Hitchcock, Ying J., E-mail: ying.hitchcock@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah (United States)

    2011-12-01

    Purpose: To evaluate the efficacy and toxicity of accelerated radiotherapy with concurrent chemotherapy in advanced head-and-neck squamous cell carcinoma. Methods and Materials: Between April 2003 and May 2008, 43 consecutive patients with advanced head-and-neck squamous cell carcinoma received accelerated chemoradiation with concurrent cisplatin or cetuximab. The doses for intensity-modulated radiotherapy with simultaneous integrated boost were 67.5, 60.0, and 54 Gy in 30 daily fractions of 2.25, 2.0, and 1.8 Gy to the planning target volumes for gross disease, high-risk nodes, and low-risk nodes, respectively. Results: Of the patients, 90.7% completed chemoradiotherapy as prescribed. The median treatment duration was 43 days (range, 38-55 days). The complete response rate was 74.4%. With median follow-up of 36.7 months (range, 16.8-78.1 months) in living patients, the estimated 1-, 2-, and 5-year locoregional control, overall survival, and disease-free survival rates were 82%, 82%, and 82%; 73%, 65%, and 61%; and 73%, 73%, and 70%, respectively. One treatment-related death occurred from renal failure. Grade 3 mucositis and dermatitis occurred in 13 patients (30.2%) and 3 patients (6.9%), respectively. Grade 2 xerostomia occurred in 12 patients (27.9%). In patients with adequate follow-up, 82% were feeding tube free by 6 months after therapy; 13% remained feeding tube dependent at 1 year. Grade 3 soft-tissue fibrosis, esophageal stricture, osteoradionecrosis, and trismus occurred in 3 patients (6.9%), 5 patients (11.6%), 1 patient (2.3%), and 3 patients (6.9%), respectively. Conclusions: Our results show that intensity-modulated radiotherapy with simultaneous integrated boost with concurrent chemotherapy improved local and regional control. Acute and late toxicities were tolerable and acceptable. A prospective trial of this fractionation regimen is necessary for further assessment of its efficacy and toxicity compared with other approaches.

  15. IMRT With Simultaneous Integrated Boost and Concurrent Chemotherapy for Locoregionally Advanced Squamous Cell Carcinoma of the Head and Neck

    International Nuclear Information System (INIS)

    Montejo, Michael E.; Shrieve, Dennis C.; Bentz, Brandon G.; Hunt, Jason P.; Buchman, Luke O.; Agarwal, Neeraj; Hitchcock, Ying J.

    2011-01-01

    Purpose: To evaluate the efficacy and toxicity of accelerated radiotherapy with concurrent chemotherapy in advanced head-and-neck squamous cell carcinoma. Methods and Materials: Between April 2003 and May 2008, 43 consecutive patients with advanced head-and-neck squamous cell carcinoma received accelerated chemoradiation with concurrent cisplatin or cetuximab. The doses for intensity-modulated radiotherapy with simultaneous integrated boost were 67.5, 60.0, and 54 Gy in 30 daily fractions of 2.25, 2.0, and 1.8 Gy to the planning target volumes for gross disease, high-risk nodes, and low-risk nodes, respectively. Results: Of the patients, 90.7% completed chemoradiotherapy as prescribed. The median treatment duration was 43 days (range, 38–55 days). The complete response rate was 74.4%. With median follow-up of 36.7 months (range, 16.8–78.1 months) in living patients, the estimated 1-, 2-, and 5-year locoregional control, overall survival, and disease-free survival rates were 82%, 82%, and 82%; 73%, 65%, and 61%; and 73%, 73%, and 70%, respectively. One treatment-related death occurred from renal failure. Grade 3 mucositis and dermatitis occurred in 13 patients (30.2%) and 3 patients (6.9%), respectively. Grade 2 xerostomia occurred in 12 patients (27.9%). In patients with adequate follow-up, 82% were feeding tube free by 6 months after therapy; 13% remained feeding tube dependent at 1 year. Grade 3 soft-tissue fibrosis, esophageal stricture, osteoradionecrosis, and trismus occurred in 3 patients (6.9%), 5 patients (11.6%), 1 patient (2.3%), and 3 patients (6.9%), respectively. Conclusions: Our results show that intensity-modulated radiotherapy with simultaneous integrated boost with concurrent chemotherapy improved local and regional control. Acute and late toxicities were tolerable and acceptable. A prospective trial of this fractionation regimen is necessary for further assessment of its efficacy and toxicity compared with other approaches.

  16. LDA boost classification: boosting by topics

    Science.gov (United States)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  17. Boost.Unicode

    OpenAIRE

    Wien, Erik; Gigstad, Lars Erik

    2005-01-01

    The project has resulted in a Unicode string library for C++ that abstracts away the complexity of working with Unicode text. The idea behind the project originated from the Boost community's developer mailings lists, and is developed with inclusion into the Boost library collection in mind.

  18. Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well

    International Nuclear Information System (INIS)

    Ungan, F.

    2011-01-01

    In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.

  19. Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Rahbar, Nader; Asadi, Amin

    2016-01-01

    Highlights: • Solar intensity could be explained as a linear function of voltage and ambient temperature. • The maximum output voltage is approximately 120 mV which was occurred in midday. • The average value of the heat-sink thermal resistance could be measured with this device. • The average values of total heat transfer coefficients could be measured with this device. • Two correlations were proposed to predict the solar intensity with the accuracy of 10%. - Abstract: The present study is intended to design, manufacture, and modeling an inexpensive pyranometer using a thermoelectric module. The governing equations relating the solar intensity, output voltage, and ambient temperature have been derived by applying the mathematical and thermodynamic models. According to the thermodynamics modeling, the output voltage is a function of solar intensity, ambient temperature, internal parameters of thermoelectric module, convection and radiation coefficients, and geometrical characteristics of the setup. Moreover, the solar intensity can be considered as a linear function of voltage and ambient temperature within an acceptable range of accuracy. The experiments have been carried out on a typical winter day under climatic conditions of Semnan (35°33′N, 53°23′E), Iran. The results also indicated that the output voltage is dependent on the solar intensity and its maximum value was 120 mV. Finally, based on the experimental results, two correlations, with the accuracy of 10%, have been proposed to predict the solar intensity as a function of output voltage and ambient temperature. The average values of total heat transfer coefficient and thermal resistance of the heat-sink have been also calculated according to the thermodynamic modeling and experimental results.

  20. Weekly Cisplatin and Volumetric-Modulated Arc Therapy With Simultaneous Integrated Boost for Radical Treatment of Advanced Cervical Cancer in Elderly Patients: Feasibility and Clinical Preliminary Results

    Science.gov (United States)

    Mazzola, Rosario; Ricchetti, Francesco; Fiorentino, Alba; Levra, Niccolò Giaj; Fersino, Sergio; Di Paola, Gioacchino; Ruggieri, Ruggero

    2016-01-01

    Background: To evaluate the feasibility and clinical preliminary results of weekly cisplatin and volumetric-modulated arc therapy to the pelvis with simultaneous integrated boost to macroscopic disease in a cohort of elderly patients. Materials and Methods: Inclusion criteria of this prospective study were age ≥70 years, Karnofsky performance status 70 to 100, locally advanced histologically proven squamous cervical carcinoma, and patients unable to undergo brachytherapy. Radiation doses prescribed were 66 Gy to the macroscopic disease and 54 Gy to the pelvic nodes in 30 fractions. Weekly cisplatin dose was 40 mg/mq. Results: A total of 30 patients were recruited. Median follow-up was 32 months (range: 8-48 months). Median age was 72 years (range: 70-84 years). The 3-year overall survival and local control were 93% and 80%, respectively. The median time to progression was 24 months (range: 6-30 months). Analyzing clinical outcome grouping based on the stage of disease, II versus III, the 3-year overall survival was 100% and 85%, respectively. The 3-year local control was 91% for stage II and 67% for stage III. Acute and late toxicities were acceptable without severe events. Conclusion: Weekly cisplatin and volumetric-modulated arc therapy–simultaneous integrated boost for radical treatment of advanced cervical cancer in the current cohort of elderly patients were feasible. Long-term results and prospective randomized trials are advocated. PMID:27402633

  1. Dysphagia in head and neck cancer patients following intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Peponi, Evangelia; Glanzmann, Christoph; Willi, Bettina; Huber, Gerhard; Studer, Gabriela

    2011-01-01

    To evaluate the objective and subjective long term swallowing function, and to relate dysphagia to the radiation dose delivered to the critical anatomical structures in head and neck cancer patients treated with intensity modulated radiation therapy (IMRT, +/- chemotherapy), using a midline protection contour (below hyoid, ~level of vertebra 2/3). 82 patients with stage III/IV squamous cell carcinoma of the larynx, oropharynx, or hypopharynx, who underwent successful definitive (n = 63, mean dose 68.9Gy) or postoperative (n = 19, mean dose 64.2Gy) simultaneous integrated boost (SIB) -IMRT either alone or in combination with chemotherapy (85%) with curative intent between January 2002 and November 2005, were evaluated retrospectively. 13/63 definitively irradiated patients (21%) presented with a total gross tumor volume (tGTV) >70cc (82-173cc; mean 106cc). In all patients, a laryngo-pharyngeal midline sparing contour outside of the PTV was drawn. Dysphagia was graded according subjective patient-reported and objective observer-assessed instruments. All patients were re-assessed 12 months later. Dose distribution to the swallowing structures was calculated. At the re-assessment, 32-month mean post treatment follow-up (range 16-60), grade 3/4 objective toxicity was assessed in 10%. At the 32-month evaluation as well as at the last follow up assessment mean 50 months (16-85) post-treatment, persisting swallowing dysfunction grade 3 was subjectively and objectively observed in 1 patient (1%). The 5-year local control rate of the cohort was 75%; no medial marginal failures were observed. Our results show that sparing the swallowing structures by IMRT seems effective and relatively safe in terms of avoidance of persistent grade 3/4 late dysphagia and local disease control

  2. The simultaneous boost technique

    International Nuclear Information System (INIS)

    Lebesque, J.V.; Keus, R.B.

    1991-01-01

    Simultaneous boost technique in radiotherapy consists of delivering the boost treatment (additional doses to reduced volumes) simultaneously with the basic (large-field) treatment for all treatment sessions. Both the dose per fraction delivered by basic-treatment fields and by boost-treatment fields have to be reduced to end up with the same total dose in boost volume as in the original schedule, where basic treatment preceded boost treatment. These dose reductions and corresponding weighting factors have been calculated using the linear-quadratic (LQ) model and the concept of Normalized Total Dose (NTD). Relative NTD distributions were computed to evaluate the dose distributions resulting for the simultaneous boost technique with respect to acute and late normal tissue damage and tumor control. For the example of treatment of prostate cancer the weighting factors were calculated on basis of NTD for late normal tissue damage. For treatment of oropharyngeal cancer NTD for acute and normal tissue damage was used to determine the weighting factors. In this last example a theoretical sparing of late normal tissue damage can be demonstrated. Another advantage of simultaneous boost technique is that megavoltage images of the large basic-treatment fields facilitates the determination of the position of the patient with respect to the small boost-treatment fields. (author). 42 refs., 8 figs

  3. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC.

    Science.gov (United States)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-01-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Acute toxicity profile of craniospinal irradiation with intensity-modulated radiation therapy in children with medulloblastoma: A prospective analysis

    International Nuclear Information System (INIS)

    Cox, Maurice C.; Kusters, Johannes M.; Gidding, Corrie E.; Schieving, Jolanda H.; Lindert, Erik J. van; Kaanders, Johannes H.; Janssens, Geert O.

    2015-01-01

    To report on the acute toxicity in children with medulloblastoma undergoing intensity-modulated radiation therapy (IMRT) with daily intrafractionally modulated junctions. Newly diagnosed patients, aged 3–21, with standard-risk (SR) or high-risk (HR) medulloblastoma were eligible. A dose of 23.4 or 36.0Gy in daily fractions of 1.8Gy was prescribed to the craniospinal axis, followed by a boost to the primary tumor bed (54 or 55.8Gy) and metastases (39.6–55.8Gy), when indicated. Weekly, an intravenous bolus of vincristine was combined for patients with SR medulloblastoma and patients participating in the COG-ACNS-0332 study. Common toxicity criteria (CTC, version 2.0) focusing on skin, alopecia, voice changes, conjunctivitis, anorexia, dysphagia, gastro-intestinal symptoms, headache, fatigue and hematological changes were scored weekly during radiotherapy. From 2010 to 2014, data from 15 consecutive patients (SR, n = 7; HR, n = 8) were collected. Within 72 h from onset of treatment, vomiting (66 %) and headache (46 %) occurred. During week 3 of treatment, a peak incidence in constipation (33 %) and abdominal pain/cramping (40 %) was observed, but only in the subgroup of patients (n = 9) receiving vincristine (constipation: 56 vs 0 %, P = .04; pain/cramping: 67 vs 0 %, P = .03). At week 6, 73 % of the patients developed faint erythema of the cranial skin with dry desquamation (40 %) or moist desquamation confined to the skin folds of the auricle (33 %). No reaction of the skin overlying the spinal target volume was observed. Headache at onset and gastro-intestinal toxicity, especially in patients receiving weekly vincristine, were the major complaints of patients with medulloblastoma undergoing craniospinal irradiation with IMRT

  5. Glucose starvation boosts Entamoeba histolytica virulence.

    Directory of Open Access Journals (Sweden)

    Ayala Tovy

    2011-08-01

    Full Text Available The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS. The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP, a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1 which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A and cysteine proteinase A5 (CP-A5, two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon.

  6. Boost.Asio C++ network programming

    CERN Document Server

    Torjo, John

    2013-01-01

    What you want is an easy level of abstraction, which is just what this book provides in conjunction with Boost.Asio. Switching to Boost.Asio is just a few extra #include directives away, with the help of this practical and engaging guide.This book is great for developers that need to do network programming, who don't want to delve into the complicated issues of a raw networking API. You should be familiar with core Boost concepts, such as smart pointers and shared_from_this, resource classes (noncopyable), functors and boost::bind, boost mutexes, and the boost date/time library. Readers should

  7. Boosting foundations and algorithms

    CERN Document Server

    Schapire, Robert E

    2012-01-01

    Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

  8. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Damato, Antonio L.; Czerminska, Maria A.; Margalit, Danielle N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX (United States); Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States)

    2017-04-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  9. Intensity modulated radiotherapy (IMRT) combined with concurrent but not adjuvant chemotherapy in primary nasopharyngeal cancer – a retrospective single center analysis

    International Nuclear Information System (INIS)

    Saleh-Ebrahimi, Ladan; Zwicker, Felix; Muenter, Marc W; Bischof, Marc; Lindel, Katja; Debus, Juergen; Huber, Peter E; Roeder, Falk

    2013-01-01

    We report our experience in 49 consecutive patients with nasopharyngeal carcinoma who were treated by Intensity-modulated radiation therapy (IMRT) combined with simultaneous but not adjuvant chemotherapy (CHT). The medical records of 49 patients with histologically proven primary nasopharygeal carcinoma treated with IMRT and concurrent platin-based CHT (predominantly cisplatin weekly) were retrospectively reviewed. The majority of patients showed advanced clinical stages (stage III/IV:72%) with undifferentiated histology (82%). IMRT was performed in step-and-shoot technique using an integrated boost concept in 84%. In this concept, the boost volume covered the primary tumor and involved nodes with doses of 66–70.4 Gy (single dose 2.2 Gy). Uninvolved regional nodal areas were covered with doses of 54–59.4 Gy (median single dose 1.8 Gy). At least one parotid gland was spared. None of the patients received adjuvant CHT. The median follow-up for the entire cohort was 48 months. Radiation therapy was completed without interruption in all patients and 76% of the patients received at least 80% of the scheduled CHT. Four local recurrences have been observed, transferring into 1-, 3-, and 5-year Local Control (LC) rates of 98%, 90% and 90%. One patient developed an isolated regional nodal recurrence, resulting in 1-, 3-, and 5-year Regional Control (RC) rates of 98%. All locoregional failures were located inside the radiation fields. Distant metastases were found in six patients, transferring into 1-, 3, and 5-year Distant Control (DC) rates of 92%, 86% and 86%. Progression free survival (PFS) rates after 1, 3 and 5 years were 86%, 70% and 69% and 1-, 3- and 5-year Overall Survival (OS) rates were 96%, 82% and 79%. Acute toxicity ≥ grade III mainly consisted of dysphagia (32%), leukopenia (24%), stomatitis (16%), infection (8%) and nausea (8%). Severe late toxicity (grade III) was documented in 18% of the patients, mainly as xerostomia (10%). Concurrent chemoradiation

  10. Collimator setting optimization in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Williams, M.; Hoban, P.

    2001-01-01

    Full text: The aim of this study was to investigate the role of collimator angle and bixel size settings in IMRT when using the step and shoot method of delivery. Of particular interest is minimisation of the total monitor units delivered. Beam intensity maps with bixel size 10 x 10 mm were segmented into MLC leaf sequences and the collimator angle optimised to minimise the total number of MU's. The monitor units were estimated from the maximum sum of positive-gradient intensity changes along the direction of leaf motion. To investigate the use of low resolution maps at optimum collimator angles, several high resolution maps with bixel size 5 x 5 mm were generated. These were resampled into bixel sizes, 5 x 10 mm and 10 x 10 mm and the collimator angle optimised to minimise the RMS error between the original and resampled map. Finally, a clinical IMRT case was investigated with the collimator angle optimised. Both the dose distribution and dose-volume histograms were compared between the standard IMRT plan and the optimised plan. For the 10 x 10 mm bixel maps there was a variation of 5% - 40% in monitor units at the different collimator angles. The maps with a high degree of radial symmetry showed little variation. For the resampled 5 x 5 mm maps, a small RMS error was achievable with a 5 x 10 mm bixel size at particular collimator positions. This was most noticeable for maps with an elongated intensity distribution. A comparison between the 5 x 5 mm bixel plan and the 5 x 10 mm showed no significant difference in dose distribution. The monitor units required to deliver an intensity modulated field can be reduced by rotating the collimator and aligning the direction of leaf motion with the axis of the fluence map that has the least intensity. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  11. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar, E-mail: dpokhrel@kumc.edu; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Lominska, Christopher; Saleh, Habeeb; Badkul, Rajeev; Jiang, Hongyu; Mitchell, Melissa; Wang, Fen

    2016-01-01

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5

  12. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    International Nuclear Information System (INIS)

    Pokhrel, Damodar; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Lominska, Christopher; Saleh, Habeeb; Badkul, Rajeev; Jiang, Hongyu; Mitchell, Melissa; Wang, Fen

    2016-01-01

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D 2% , D 98% , and V 30 Gy NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing

  13. Diet-boosting foods

    Science.gov (United States)

    Obesity - diet-boosting foods; Overweight - diet-boosting foods ... Low-fat and nonfat milk, yogurt, and cottage cheese are healthy sources of calcium, vitamin D , and potassium. Unlike sweetened drinks with extra calories, milk ...

  14. Progress in Y-00 physical cipher for Giga bit/sec optical data communications (intensity modulation method)

    Science.gov (United States)

    Hirota, Osamu; Futami, Fumio

    2014-10-01

    To guarantee a security of Cloud Computing System is urgent problem. Although there are several threats in a security problem, the most serious problem is cyber attack against an optical fiber transmission among data centers. In such a network, an encryption scheme on Layer 1(physical layer) with an ultimately strong security, a small delay, and a very high speed should be employed, because a basic optical link is operated at 10 Gbit/sec/wavelength. We have developed a quantum noise randomied stream cipher so called Yuen- 2000 encryption scheme (Y-00) during a decade. This type of cipher is a completely new type random cipher in which ciphertext for a legitimate receiver and eavesdropper are different. This is a condition to break the Shannon limit in theory of cryptography. In addition, this scheme has a good balance on a security, a speed and a cost performance. To realize such an encryption, several modulation methods are candidates such as phase-modulation, intensity-modulation, quadrature amplitude modulation, and so on. Northwestern university group demonstrated a phase modulation system (α=η) in 2003. In 2005, we reported a demonstration of 1 Gbit/sec system based on intensity modulation scheme(ISK-Y00), and gave a design method for quadratic amplitude modulation (QAM-Y00) in 2005 and 2010. An intensity modulation scheme promises a real application to a secure fiber communication of current data centers. This paper presents a progress in quantum noise randomized stream cipher based on ISK-Y00, integrating our theoretical and experimental achievements in the past and recent 100 Gbit/sec(10Gbit/sec × 10 wavelengths) experiment.

  15. Intensity-modulated radiation therapy: first reported treatment in Australasia

    International Nuclear Information System (INIS)

    Corry, J.; Joon, D.L.; Hope, G.; Smylie, J.; Henkul, Z.; Wills, J.; Cramb, J.; Towns, S.; Archer, P.

    2002-01-01

    Intensity-modulated radiation therapy (IMRT) is an exciting new advance in the practice of radiation oncology. It is the use of non-uniform radiation beams to achieve conformal dose distributions. As a result of the high initial capital costs and the time and complexity of planning, IMRT is not yet a widely available clinical treatment option. We describe the process involved in applying this new technology to a case of locally advanced nasopharyngeal cancer. Copyright (2002) Blackwell Science Pty Ltd

  16. Conformal radiotherapy by intensity modulation of pediatrics tumors; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, 35 - Rennes (France); Carrie, C. [Centre Leon Berard, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, 54 - Nancy (France); Beneyton, V. [Centre Paul-Strauss, 67 - Strasbourg (France); Mahe, M.A.; Supiot, S. [Centre Rene-Gauducheau, 44 - Nantes (France)

    2009-10-15

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  17. Intensity modulated radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Riou, O.; Fenoglietto, P.; Lemanski, C.; Azria, D.

    2012-01-01

    Intensity modulated radiotherapy (IMRT) is a technique allowing dose escalation and normal tissue sparing for various cancer types. For breast cancer, the main goals when using IMRT were to improve dose homogeneity within the breast and to enhance coverage of complex target volumes. Nonetheless, better heart and lung protections are achievable with IMRT as compared to standard irradiation for difficult cases. Three prospective randomized controlled trials of IMRT versus standard treatment showed that a better breast homogeneity can translate into better overall cosmetic results. Dosimetric and clinical studies seem to indicate a benefit of IMRT for lymph nodes irradiation, bilateral treatment, left breast and chest wall radiotherapy, or accelerated partial breast irradiation. The multiple technical IMRT solutions available tend to indicate a widespread use for breast irradiation. Nevertheless, indications for breast IMRT should be personalized and selected according to the expected benefit for each individual. (authors)

  18. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  19. Intensity modulated radiotherapy (IMRT) in bilateral retinoblastoma

    International Nuclear Information System (INIS)

    Atalar, Banu; Ozyar, Enis; Gunduz, Kaan; Gungor, Gorkem

    2010-01-01

    External beam radiotherapy (EBRT) for retinoblastoma has traditionally been done with conventional radiotherapy techniques which resulted high doses to the surrounding normal tissues. A 20 month-old girl with group D bilateral retinoblastoma underwent intensity modulated radiotherapy (IMRT) to both eyes after failing chemoreduction and focal therapies including cryotherapy and transpupillary thermotherapy. In this report, we discuss the use of IMRT as a method for reducing doses to adjacent normal tissues while delivering therapeutic doses to the tumour tissues compared with 3-dimensional conformal radiotherapy (3DCRT). At one year follow-up, the patient remained free of any obvious radiation complications. Image guided IMRT provides better dose distribution than 3DCRT in retinoblastoma eyes, delivering the therapeutic dose to the tumours and minimizing adjacent tissue damage

  20. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  1. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru

    2013-01-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n=21) and/or N2/3 (n=24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤ Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer. (author)

  2. Robust boosting via convex optimization

    Science.gov (United States)

    Rätsch, Gunnar

    2001-12-01

    In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems

  3. Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Tracy, E-mail: tunderwood@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Department of Medical Physics and Bioengineering, University College London, London (United Kingdom); Giantsoudi, Drosoula; Moteabbed, Maryam; Zietman, Anthony; Efstathiou, Jason; Paganetti, Harald; Lu, Hsiao-Ming [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: For prostate treatments, robust evidence regarding the superiority of either intensity modulated radiation therapy (IMRT) or proton therapy is currently lacking. In this study we investigated the circumstances under which proton therapy should be expected to outperform IMRT, particularly the proton beam orientations and relative biological effectiveness (RBE) assumptions. Methods and Materials: For 8 patients, 4 treatment planning strategies were considered: (A) IMRT; (B) passively scattered standard bilateral (SB) proton beams; (C) passively scattered anterior oblique (AO) proton beams, and (D) AO intensity modulated proton therapy (IMPT). For modalities (B)-(D) the dose and linear energy transfer (LET) distributions were simulated using the TOPAS Monte Carlo platform and RBE was calculated according to 3 different models. Results: Assuming a fixed RBE of 1.1, our implementation of IMRT outperformed SB proton therapy across most normal tissue metrics. For the scattered AO proton plans, application of the variable RBE models resulted in substantial hotspots in rectal RBE weighted dose. For AO IMPT, it was typically not possible to find a plan that simultaneously met the tumor and rectal constraints for both fixed and variable RBE models. Conclusion: If either a fixed RBE of 1.1 or a variable RBE model could be validated in vivo, then it would always be possible to use AO IMPT to dose-boost the prostate and improve normal tissue sparing relative to IMRT. For a cohort without rectum spacer gels, this study (1) underlines the importance of resolving the question of proton RBE within the framework of an IMRT versus proton debate for the prostate and (2) highlights that without further LET/RBE model validation, great care must be taken if AO proton fields are to be considered for prostate treatments.

  4. Phase II Study of Preoperative Helical Tomotherapy With a Simultaneous Integrated Boost for Rectal Cancer

    International Nuclear Information System (INIS)

    Engels, Benedikt; Tournel, Koen; Everaert, Hendrik; Hoorens, Anne; Sermeus, Alexandra; Christian, Nicolas; Storme, Guy; Verellen, Dirk; De Ridder, Mark

    2012-01-01

    Purpose: The addition of concomitant chemotherapy to preoperative radiotherapy is considered the standard of care for patients with cT3–4 rectal cancer. The combined treatment modality increases the complete response rate and local control (LC), but has no impact on survival or the incidence of distant metastases. In addition, it is associated with considerable toxicity. As an alternative strategy, we explored prospectively, preoperative helical tomotherapy with a simultaneous integrated boost (SIB). Methods and Materials: A total of 108 patients were treated with intensity-modulated and image-guided radiotherapy using the Tomotherapy Hi-Art II system. A dose of 46 Gy, in daily fractions of 2 Gy, was delivered to the mesorectum and draining lymph nodes, without concomitant chemotherapy. Patients with an anticipated circumferential resection margin (CRM) of less than 2 mm, based on magnetic resonance imaging, received a SIB to the tumor up to a total dose of 55.2 Gy. Acute and late side effects were scored using the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results: A total of 102 patients presented with cT3–4 tumors; 57 patients entered the boost group and 51 the no-boost group. One patient in the no-boost group developed a radio-hypersensitivity reaction, resulting in a complete tumor remission, a Grade 3 acute and Grade 5 late enteritis. No other Grade ≥3 acute toxicities occurred. With a median follow-up of 32 months, Grade ≥3 late gastrointestinal and urinary toxicity were observed in 6% and 4% of the patients, respectively. The actuarial 2-year LC, progression-free survival and overall survival were 98%, 79%, and 93%. Conclusions: Preoperative helical tomotherapy displays a favorable acute toxicity profile in patients with cT3–4 rectal cancer. A SIB can be safely administered in patients with a narrow CRM and resulted in a promising LC.

  5. Implementation of intensity-modulated conformational radiotherapy for cervical cancers at the Alexis Vautrin Centre

    International Nuclear Information System (INIS)

    Renard-Oldrini, Sophie

    2010-01-01

    As platinum salt based concomitant conformational radiotherapy and chemotherapy have been used as a standard treatment for cervical cancers but resulted in digestive and haematological toxicities, this research thesis reports the application of intensity-modulated conformational radiation therapy. After having recalled some epidemiological, anatomical aspects, diagnosis and treatments aspects regarding cervical cancer, the author presents this last treatment technique (principles, benefits, practical implementation). The author discusses results obtained by an experiment during which seven patients have been treated by simple conformational radiation therapy, and four by intensity-modulated conformational radiation therapy. Results are discussed in terms of volumes (clinical target volume, growth target volume, planned target volume), dosimetric results, toxicities (urine and skin), weight loss [fr

  6. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  7. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C; Kamal, H [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  8. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    International Nuclear Information System (INIS)

    Beltran, C; Kamal, H

    2016-01-01

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  9. Single stage buck-boost DC-AC neutral point clamped inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Andrew, A.

    2012-01-01

    This paper proposes a new single stage buck-boost DC-AC neutral point clamped inverter topology which integrates the cascaded configurations of recently introduced inductor-capacitor-capacitor-transformer impedance source network (by Adamowicz) and classic NPC configuration. As a consequence......, it has enhanced buck-boost functionality and low output voltage distortions compared to the traditional Z-source inverter; it has continuous input current which reduces the source stress and inverter noise; it also contains two built-in capacitors which can block the DC current in the transformer...... windings thus preventing the core from saturation; lowers the voltage stresses and power losses of inverter switches and reduces the sizes of filtering devices and as well as obtains better output performance compared to the original two-level Z-source inverters. A phase disposition pulse width modulation...

  10. Methods, safety, and early clinical outcomes of dose escalation using simultaneous integrated and sequential boosts in patients with locally advanced gynecologic malignancies.

    Science.gov (United States)

    Boyle, John; Craciunescu, Oana; Steffey, Beverly; Cai, Jing; Chino, Junzo

    2014-11-01

    To evaluate the safety of dose escalated radiotherapy using a simultaneous integrated boost technique in patients with locally advanced gynecological malignancies. Thirty-nine women with locally advanced gynecological malignancies were treated with intensity modulated radiation therapy utilizing a simultaneous integrated boost (SIB) technique for gross disease in the para-aortic and/or pelvic nodal basins, sidewall extension, or residual primary disease. Women were treated to 45Gy in 1.8Gy fractions to elective nodal regions. Gross disease was simultaneously treated to 55Gy in 2.2Gy fractions (n=44 sites). An additional sequential boost of 10Gy in 2Gy fractions was delivered if deemed appropriate (n=29 sites). Acute and late toxicity, local control in the treated volumes (LC), overall survival (OS), and distant metastases (DM) were assessed. All were treated with a SIB to a dose of 55Gy. Twenty-four patients were subsequently treated with a sequential boost to a median dose of 65Gy. Median follow-up was 18months. Rates of acute>grade 2 gastrointestinal (GI), genitourinary (GU), and hematologic (heme) toxicities were 2.5%, 0%, and 30%, respectively. There were no grade 4 acute toxicities. At one year, grade 1-2 late GI toxicities were 24.5%. There were no grade 3 or 4 late GI toxicities. Rates of grade 1-2 late GU toxicities were 12.7%. There were no grade 3 or 4 late GU toxicities. Dose escalated radiotherapy using a SIB results in acceptable rates of acute toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kocak-Uzel, Esengul [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Therapy, Beykent University, Istanbul (Turkey); Feng, Lei [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Thaker, Nikhil G.; Blanchard, Pierre; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-10-01

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012. Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to

  12. Serum release boosts sweetness intensity in gels

    NARCIS (Netherlands)

    Sala, G.; Stieger, M.A.; Velde, van de F.

    2010-01-01

    This paper describes the effect of serum release on sweetness intensity in mixed whey protein isolate/gellan gum gels. The impact of gellan gum and sugar concentration on microstructure, permeability, serum release and large deformation properties of the gels was determined. With increasing gellan

  13. Radiochromic film in the dosimetric verification of intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Zhou Yingjuan; Huang Shaomin; Deng Xiaowu

    2007-01-01

    Objective: Objective To investigate the dose-response behavior of a new type of radio- chromic film( GAFCHROMIC EBT) and explore the clinical application means and precision of dosage measurement, which can be applied for: (1) plan-specific dosimetric verification for intensity modulated radiation therapy, (2) to simplify the process of quality assurance using traditional radiographic film dosimetric system and (3) to establish a more reliable, more efficient dosimetric verification system for intensity modulated radiation therapy. Methods: (1) The step wedge calibration technique was used to calibrate EBT radiochromic film and EDR2 radiographic film. The dose characteristics, the measurement consistency and the quality assurance process between the two methods were compared. (2) The in-phantom dose-measurement based verification technique has been adopted. Respectively, EBT film and EDR2 film were used to measure the same dose plane of IMRT treatment plans. The results of the dose map, dose profiles and iso- dose curves were compared with those calculated by CORVUS treatment planning system to evaluate the function of EBT film for dosimetric verification for intensity modulated radiation therapy. Results: (1) Over the external beam dosimetric range of 0-500 cGy, EBT/VXR-16 and EDR2/VXR-16 film dosimetric system had the same measurement consistency with the measurement variability less then 0.70%. The mean measurement variability of these two systems was 0.37% and 0.68%, respectively. The former proved to be the superior modality at measurement consistency, reliability, and efficiency over dynamic clinical dose range , furthermore, its quality assurance showed less process than the latter. (2) The dosimetric verification of IMRT plane measured with EBT film was quite similar to that with EDR2 film which was processed under strict quality control. In a plane of the phantom, the maximal dose deviation off axis between EBT film measurement and the TPS calculation was

  14. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  15. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  16. Pulsewidth-modulated 2-source neutral-point-clamped inverter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chang; Gao, Feng

    2007-01-01

    This paper presents the careful integration of a newly proposed Z-source topological concept to the basic neutral-point-clamped (NPC) inverter topology for designing a three-level inverter with both voltage-buck and voltage-boost capabilities. The designed Z-source NPC inverter uses two unique X......-shaped inductance-capacitance (LC) impedance networks that are connected between two isolated dc input power sources and its inverter circuitry for boosting its AC output voltage. Through the design of an appropriate pulsewidth-modulation (PWM) algorithm, the two impedance networks can be short......-circuited sequentially (without shooting through the inverter full DC link) for implementing the ldquonearest-three-vectorrdquo modulation principle with minimized harmonic distortion and device commutations per half carrier cycle while performing voltage boosting. With only a slight modification to the inverter PWM...

  17. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  18. A power conditioning system for thermoelectric generator based on interleaved Boost converter with MPPT control

    DEFF Research Database (Denmark)

    Ni, L.-X; Sun, K.; Zhang, L.

    2011-01-01

    The thermoelectric generation (TEG) system has its special charactristics of high stablility, low voltage and high current output, which is different from PV modules. The power conditioning system and control schemes used in PV applications cannot be directly applied to TEG applications. A power...... conditioning system for TEG based on interleaved Boost converter with maximum power point tracking (MPPT) control is investigated in this paper. Since an internal resistance exists inside TEG modules, an improved perturbation and observation (P&O) MPPT control scheme with power limit is proposed to extract...... maximum power from TEG by matching the load with internal resistance. Since the battery is usually employed as the load for TEG systems, the interleaved Boost converter operates in two different modes for battery charging: before the battery is fully charged, the system outputs the maximum power (MPPT...

  19. Experimental Learning of Digital Power Controller for Photovoltaic Module Using Proteus VSM

    Directory of Open Access Journals (Sweden)

    Abhijit V. Padgavhankar

    2014-01-01

    Full Text Available The electric power supplied by photovoltaic module depends on light intensity and temperature. It is necessary to control the operating point to draw the maximum power of photovoltaic module. This paper presents the design and implementation of digital power converters using Proteus software. Its aim is to enhance student’s learning for virtual system modeling and to simulate in software for PIC microcontroller along with the hardware design. The buck and boost converters are designed to interface with the renewable energy source that is PV module. PIC microcontroller is used as a digital controller, which senses the PV electric signal for maximum power using sensors and output voltage of the dc-dc converter and according to that switching pulse is generated for the switching of MOSFET. The implementation of proposed system is based on learning platform of Proteus virtual system modeling (VSM and the experimental results are presented.

  20. Exercise Intensity Modulation of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Fábio S. Lira

    2012-01-01

    Full Text Available Lipid metabolism in the liver is complex and involves the synthesis and secretion of very low density lipoproteins (VLDL, ketone bodies, and high rates of fatty acid oxidation, synthesis, and esterification. Exercise training induces several changes in lipid metabolism in the liver and affects VLDL secretion and fatty acid oxidation. These alterations are even more conspicuous in disease, as in obesity, and cancer cachexia. Our understanding of the mechanisms leading to metabolic adaptations in the liver as induced by exercise training has advanced considerably in the recent years, but much remains to be addressed. More recently, the adoption of high intensity exercise training has been put forward as a means of modulating hepatic metabolism. The purpose of the present paper is to summarise and discuss the merit of such new knowledge.

  1. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    International Nuclear Information System (INIS)

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan

    2007-01-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients

  2. Breast-conserving radiation therapy using combined electron and intensity-modulated radiotherapy technique

    International Nuclear Information System (INIS)

    Li, J.G.; Williams, S.S.; Goffinet, D.R.; Boer, A.L.; Xing, L.

    2000-01-01

    An electron beam with appropriate energy was combined with four intensity modulated photon beams. The direction of the electron beam was chosen to be tilted 10-20 laterally from the anteroposterior direction. Two of the intensity-modulated photon beams had the same gantry angles as the conventional tangential fields, whereas the other two beams were rotated 15-25' toward the anteroposterior directions from the first two photon beams. An iterative algorithm was developed which optimizes the weight of the electron beam as well as the fluence profiles of the photon beams for a given patient. Two breast cancer patients with early-stage breast tumors were planned with the new technique and the results were compared with those from 3D planning using tangential fields as well as 9-field intensity-modulated radiotherapy (IMRT) techniques. The combined electron and IMRT plans showed better dose conformity to the target with significantly reduced dose to the ipsilateral lung and, in the case of the left-breast patient, reduced dose to the heart, than the tangential field plans. In both the right-sided and left-sided breast plans, the dose to other normal structures was similar to that from conventional plans and was much smaller than that from the 9-field IMRT plans. The optimized electron beam provided between 70 to 80% of the prescribed dose at the depth of maximum dose of the electron beam. The combined electron and IMRT technique showed improvement over the conventional treatment technique using tangential fields with reduced dose to the ipsilateral lung and the heart. The customized beam directions of the four IMRT fields also kept the dose to other critical structures to a minimum. (author)

  3. Intensity-Modulated Whole Abdominal Radiotherapy After Surgery and Carboplatin/Taxane Chemotherapy for Advanced Ovarian Cancer: Phase I Study

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D.; Dinkel, Julien; Herfarth, Klaus K.; Schubert, Kai; Eichbaum, Michael H.; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-01-01

    Purpose: To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Methods and Materials: Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Results: Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. Conclusions: The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  4. Intensity-modulated whole abdominal radiotherapy after surgery and carboplatin/taxane chemotherapy for advanced ovarian cancer: phase I study.

    Science.gov (United States)

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D; Dinkel, Julien; Herfarth, Klaus K; Schubert, Kai; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-04-01

    To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  5. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume

    International Nuclear Information System (INIS)

    Piroth, Marc D.; Galldiks, Norbert; Pinkawa, Michael; Holy, Richard; Stoffels, Gabriele; Ermert, Johannes; Mottaghy, Felix M.; Shah, N. Jon; Langen, Karl-Josef; Eble, Michael J.

    2016-01-01

    O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition. A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor. The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0

  6. Inverse planning of intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Nill, S.; Oelfke, U.; Bortfeld, T.

    2004-01-01

    A common requirement of radiation therapy is that treatment planning for different radiation modalities is devised on the basis of the same treatment planning system (TPS). The present study presents a novel multi-modal TPS with separate modules for the dose calculation, the optimization engine and the graphical user interface, which allows to integrate different treatment modalities. For heavy-charged particles, both most promising techniques, the distal edge tracking (DET) and the 3-dimensional scanning (3D) technique can be optimized. As a first application, the quality of optimized intensity-modulated treatment plans for photons (IMXT) and protons (IMPT) was analyzed in one clinical case on the basis of the achieved physical dose distributions. A comparison of the proton plans with the photon plans showed no significant improvement in terms of target volume dose, however there was an improvement in terms of organs at risk as well as a clear reduction of the total integral dose. For the DET technique, it is possible to create a treatment plan with almost the same quality of the 3D technique, however with a clearly reduced number (factor of 5) of beam spots as well as a reduced optimization time. Due to its modular design, the system can be easily expanded to more sophisticated dose-calculation algorithms or to modeling of biological effects. (orig.) [de

  7. Chemotherapy and intensity modulated conformational radiotherapy for locally advanced pancreas cancers

    International Nuclear Information System (INIS)

    Huguet, F.; Wu, A.; Zhang, Z.; Winston, C.; Reidy, D.; Ho, A.; Allen, P.; Karyn, G.

    2011-01-01

    The authors report a retrospective study of the tolerance and survival of 48 patients who have been treated by a chemotherapy followed by a chemotherapy concomitant with an intensity-modulated radiotherapy for a locally advanced pancreas cancer. Results are discussed in terms of toxicity, cancer response, operability, survival rate. Tolerance is good. Local control rates, global survival rates and secondary resection rates are promising. Short communication

  8. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Caglar, Hale B.; Tishler, Roy B.; Othus, Megan; Burke, Elaine; Li Yi; Goguen, Laura; Wirth, Lori J.; Haddad, Robert I.; Norris, Carl M.; Court, Laurence E.; Aninno, Donald J. D.; Posner, Marshall R.; Allen, Aaron M.

    2008-01-01

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving ≥50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving ≥50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  9. Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. A comparison with intensity-modulated radiotherapy and a spot size variation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lorentini, S. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Padova Univ. (Italy). Medical Physics School; Amichetti, M.; Fellin, F.; Schwarz, M. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Spiazzi, L. [Brescia Hospital (Italy). Medical Physics Dept.; Tonoli, S.; Magrini, S.M. [Brescia Hospital (Italy). Radiation Oncology Dept.

    2012-03-15

    Intensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT. We re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions. IMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (D{sub mean} reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V{sub 20} reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints. Results suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 x 3 mm (up to 9 x 9 mm) does not compromise dosimetric results and allows a shorter delivery time.

  10. Intensity-modulated radiotherapy for cancers in childhood

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Leseur, J.; Carrie, C.; Beneyton, V.; Bernier, V.; Beneyton, V.; Mahee, M.A.; Supiot, S.

    2009-01-01

    Approximately 40-50% of children with cancer will be irradiated during their treatment. Intensity-modulated radiotherapy (I.M.R.T.) by linear accelerator or helical tomo-therapy improves dose distribution in target volumes and normal tissue sparing. This technology could be particularly useful for pediatric patients to achieve an optimal dose distribution in complex volumes close to critical structures. The use of I.M.R.T. can increase the volume of tissue receiving low-dose radiation, and consequently carcinogenicity in childhood population with a good overall survival and long period of life expectancy. This review will present the current and potential I.M.R.T. indications for cancers in childhood, and discuss the benefits and problems of this technology aiming to define recommendations in the use of I.M.R.T. and specific doses constraints in Pediatrics. (authors)

  11. Some aspects of the design of intensity modulated beams for breast radiotherapy

    International Nuclear Information System (INIS)

    Evans, PM; Hansen, VN; Swindell, W

    1995-01-01

    An electronic portal imaging system has been used to design intensity modulated beams to achieve compensation for missing tissue and tissue heterogeneity in tangential irradiation of the breast. A portal image of the breast is calibrated for radiological thickness and an estimate of the outline of lung and soft tissue is made. This is used with the desired dose prescription to design intensity modulated beams, IMBs. The practical implementation of the IMBs may be achieved using a multileaf collimator, MLC. The leaves of the MLC may be scanned dynamically or a set of multiple static fields may be used. We have compared the uniformity of the achievable dose distribution for both cases. In the static case, the effects of varying the number of fields and their relative intensities have been investigated. The use of scanning leaves yields a dose distribution which is close to optimal. Multiple static fields produce results close to optimal if a large number, typically 30 are used. However, even for the more practicable case of 5 fields, the hot and cold spots are significantly reduced compared to a simple wedge. When studying the optimum intensity distribution for the set of static fields, it was found that having the first field with a large intensity irradiating the whole target volume and a set of 'top-up' fields of equal magnitude was best. This study suggests that an MLC may indeed be used to deliver IMBs for radiotherapy of the breast. We can presently deliver the multiple static field technique. For the small number of beams which are presently deliverable, an improvement of dosimetry over the use of a simple wedge is indicated. In the future, with the scanning leaves technique, dose distributions with greatly reduced dose inhomogeneities should be achievable

  12. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    Science.gov (United States)

    Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2015-07-01

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  13. A comparison of three optimization algorithms for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pflugfelder, D.; Wilkens, J.J.; Nill, S.; Oelfke, U.

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%. (orig.)

  14. Local failure patterns for patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Li, Jia-xin; Huang, Shao-min; Jiang, Xin-hua; Ouyang, Bin; Han, Fei; Liu, Shuai; Wen, Bi-xiu; Lu, Tai-xiang

    2014-01-01

    To investigate the clinical feature and the local failure patterns after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Between March 2007 and July 2009, 710 patients with nasopharyngeal carcinoma were treated with intensity-modulated radiotherapy. The magnetic resonance imagings obtained at recurrence were registered with the original planning computed tomography for dosimetry analysis. With a median follow-up of 38 months, 34 patients have developed local recurrence (32 cases valid). The incidence of invasion to nasopharynx, parapharyngeal space and the retropharyngeal space by the primary tumors was 100%, 75.0% and 62.5%, respectively, but 78.1%, 34.4% and 21.9% at recurrence, respectively. The rate of invasion to ethmoid sinus was 3.1% by the primary tumors but 28.1% at recurrence (p = 0.005). The topographic analysis of the local failure patterns showed 'central' in 16 patients; 'marginal' in 9; and 'outside' in 7. The median volumes of primary gross tumor were 45.84 cm 3 in the central failure group, 29.44 cm 3 in the marginal failure group, and 21.52 cm 3 in the outside failure group, respectively (p = 0.012), and the median volumes of primary clinical target1 were 87.28 cm 3 , 61.90 cm 3 and 58.74 cm 3 in the three groups, respectively (p = 0.033). In patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy, the recurrent tumors had their unique characteristic and regularity of invasion to adjacent structures. 'Central' failure was the major local failure pattern. The volumes of primary gross tumor and clinical target1 were significantly correlated with recurrent patterns. Employ more aggressive approaches to tumor cells which will be insensitive to radiotherapy may be an effective way to reduce the central failure

  15. Distribution-Specific Agnostic Boosting

    OpenAIRE

    Feldman, Vitaly

    2009-01-01

    We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (Ben-David et al., 2001; Gavinsky, 2002; Kalai et al., 2008) follow the same strategy as boosting algorithms in the PAC model: the weak learner is executed on the same target function but over different distributions on the domain. We demonstrate boosting algorithms for the agnostic learning framework tha...

  16. Experimental Research in Boost Driver with EDLCs

    Science.gov (United States)

    Matsumoto, Hirokazu

    The supply used in servo systems tends to have a high voltage in order to reduce loss and improve the response of motor drives. We propose a new boost motor driver that comprises EDLCs. The proposed driver has a simple structure, wherein the EDLCs are connected in series to the supply, and comprises a charge circuit to charge the EDLCs. The proposed driver has three advantages over conventional boost drivers. The first advantage is that the driver can easily attain the stable boost voltage. The second advantage is that the driver can reduce input power peaks. In a servo system, the input power peaks become greater than the rated power in order to accelerate the motor rapidly. This implies that the equipments that supply power to servo systems must have sufficient power capacity to satisfy the power peaks. The proposed driver can suppress the increase of the power capacity of supply facilities. The third advantage is that the driver can store almost all of the regenerative energy. Conventional drivers have a braking resistor to suppress the increase in the DC link voltage. This causes a considerable reduction in the efficiency. The proposed driver is more efficient than conventional drivers. In this study, the experimental results confirmed the effectiveness of the proposed driver and showed that the drive performance of the proposed driver is the same as that of a conventional driver. Furthermore, it was confirmed that the results of the simulation of a model of the EDLC module, whose capacitance is dependent on the frequency, correspond well with the experimental results.

  17. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    International Nuclear Information System (INIS)

    Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman

    2016-01-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)

  18. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    Science.gov (United States)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  19. Film Dosimetry for Intensity Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Benites-Rengifo, J.; Martinez-Davalos, A.; Celis, M.; Larraga, J.

    2004-01-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurologia y Neurocirugia (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields

  20. Dose determination in radiotherapy for photon beams modified by static intensity modulators

    International Nuclear Information System (INIS)

    Castellanos Lopez, M.E.

    1998-01-01

    The static intensity modulators, used in radiotherapy, modify the spectral composition of the beam and lead to specific problems of the dose calculation. The aim of this work was to establish a three dimensional calculation, global and accurate, adapted to the primary-diffused separation algorithm and valid for any static modulator type. A theoretical study, experimentally verified, allowed the evaluation of the primary fluence, resulting from metallic sheets placed between photons beams of 6 to 23 MV nominal energy. It has been showed that the diffused, coming from the modulators, could be neglected for weak thickness and for the relative dose variation. In return it leads to significant variations of many % on the absolute dose and must be take into account for the bigger thicknesses. Corrective methods for the primary fluence have been proposed. From the energy spectra of the beam, the metallic modulator influence has been studied on the primary and diffused components of the dose and improvements of the calculation method have been proposed. These improvements are based on the modulator representation as a transmission matrix and on semi-empirical corrective factors. (A.L.B.)

  1. Nasopharyngeal Carcinoma Treated with Precision-Oriented Radiation Therapy Techniques Including Intensity-Modulated Radiotherapy: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Wen-Shan Liu

    2004-02-01

    Full Text Available This paper reports preliminary results with intensity-modulated radiotherapy (IMRT in nasopharyngeal carcinoma (NPC. Between August 2000 and May 2001, we treated 19 patients with NPC using IMRT. Twelve patients had stage I-II disease and seven had stage III-IV disease. Six patients received 9.0-19.8 Gy three-dimensional conformal radiotherapy (3D-CRT before IMRT and 18 patients received a brachytherapy boost after IMRT. The mean follow-up time was 13.0 months. All patients with stage II-IV disease except one received two cycles of chemoradiotherapy with cisplatin and 5-fluorouracil (5-FU during radiotherapy, followed by two to four cycles of chemotherapy after radiotherapy. Tumor response was assessed using clinical examination and computerized tomography or magnetic resonance imaging. The mean doses administered to the gross tumor volume and clinical tumor volume were 70.9 Gy and 63.2 Gy, respectively. The mean doses administered to the right and left parotid glands were 38.1 Gy and 38.6 Gy, respectively. All 19 patients had a complete response of primary and lymph node disease. Grade III mucositis developed during chemoradiotherapy in 15 patients (79%. In addition, clinical grade I xerostomia was recorded in nine patients, grade II in nine, and grade III in one. This study demonstrated that 3D-CRT, IMRT, intracavitary brachytherapy, and chemotherapy are effective and safe methods to treat NPC. Although IMRT treatment spared parotid gland function, its efficacy may be significantly influenced by disease stage and location of the neck lymph nodes. More cases and a longer follow-up to assess survival and complications are planned.

  2. Dosimetric comparison of three-dimensional conformal and intensity modulated radiotherapy in brain glioma

    International Nuclear Information System (INIS)

    Lu Jie; Zhang Guifang; Bai Tong; Yin Yong; Fan Tingyong; Wu Chaoxia

    2009-01-01

    Objective: To investigate the dosimetry advantages of intensity modulated radiotherapy (IMRT)of brain glioma compared with that of three-dimensional conformal radiotherapy (SD CRT). Methods: Ten patients with brain glioma were enrolled in this study. Three-dimensional conf0rmal and intensity modulated radiotherapy plans were performed for each patient. The dose distributions of target volume and normal tissues, conformal index (CI) and heterogeneous index (HI) were analyzed using the dose-volume histogram (DVH). The prescription dose was 60 Gy in 30 fractions. Results: IMRT plans decrease the maximum dose and volume of brainstem, mean dose of affected side parotid and maximum dose of spinal-cord. The CI for PTV of IMRT was superior to that of SD CRT, the HI for PTV has no statistical significance of the two model plans. Conclusions: IMRT plans can obviously decrease the dose and volume of brainstem. IMRT is a potential method in the treatment of brain glioma, and dose escalation was possible in patients with brain glioma. (authors)

  3. Boosted PWM open loop control of hydraulic proportional valves

    International Nuclear Information System (INIS)

    Amirante, R.; Innone, A.; Catalano, L.A.

    2008-01-01

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots

  4. Boosted PWM open loop control of hydraulic proportional valves

    Energy Technology Data Exchange (ETDEWEB)

    Amirante, R.; Catalano, L.A. [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy); Innone, A. [Universita degli Studi di Foggia, via Napoli, 25 Foggia (Italy)

    2008-08-15

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots. (author)

  5. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  6. Cervix carcinomas: place of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Barillot, I.

    2009-01-01

    While indications of modulated intensity radiation therapy (I.M.R.T.) are perfectly defined in head and neck and prostate cancer patients, this technique remains under evaluation for gynecologic tumours. The implementation of conformal three dimensional radiotherapy in the late 1990 has been the first important step for optimisation of treatment of cervix carcinomas, as it permitted a better target coverage with a significant reduction of the bladder dose. However, this technique often leads to an irradiation of a larger volume of rectum in locally advanced stages and could only spare a limited amount of intestine. I.R.M.T. is one of the optimisation methods potentially efficient for a better sparing of digestive tract during irradiation of cervix carcinomas. The aim of this literature review is to provide the arguments supporting this hypothesis, and to define the place of this technique for dose escalation. (authors)

  7. An optimal algorithm for configuring delivery options of a one-dimensional intensity-modulated beam

    International Nuclear Information System (INIS)

    Luan Shuang; Chen, Danny Z; Zhang, Li; Wu Xiaodong; Yu, Cedric X

    2003-01-01

    The problem of generating delivery options for one-dimensional intensity-modulated beams (1D IMBs) arises in intensity-modulated radiation therapy. In this paper, we present an algorithm with the optimal running time, based on the 'rightmost-preference' method, for generating all distinct delivery options for an arbitrary 1D IMB. The previously best known method for generating delivery options for a 1D IMB with N left leaf positions and N right leaf positions is a 'brute-force' solution, which first generates all N! possible combinations of the left and right leaf positions and then removes combinations that are not physically allowed delivery options. Compared with the brute-force method, our algorithm has several advantages: (1) our algorithm runs in an optimal time that is linearly proportional to the total number of distinct delivery options that it actually produces. Note that for a 1D IMB with multiple peaks, the total number of distinct delivery options in general tends to be considerably smaller than the worst case N!. (2) Our algorithm can be adapted to generating delivery options subject to additional constraints such as the 'minimum leaf separation' constraint. (3) Our algorithm can also be used to generate random subsets of delivery options; this feature is especially useful when the 1D IMBs in question have too many delivery options for a computer to store and process. The key idea of our method is that we impose an order on how left leaf positions should be paired with right leaf positions. Experiments indicated that our rightmost-preference algorithm runs dramatically faster than the brute-force algorithm. This implies that our algorithm can handle 1D IMBs whose sizes are substantially larger than those handled by the brute-force method. Applications of our algorithm in therapeutic techniques such as intensity-modulated arc therapy and 2D modulations are also discussed

  8. Gradient Boosting Machines, A Tutorial

    Directory of Open Access Journals (Sweden)

    Alexey eNatekin

    2013-12-01

    Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

  9. Enhancing treatment of osteoarthritis knee pain by boosting expectancy: A functional neuroimaging study

    Directory of Open Access Journals (Sweden)

    Jian Kong

    Full Text Available Objectives: Expectation can significantly modulate pain and treatment effects. This study aims to investigate if boosting patients' expectancy can enhance the treatment of knee osteoarthritis (KOA, and its underlying brain mechanism. Methods: Seventy-four KOA patients were recruited and randomized to three groups: boosted acupuncture (with a manipulation to enhance expectation, standard acupuncture, or treatment as usual (TAU. Each patient underwent six treatments before being debriefed, and four additional treatments after being debriefed. The fMRI scans were applied during the first and sixth treatment sessions. Results: We found significantly decreased knee pain in the boosted acupuncture group compared to the standard acupuncture or TAU groups after both six and ten treatments. Resting state functional connectivity (rsFC analyses using the nucleus accumbens (NAc as the seed showed rsFC increases between the NAc and the medial prefrontal cortex (MPFC/rostral anterior cingulate cortex (rACC and dorsolateral prefrontal cortex in the boosted group as compared to the standard acupuncture group after multiple treatments. Expectancy scores after the first treatment were significantly associated with increased NAc-rACC/MPFC rsFC and decreased knee pain following treatment. Conclusions: Our study provides a novel method and mechanism for boosting the treatment of pain in patients with KOA. Our findings may shed light on enhancing outcomes of pharmacological and integrative medicines in clinical settings. Keywords: Knee osteoarthritis, Expectancy, Acupuncture, Reward, Resting state functional connectivity

  10. Fractionated stereotactic radiotherapy boost for gynecologic tumors: An alternative to brachytherapy?

    International Nuclear Information System (INIS)

    Molla, Meritxell; Escude, Lluis D.; Nouet, Philippe; Popowski, Youri D.Sc.; Hidalgo, Alberto; Rouzaud, Michel; Linero, Dolores; Miralbell, Raymond

    2005-01-01

    Purpose: A brachytherapy (BT) boost to the vaginal vault is considered standard treatment for many endometrial or cervical cancers. We aimed to challenge this treatment standard by using stereotactic radiotherapy (SRT) with a linac-based micromultileaf collimator technique. Methods and Materials: Since January 2002, 16 patients with either endometrial (9) or cervical (7) cancer have been treated with a final boost to the areas at higher risk for relapse. In 14 patients, the target volume included the vaginal vault, the upper vagina, the parametria, or (if not operated) the uterus (clinical target volume [CTV]). In 2 patients with local relapse, the CTV was the tumor in the vaginal stump. Margins of 6-10 mm were added to the CTV to define the planning target volume (PTV). Hypofractionated dynamic-arc or intensity-modulated radiotherapy techniques were used. Postoperative treatment was delivered in 12 patients (2 x 7 Gy to the PTV with a 4-7-day interval between fractions). In the 4 nonoperated patients, a dose of 4 Gy/fraction in 5 fractions with 2 to 3 days' interval was delivered. Patients were immobilized in a customized vacuum body cast and optimally repositioned with an infrared-guided system developed for extracranial SRT. To further optimize daily repositioning and target immobilization, an inflated rectal balloon was used during each treatment fraction. In 10 patients, CT resimulation was performed before the last boost fraction to assess for repositioning reproducibility via CT-to-CT registration and to estimate PTV safety margins around the CTV. Finally, a comparative treatment planning study between BT and SRT was performed in 2 patients with an operated endometrial Stage I cancer. Results: No patient developed severe acute urinary or low-intestinal toxicity. No patient developed urinary late effects (>6 months). One patient with a vaginal relapse previously irradiated to the pelvic region presented with Grade 3 rectal bleeding 18 months after retreatment

  11. Predictive Trailing-Edge Modulation Average Current Control in DC-DC Converters

    Directory of Open Access Journals (Sweden)

    LASCU, D.

    2013-11-01

    Full Text Available The paper investigates predictive digital average current control (PDACC in dc/dc converters using trailing-edge modulation (TEM. The study is focused on the recurrence duty cycle equation and then stability analysis is performed. It is demonstrated that average current control using trailing-edge modulation is stable on the whole range of the duty cycle and thus design problems are highly reduced. The analysis is carried out in a general manner, independent of converter topology and therefore the results can then be easily applied for a certain converter (buck, boost, buck-boost, etc.. The theoretical considerations are confirmed for a boost converter first using the MATLAB program based on state-space equations and finally with the CASPOC circuit simulation package.

  12. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Monjazeb, Arta M., E-mail: arta.monjazeb@ucdmc.ucdavis.edu [U.C. Davis School of Medicine, Department of Radiation Oncology, Sacramento, CA (United States); Ayala, Deandra; Jensen, Courtney [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Case, L. Douglas [Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Bourland, J. Daniel; Ellis, Thomas L. [Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC (United States); McMullen, Kevin P.; Chan, Michael D. [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Tatter, Stephen B. [Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Lesser, Glen J. [Hematology Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States); Shaw, Edward G. [Radiation Oncology, Wake Forest University Health Sciences, Winston-Salem, NC (United States)

    2012-02-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4-5 acute neurotoxicity attributable to radiotherapy. Results: All patients experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.

  13. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Monjazeb, Arta M.; Ayala, Deandra; Jensen, Courtney; Case, L. Douglas; Bourland, J. Daniel; Ellis, Thomas L.; McMullen, Kevin P.; Chan, Michael D.; Tatter, Stephen B.; Lesser, Glen J.; Shaw, Edward G.

    2012-01-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4–5 acute neurotoxicity attributable to radiotherapy. Results: All patients experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.

  14. Conditioned pain modulation is affected by occlusion cuff conditioning stimulus intensity, but not duration.

    Science.gov (United States)

    Smith, A; Pedler, A

    2018-01-01

    Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not duration of lower intensity (2/10) conditioning stimulus, affects CPM magnitude. © 2017 European Pain Federation - EFIC®.

  15. Intensity-modulated radiation therapy: a review with a physics perspective.

    Science.gov (United States)

    Cho, Byungchul

    2018-03-01

    Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

  16. Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP

    Science.gov (United States)

    Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang

    2017-12-01

    This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.

  17. Investigation and improvement of high step- up converters for pv module applications

    Directory of Open Access Journals (Sweden)

    Hamed moradmand jazi

    2017-01-01

    Full Text Available sun is of the clean and cheapest sources of energy. Charging slight energy to electricity is carried out by PV modules. Since most electric consumers need Ac input voltage, the PV modules output voltage should be changed into Ac form. But, the voltage level of PV modules is much lower than the voltage needed in input stage of inverters. Because of large voltage level. Difference it is not possible to use the basic boost and buck-boost converters. The basic boost and buck-boost converters definitely can not be used in this applications, for, they will face extreme drop in efficiency in duty cycles closer to unity. In this paper The proposed converter is presented in order to decrease the voltage stress of coupled inductors based high step-up converters. The voltage stress in the proposed converter is lower than the high step-up boost converter with coupled inductors in identical condition. Also, soft switching condition for switches and diodes is realized by active clamp circuit, and with this technique and proper selection of duty cycle, large gain and high efficiency could be achieved ultimately. . In this paper theoretical analysis is used for analyzing the performance of the proposed converters, and in order to verify the theoretical analysis, simulated results from pspice software is provides.

  18. Robust loss functions for boosting.

    Science.gov (United States)

    Kanamori, Takafumi; Takenouchi, Takashi; Eguchi, Shinto; Murata, Noboru

    2007-08-01

    Boosting is known as a gradient descent algorithm over loss functions. It is often pointed out that the typical boosting algorithm, Adaboost, is highly affected by outliers. In this letter, loss functions for robust boosting are studied. Based on the concept of robust statistics, we propose a transformation of loss functions that makes boosting algorithms robust against extreme outliers. Next, the truncation of loss functions is applied to contamination models that describe the occurrence of mislabels near decision boundaries. Numerical experiments illustrate that the proposed loss functions derived from the contamination models are useful for handling highly noisy data in comparison with other loss functions.

  19. Standardized evaluation of simultaneous integrated boost plans on volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Yang Wensha; Jones, Ryan; Read, Paul; Benedict, Stanley; Sheng Ke

    2011-01-01

    The purpose of this paper is to quantify the capability of the RapidArc (RA) planning system to deliver highly heterogeneous doses for simultaneous integrated boost (SIB) in both a phantom and patients. A cylindrical planning target volume (PTV) with a diameter of 6 cm was created in a cylindrical phantom. A smaller boost tumor volume (BTV) in the PTV with varying diameters (0.625-2.5 cm), positions and shapes was also created. Five previously treated patients with brain tumors were included in the study. Original gross tumor volumes (average 41.8 cm 3 ) and PTVs (average 316 cm 3 ) were adopted as the BTV and the PTV in the new plans. 30 Gy was prescribed to the PTV. Doses varying from 35 to 90 Gy were prescribed to the BTV. Both SIB and sequential boost (SEQ) plans were created on RA to meet the prescription. A set of reference plans was also created on the helical tomotherapy (HT) platform. Normalized dose contrast (NDC) and the integral dose were used to evaluate the quality of plans. NDC was defined as the dose contrast between BTV and PTV-BTV, normalizing to the ideal scenario where the contrast is the ratio between prescribed doses to the BTV and PTV. NDC above 90% was observed with BTV dose less than 60 Gy. NDC was minimally affected by the size of BTV but adversely affected by the complexity of the shape of the BTV. In the phantom plans, a peak of NDC was observed with 45 Gy (150% of PTV dose) to the BTV; for BTVs at the center of the PTV, the increase in the integral dose was less than 2% and remained constant for all dose levels in the phantom plans but a linear increase in the integral dose was observed with the HT plans. In the patient plans, an 11% average increase in the integral dose was observed with SIB plans and 60 Gy to the BTV, lower than the 30% average increase in the SEQ plans by RA and 25% by HT. The study showed not only that SIB by RA can achieve superior plans compared with SEQ plans on the same platform and SIB plans on HT, but also the

  20. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    Science.gov (United States)

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  1. Intensity-modulated radiotherapy -the State of the Art

    International Nuclear Information System (INIS)

    Ling, C.

    2002-01-01

    Full text: In the last two decades of the last century, the development of three-dimensional conformal radiotherapy (3D-CRT) has substantially reduces the volume of critical organs irradiated to high doses, and has permitted the increase of tumor dose without concomitant increase in normal tissue complication. At Memorial Sloan Kettering Cancer Center, a clinical trial in cancer of the prostate has accrued >1600 patient and the prescription dose has been escalated to 81 Gy with 3D-CRT, and to 86.4 Gy using intensity modulated radiotherapy (IMRT), with promising results. 3D-CRT and IMRT involves the delineation of target and non-target structures from patient-specific 3D image data-sets (primarily CT, sometimes supplemented with MRI, PET etc.), the calculation and display of 3D dose distributions, the analysis and evaluation of structure-specific dose-volume data (DVH-dose volume histogram), radiation delivery with computer-controlled multileaf collimators (MLC), and treatment verification with electronic portal images. However, the dose distribution conformality achieved with 3D-CRT can be further improved by the use of computer-optimized IMRT. In addition, the treatment design phase of 3D-CRT involves several iterative steps and can be time-consuming, particularly when the anatomical geometry is complex. Thus, IMRT is an incremental advance from 3D-CRT with two key enhancements: 1) computerized iterative treatment plan optimization, and 2) the use of intensity-modulated radiation beams. To deliver the IM beams, one efficacious approach is to use MLC in the dynamic mode, using the so-called sliding-window technique, i.e. the leaves of the MLC are in motion while the radiation is being delivered. Since 1995, we have treated over 1500 patients with IMRT. This discussion shall describe the physical aspects of IMRT, emphasizing those features and benefits unique to this approach. Pertinent clinical results will also be briefly presented

  2. Intensity-modulated arc therapy with cisplatin as neo-adjuvant treatment for primary irresectable cervical cancer. Toxicity, tumour response and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, K.; Eijkeren, M. van; Meerleer, G. de [Ghent University Hospital (Belgium). Dept. of Radiotherapy; Makar, A.; Broecke, R. van den; Tummers, P. [Ghent University Hospital (Belgium). Dept. of Gynecology; Delrue, L. [Ghent University Hospital (Belgium). Dept. of Radiology; Denys, H. [Ghent University Hospital (Belgium). Dept. of Medical Oncology; Lambein, K. [Ghent University Hospital (Belgium). Dept. of Pathology; Lambert, B. [Ghent University Hospital (Belgium). Dept. of Nuclear Medicine

    2012-07-15

    Purpose: The goal of this work was to evaluate the feasibility and outcome of intensity-modulated arc therapy {+-} cisplatin (IMAT {+-} C) followed by hysterectomy for locally advanced cervical cancer. Patients and methods: A total of 30 patients were included in the study. The primary tumour and PET-positive lymph node(s) received a simultaneous integrated boost. Four weeks after IMAT {+-} C treatment, response was evaluated. Resection consisted of hysterectomy with or without lymphadenectomy. Tumour response, acute and late radiation toxicity, postoperative morbidity and outcome were evaluated. Results: All hysterectomy specimens were macroscopically tumour-free with negative resection margins; pathological complete response was 40%. In 2 patients, one resected lymph node was positive. There was no excess in postoperative morbidity. Apart from two grade 3 hematologic toxicities, no grade 3 or 4 acute radiation toxicity was observed. No grade 3, 1 grade 4 (4%) intestinal, and 4 grade 3 (14%) urinary late toxicities were observed. The 2-year local and regional control rates were 96% and 100%, respectively. The 2-year distant control rate was 92%. Actuarial 2-year progression free survival rate was 89%. Actuarial 1- and 2-year overall survival rates were 96% and 91%, while 3-year overall survival was 84%. Conclusion: Surgery after IMAT {+-} C is feasible with low postoperative morbidity and radiation toxicity. Local, regional, distant control and survival rates are promising. (orig.)

  3. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R. [College of Medicine, Florida Univ., Florida (United States); Ha, Sung W. [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2003-06-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a {sub 90}Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

  4. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    International Nuclear Information System (INIS)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R.; Ha, Sung W.

    2003-01-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a 90 Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter

  5. Long-term results of intensity-modulated radiotherapy concomitant with chemotherapy for hypopharyngeal carcinoma aimed at laryngeal preservation

    Directory of Open Access Journals (Sweden)

    Tseng Szu-Wen

    2010-03-01

    Full Text Available Abstract Background The objective of this retrospective study is to investigate laryngeal preservation and long-term treatment results in hypopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT combined with chemotherapy. Methods Twenty-seven patients with hypopharyngeal carcinoma (stage II-IV were enrolled and underwent concurrent chemoradiotherapy. The chemotherapy regimens were monthly cisplatin and 5-fluorouracil for six patients and weekly cisplatin for 19 patients. All patients were treated with IMRT with simultaneous integrated boost technique. Acute and late toxicities were recorded based on CTCAE 3.0 (Common Terminology Criteria for Adverse Events. Results The median follow-up time for survivors was 53.0 months (range 36-82 months. The initial complete response rate was 85.2%, with a laryngeal preservation rate of 63.0%. The 5-year functional laryngeal, local-regional control, disease-free and overall survival rates were 59.7%, 63.3%, 51.0% and 34.8%, respectively. The most common greater than or equal to grade 3 acute and late effects were dysphagia (63.0%, 17 of 27 patients and laryngeal stricture (18.5%, 5 of 27 patients, respectively. Patients belonging to the high risk group showed significantly higher risk of tracheostomy compared to the low risk group (p = 0.014. Conclusions After long-term follow-up, our results confirmed that patients with hypopharyngeal carcinoma treated with IMRT concurrent with platinum-based chemotherapy attain high functional laryngeal and local-regional control survival rates. However, the late effect of laryngeal stricture remains a problem, particularly for high risk group patients.

  6. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    Science.gov (United States)

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  7. Design and Analysis of Two-Phase Boost DC-DC Converter

    OpenAIRE

    Taufik Taufik; Tadeus Gunawan; Dale Dolan; Makbul Anwari

    2010-01-01

    Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results fr...

  8. Effect of Increasing Experience on Dosimetric and Clinical Outcomes in the Management of Malignant Pleural Mesothelioma With Intensity-Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Pretesh R., E-mail: patel073@mc.duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Broadwater, Gloria [Cancer Center Biostatistics, Duke University Medical Center, Durham, North Carolina (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Miles, Edward F. [Naval Medical Center, Portsmouth, Virginia (United States); D' Amico, Thomas A.; Harpole, David [Department of Surgery, Division of Thoracic Surgery, Duke University Medical Center, Durham, North Carolina (United States); Kelsey, Chris R. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2012-05-01

    Purpose: To assess the impact of increasing experience with intensity-modulated radiation therapy (IMRT) after extrapleural pneumonectomy (EPP) for malignant pleural mesothelioma (MPM). Methods and Materials: The records of all patients who received IMRT following EPP at Duke University Medical Center between 2005 and 2010 were reviewed. Target volumes included the preoperative extent of the pleural space, chest wall incisions, involved nodal stations, and a boost to close/positive surgical margins if applicable. Patients were typically treated with 9-11 beams with gantry angles, collimator rotations, and beam apertures manually fixed to avoid the contalateral lung and to optimize target coverage. Toxicity was graded retrospectively using National Cancer Institute common toxicity criteria version 4.0. Target coverage and contralateral lung irradiation were evaluated over time by using linear regression. Local control, disease-free survival, and overall survival rates were estimated using the Kaplan-Meier method. Results: Thirty patients received IMRT following EPP; 21 patients also received systemic chemotherapy. Median follow-up was 15 months. The median dose prescribed to the entire ipsilateral hemithorax was 45 Gy (range, 40-50.4 Gy) with a boost of 8-25 Gy in 9 patients. Median survival was 23.2 months. Two-year local control, disease-free survival, and overall survival rates were 47%, 34%, and 50%, respectively. Increasing experience planning MPM cases was associated with improved coverage of planning target volumes (P=.04). Similarly, mean lung dose (P<.01) and lung V5 (volume receiving 5 Gy or more; P<.01) values decreased with increasing experience. Lung toxicity developed after IMRT in 4 (13%) patients at a median of 2.2 months after RT (three grade 3-4 and one grade 5). Lung toxicity developed in 4 of the initial 15 patients vs none of the last 15 patients treated. Conclusions: With increasing experience, target volume coverage improved and dose to the

  9. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling

    2017-01-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated

  10. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yuchuan [Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Deng, Min; Zhou, Xiaojuan [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Lin, Qiang; Du, Bin [Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Tian, Xue; Xu, Yong; Wang, Jin; Lu, You [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Gong, Youling, E-mail: gongyouling@hotmail.com [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China)

    2017-04-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy

  11. Clinical Outcomes of Intensity-Modulated Pelvic Radiation Therapy for Carcinoma of the Cervix

    International Nuclear Information System (INIS)

    Hasselle, Michael D.; Rose, Brent S.; Kochanski, Joel D.; Nath, Sameer K.; Bafana, Rounak; Yashar, Catheryn M.; Hasan, Yasmin; Roeske, John C.; Mundt, Arno J.; Mell, Loren K.

    2011-01-01

    Purpose: To evaluate disease outcomes and toxicity in cervical cancer patients treated with pelvic intensity-modulated radiation therapy (IMRT). Methods and Materials: We included all patients with Stage I-IVA cervical carcinoma treated with IMRT at three different institutions from 2000-2007. Patients treated with extended field or conventional techniques were excluded. Intensity-modulated radiation therapy plans were designed to deliver 45 Gy in 1.8-Gy daily fractions to the planning target volume while minimizing dose to the bowel, bladder, and rectum. Toxicity was graded according to the Radiation Therapy Oncology Group system. Overall survival and disease-free survival were estimated by use of the Kaplan-Meier method. Pelvic failure, distant failure, and late toxicity were estimated by use of cumulative incidence functions. Results: The study included 111 patients. Of these, 22 were treated with postoperative IMRT, 8 with IMRT followed by intracavitary brachytherapy and adjuvant hysterectomy, and 81 with IMRT followed by planned intracavitary brachytherapy. Of the patients, 63 had Stage I-IIA disease and 48 had Stage IIB-IVA disease. The median follow-up time was 27 months. The 3-year overall survival rate and the disease-free survival rate were 78% (95% confidence interval [CI], 68-88%) and 69% (95% CI, 59-81%), respectively. The 3-year pelvic failure rate and the distant failure rate were 14% (95% CI, 6-22%) and 17% (95% CI, 8-25%), respectively. Estimates of acute and late Grade 3 toxicity or higher were 2% (95% CI, 0-7%) and 7% (95% CI, 2-13%), respectively. Conclusions: Intensity-modulated radiation therapy is associated with low toxicity and favorable outcomes, supporting its safety and efficacy for cervical cancer. Prospective clinical trials are needed to evaluate the comparative efficacy of IMRT vs. conventional techniques.

  12. Deep Incremental Boosting

    OpenAIRE

    Mosca, Alan; Magoulas, George D

    2017-01-01

    This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep In...

  13. MIMO Intensity-Modulation Channels: Capacity Bounds and High SNR Characterization

    KAUST Repository

    Chaaban, Anas

    2016-10-01

    The capacity of MIMO intensity modulation channels is studied. The nonnegativity of the transmit signal (intensity) poses a challenge on the precoding of the transmit signal, which limits the applicability of classical schemes in this type of channels. To resolve this issue, capacity lower bounds are developed by using precoding-free schemes. This is achieved by channel inversion or QR decomposition to convert the MIMO channel to a set of parallel channels. The achievable rate of a DC-offset SVD based scheme is also derived as a benchmark. Then, a capacity upper bound is derived and is shown to coincide with the achievable rate of the QR decomposition based scheme at high SNR, consequently characterizing the high-SNR capacity of the channel. The high-SNR gap between capacity and the achievable rates of the channel inversion and the DC-offset SVD based schemes is also characterized. Finally, the ergodic capacity of the channel is also briefly discussed.

  14. Intensity-modulated photon arc therapy for treatment of pleural mesothelioma

    International Nuclear Information System (INIS)

    Tobler, Matt; Watson, Gordon; Leavitt, Dennis

    2002-01-01

    Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We have developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord

  15. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    International Nuclear Information System (INIS)

    Hoover, Douglas A.; Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-01-01

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT

  16. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2005-01-01

    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  17. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  18. [Positioning errors of CT common rail technique in intensity-modulated radiotherapy for nasopharyngeal carcinoma].

    Science.gov (United States)

    Tian, Fei; Xu, Zihai; Mo, Li; Zhu, Chaohua; Chen, Chaomin

    2012-11-01

    To evaluate the value of CT common rail technique for application in intensity-modulated radiotherapy for nasopharyngeal carcinoma (NPC). Twenty-seven NPC patients underwent Somatom CT scans using the Siemens CTVision system prior to the commencement of the radiotherapy sessions. The acquired CT images were registered with the planning CT images using the matching function of the system to obtain the linear set-up errors of 3 directions, namely X (left to right), Y (superior to inferior), and Z (anterior to posterior). The errors were then corrected online on the moving couch. The 27 NPC patients underwent a total of 110 CT scans and the displacement deviations of the X, Y and Z directions were -0.16∓1.68 mm, 0.25∓1.66 mm, and 0.33∓1.09 mm, respectively. CT common rail technique can accurately and rapidly measure the space error between the posture and the target area to improve the set-up precision of intensity-modulated radiotherapy for NPC.

  19. Quality control of specific patient in radiotherapy with modulated intensity

    International Nuclear Information System (INIS)

    Aberbuj, P D; Tapia Coca, R C

    2012-01-01

    In this work we comment the details of the patient specific quality controls of the first Intensity Modulated Radiotherapy treatment done at Roffo Institute. These controls consisted in two sets of measurements: absolute dose with ionization chamber and relative dose with two dosimetric systems (Gafchromic EBT2 radiochromic films and the PTW 729 ionization chambers array). Two of the filters did not pass the dosimetrical tests, and they were manufactured again. The new filters passed the tests. For the relative two-dimensional measurements the radiochromic films had a better performance than the array due to their higher spatial resolution (author)

  20. Intensity modulated radiotherapy (IMRT) in France: the boost of the national funding for the new expensive innovative technologies (STIC 2001 and 2002)

    International Nuclear Information System (INIS)

    Marchal, C.; Lapeyre, M.; Bensadoun, R.J.; Gerard, J.P.; Hasle, E.; Carrere, M.O.

    2003-01-01

    The STIC 2001 and STIC 2002 projects intend to allow the implementation and the assessment of Intensity Modulated Radiation Therapy in France. IMRT is an innovative technique in which the high-dose radiation volume conforms to an accurately defined target volume with less morbidity to the surrounding normal tissues. The main medical objectives of the projects are (1) to improve the therapeutic index while decreasing acute toxicity and late sequelae (mainly xerostomia and acute mucite for head and neck tumors), which allows an increase in the radiation dose to the tumor and then a better tumor control; (2) to propose a salvage treatment to patients who locally recurred in previously irradiated sites; (3) to determine the optimal treatment guidelines for a safe use of the technique in clinical routine. Our projects also aim at comparing IMRT and 3D conformal treatments on the one hand (STIC 2001), and IMRT and conventional treatments on the other hand (STIC 2002), with regard to costs. As a matter of fact, the use of IMRT is presently limited in France because its implementation requires high investment and personnel costs. The seventeen French Regional Cancer Centres involved in the two projects intend to study the additional cost of the use IMRT in comparison with the use of standard techniques, which appears to be a step for a wide use of this technique in France. Each of the studies is two-year prospective, and includes patients with head and neck tumors treated with a curative intend (post operative or exclusive treatments for STIC 2002 and STIC 2002), and patients with a prostate cancer (STIC 2001). (author)

  1. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  2. Subliminal action priming modulates the perceived intensity of sensory action consequences☆

    Science.gov (United States)

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539

  3. Hemithoracic Intensity Modulated Radiation Therapy After Pleurectomy/Decortication for Malignant Pleural Mesothelioma: Toxicity, Patterns of Failure, and a Matched Survival Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chance, William W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rice, David C. [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tsao, Anne S. [Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Fontanilla, Hiral P. [Princeton Radiation Oncology, Monroe Township, New Jersey (United States); Liao, Zhongxing; Chang, Joe Y.; Tang, Chad; Pan, Hubert Y.; Welsh, James W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mehran, Reza J. [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-01-01

    Purpose: To investigate safety, efficacy, and recurrence after hemithoracic intensity modulated radiation therapy after pleurectomy/decortication (PD-IMRT) and after extrapleural pneumonectomy (EPP-IMRT). Methods and Materials: In 2009-2013, 24 patients with mesothelioma underwent PD-IMRT to the involved hemithorax to a dose of 45 Gy, with an optional integrated boost; 22 also received chemotherapy. Toxicity was scored with the Common Terminology Criteria for Adverse Events v4.0. Pulmonary function was compared at baseline, after surgery, and after IMRT. Kaplan-Meier analysis was used to calculate overall survival (OS), progression-free survival (PFS), time to locoregional failure, and time to distant metastasis. Failures were in-field, marginal, or out of field. Outcomes were compared with those of 24 patients, matched for age, nodal status, performance status, and chemotherapy, who had received EPP-IMRT. Results: Median follow-up time was 12.2 months. Grade 3 toxicity rates were 8% skin and 8% pulmonary. Pulmonary function declined from baseline to after surgery (by 21% for forced vital capacity, 16% for forced expiratory volume in 1 second, and 19% for lung diffusion of carbon monoxide [P for all = .01]) and declined still further after IMRT (by 31% for forced vital capacity [P=.02], 25% for forced expiratory volume in 1 second [P=.01], and 30% for lung diffusion of carbon monoxide [P=.01]). The OS and PFS rates were 76% and 67%, respectively, at 1 year and 56% and 34% at 2 years. Median OS (28.4 vs 14.2 months, P=.04) and median PFS (16.4 vs 8.2 months, P=.01) favored PD-IMRT versus EPP-IMRT. No differences were found in grade 4-5 toxicity (0 of 24 vs 3 of 24, P=.23), median time to locoregional failure (18.7 months vs not reached, P not calculable), or median time to distant metastasis (18.8 vs 11.8 months, P=.12). Conclusions: Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication produced little high-grade toxicity but

  4. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  5. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  6. Conformal radiation therapy with or without intensity modulation in the treatment of localized prostate cancer

    International Nuclear Information System (INIS)

    Maingon, P.; Truc, G.; Bosset, M.; Peignaux, K.; Ammor, A.; Bolla, M.

    2005-01-01

    Conformal radiation therapy has now to be considered as a standard treatment of localized prostatic adenocarcinomas. Using conformational methods and intensity modulated radiation therapy requires a rigorous approach for their implementation in routine, focused on the reproducibility of the treatment, target volume definitions, dosimetry, quality control, setup positioning. In order to offer to the largest number of patients high-dose treatment, the clinicians must integrate as prognostic factors accurate definition of microscopic extension as well as the tolerance threshold of critical organs. High-dose delivery is expected to be most efficient in intermediary risks and locally advanced diseases. Intensity modulated radiation therapy is specifically dedicated to dose escalation. Perfect knowledge of classical constraints of conformal radiation therapy is required. Using such an approach in routine needs a learning curve including the physicists and a specific quality assurance program. (author)

  7. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  8. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  9. Minimising contralateral breast dose in post-mastectomy intensity-modulated radiotherapy by incorporating conformal electron irradiation

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Korevaar, Erik W; Dolsma, Willemtje; Maduro, John H; Langendijk, Johannes A

    PURPOSE: To assess the potential benefit of incorporating conformal electron irradiation in intensity-modulated radiotherapy (IMRT) for loco-regional post-mastectomy RT. PATIENTS AND METHODS: Ten consecutive patients that underwent left-sided mastectomy were selected for this comparative planning

  10. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Falk, Alexander T. [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Auberdiac, Pierre [Department of Radiation Oncology, Clinique Claude Bernard, Albi (France); Cartier, Lysian; Vallard, Alexis [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Ollier, Edouard [Department of Pharmacology-Toxicology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest en Jarez (France); Trone, Jane-Chloé; Khodri, Moustapha [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, Hôpital d’instruction de Armées du Val-de-Grâce, Paris (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France)

    2016-04-01

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.

  11. Dosimetric comparison of vaginal vault ovoid brachytherapy versus intensity-modulated radiation therapy plans in postoperative patients of cervical carcinoma following whole pelvic radiotherapy

    Directory of Open Access Journals (Sweden)

    Divya Khosla

    2014-01-01

    Full Text Available Introduction: Dosimetric study to compare high dose rate (HDR vaginal vault ovoid brachytherapy plan versus intensity-modulated radiation therapy (IMRT boost plan for doses delivered to target volume and organs at risk (OAR in postoperative patients of cervical carcinoma following whole pelvic radiotherapy (WPRT. Materials and Methods: Fifteen postoperative patients of cervical carcinoma suitable for vaginal ovoid brachytherapy following WPRT of 46 Gy/23 fractions/4.5 weeks were included. All were treated with brachytherapy (two sessions of 8.5 Gy each. The equivalent dose for IMRT was calculated by computing biologically effective dose of brachytherapy by linear quadratic model. Dose of brachytherapy (two sessions of 8.5 Gy was equivalent to IMRT dose of 26 Gy/13 fractions. Doses to target volume and OAR were compared between HDR and IMRT plans. Results: Target volume was well covered with both HDR and IMRT plans, but dose with brachytherapy was much higher (P < 0.05. Mean doses, doses to 0.1, 1, 2, and 5cc, 1/3 rd , 1/2, and 2/3 rd volume of bladder and rectum were significantly lower with HDR plans. Conclusion: In postoperative patients of cervical carcinoma, HDR brachytherapy following WPRT appears to be better than IMRT for tumor coverage and reducing dose to critical organs.

  12. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    Directory of Open Access Journals (Sweden)

    Vasco Giovagnetti

    Full Text Available In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC and non-photochemical fluorescence quenching (NPQ, to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events with that of a slower increase (corresponding to the light diel cycle on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  13. Can you boost your metabolism?

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000893.htm Can you boost your metabolism? To use the sharing ... boosting metabolism than tactics that work. Some myths can backfire. If you think you are burning more ...

  14. Travelling for treatment; does distance and deprivation affect travel for intensity-modulated radiotherapy in the rural setting for head and neck cancer?

    Science.gov (United States)

    Cosway, B; Douglas, L; Armstrong, N; Robson, A

    2017-06-01

    NHS England has commissioned intensity-modulated radiotherapy for head and neck cancers from Newcastle hospitals for patients in North Cumbria. This study assessed whether travel distances affected the decision to travel to Newcastle (to receive intensity-modulated radiotherapy) or Carlisle (to receive conformal radiotherapy). All patients for whom the multidisciplinary team recommended intensity-modulated radiotherapy between December 2013 and January 2016 were included. Index of multiple deprivation scores and travel distances were calculated. Patients were also asked why they chose their treating centre. Sixty-nine patients were included in this study. There were no significant differences in travel distance (p = 0.53) or index of multiple deprivation scores (p = 0.47) between patients opting for treatment in Carlisle or Newcastle. However, 29 of the 33 patients gave travel distance as their main reason for not travelling for treatment. Quantitatively, travel distance and deprivation does not impact on whether patients accept intensity-modulated radiotherapy. However, patients say distance is a major barrier for access. Future research should explore how to reduce this.

  15. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    International Nuclear Information System (INIS)

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-01-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  16. Learning Boost C++ libraries

    CERN Document Server

    Mukherjee, Arindam

    2015-01-01

    If you are a C++ programmer who has never used Boost libraries before, this book will get you up-to-speed with using them. Whether you are developing new C++ software or maintaining existing code written using Boost libraries, this hands-on introduction will help you decide on the right library and techniques to solve your practical programming problems.

  17. Obtaining Normal Tissue Constraints Using Intensity Modulated Radiotherapy (IMRT) in Patients with Oral Cavity, Oropharnygeal, and Laryngeal Carcinoma

    International Nuclear Information System (INIS)

    Skinner, William K.J.; Muse, Evan D.; Yaparpalvi, Ravindra; Guha, Chandan; Garg, Madhur K.; Kalnicki, Shalom

    2009-01-01

    The purpose of this study was to evaluate normal tissue dose constraints while maintaining planning target volume (PTV) prescription without reducing PTV margins. Sixteen patients with oral cavity carcinoma (group I), 27 patients with oropharyngeal carcinoma (group II), and 28 patients with laryngeal carcinoma (group III) were reviewed. Parotid constraints were a mean dose to either parotid < 26 Gy (PP1), 50% of either parotid < 30 Gy (PP2), or 20 cc of total parotid < 20 Gy (PP3). Treatment was intensity modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB). All patients met constraints for cord and brain stem. The mandibular constraints were met in 66%, 29%, and 57% of patients with oral, oropharyngeal, and laryngeal cancers, respectively. Mean dose of 26 Gy (PP1) was achieved in 44%, 41%, and 38% of oral, oropharyngeal, and laryngeal patients. PP2 (parotid constraint of 30 Gy to less than 50% of one parotid) was the easiest to achieve (group I, II, and III: 82%, 76%, and 78%, respectively). PP3 (20 cc of total parotid < 20 Gy) was difficult, and was achieved in 25%, 17%, and 35% of oral, oropharyngeal, and laryngeal patients, respectively. Mean parotid dose of 26 Gy was met 40% of the time. However, a combination of constraints allowed for sparing of the parotid based on different criteria and was met in high numbers. This was accomplished without reducing PTV-parotid overlap. What dose constraint best correlates with subjective and objective functional outcomes remains a focus for future study.

  18. Detection of Illegitimate Emails using Boosting Algorithm

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    and spam email detection. For our desired task, we have applied a boosting technique. With the use of boosting we can achieve high accuracy of traditional classification algorithms. When using boosting one has to choose a suitable weak learner as well as the number of boosting iterations. In this paper, we......In this paper, we report on experiments to detect illegitimate emails using boosting algorithm. We call an email illegitimate if it is not useful for the receiver or for the society. We have divided the problem into two major areas of illegitimate email detection: suspicious email detection...

  19. Quality controls in intensity-modulated conformational radiotherapy. S.F.P.M. report nr 26, January 2010

    International Nuclear Information System (INIS)

    Valinta, Danielle; Poinsignon, Anne; Caron, Jerome; Dejean, Catherine; Corsetti, Dominique; Marcie, Serge; Mazurier, Jocelyne; Naudy, Suzanne; Aget, Helene; Marchesi, Vincent; Vieillevigne, Laure; Dedieu, Veronique; Bramoule, Celine; Caselles, Olivier; Lacaze, Brigitte; Mazurier, Jocelyne

    2009-08-01

    This report proposes a comprehensive presentation of the different controls which can be performed for the implementation of 3D intensity-modulated conformal radiation therapy (IMCR). The authors first present the IMCR principle by describing modes of production of modulated beams, the practical realisation of intensity modulation with Multi Leaf Collimator (MLC), multi leaf collimators, and the inverse planning system. They present the quality control of the accelerator (pre-requisites, linearity of the monitor chamber, symmetry and homogeneity), the quality control of multi leaf collimators (prerequisites, leaf absolute calibration, static mode, dynamic mode), the quality control of the treatment planning system (prerequisites, tests specific to IMCR, example in dynamic mode with the chair test), the quality control of the treatment plan (objective, necessary equipment and software solutions, measurement of point absolute dose, control of dose distribution, independent calculation of the number of monitor units), and the treatment verification (pre-treatment verification, patient repositioning during treatment). Finally, they indicate human means required for IMCR implementation, and formulate some recommendations for this implementation

  20. Validation of intensity modulated radiation therapy patient plans with portal images

    International Nuclear Information System (INIS)

    Delpon, G.; Warren, S.; Mahe, D.; Gaudaire, S.; Lisbona, A.

    2007-01-01

    The goal of this study was to show the feasibility of step and shoot intensity-modulated radiation therapy pre-treatment quality control for patients using the electronic portal imaging device (iViewGT) fitted on a Sli+ linac (Elekta Oncology Systems, Crawley, UK) instead of radiographic films. Since the beginning of intensity-modulated radiation therapy treatments, the dosimetric quality control necessary before treating each new patient has been a time-consuming and therefore costly obligation. In order to fully develop this technique, it seems absolutely essential to reduce the cost of these controls, especially the linac time. Up to now, verification of the relative dosimetry field by field has been achieved by acquiring radiographic films in the isocenter plane and comparing them to the results of the XiO planning system (Computerized Medical Systems, Missouri, USA) using RIT113 v4.1 software (Radiological Imaging Technology, Colorado, USA). A qualitative and quantitative evaluation was realised for every field of every patient. A quick and simple procedure was put into place to be able to make the same verifications using portal images. This new technique is not a modification of the overall methodology of analysis. The results achieved by comparing the measurement with the electronic portal imaging device and the calculation with the treatment planning system were in line with those achieved with the films for all indicators we studied (isodoses, horizontal and vertical dose profiles and gamma index). (authors)

  1. Cardiorespiratory fitness modulates the acute flow-mediated dilation response following high-intensity but not moderate-intensity exercise in elderly men.

    Science.gov (United States)

    Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D

    2017-05-01

    Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o 2peak ). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o 2peak Forty-seven elderly men were stratified into lower (V̇o 2peak = 24.3 ± 2.9 ml·kg -1 ·min -1 ; n = 27) and higher fit groups (V̇o 2peak = 35.4 ± 5.5 ml·kg -1 ·min -1 ; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17-1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12-1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41-2.62), P exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o 2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of

  2. Validation of previously reported predictors for radiation-induced hypothyroidism in nasopharyngeal cancer patients treated with intensity-modulated radiation therapy, a post hoc analysis from a Phase III randomized trial.

    Science.gov (United States)

    Lertbutsayanukul, Chawalit; Kitpanit, Sarin; Prayongrat, Anussara; Kannarunimit, Danita; Netsawang, Buntipa; Chakkabat, Chakkapong

    2018-05-10

    This study aimed to validate previously reported dosimetric parameters, including thyroid volume, mean dose, and percentage thyroid volume, receiving at least 40, 45 and 50 Gy (V40, V45 and V50), absolute thyroid volume spared (VS) from 45, 50 and 60 Gy (VS45, VS50 and VS60), and clinical factors affecting the development of radiation-induced hypothyroidism (RHT). A post hoc analysis was performed in 178 euthyroid nasopharyngeal cancer (NPC) patients from a Phase III study comparing sequential versus simultaneous-integrated boost intensity-modulated radiation therapy. RHT was determined by increased thyroid-stimulating hormone (TSH) with or without reduced free thyroxin, regardless of symptoms. The median follow-up time was 42.5 months. The 1-, 2- and 3-year freedom from RHT rates were 78.4%, 56.4% and 43.4%, respectively. The median latency period was 21 months. The thyroid gland received a median mean dose of 53.5 Gy. Female gender, smaller thyroid volume, higher pretreatment TSH level (≥1.55 μU/ml) and VS60 treatment planning.

  3. Dose profile analysis of small fields in intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  4. Comparison of the efficacy of intensity modulated radiotherapy delivered by competing technologies

    International Nuclear Information System (INIS)

    Seco, Joao Carlos

    2003-01-01

    The project involved the study and comparison of the various intensity-modulated radiation therapy (IMRT) delivery techniques. IMRT can be delivered via (i) the NOMOS MIMiC tomotherapy device, (ii) the dynamic multileaf collimator (DMLC), and (iii) the technique of multiple-static fields (MSF) using a multileaf collimator (MLC). To evaluate the relative benefits and limitations of the different methods of delivering IMRT an inverse-planning simulation code was developed. The simulation uses two distinct beam models: (a) the PEACOCK pencil-beam model based on the double Gaussian convolution for the MIMiC, and (b) the macropencil beam model (with the extended source model included to correct for the output factor) which is used for the DMLC and MSF-MLC delivery techniques. The process of delivering an IMRT treatment may involve various beam-modifying techniques such as multileaf collimators, the NOMOS MIMiC, blocks, wedges, etc. The constraints associated with the IMRT delivery technique are usually neglected in the process of obtaining the 'optimal' inverse treatment plan. Consequently, dose optimization may be significantly reduced when the 'optimal' beam profiles are converted to leaf/diaphragm positions via a leaf-sequencing interpreter. The work developed assessed the effects on the optimum treatment plan of the following leaf-sequencing algorithms: MSF-MLC, DMLC, and NOMOS MIMiC. An increase of 2.5%, 3.7% and 5.7% was observed for the PTV dose, when delivering a fluence profile with the DMLC, MSF, and NOMOS MIMiC techniques, respectively. An intensity-modulated beam optimization algorithm was developed to incorporate the delivery constraints into the optimization cycle. The optimization algorithm was based on the quasi-Newton method of iteratively solving minimization problems. The developed algorithm iteratively corrects the incident, pencil-beam-like fluence to incorporate the delivery constraints. In the case of the DMLC and MSF the optimization converged

  5. Simulation comparison of proportional integral derivative and fuzzy logic in controlling AC-DC buck boost converter

    Science.gov (United States)

    Faisal, A.; Hasan, S.; Suherman

    2018-03-01

    AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.

  6. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Witjes, Max J. H.; Langendijk, Johannes A.; van Winkelhoff, Arie J.; Vissink, Arjan; Spijkervet, Frederik K. L.

    Objectives: The introduction of intensity modulated radiation therapy (IMRT) has led to new possibilities in the treatment of head and neck cancer (HNC). Limited information is available on how this more advanced radiation technique affects the oral microflora. In a prospective study we assessed the

  7. Intensity modulated radiation therapy: Analysis of patient specific quality control results, experience of Rene-Gauducheau Centre; Radiotherapie conformationnelle avec modulation d'intensite: analyse des resultats des controles precliniques, experience du centre Rene-Gauducheau

    Energy Technology Data Exchange (ETDEWEB)

    Chiavassa, S.; Brunet, G.; Gaudaire, S.; Munos-Llagostera, C.; Delpon, G.; Lisbona, A. [Service de physique medicale, centre Rene-Gauducheau, CLCC Nantes Atlantique, site hospitalier Nord, boulevard Jacques-Monod, 44805 Nantes Saint-Herblain cedex (France)

    2011-07-15

    Purpose. - Systematic verifications of patient's specific intensity-modulated radiation treatments are usually performed with absolute and relative measurements. The results constitute a database which allows the identification of potential systematic errors. Material and methods. - We analyzed 1270 beams distributed in 232 treatment plans. Step-and-shoot intensity-modulated radiation treatments were performed with a Clinac (6 and 23 MV) and sliding window intensity-modulated radiation treatments with a Novalis (6 MV). Results. - The distributions obtained do not show systematic error and all the control meet specified tolerances. Conclusion. - These results allow us to reduce controls specific patients for treatments performed under identical conditions (location, optimization and segmentation parameters of treatment planning system, etc.). (authors)

  8. Effect on therapeutic ratio of planning a boosted radiotherapy dose to the dominant intraprostatic tumour lesion within the prostate based on multifunctional MR parameters

    Science.gov (United States)

    Payne, G S; deSouza, N M; Dearnaley, D; Morgan, V A; Morgan, S C; Partridge, M

    2014-01-01

    Objective: To demonstrate the feasibility of an 8-Gy focal radiation boost to a dominant intraprostatic lesion (DIL), identified using multiparametric MRI (mpMRI), and to assess the potential outcome compared with a uniform 74-Gy prostate dose. Methods: The DIL location was predicted in 23 patients using a histopathologically verified model combining diffusion-weighted imaging, dynamic contrast-enhanced imaging, T2 maps and three-dimensional MR spectroscopic imaging. The DIL defined prior to neoadjuvant hormone downregulation was firstly registered to MRI-acquired post-hormone therapy and subsequently to CT radiotherapy scans. Intensity-modulated radiotherapy (IMRT) treatment was planned for an 8-Gy focal boost with 74-Gy dose to the remaining prostate. Areas under the dose–volume histograms (DVHs) for prostate, bladder and rectum, the tumour control probability (TCP) and normal tissue complication probabilities (NTCPs) were compared with those of the uniform 74-Gy IMRT plan. Results: Deliverable IMRT plans were feasible for all patients with identifiable DILs (20/23). Areas under the DVHs were increased for the prostate (75.1 ± 0.6 vs 72.7 ± 0.3 Gy; p < 0.001) and decreased for the rectum (38.2 ± 2.5 vs 43.5 ± 2.5 Gy; p < 0.001) and the bladder (29.1 ± 9.0 vs 36.9 ± 9.3 Gy; p < 0.001) for the boosted plan. The prostate TCP was increased (80.1 ± 1.3 vs 75.3 ± 0.9 Gy; p < 0.001) and rectal NTCP lowered (3.84 ± 3.65 vs 9.70 ± 5.68 Gy; p = 0.04) in the boosted plan. The bladder NTCP was negligible for both plans. Conclusion: Delivery of a focal boost to an mpMRI-defined DIL is feasible, and significant increases in TCP and therapeutic ratio were found. Advances in knowledge: The delivery of a focal boost to an mpMRI-defined DIL demonstrates statistically significant increases in TCP and therapeutic ratio. PMID:24601648

  9. Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator

    International Nuclear Information System (INIS)

    Chen Zhe; Xing Lei; Nath, Ravinder

    2002-01-01

    A self-consistent monitor unit (MU) and isocenter point-dose calculation method has been developed that provides an independent verification of the MU for intensity modulated radiotherapy (IMRT) using the MIMiC (Nomos Corporation) multileaf collimator. The method takes into account two unique features of IMRT using the MIMiC: namely the gantry-dynamic arc delivery of intensity modulated photon beams and the slice-by-slice dose delivery for large tumor volumes. The method converts the nonuniform beam intensity planned at discrete gantry angles of 5 deg. or 10 deg. into conventional nonmodulated beam intensity apertures of elemental arc segments of 1 deg. This approach more closely simulates the actual gantry-dynamic arc delivery by MIMiC. Because each elemental arc segment is of uniform intensity, the MU calculation for an IMRT arc is made equivalent to a conventional arc with gantry-angle dependent beam apertures. The dose to the isocenter from each 1 deg. elemental arc segment is calculated by using the Clarkson scatter summation technique based on measured tissue-maximum-ratio and output factors, independent of the dose calculation model used in the IMRT planning system. For treatments requiring multiple treatment slices, the MU for the arc at each treatment slice takes into account the MU, leakage and scatter doses from other slices. This is achieved by solving a set of coupled linear equations for the MUs of all involved treatment slices. All input dosimetry data for the independent MU/isocenter point-dose calculation are measured directly. Comparison of the MU and isocenter point dose calculated by the independent program to those calculated by the Corvus planning system and to direct measurements has shown good agreement with relative difference less than ±3%. The program can be used as an independent initial MU verification for IMRT plans using the MIMiC multileaf collimators

  10. Subliminal action priming modulates the perceived intensity of sensory action consequences.

    Science.gov (United States)

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2014-02-01

    The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Influence of stimulus intensity on the soleus H-reflex amplitude and modulation during locomotion

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine; Raffalt, Peter C

    2013-01-01

    -reflex methodology itself. Accordingly, the purpose of the present study was to study the effect on the soleus H-reflex during walking and running using stimulus intensities normally considered too high (up to 45% Mmax). Using M-waves of 25-45% Mmax as opposed to 5-25% Mmax showed a significant suppression...... of the peak H-reflex during the stance phase of walking, while no changes were observed during running. No differences were observed regarding modulation pattern. So a possible use of too high stimulus intensity cannot explain the differences mentioned. The surprising result in running may be explained...

  12. Boosted tops at ATLAS

    CERN Document Server

    Villaplana, M; The ATLAS collaboration

    2011-01-01

    A sample of candidate events for highly boosted top quarks is selected following the standard ATLAS selection for semi-leptonic ttbar events plus a requirement that the invariant mass of the reconstructed ttbar pair is greater than 700 GeV. Event displays are presented for the most promising candidates, as well as quantitative results for observables designed to isolate a boosted top quark signal.

  13. 'Tongue-and-groove' effect in intensity modulated radiotherapy with static multileaf collimator fields

    International Nuclear Information System (INIS)

    Que, W; Kung, J; Dai, J

    2004-01-01

    The 'tongue-and-groove problem' in step-and-shoot delivery of intensity modulated radiotherapy is investigated. A 'tongue-and-groove' index (TGI) is introduced to quantify the 'tongue-and-groove' effect in step-and-shoot delivery. Four different types of leaf sequencing methods are compared. The sliding window method and the reducing level method use the same number of field segments to deliver the same intensity map, but the TGI is much less for the reducing level method. The leaf synchronization method of Van Santvoort and Heijmen fails in step-and-shoot delivery, but a new method inspired by the method of Van Santvoort and Heijmen is shown to eliminate 'tongue-and-groove' underdosage completely

  14. Intensity Modulated Radiation Therapy. Development of the technique

    International Nuclear Information System (INIS)

    Rafailovici, L.; Alva, R.; Chiozza, J.; Donato, H.; Falomo, S.; Cardiello, C.; Furia, O.; Martinez, A.; Filomia, M.L.; Sansogne, R.; Arbiser, S.; Dosoretz, B.

    2008-01-01

    Full text: Introduction: Intensity Modulated Radiation Therapy (IMRT) is a result of advances in computer sciences that allowed the development of new technology related to planning and radiation therapy. IMRT was developed to homogenize the dose in the target volumes and decrease the dose in the surrounding healthy tissue. Using a software with high calculation capacity a simultaneous irradiation with different doses in a given volume is achieved. IMRT is based on internal planning. Material and methods: 628 patients were treated with IMRT in prostate lesions, head and neck, breast, thorax, abdomen and brain since August 2008. The software for IMRT is the XIO CMS and the accelerator used is a Varian Clinac 6 / 100. IMRT requires a first simulation, where immobilization systems are selected (mats, thermoplastic masks, among others) and the demarcation of the target structures, healthy tissue and dose prescription by a tattoo. Images of CT / MRI are merged when necessary. Once the system made the treatment optimization, this one is regulated by modulators. These are produced by numerical control machines from digital files produced by software. In a second modulation the planned irradiation is checked and tattoo is carried out according with this. We have a strict process of quality assurance to assess the viability of the plan before its implementation. We use the Map Check it possible to compare the dose on the central axis and the distribution in the whole plane regarding to that generated by the planning system. From 03/2008 the virtual simulation process was implemented integrating the described stages. Results and Conclusions: IMRT is a complex technique. The meticulous planning, implementation of process and quality control allows the use of this technique in a reliable and secure way. With IMRT we achieved a high level of dose conformation, less irradiation of healthy tissue, lower rates of complications and the dose escalation for some tumors. (authors) [es

  15. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-01-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V 95% and V 100% , respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V 95% , PTV sigma index, and conformity number. The mean PTV V 95% was 92.5% (95% confidence interval, 91.3–93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90–2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76–0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p 95% only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate cancer using IMRT. The differences seen between centers and planning systems and the coverage

  16. Comparative Evaluation of Pulsewidth Modulation Strategies for Z-Source Neutral-Point-Clamped Inverter

    DEFF Research Database (Denmark)

    Loh, P.C.; Blaabjerg, Frede; Wong, C.P.

    2007-01-01

    modulation (PWM) strategies for controlling the Z-source NPC inverter. While developing the PWM techniques, attention has been devoted to carefully derive them from a common generic basis for improved portability, easier implementation, and most importantly, assisting readers in understanding all concepts......Z-source neutral-point-clamped (NPC) inverter has recently been proposed as an alternative three-level buck-boost power conversion solution with an improved output waveform quality. In principle, the designed Z-source inverter functions by selectively "shooting through" its power sources, coupled...... to the inverter using two unique Z-source impedance networks, to boost the inverter three-level output waveform. Proper modulation of the new inverter would therefore require careful integration of the selective shoot-through process to the basic switching concepts to achieve maximal voltage-boost, minimal...

  17. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    International Nuclear Information System (INIS)

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-01-01

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  18. The Clinical Value of Non-Coplanar Photon Beams in Biologically Optimized Intensity Modulated Dose Delivery on Deep-Seated Tumours

    International Nuclear Information System (INIS)

    Ferreira, Brigida C.; Svensson, Roger; Loef, Johan; Brahme, Anders

    2003-01-01

    The aim of the present study is to compare the merits of different radiobiologically optimized treatment techniques using few-field planar and non-coplanar dose delivery on an advanced cancer of the cervix, with rectum and bladder as principal organs at risk. Classically, the rational for using non-coplanar beams is to minimize the overlap of beam entrance and exit regions and to find new beam directions avoiding organs at risk, in order to reduce damage to sensitive normal tissues. Two four-beam configurations have been extensively studied. The first consists of three evenly spaced coplanar beams and a fourth non-coplanar beam. A second tetrahedral-like configuration, with two symmetric non-coplanar beams at the same gantry angle and two coplanar beams, with optimized beam directions, was also tested. The present study shows that when radiobiologically optimized intensity modulated beams are applied to such a geometry, only a marginal increase in the treatment outcome can be achieved by non-coplanar beams compared to the optimal coplanar treatment. The main reason for this result is that the high dose in the beam-overlap regions is already optimally reduced by biologically optimized intensity modulation in the plane. The large number of degrees of freedom already incorporated in the treatment by the use of intensity modulation and radiobiological optimization, leads to the saturation of the benefit acquired by a further increase in the degrees of freedom with non-coplanar beams. In conclusion, the use coplanar of radiobiologically optimized intensity modulation simplifies the dose delivery, reducing the need for non-coplanar beam portals

  19. Boosting structured additive quantile regression for longitudinal childhood obesity data.

    Science.gov (United States)

    Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael

    2013-07-25

    Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.

  20. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  1. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    Directory of Open Access Journals (Sweden)

    Murray JR

    2015-11-01

    Full Text Available Julia R Murray,1,2 Helen A McNair,2 David P Dearnaley1,2 1Academic Urology Unit, Institute of Cancer Research, London, 2Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. Keywords: radiotherapy, prostate cancer, post-prostatectomy, image-guided radiation therapy

  2. Laser Noise and its Impact on the Performance of Intensity-Modulation with Direct-Detection Analog Photonic Links

    National Research Council Canada - National Science Library

    Urick, Vincent J; Devgan, Preetpaul S; McKinney, Jason D; Dexter, James L

    2007-01-01

    The equations for radio-frequency gain, radio-frequency noise figure, compression dynamic range and spurious-free dynamic range are derived for an analog photonic link employing intensity modulation and direct detection...

  3. Dosimetric and QA aspects of Konrad inverse planning system for commissioning intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Deshpande Shrikant

    2007-01-01

    Full Text Available The intensity-modulated radiation therapy (IMRT planning is performed using the Konrad inverse treatment planning system and the delivery of the treatment by using Siemens Oncor Impression Plus linear accelerator (step and shoot, which has been commissioned recently. The basic beam data required for commissioning the system were generate. The quality assurance of relative and absolute dose distribution was carried out before clinical implementation. The salient features of Konrad planning system, like dependence of grid size on dose volume histogram (DVH, number of intensity levels and step size in sequencer, are studied quantitatively and qualitatively. To verify whether the planned dose [from treatment planning system (TPS] and delivered dose are the same, the absolute dose at a point is determined using CC01 ion chamber and the axial plane dose distribution is carried out using Kodak EDR2 in conjunction with OmniPro IMRT Phantom and OmniPro IMRT software from Scanditronix Wellhofer. To obtain the optimum combination in leaf sequencer module, parameters like number of intensity levels, step size are analyzed. The difference between pixel values of optimum fluence profile and the fluence profile obtained for various combinations of number of intensity levels and step size is compared and plotted. The calculations of the volume of any RT structure in the dose volume histogram are compared using grid sizes 3 mm and 4 mm. The measured and planned dose at a point showed good agreement (< 3% except for a few cases wherein the chamber was placed in a relatively high dose gradient region. The axial plane dose distribution using film dosimetry shows excellent agreement (correlation coefficient> 0.97 in all the cases. In the leaf sequencer module, the combination of number of intensity level 7 with step size of 3 is the optimal solution for obtaining deliverable segments. The RT structure volume calculation is found to be more accurate with grid size of

  4. Intensity-modulated radiation therapy clinical evidence and techniques

    CERN Document Server

    Nishimura, Yasumasa

    2015-01-01

    Successful clinical use of intensity-modulated radiation therapy (IMRT) represents a significant advance in radiation oncology. Because IMRT can deliver high-dose radiation to a target with a reduced dose to the surrounding organs, it can improve the local control rate and reduce toxicities associated with radiation therapy. Since IMRT began being used in the mid-1990s, a large volume of clinical evidence of the advantages of IMRT has been collected. However, treatment planning and quality assurance (QA) of IMRT are complicated and difficult for the clinician and the medical physicist. This book, by authors renowned for their expertise in their fields, provides cumulative clinical evidence and appropriate techniques for IMRT for the clinician and the physicist. Part I deals with the foundations and techniques, history, principles, QA, treatment planning, radiobiology and related aspects of IMRT. Part II covers clinical applications with several case studies, describing contouring and dose distribution with cl...

  5. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: alexdjensen@gmx.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nikoghosyan, Anna V.; Lossner, Karen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Haberer, Thomas; Jäkel, Oliver [Heidelberg Ion Beam Therapy Centre, Heidelberg (Germany); Münter, Marc W.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  6. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  7. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  8. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  9. BoostEMM : Transparent boosting using exceptional model mining

    NARCIS (Netherlands)

    van der Zon, S.B.; Zeev Ben Mordehay, O.; Vrijdag, T.S.; van Ipenburg, W.; Veldsink, J.; Duivesteijn, W.; Pechenizkiy, M.; Bordino, I.; Caldarelli, G.; Fumarola, F.; Gullo, F.; Squartini, T.

    2017-01-01

    Boosting is an iterative ensemble-learning paradigm. Every iteration, a weak predictor learns a classification task, taking into account performance achieved in previous iterations. This is done by assigning weights to individual records of the dataset, which are increased if the record is

  10. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  11. Intensity-modulated radiation therapy for anal carcinoma

    International Nuclear Information System (INIS)

    Peiffert, D.; Moreau-Claeys, M.V.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V.

    2011-01-01

    Anal canal carcinoma are highly curable by irradiation, combined with chemotherapy in locally advanced disease, with preservation of sphincter function. The clinical target volume for the nodes is extended, often including the inguinal nodes, which is not usual for other pelvic tumours. Acute and late effects are correlated with the volume and dose delivered to organs at risk, i. e. small bowel, bladder and increased by concomitant chemotherapy. Intensity modulated irradiation (IMRT) makes it possible to optimize the dose distribution in this 'complex U shaped' volume, while maintaining the dose distribution for the target volumes. The conversion from conformal irradiation to IMRT necessitates good knowledge of the definition and skills to delineate target volumes and organs at risk, including new volumes needed to optimize the dose distribution. Dosimetric and clinical benefits of IMRT are described, based on early descriptions and evidence-based publication. The growing development of IMRT in anal canal radiotherapy must be encouraged, and long-term benefits should be soon published. Radiation oncologists should precisely learn IMRT recommendations before starting the technique, and evaluate its early and late results for adverse effects, but also for long-term tumour control. (authors)

  12. Designing Customizable Reading Modules for a High School Literature Classroom

    Science.gov (United States)

    Russell, L. Roxanne; Cuevas, Joshua

    2014-01-01

    This design case follows an ongoing collaboration between an instructional technologist and a high school literature teacher promoting reading comprehension through modules that provide visually interesting display of text on a computer screen along with cognitive tools. The modules were found to boost comprehension of specific content in even one…

  13. Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort

    Energy Technology Data Exchange (ETDEWEB)

    Combs, S.E.; Habermehl, D.; Kessel, K.; Brecht, I. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Bergmann, F.; Schirmacher, P. [Univ. Hospital of Heidelberg (Germany). Dept. of Pathology; Werner, J.; Buechler, M.W. [Univ. Hospital of Heidelberg (Germany). Dept. of Surgery; Jaeger, D. [National Center for Tumor Diseases (NCT), Heidelberg (Germany); Debus, J. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology

    2013-09-15

    Background: To evaluate outcome after intensity modulated radiotherapy (IMRT) compared to 3D conformal radiotherapy (3D-RT) as neoadjuvant treatment in patients with locally advanced pancreatic cancer (LAPC). Materials and methods: In total, 57 patients with LAPC were treated with IMRT and chemotherapy. A median total dose of 45 Gy to the PTV {sub baseplan} and 54 Gy to the PTV {sub boost} in single doses of 1.8 Gy for the PTV {sub baseplan} and median single doses of 2.2 Gy in the PTV {sub boost} were applied. Outcomes were evaluated and compared to a large cohort of patients treated with 3D-RT. Results: Overall treatment was well tolerated in all patients and IMRT could be completed without interruptions. Median overall survival was 11 months (range 5-37.5 months). Actuarial overall survival at 12 and 24 months was 36 % and 8 %, respectively. A significant impact on overall survival could only be observed for a decrease in CA 19-9 during treatment, patients with less pre-treatment CA 19-9 than the median, as well as weight loss during treatment. Local progression-free survival was 79 % after 6 months, 39 % after 12 months, and 13 % after 24 months. No factors significantly influencing local progression-free survival could be identified. There was no difference in overall and progression-free survival between 3D-RT and IMRT. Secondary resectability was similar in both groups (26 % vs. 28 %). Toxicity was comparable and consisted mainly of hematological toxicity due to chemotherapy. Conclusion: IMRT leads to a comparable outcome compared to 3D-RT in patients with LAPC. In the future, the improved dose distribution, as well as advances in image-guided radiotherapy (IGRT) techniques, may improve the use of IMRT in local dose escalation strategies to potentially improve outcome. (orig.)

  14. Modeling and Control of DC/DC Boost Converter using K-Factor Control for MPPT of Solar PV System

    DEFF Research Database (Denmark)

    Vangari, Adithya; Haribabu, Divyanagalakshmi; Sakamuri, Jayachandra N.

    2015-01-01

    This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach...... is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar...... PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP...

  15. Feasibility Study of Moderately Accelerated Intensity-Modulated Radiotherapy Plus Concurrent Weekly Cisplatin After Induction Chemotherapy in Locally Advanced Head-and Neck Cancer

    International Nuclear Information System (INIS)

    Morganti, Alessio G.; Mignogna, Samantha; Deodato, Francesco; Massaccesi, Mariangela; Cilla, Savino; Calista, Franco; Serafini, Giovanni; Digesu, Cinzia; Macchia, Gabriella; Picardi, Vincenzo; Caravatta, Luciana; Di Lullo, Liberato; Giglio, Gianfranco; Sallustio, Giuseppina; Piermattei, Angelo

    2011-01-01

    Purpose: To evaluate the feasibility and efficacy of moderately accelerated intensity-modulated radiation therapy (IMRT) along with weekly cisplatin, after induction chemotherapy, in patients with locally advanced unresectable head and neck cancer (HNC). Methods and Materials: Patients with Stage III or IV locally advanced HNC, without progressive disease after three courses of induction chemotherapy, received concurrent chemo-IMRT (weekly cisplatin 30 mg/m 2 plus simultaneous integrated boost IMRT). A total of 67.5 Gy in 30 fractions were delivered to primary tumor and involved nodes, 60 Gy in 30 fractions to high-risk nodal areas, and 55.5 Gy in 30 fractions to low-risk nodal areas. Results: In all, 36 patients (median age, 56 years) with International Union Against Cancer (UICC) Stage III (n = 5) and IV (n = 31) were included. Of the 36 patients, 17 had received CF (cisplatin and 5-fluorouracil (CF) and 19 had received docetaxel cisplatin and 5-fluorouracil (DCF). During concurrent chemoradiation, 11 of 36 patients (30.5%) experienced Grade III mucositis (CF, 47%; DCF, 15%; p < 0.04). Grade III pharyngeal-esophageal toxicity was observed in 5 of 19 patients (26.3%; CF, 0.0%; DCF, 26.3%; p = 0.02). Two patients died of complications (5.5%). After chemoradiation, the complete response rate was 63.8%. Two-year local control was 88.7%. Two-year progression free survival and overall survival were 74.5% and 60.9%, respectively. Conclusions: In our experience, a moderately accelerated chemo-IMRT was feasible after induction chemotherapy. However, a noteworthy early death rate of 5.5% was observed. Intensive supportive care strategies should be defined to better manage radiation-induced toxic effects. Longer follow-up is required to determine the incidence of late radiation toxicities and tumor control rates.

  16. Definitive intensity-modulated radiotherapy concurrent with systemic therapy for oropharyngeal squamous cell carcinoma: Outcomes from an integrated regional Australian cancer centre.

    Science.gov (United States)

    Masoud Rahbari, Reza; Winkley, Lauren; Hill, Jacques; Tahir, Abdul Rahim Mohammed; McKay, Michael; Last, Andrew; Shakespeare, Thomas P; Dwyer, Patrick

    2016-06-01

    Oropharyngeal squamous cell carcinoma (OPSCC) incidence has increased over the past two decades largely because of an increase in human papilloma virus (HPV)-related OPSCC. We report here outcomes of definitive radiation therapy for OPSCC with simultaneous integrated boost intensity-modulated radiotherapy (IMRT) in a regional Australian cancer centre. We retrospectively reviewed electronic medical records (EMR) of all patients treated with IMRT for head and neck cancer. We included patients who received a curative intent IMRT for OPSCC (2010-2014). Of 61 patients, 80% were men, and the median age was 57 years. Ninety percent of our patients received concurrent systemic therapy, and 68% were p16 positive. The median radiotherapy dose received was 70 Gy in 35 fractions. The median follow up for surviving patients was 22 months. Twenty-four month actuarial data show that the loco-regional recurrence free, metastasis-free MFS, cancer-specific (CaSS) and overall survival percentages were 98.3%, 92.6%, 91% and 90.3%, respectively. We did not observe grades 4 or 5 acute or late toxicities, and 10 patients (16.2%) exhibited persistent grade 3 toxicity 6 months after completing the treatment. The results from curative IMRTs for OPSCC delivered in a regional cancer centre are comparable with results published by tertiary referral centres. A long-term follow up of this patient cohort will continue for further analyses and comparisons with tertiary centres. © 2016 The Royal Australian and New Zealand College of Radiologists.

  17. Definitive intensity-modulated radiotherapy concurrent with systemic therapy for oropharyngeal squamous cell carcinoma: Outcomes from an integrated regional Australian cancer centre

    International Nuclear Information System (INIS)

    Rahbari, Reza M.; McKay, Michael; Dwyer, Patrick; Winkley, Lauren; Hill, Jacques; Last, Andrew; Tahir, Abdul R.M.; Shakespeare, Thomas P.

    2016-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) incidence has increased over the past two decades largely because of an increase in human papilloma virus (HPV)-related OPSCC. We report here outcomes of definitive radiation therapy for OPSCC with simultaneous integrated boost intensity-modulated radiotherapy (IMRT) in a regional Australian cancer centre. We retrospectively reviewed electronic medical records (EMR) of all patients treated with IMRT for head and neck cancer. We included patients who received a curative intent IMRT for OPSCC (2010–2014). Of 61 patients, 80% were men, and the median age was 57 years. Ninety percent of our patients received concurrent systemic therapy, and 68% were p16 positive. The median radiotherapy dose received was 70 Gy in 35 fractions. The median follow up for surviving patients was 22 months. Twenty-four month actuarial data show that the loco-regional recurrence free, metastasis-free MFS, cancer-specific (CaSS) and overall survival percentages were 98.3%, 92.6%, 91% and 90.3%, respectively. We did not observe grades 4 or 5 acute or late toxicities, and 10 patients (16.2%) exhibited persistent grade 3 toxicity 6 months after completing the treatment. The results from curative IMRTs for OPSCC delivered in a regional cancer centre are comparable with results published by tertiary referral centres. A long-term follow up of this patient cohort will continue for further analyses and comparisons with tertiary centres.

  18. Feasibility and efficacy of accelerated weekly concomitant boost postoperative radiation therapy combined with concomitant chemotherapy in patients with locally advanced head and neck cancer.

    Science.gov (United States)

    Pehlivan, Berrin; Luthi, Francois; Matzinger, Oscar; Betz, Michael; Dragusanu, Daniela; Bulling, Shelley; Bron, Luc; Pasche, Philippe; Seelentag, Walter; Mirimanoff, René O; Zouhair, Abderrahim; Ozsahin, Mahmut

    2009-05-01

    The aim of this study was to assess feasibility and efficacy of weekly concomitant boost accelerated postoperative radiation therapy (PORT) with concomitant chemotherapy (CT) in patients with locally advanced head and neck cancer (LAHNC). Conformal or intensity-modulated 66-Gy RT was performed in 5.5 weeks in 40 patients. Cisplatin was given at days 1, 22, and 43. Median follow-up was 36 months. Grade 3 mucositis, dysphagia, and erythema was observed in ten (25%), nine (23%), and six (13%) patients, respectively. Grade 3 or more anemia was observed in two (6%) patients, and leukopenia in five (13%) patients. No grade 3 or 4 thrombocytopenia was observed. Grade 3 nephrotoxicity was observed in one patient (3%). No treatment-related mortality was observed. Grade 2 or more xerostomia and edema were observed in ten (25%) and one (3%) patient, respectively. Locoregional relapse occurred in eight patients, and seven patients developed distant metastases. Median time to locoregional relapse was 6 months. Three-year overall, disease-free survival, and locoregional control rates were 63%, 62%, and 81%, respectively. Multivariate analysis revealed that the only prognostic factor was nodal status. Reducing overall treatment time using accelerated PORT/CT by weekly concomitant boost (six fractions per week) combined with concomitant cisplatin CT is easily feasible with acceptable morbidity.

  19. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  20. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  1. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Kron, Tomas; Wilson, Lesley; Bressel, Mathias; Haworth, Annette; Hornby, Colin; Pham, Daniel; Cramb, Jim; Gill, Suki; Tai, Keen Hun

    2012-01-01

    To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy (IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer. Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293) for 3D-CRT; 824 (range 641–1083) for IMRT; and 403 (range 333–489) for VMAT (P < 0.05). Average treatment delivery time were 2:25min (range 2:01–3:09) for 3D-CRT; 4:39 (range 3:41–6:40) for IMRT; and 1:14 (range 1:13–1:14) for VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum. VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours

  2. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2016-10-01

    Full Text Available Accurate mapping of next-generation sequencing (NGS reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  3. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    Science.gov (United States)

    Zheng, Qi; Grice, Elizabeth A

    2016-10-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  4. Intensity-modulated radiation therapy: not a dry eye in the house

    International Nuclear Information System (INIS)

    Arnold, Anthony; Arnold, Belinda; Capp, Anne; Fox, Chris; Metcalfe, Peter; Chapman, Alison; Tangboonduangjit, Puangpeng

    2004-01-01

    Inverse planned intensity-modulated radiation therapy (IMRT) has been applied to patients in a conformal fashion in order to avoid the lacrimal gland. In the present study, we report a patient in which a potential planned dose of 63 Gy to the lacrimal gland for a conventional plan was reduced to 12 Gy to the lacrimal gland for the IMRT plan. Dose objective inverse planning was provided using a Pinnacle treatment planning computer and treatment was delivered using a Varian dynamic multileaf collimator (MLC) on a Varian linear accelerator. Because multiple MLC segments are used to deliver the modulated treatment, conventional dose checks by manual calculation are not practical. To aid in an alternative dosimetric verification process, the Pinnacle planning computer has two unique dose tools, which provide axial and beams eye view doses on user-specified check phantoms. The combined field axial dose tool matched our ion chamber dose checks within ± 2.4% at the isocentre. The individual beams eye view dose tool matched film dose maps within ± 3% in the umbra Copyright (2004) Blackwell Publishing Asia Pty Ltd

  5. Analysis, Design, Modeling, and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold

    2017-01-01

    This paper presents the design, modeling, and control of an isolated dc-dc three-port converter (TPC) based on an interleaved-boost full-bridge converter with pulsewidth modulation (PWM) and phase-shift control for hybrid renewable energy systems. In the proposed topology, the switches are driven...

  6. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  7. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    International Nuclear Information System (INIS)

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A.

    2007-01-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts (≥1,600 cm 3 , n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT

  8. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    International Nuclear Information System (INIS)

    Ng, Michael; Leong, Trevor; Chander, Sarat; Chu, Julie; Kneebone, Andrew; Carroll, Susan; Wiltshire, Kirsty; Ngan, Samuel; Kachnic, Lisa

    2012-01-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steering committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.

  9. Normalization of prostate specific antigen in patients treated with intensity modulated radiotherapy for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Schmitz, Matthew D; Padula, Gilbert DA; Chun, Patrick Y; Davis, Alan T

    2010-01-01

    The purpose of this study was to determine the expected time to prostate specific antigen (PSA) normalization with or without neoadjuvant androgen deprivation (NAAD) therapy after treatment with intensity modulated radiotherapy (IMRT) for patients with clinically localized prostate cancer. A retrospective cohort research design was used. A total of 133 patients with clinical stage T1c to T3b prostate cancer (2002 AJCC staging) treated in a community setting between January 2002 and July 2005 were reviewed for time to PSA normalization using 1 ng/mL and 2 ng/mL as criteria. All patients received IMRT as part of their management. Times to PSA normalization were calculated using the Kaplan-Meier method. Significance was assessed at p < 0.05. Fifty-six of the 133 patients received NAAD (42.1%). Thirty-one patients (23.8%) received radiation to a limited pelvic field followed by an IMRT boost, while 99 patients received IMRT alone (76.2%). The times to serum PSA normalization < 2 ng/mL when treated with or without NAAD were 298 ± 24 and 302 ± 33 days (mean ± SEM), respectively (p > 0.05), and 303 ± 24 and 405 ± 46 days, respectively, for PSA < 1 ng/mL (p < 0.05). Stage T1 and T2 tumors had significantly increased time to PSA normalization < 1 ng/mL in comparison to Stage T3 tumors. Also, higher Gleason scores were significantly correlated with a faster time to PSA normalization < 1 ng/mL. Use of NAAD in conjunction with IMRT leads to a significantly shortened time to normalization of serum PSA < 1 ng/mL in patients with clinically localized prostate cancer

  10. Extending statistical boosting. An overview of recent methodological developments.

    Science.gov (United States)

    Mayr, A; Binder, H; Gefeller, O; Schmid, M

    2014-01-01

    Boosting algorithms to simultaneously estimate and select predictor effects in statistical models have gained substantial interest during the last decade. This review highlights recent methodological developments regarding boosting algorithms for statistical modelling especially focusing on topics relevant for biomedical research. We suggest a unified framework for gradient boosting and likelihood-based boosting (statistical boosting) which have been addressed separately in the literature up to now. The methodological developments on statistical boosting during the last ten years can be grouped into three different lines of research: i) efforts to ensure variable selection leading to sparser models, ii) developments regarding different types of predictor effects and how to choose them, iii) approaches to extend the statistical boosting framework to new regression settings. Statistical boosting algorithms have been adapted to carry out unbiased variable selection and automated model choice during the fitting process and can nowadays be applied in almost any regression setting in combination with a large amount of different types of predictor effects.

  11. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    Directory of Open Access Journals (Sweden)

    Clivio Alessandro

    2010-11-01

    Full Text Available Abstract Purpose A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA and fixed field intensity modulated therapy (IMRT for Whole Abdomen Radiotherapy (WAR after ovarian cancer. Methods and Materials Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV_WAR and 45 Gy to the pelvis and pelvic nodes (PTV_Pelvis with Simultaneous Integrated Boost (SIB technique. Plans were investigated for 6 MV (RA6, IMRT6 and 15 MV (RA15, IMRT15 photons. Objectives were: for both PTVs V90% > 95%, for PTV_Pelvis: Dmax Results IMRT and RapidArc resulted comparable for target coverage. For PTV_WAR, V90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV_Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U5-95% = D5%-D95%/Dmean. U5-95% for PTV_WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15, 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15; for PTV_Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6, 2841 ± 318 (IMRT15, 538 ± 29 (RA6, 635 ± 139 (RA15; the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15 and 4.8 ± 0.2 (RA6 and RA15. GAIIMRT6 = 97.3 ± 2.6%, GAIIMRT15 = 94.4 ± 2.1%, GAIRA6 = 98.7 ± 1.0% and GAIRA15 = 95.7 ± 3.7%. Conclusion RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT.

  12. Postoperative Intensity-Modulated Arc Therapy for Cervical and Endometrial Cancer: A Prospective Report on Toxicity

    International Nuclear Information System (INIS)

    Vandecasteele, Katrien; Tummers, Philippe; Makar, Amin; Eijkeren, Marc van; Delrue, Louke; Denys, Hannelore; Lambert, Bieke; Beerens, Anne-Sophie; Van den Broecke, Rudy; Lambein, Kathleen; Fonteyne, Valérie; De Meerleer, Gert

    2012-01-01

    Purpose: To report on toxicity after postoperative intensity-modulated arc therapy (IMAT) for cervical (CC) and endometrial cancer (EC). Methods and Materials: Twenty-four CC and 41 EC patients were treated with postoperative IMAT. If indicated, para-aortic lymph node irradiation (preventive or when affected, PALN) and/or concomitant cisplatin (40 mg/m², weekly) was administered. The prescribed dose for IMAT was 45 Gy (CC, 25 fractions) and 46 Gy (EC, 23 fractions), followed by a brachytherapeutic boost if possible. Radiation-related toxicity was assessed prospectively. The effect of concomitant cisplatin and PALN irradiation was evaluated. Results: Regarding acute toxicity (n = 65), Grade 3 and 2 acute gastrointestinal toxicity was observed in zero and 63% of patients (79% CC, 54% EC), respectively. Grade 3 and 2 acute genitourinary toxicity was observed in 1% and 18% of patients, respectively. Grade 2 (21%) and 3 (12%) hematologic toxicity (n = 41) occurred only in CC patients. Seventeen percent of CC patients and 2% of EC patients experienced Grade 2 fatigue and skin toxicity, respectively. Adding cisplatin led to an increase in Grade >2 nausea (57% vs. 9%; p = 0.01), Grade 2 nocturia (24% vs. 4%; p = 0.03), Grade ≥2 hematologic toxicity (38% vs. nil, p = 0.003), Grade ≥2 leukopenia (33% vs. nil, p = 0.009), and a strong trend toward more fatigue (14% vs. 2%; p = 0.05). Para-aortic lymph node irradiation led to an increase of Grade 2 nocturia (31% vs. 4%, p = 0.008) and a strong trend toward more Grade >2 nausea (44% vs. 18%; p = 0.052). Regarding late toxicity (n = 45), no Grade 3 or 4 late toxicity occurred. Grade 2 gastrointestinal toxicity, genitourinary toxicity, and fatigue occurred in 4%, 9%, and 1% of patients. Neither concomitant cisplatin nor PALN irradiation increased late toxicity rates. Conclusions: Postoperative IMAT for EC or CC is associated with low acute and late toxicity. Concomitant chemotherapy and PALN irradiation influences acute but

  13. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakamura, Akira [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shiinoki, Takehiro [Department of Nuclear Engineering, Kyoto University Graduate School of Engineering, Kyoto (Japan); Matsuo, Yukinori [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakata, Manabu [Clinical Radiology Service Division, Kyoto University Hospital, Kyoto (Japan); Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  14. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas

    2018-02-19

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  15. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  16. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Science.gov (United States)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  17. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Senthi, Sashendra, E-mail: sasha.senthi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Gill, Suki S. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Haworth, Annette; Kron, Tomas; Cramb, Jim [Department of Physical Sciences, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Rolfo, Aldo [Radiation Therapy Services, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Thomas, Jessica [Biostatistics and Clinical Trials, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Duchesne, Gillian M. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Hamilton, Christopher H.; Joon, Daryl Lim [Radiation Oncology Department, Austin Repatriation Hospital, Heidelberg, VIC (Australia); Bowden, Patrick [Radiation Oncology Department, Tattersall' s Cancer Center, East Melbourne, VIC (Australia); Foroudi, Farshad [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia)

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  18. Minimizing the number of segments in a delivery sequence for intensity-modulated radiation therapy with a multileaf collimator

    International Nuclear Information System (INIS)

    Dai Jianrong; Zhu Yunping

    2001-01-01

    This paper proposes a sequencing algorithm for intensity-modulated radiation therapy with a multileaf collimator in the static mode. The algorithm aims to minimize the number of segments in a delivery sequence. For a machine with a long verification and recording overhead time (e.g., 15 s per segment), minimizing the number of segments is equivalent to minimizing the delivery time. The proposed new algorithm is based on checking numerous candidates for a segment and selecting the candidate that results in a residual intensity matrix with the least complexity. When there is more than one candidate resulting in the same complexity, the candidate with the largest size is selected. The complexity of an intensity matrix is measured in the new algorithm in terms of the number of segments in the delivery sequence obtained by using a published algorithm. The beam delivery efficiency of the proposed algorithm and the influence of different published algorithms used to calculate the complexity of an intensity matrix were tested with clinical intensity-modulated beams. The results show that no matter which published algorithm is used to calculate the complexity of an intensity matrix, the sequence generated by the algorithm proposed here is always more efficient than that generated by the published algorithm itself. The results also show that the algorithm used to calculate the complexity of an intensity matrix affects the efficiency of beam delivery. The delivery sequences are frequently most efficient when the algorithm of Bortfeld et al. is used to calculate the complexity of an intensity matrix. Because no single variation is most efficient for all beams tested, we suggest implementing multiple variations of our algorithm

  19. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks.

    Science.gov (United States)

    Lim, Néhémy; Senbabaoglu, Yasin; Michailidis, George; d'Alché-Buc, Florence

    2013-06-01

    Reverse engineering of gene regulatory networks remains a central challenge in computational systems biology, despite recent advances facilitated by benchmark in silico challenges that have aided in calibrating their performance. A number of approaches using either perturbation (knock-out) or wild-type time-series data have appeared in the literature addressing this problem, with the latter using linear temporal models. Nonlinear dynamical models are particularly appropriate for this inference task, given the generation mechanism of the time-series data. In this study, we introduce a novel nonlinear autoregressive model based on operator-valued kernels that simultaneously learns the model parameters, as well as the network structure. A flexible boosting algorithm (OKVAR-Boost) that shares features from L2-boosting and randomization-based algorithms is developed to perform the tasks of parameter learning and network inference for the proposed model. Specifically, at each boosting iteration, a regularized Operator-valued Kernel-based Vector AutoRegressive model (OKVAR) is trained on a random subnetwork. The final model consists of an ensemble of such models. The empirical estimation of the ensemble model's Jacobian matrix provides an estimation of the network structure. The performance of the proposed algorithm is first evaluated on a number of benchmark datasets from the DREAM3 challenge and then on real datasets related to the In vivo Reverse-Engineering and Modeling Assessment (IRMA) and T-cell networks. The high-quality results obtained strongly indicate that it outperforms existing approaches. The OKVAR-Boost Matlab code is available as the archive: http://amis-group.fr/sourcecode-okvar-boost/OKVARBoost-v1.0.zip. Supplementary data are available at Bioinformatics online.

  20. Polymer gel measurement of dose homogeneity in the breast: comparing MLC intensity modulation with standard wedged delivery

    International Nuclear Information System (INIS)

    Love, P A; Evans, P M; Leach, M O; Webb, S

    2003-01-01

    Polymer gel dosimetry has been used to measure the radiotherapy dose homogeneity in a breast phantom for two different treatment methods. The first 'standard' method uses two tangential wedged fields while the second method has three static fields shaped by multileaf collimators (MLCs) in addition to the standard wedged fields to create intensity modulated fields. Gel dose distributions from the multileaf modulation treatment show an improved dose uniformity in comparison to the standard treatment with a decreased volume receiving doses over 105%

  1. Dynamical heat transport amplification in a far-field thermal transistor of VO{sub 2} excited with a laser of modulated intensity

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose, E-mail: jose.ordonez@cnrs.pprime.fr; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl [Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962 Futuroscope Chasseneuil (France)

    2016-05-28

    Far-field radiative heat transport in a thermal transistor made up of a vanadium dioxide base excited with a laser of modulated intensity is analytically studied and optimized. This is done by solving the equation of energy conservation for the steady-state and modulated components of the temperature and heat fluxes that the base exchanges with the collector and emitter. The thermal bistability of VO{sub 2} is used to find an explicit condition on the laser intensity required to maximize these heat fluxes to values higher than the incident flux. For a 1 μm-thick base heated with a modulation frequency of 0.5 Hz, it is shown that both the DC and AC components of the heat fluxes are about 4 times the laser intensity, while the AC temperature remains an order of magnitude smaller than the DC one at around 343 K. Higher AC heat fluxes are obtained for thinner bases and/or lower frequencies. Furthermore, we find that out of the bistability temperatures associated with the dielectric-to-metal and metal-to-dielectric transitions of VO{sub 2}, the amplification of the collector-to-base and base-to-emitter heat fluxes is still possible, but at modulation frequencies lower than 0.1 Hz.

  2. Boosting Learning Algorithm for Stock Price Forecasting

    Science.gov (United States)

    Wang, Chengzhang; Bai, Xiaoming

    2018-03-01

    To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.

  3. Evidence-based review: Quality of life following head and neck intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Scott-Brown, Martin; Miah, Aisha; Harrington, Kevin; Nutting, Chris

    2010-01-01

    Inverse planned Intensity modulated radiotherapy (IMRT) can minimize the dose to normal structures and therefore can reduce long-term radiotherapy-related morbidity and may improve patients' long-term quality of life. Despite overwhelming evidence that IMRT can reduce late functional deficits in patients with head and neck cancer, treated with radiotherapy, a review of the published literature produced conflicting results with regard to quality of life outcomes. Following a critical appraisal of the literature, reasons for the discrepant outcomes are proposed.

  4. Intensity-modulated radiation therapy: overlapping co-axial modulated fields

    International Nuclear Information System (INIS)

    Metcalfe, P; Tangboonduangjit, P; White, P

    2004-01-01

    The Varian multi-leaf collimator has a 14.5 cm leaf extension limit from each carriage. This means the target volumes in the head and neck region are sometimes too wide for standard width-modulated fields to provide adequate dose coverage. A solution is to set up asymmetric co-axial overlapping fields. This protects the MLC carriage while in return the MLC provides modulated dose blending in the field overlap region. Planar dose maps for coincident fields from the Pinnacle radiotherapy treatment planning system are compared with planar dose maps reconstructed from radiographic film and electronic portal images. The film and portal images show small leaf-jaw matchlines at each field overlap border. Linear profiles taken across each image show that the observed leaf-jaw matchlines from the accelerator images are not accounted for by the treatment planning system. Dose difference between film reconstructed electronic portal images and planning system are about 2.5 cGy in a modulated field at d max . While the magnitude of the dose differences are small improved round end leaf modelling combined with a finer dose calculation grid may minimize the discrepancy between calculated and delivered dose

  5. Intensity-modulated Radiosurgery for patients with brain metastases: a mature outcomes analysis.

    Science.gov (United States)

    Wang, Samuel J; Choi, Mehee; Fuller, Clifton D; Salter, Bill J; Fuss, Martin

    2007-06-01

    The purpose of this study was to evaluate the outcomes of patients with brain metastases treated by tomotherapeutic Intensity-modulated Radiosurgery (IMRS). Using retrospective chart review, we analyzed the outcomes of 78 patients (age 33-83 years, median 57 years) who underwent 111 sessions of IMRS (1 to 7 sessions per patient, median 1) for brain metastases (1 to 4 targets per IMRS session, median 1) treated between 2000 and 2005 using a serial tomotherapeutic intensity-modulated radiotherapy treatment (IMRT) planning and delivery system (Peacock, Nomos Corp., Cranberry Township, PA). Treatment planning was performed using an inverse treatment planning optimization algorithm that was optimized for IMRS. A median prescription dose of 15 Gy in combination with WBI, and median 20 Gy for IMRS alone was delivered using 2-4 couch angles over 4-24 rotational arcs. Overall survival was calculated using Kaplan-Meier analysis. To determine the effects of prognostic variables on survival, univariate and multivariate analyses using proportional hazards were performed to assess the effects of age, tumor size, the combination with whole brain irradiation, presence of multiple brain metastases, and presence of extracranial disease. The median overall survival was 6.5 months (95% CI, 5.5-7.9). One- and two-year survival rates were 24% and 10%. In multivariate analyses, age greater than 60 years was the only statistically significant variable that affected survival (hazard rate 1.29, p=0.049). We conclude that tomotherapeutic IMRS is safe and effective to treat patients with brain metastases.

  6. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  7. Intensity modulated operating mode of the rotating gamma system.

    Science.gov (United States)

    Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre

    2018-05-01

    The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close

  8. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  9. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    NARCIS (Netherlands)

    Smeenk, R.J.; Lin, E.N.J.T. van; Kollenburg, P. van; Kunze-Busch, M.C.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. MATERIALS AND METHODS: In 24 patients with localized prostate carcinoma, two planning

  10. Effects of intensity-modulated radiotherapy on human oral microflora

    International Nuclear Information System (INIS)

    Shao Ziyang; Tang Zisheng; Jiang Yuntao; Ma Rui; Liu Zheng; Huang Zhengwei; Yan Chao

    2011-01-01

    This study aimed to evaluate changes in the biodiversity of the oral microflora of patients with head and neck cancer treated with postoperative intensity-modulated radiotherapy (IMRT) or conventional radiotherapy (CRT). Pooled dental plaque samples were collected during the radiation treatment from patients receiving IMRT (n=13) and CRT (n=12). Denaturing gradient gel electrophoresis (DGGE) was used to analyze the temporal variation of these plaque samples. The stimulated and unstimulated salivary flow rates were also compared between IMRT and CRT patients. Reductions in the severity of hyposalivation were observed in IMRT patients compared with CRT patients. We also observed that the temporal stability of the oral ecosystem was significantly higher in the IMRT group (69.96±7.82%) than in the CRT group (51.98±10.45%) (P<0.05). The findings of the present study suggest that IMRT is more conducive to maintaining the relative stability of the oral ecosystem than CRT. (author)

  11. Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012

    Science.gov (United States)

    de Mendonça, Rafael R. S.; Braga, Carlos. R.; Echer, Ezequiel; Dal Lago, Alisson; Rockenbach, Marlos; Schuch, Nelson J.; Munakata, Kazuoki

    2017-10-01

    It is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.

  12. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  13. Design, simulation and manufacture of a multi leaf collimator to confirm the target volumes in intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Kamali-Asl, A.; Batooli, A. H.; Harriri, S.; Salman-Rezaee, F.; Shahmardan, F.; Yavari, L.

    2010-01-01

    Intensity modulated radiation therapy is one of the cancer treatment methods. It is important to selectively aim at the target in this way, which can be performed using a multi leaf collimator. Materials and Methods: In order to specifically irradiate the target volume in radiotherapy to reduce the patient absorbed dose, the use of multi leaf collimator has been investigated in this work. Design and simulation of an multi leaf collimator was performed by a Monte Carlo method and the optimum material for manufacturing the leaves was determined using MCNP4C. After image processing (CT or MRI) in this system, the tumor configuration is determined. Then the linear accelerator is switched on and the beam irradiates the cancerous cells. When the multi leaf collimator leaves receive a command from the micro controller, they start to move and absorb the radiation and modulate its intensity. Consequently, the tumor receives maximum intensity of radiation but minimum intensity is delivered to healthy tissues. Results: According to the simulations and calculations, the best material to manufacture the leaves from is tungsten alloy containing copper and nickel which absorbs a large amount of the radiation; by using a 8.65 cm thickness of alloy, 10.55% of radiation will transmit through the leaves. Discussion and Conclusion: Lead blocks are conventionally used in radiotherapy. However, they have some problems like cost, storage and manufacture for every patient. Certainly, the multi leaf collimator is the most efficient device to specifically irradiate the tumor in Intensity modulated radiation therapy. Furthermore, it facilitates treating the target in different views by rotation around the patient. Thus the patient's absorbed dose will decrease and the tumor will receive maximum dose.

  14. Preliminary results of phase I/II study of simultaneous modulated accelerated (SMART) for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hong; Lee, Sang Wook; Back, Geum Mun [College of Medicine, University of Ulsan, Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2006-03-15

    To present preliminary results of intensity-modulated radiotherapy (IMRT) using the simultaneous modulated accelerated radiation therapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Twenty patients who underwent IMRT for non-metastatic NPC at the Asan Medical Center between September 2001 and December 2003 were prospectively evaluated. IMRT was delivered using the 'step and shoot' SMART technique at prescribed doses of 72 Gy (2.4 Gy/day) to the gross tumor volume (GTV), 60 Gy (2 Gy/day) to the clinical target volume (CTV) and metastatic nodal station, and 46 Gy (2 Gy/day) to the clinically negative neck region. Eighteen patients also received concurrent chemotherapy using cisplatin once per week. The median follow-up period was 27 months. Nineteen patients completed the treatment without interruption; the remaining patient interrupted treatment for 2 weeks owing to severe pharyngitis and malnutrition. Five patients (25%) had RTOG grade 3 mucositis, whereas nine (45%) had grade 3 pharyngitis. Seven patients (35%) lost more than 10% of their pretreatment weight, whereas 11 (55%) required intravenous fluids and/or tube feeding. There was no grade 3 or 4 chronic xerostomia. All patients showed complete response. Two patients had distant metastases and loco-regional recurrence, respectively. IMRT using the SMART boost technique allows parotid sparing, as shown clinically and by dosimetry, and may also be more effective biologically. A larger population of patients and a longer follow-up period are needed to evaluate ultimate tumor control and late toxicity.

  15. Performance analysis of subcarrier intensity modulation using rectangular QAM over Malaga turbulence channels with integer and non-integerβ

    KAUST Repository

    Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results

  16. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Lee, Eva K.; Fox, Tim; Crocker, Ian

    2006-01-01

    Purpose: In current intensity-modulated radiation therapy (IMRT) plan optimization, the focus is on either finding optimal beam angles (or other beam delivery parameters such as field segments, couch angles, gantry angles) or optimal beam intensities. In this article we offer a mixed integer programming (MIP) approach for simultaneously determining an optimal intensity map and optimal beam angles for IMRT delivery. Using this approach, we pursue an experimental study designed to (a) gauge differences in plan quality metrics with respect to different tumor sites and different MIP treatment planning models, and (b) test the concept of critical-normal-tissue-ring-a tissue ring of 5 mm thickness drawn around the planning target volume (PTV)-and its use for designing conformal plans. Methods and Materials: Our treatment planning models use two classes of decision variables to capture the beam configuration and intensities simultaneously. Binary (0/1) variables are used to capture 'on' or 'off' or 'yes' or 'no' decisions for each field, and nonnegative continuous variables are used to represent intensities of beamlets. Binary and continuous variables are also used for each voxel to capture dose level and dose deviation from target bounds. Treatment planning models were designed to explicitly incorporate the following planning constraints: (a) upper/lower/mean dose-based constraints, (b) dose-volume and equivalent-uniform-dose (EUD) constraints for critical structures, (c) homogeneity constraints (underdose/overdose) for PTV, (d) coverage constraints for PTV, and (e) maximum number of beams allowed. Within this constrained solution space, five optimization strategies involving clinical objectives were analyzed: optimize total intensity to PTV, optimize total intensity and then optimize conformity, optimize total intensity and then optimize homogeneity, minimize total dose to critical structures, minimize total dose to critical structures and optimize conformity

  17. Analysis and design of a standardized control module for switching regulators

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.; Kolecki, J. C.

    1982-07-01

    Three basic switching regulators: buck, boost, and buck/boost, employing a multiloop standardized control module (SCM) were characterized by a common small signal block diagram. Employing the unified model, regulator performances such as stability, audiosusceptibility, output impedance, and step load transient are analyzed and key performance indexes are expressed in simple analytical forms. More importantly, the performance characteristics of all three regulators are shown to enjoy common properties due to the unique SCM control scheme which nullifies the positive zero and provides adaptive compensation to the moving poles of the boost and buck/boost converters. This allows a simple unified design procedure to be devised for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt.

  18. Induction chemotherapy with nedaplatin with 5-FU followed by intensity-modulated radiotherapy concurrent with chemotherapy for locoregionally advanced nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zheng Jijun; Wang Ge; Yang, G.Y.

    2010-01-01

    This Phase II study was conducted to evaluate the activity and feasibility of a regimen of nedaplatin and 5-fluorouracil as induction chemotherapy, followed by intensity-modulated radiotherapy concurrent with chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Patients received neoadjuvant chemotherapy comprised two cycles of 5-fluorouracil at 700 mg/m 2 /day administered on days 1-4 as continuous intravenous infusion and nedaplatin (100 mg/m 2 administered intravenous (i.v.) over 2 h) given after the administration of 5-fluorouracil on day 1, repeated every 3 weeks, followed by intensity-modulated radiotherapy concurrent with nedaplatin. During intensity-modulated radiotherapy, nedaplatin was administered at a dose of 100 mg/m 2 intravenous infusion on days 1, 22 and 43, given -60 min before radiation. Fifty-nine (95.8%) of the 60 patients were assessable for response. Thirty-eight cases of complete response and 14 cases of partial response were confirmed after completion of chemoradiation, with the objective response rate of 86.7% (95% confidence interval (CI), 78.1-95.3%). The median follow-up period was 48 months (range, 30-62 months). The 3-year progression-free survival and overall survival were 75.0% (95% CI, 63.0-87.0%) and 85.5% (95% CI, 75.9-95.1%). No patient showed Grade 3 or higher renal dysfunction. The most commonly observed late effect was xerostomia, but the severity diminished over time, and the detectable xerostomia at 24 months was 10.2%. There were no treatment-related deaths during this study. Neoadjuvant chemotherapy with nedaplatin and 5-fluorouracil followed by concomitant nedaplatin and intensity-modulated radiotherapy is an effective and safe treatment for Southern China patients affected by locoregionally advanced nasopharyngeal carcinoma. (author)

  19. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    International Nuclear Information System (INIS)

    Mackley, Heath B.; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities

  20. Comparison of Interleaved Boost Converter Configurations for Solar Photovoltaic System Interface

    Directory of Open Access Journals (Sweden)

    R Ramaprabha

    2013-12-01

    Full Text Available Solar photovoltaic (SPV panels that convert light energy into electrical energy through the photovoltaic effect have nonlinear internal resistance. Hence, with the variation in the intensity of light falling on the panel, the internal resistance varies. For effective utilization of the SPV panel, it is necessary to extract the maximum power from it. For maximum power extraction from SPV panels, DC-DC converter interface is used. The problem in using high frequency converter interface is the resultant high frequency ripple interaction with the SPV system. In this work, an interleaved boost converter (IBC is considered to reduce the ripple. Our finding is that IBC fed by a SPV panel reduces this ripple to a greater extent. IBC also has a faster transient response as compared to conventional boost converters with reduced ripple contents. The main aim of this paper is to present a comparative analysis of the performance of IBC with inductors that are coupled in different ways. The results of the simulation were extrapolated with the help of MATLAB software and verified through experimentation.

  1. Norwegian Oncologists' Expectations of Intensity-modulated Radiotherapy

    International Nuclear Information System (INIS)

    Muren, Ludvig P.; Mella, Olav; Hafslund, Rune; Dahl, Olav

    2002-01-01

    Although intensity-modulated radiotherapy (IMRT) may increase the therapeutic ratio of radiotherapy for a range of malignancies, only a few IMRT treatments have yet been performed in the Nordic countries. The scores derived from a national survey to assess Norwegian oncologists' expectations of IMRT are presented. A questionnaire was distributed to all consultants in oncology at Norwegian radiotherapy clinics. Summary scores of daily general radiotherapy workload (DGRTW), acquaintance with IMRT (AI) and expectations of IMRT (EI) were derived. Thirty-nine questionnaires (67%) were returned from a total of 58 oncologists. The oncologists' scores on the AI scale (mean score: 7.5 out of 21) were rather low. Their AI scores were found to be positively correlated with their DGRTW. Higher scores on the EI scale were documented (mean score: 6.2 out of 14): 15 oncologists (39%) rated IMRT as one of the three major contributors to potentially increased cancer survival. Oncologists treating patients with prostate, head and neck, gastrointestinal and CNS tumours had higher EI scores than the other oncologists (7.7 vs. 5.1; p=0.01). The Norwegian radiation oncologists' expectations of IMRT are high in terms of both the potential clinical benefit and the rate of implementation. This should encourage the radiotherapy communities to continue (or rapidly initiate) their efforts in providing the routines required for safe implementation of IMRT

  2. Dosimetric verification of the intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Zou Huawei; Jia Mingxuan; Wu Rong; Xiao Fuda; Dong Xiaoqi

    2004-01-01

    Objective: To discuss the methods of the dosimetric verification in the intensity-modulated radiation therapy (IMRT) and insure correct execution of the IMRT planning in the clinical practice. Methods: The CMSFOCUS9200 inverse planning system was used to provide optimized 5-field IMRT treatment plans for the patients. A phantom was made from true water-equivalent material. The doses of the interesting points and isodose distributions of the interesting planes in the phantom were calculated using patients' treatment plan. The phantom was placed on the couch of the accelerator and was irradiated using the phantom's treatment planning data. The doses of interesting points were measured using a 0.23 cc chamber and the isodose distributions of interesting planes were measured using RIT 113 film dosimetry system in the phantom. The results were compared with those from calculation in planning system for verification. Results: The doses and isodose distributions measured by the chamber and the film were consistent with those predicted by the planning. The error between the measured dose and calculated dose in the interesting points was less than 3%. Conclusion: The dosimetric verification of IMRT is a reliable measure in the course of its implementation. (authors)

  3. Clinical implementation and quality assurance for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M.; Price, R.; McNeeley, S.; Chen, L.; Li, J.S.; Wang, L.; Ding, M.; Fourkal, E.; Qin, L.

    2002-01-01

    This paper describes the clinical implementation and quality assurance (QA) for intensity-modulated radiation therapy (IMRT) based on the experience at Fox Chase Cancer Center, Philadelphia, USA. We will review our procedures for the clinical implementation of the IMRT technique and the requirements for patient immobilization, target delineation, treatment optimization, beam delivery and system administration. We will discuss the dosimetric requirements and measurement procedures for beam commissioning and dosimetry verification for IMRT. We will examine the details of model-based dose calculation for IMRT treatment planning and the potential problems with such dose calculation algorithms. We will discuss the effect of beam delivery systems on the actual dose distributions received by the patients and the methods to incorporate such effects in the treatment optimization process. We will investigate the use of the Monte Carlo method for dose calculation and treatment verification for IMRT

  4. Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species.

    Science.gov (United States)

    Konow, Nicolai; Cheney, Jorn A; Roberts, Thomas J; Iriarte-Díaz, Jose; Breuer, Kenneth S; Waldman, J Rhea S; Swartz, Sharon M

    2017-05-15

    Animals respond to changes in power requirements during locomotion by modulating the intensity of recruitment of their propulsive musculature, but many questions concerning how muscle recruitment varies with speed across modes of locomotion remain unanswered. We measured normalized average burst EMG (aEMG) for pectoralis major and biceps brachii at different flight speeds in two relatively distantly related bat species: the aerial insectivore Eptesicus fuscus , and the primarily fruit-eating Carollia perspicillata These ecologically distinct species employ different flight behaviors but possess similar wing aspect ratio, wing loading and body mass. Because propulsive requirements usually correlate with body size, and aEMG likely reflects force, we hypothesized that these species would deploy similar speed-dependent aEMG modulation. Instead, we found that aEMG was speed independent in E. fuscus and modulated in a U-shaped or linearly increasing relationship with speed in C. perspicillata This interspecific difference may be related to differences in muscle fiber type composition and/or overall patterns of recruitment of the large ensemble of muscles that participate in actuating the highly articulated bat wing. We also found interspecific differences in the speed dependence of 3D wing kinematics: E. fuscus modulates wing flexion during upstroke significantly more than C. perspicillata Overall, we observed two different strategies to increase flight speed: C. perspicillata tends to modulate aEMG, and E. fuscus tends to modulate wing kinematics. These strategies may reflect different requirements for avoiding negative lift and overcoming drag during slow and fast flight, respectively, a subject we suggest merits further study. © 2017. Published by The Company of Biologists Ltd.

  5. Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers

    International Nuclear Information System (INIS)

    Mohan, Radhe; Wu Qiuwen; Manning, Matthew; Schmidt-Ullrich, Rupert

    2000-01-01

    Purpose: The dose distributions of intensity-modulated radiotherapy (IMRT) treatment plans can be shown to be significantly superior in terms of higher conformality if designed to simultaneously deliver high dose to the primary disease and lower dose to the subclinical disease or electively treated regions. We use the term 'simultaneous integrated boost' (SIB) to define such a treatment. The purpose of this paper is to develop suitable fractionation strategies based on radiobiological principles for clinical trials and routine use of IMRT of head and neck (HN) cancers. The fractionation strategies are intended to allow escalation of tumor dose while adequately sparing normal tissues outside the target volume and considering the tolerances of normal tissues embedded within the primary target volume. Methods and Materials: IMRT fractionation regimens are specified in terms of 'normalized total dose' (NTD), i.e., the biologically equivalent dose given in 2 Gy/fx. A linear-quadratic isoeffect formula is applied to convert NTDs into 'nominal' prescription doses. Nominal prescription doses for a high dose to the primary disease, an intermediate dose to regional microscopic disease, and lower dose to electively treated nodes are used for optimizing IMRT plans. The resulting nominal dose distributions are converted back into NTD distributions for the evaluation of treatment plans. Similar calculations for critical normal tissues are also performed. Methods developed were applied for the intercomparison of several HN treatment regimens, including conventional regimens used currently and in the past, as well as SIB strategies. This was accomplished by comparing the biologically equivalent NTD values for the gross tumor and regional disease, and bone, muscle, and mucosa embedded in the gross tumor volume. Results: (1) A schematic HN example was used to demonstrate that dose distributions for SIB IMRT are more conformal compared to dose distributions when IMRT is divided into

  6. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Koong, Albert C.; Christofferson, Erin; Le, Quynh-Thu; Goodman, Karyn A.; Ho, Anthony; Kuo, Timothy; Ford, James M.; Fisher, George A.; Greco, Ralph; Norton, Jeffrey; Yang, George P.

    2005-01-01

    Purpose: To determine the efficacy of concurrent 5-fluorouracil (5-FU) and intensity-modulated radiotherapy (IMRT) followed by body stereotactic radiosurgery (SRS) in patients with locally advanced pancreatic cancer. Methods and Materials: In this prospective study, all patients (19) had pathologically confirmed adenocarcinoma and were uniformly staged. Our treatment protocol consisted of 45 Gy IMRT with concurrent 5-FU followed by a 25 Gy SRS boost to the primary tumor. Results: Sixteen patients completed the planned therapy. Two patients experienced Grade 3 toxicity (none had more than Grade 3 toxicity). Fifteen of these 16 patients were free from local progression until death. Median overall survival was 33 weeks. Conclusions: Concurrent IMRT and 5-FU followed by SRS in patients with locally advanced pancreatic cancer results in excellent local control, but does not improve overall survival and is associated with more toxicity than SRS, alone

  7. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    International Nuclear Information System (INIS)

    Roehling, Tien T.; Wu, Sheldon S.Q.; Khairallah, Saad A.; Roehling, John D.; Soezeri, S. Stefan; Crumb, Michael F.; Matthews, Manyalibo J.

    2017-01-01

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated using the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. By modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.

  8. On the Capacity of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas

    2016-01-12

    The capacity of the intensity-modulation directdetection optical broadcast channel (OBC) is investigated, under both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans’ approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian (TG) distributions or discrete distributions. While the discrete distribution achieves higher rates, the TG distribution leads to a simpler representation of the achievable rate region. At high signal-to-noise ratio (SNR), it is shown that the TG distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows. It also achieves the capacity region within a constant gap. At low SNR, it is shown that on-off keying (OOK) with time-division multipleaccess (TDMA) is optimal. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves fairly good performance.

  9. On the Capacity of the Intensity-Modulation Direct-Detection Optical Broadcast Channel

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    The capacity of the intensity-modulation directdetection optical broadcast channel (OBC) is investigated, under both average and peak intensity constraints. An outer bound on the capacity region is derived by adapting Bergmans’ approach to the OBC. Inner bounds are derived by using superposition coding with either truncated-Gaussian (TG) distributions or discrete distributions. While the discrete distribution achieves higher rates, the TG distribution leads to a simpler representation of the achievable rate region. At high signal-to-noise ratio (SNR), it is shown that the TG distribution is nearly optimal. It achieves the symmetric-capacity within a constant gap (independent of SNR), which approaches half a bit as the number of users grows. It also achieves the capacity region within a constant gap. At low SNR, it is shown that on-off keying (OOK) with time-division multipleaccess (TDMA) is optimal. This is interesting in practice since both OOK and TDMA have low complexity. At moderate SNR (typically [0,8] dB), a discrete distribution with a small alphabet size achieves fairly good performance.

  10. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation

    International Nuclear Information System (INIS)

    Benedict, Stanley H.; Cardinale, Robert M.; Wu Qiuwen; Zwicker, Robert D.; Broaddus, William C.; Mohan, Radhe

    2001-01-01

    Purpose: The implementation of dynamic leaf motion on a micro-multileaf collimator system provides the capability for intensity-modulated stereotactic radiosurgery (IMSRS), and the consequent potential for improved dose distributions for irregularly shaped tumor volumes adjacent to critical organs. This study explores the use of IMSRS to provide improved tumor coverage and normal tissue sparing for small cranial tumors relative to plans based on multiple fixed uniform-intensity beams or traditional circular collimator arc-based stereotactic techniques. Methods and Materials: Four patient cases involving small brain lesions are presented and analyzed. The cases were chosen to include a representative selection of target shapes, number of targets, and adjacent critical areas. Patient plans generated for these comparisons include standard arcs with multiple circular collimators, and fixed noncoplanar static fields with uniform-intensity beams and IMSRS. Parameters used for evaluation of the plans include the percentage of irradiated volume to tumor volume (PITV), normal tissue dose-volume histograms, and dose-homogeneity ratios. All IMSRS plans were computed using previously established IMRT techniques adapted for use with the BrainLAB M3 micro-multileaf collimator. The algorithms comprising the IMRT system for optimization of intensity distributions and conversion into leaf trajectories of the BrainLab M3 were developed at our institution. The ADAC Pinnacle 3 radiation treatment-planning system was used for dose calculations and for input of contours for target volumes and normal critical structures. Results: For all cases, the IMSRS plans showed a high degree of conformity of the dose distribution with the target shape. The IMSRS plans provided either (1) a smaller volume of normal tissue irradiated to significant dose levels, generally taken as doses greater than 50% of the prescription, or (2) a lower dose to an important adjacent critical organ. The reduction in

  11. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  12. Face Alignment Using Boosting and Evolutionary Search

    NARCIS (Netherlands)

    Zhang, Hua; Liu, Duanduan; Poel, Mannes; Nijholt, Antinus; Zha, H.; Taniguchi, R.-I.; Maybank, S.

    2010-01-01

    In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the

  13. Inelastic Boosted Dark Matter at direct detection experiments

    Science.gov (United States)

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-05-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  14. Treatment-Planning Study of Prostate Cancer Intensity-Modulated Radiotherapy With a Varian Clinac Operated Without a Flattening Filter

    International Nuclear Information System (INIS)

    Vassiliev, Oleg N.; Kry, Stephen F.; Kuban, Deborah A.; Salehpour, Mohammad; Mohan, Radhe; Titt, Uwe

    2007-01-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy for prostate cancer using photon beams from an accelerator operated without a flattening filter; and to determine potential benefits and drawbacks of using unflattened beams for this type of treatment. Methods and Materials: Intensity-modulated radiotherapy plans were generated for 10 patients with early-stage prostate cancer. For each patient, four plans were generated: with and without the flattening filter, at 6 and 18 MV. The prescription dose was 75.6 Gy to 98% of the planning target volume. The number of beams, their orientations, and optimization constraints were the same for all plans. Plans were generated with Eclipse 8.0 (Varian Medical Systems). Results: All the plans developed with unflattened beams were clinically acceptable. In terms of patient dose distributions, plans with unflattened beams were similar to the corresponding plans with flattened beams. Plans with unflattened beams required fewer monitor units (MUs) per plan: on average, by a factor of 2.0 at 6 MV and 2.6 at 18 MV, assuming that removal of the flattening filter was not followed by recalibration of MUs. Conclusions: Clinically acceptable intensity-modulated radiotherapy plans for prostate cancer can be developed with unflattened beams at both 6 and 18 MV. Dosimetrically, flattened and unflattened beams generated similar treatment plans. The plans with unflattened beams required substantially fewer MUs. The reduction in the number of MUs indicates corresponding reduction in beam-on time and in the amount of radiation outside the target

  15. Experimental verification of internal parameter in magnetically coupled boost used as PV optimizer in parallel association

    Science.gov (United States)

    Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel

    2017-02-01

    This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.

  16. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike; Christensen, Phil A.; Johnson, William A.; Owen, Roger D.; Hernandez, Michael; Schonberg, Russell G.; Ross, Randy

    2011-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  17. Clinically practical intensity modulation for complex head and neck lesions using multiple, static MLC fields

    International Nuclear Information System (INIS)

    Verhey, L.J.; Xia, P.; Akazawa, P.

    1997-01-01

    Purpose: A number of different beam delivery methods have been proposed for implementing intensity modulated radiotherapy (IMRT), including fixed gantry with multiple static MLC fields (MSMLC - often referred to as 'stop and shoot'), fixed gantry with dynamic MLC (DMLC), intensity modulated arc therapy (IMAT), Tomotherapy and Peacock MIMiC. Using two complex head and neck cases as examples, we have compared dose distributions achievable with 3-D conformal radiotherapy (3DCRT) to those which can be achieved using IMRT delivered with MSMLC, DMLC and Peacock MIMiC. The goal is to demonstrate the potential value of IMRT in the treatment of complex lesions in the head and neck and to determine whether MSMLC, the simplest of the proposed IMRT methods, can produce dose distributions which are competitive with dynamic IMRT methods and which can be implemented in clinically acceptable times. Materials and Methods: Two patients with nasopharyngeal carcinoma were selected from the archives of the Department of Radiation Oncology at the University of California, San Francisco (UCSF). These patients were previously planned and treated with CT-based 3-D treatment planning methods which are routinely used at UCSF, including non-axial beam directions and partial transmission blocks when indicated. The CT data tapes were then read into a test version of CORVUS, an inverse treatment planning program being developed by NOMOS Corporation, target volumes and critical normal structures were outlined on axial CT slices and dose goals and limits were defined for the targets and normal tissues of interest. Optimized dose plans were then obtained for each delivery method including MSMLC (4 or 5 hand-selected beams with 3 levels of intensity), DMLC (9 evenly spaced axial beams with 10 levels of intensity) and Peacock MIMiC (55 axial beams spanning 270 degrees with 10 levels of intensity). Dose-volume histograms (DVH's) for all IMRT plans were then compared with the 3DCRT plans. Treatment

  18. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-01-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  19. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels

    International Nuclear Information System (INIS)

    Urbano, M. Teresa Guerrero; Henrys, Anthony J.; Adams, Elisabeth J.; Norman, Andrew R.; Bedford, James L.; Harrington, Kevin J.; Nutting, Christopher M.; Dearnaley, David P.; Tait, Diana M.

    2006-01-01

    Purpose: To investigate the potential for intensity-modulated radiotherapy (IMRT) to spare the bowel in rectal tumors. Methods and Materials: The targets (pelvic nodal and rectal volumes), bowel, and bladder were outlined in 5 patients. All had conventional, three-dimensional conformal RT and forward-planned multisegment three-field IMRT plans compared with inverse-planned simultaneous integrated boost nine-field equally spaced IMRT plans. Equally spaced seven-field and five-field and five-field, customized, segmented IMRT plans were also evaluated. Results: Ninety-five percent of the prescribed dose covered at least 95% of both planning target volumes using all but the conventional plan (mean primary and pelvic planning target volume receiving 95% of the prescribed dose was 32.8 ± 13.7 Gy and 23.7 ± 4.87 Gy, respectively), reflecting a significant lack of coverage. The three-field forward planned IMRT plans reduced the volume of bowel irradiated to 45 Gy and 50 Gy by 26% ± 16% and 42% ± 27% compared with three-dimensional conformal RT. Additional reductions to 69 ± 51 cm 3 to 45 Gy and 20 ± 21 cm 3 to 50 Gy were obtained with the nine-field equally spaced IMRT plans-64% ± 11% and 64% ± 20% reductions compared with three-dimensional conformal RT. Reducing the number of beams and customizing the angles for the five-field equally spaced IMRT plan did not significantly reduce bowel sparing. Conclusion: The bowel volume irradiated to 45 Gy and 50 Gy was significantly reduced with IMRT, which could potentially lead to less bowel toxicity. Reducing the number of beams did not reduce bowel sparing and the five-field customized segmented IMRT plan is a reasonable technique to be tested in clinical trials

  20. Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer: Early late toxicity and 3-year clinical outcome

    International Nuclear Information System (INIS)

    Fonteyne, Valérie; Lumen, Nicolaas; Ost, Piet; Van Praet, Charles; Vandecasteele, Katrien; De Gersem Ir, Werner; Villeirs, Geert; De Neve, Wilfried; Decaestecker, Karel; De Meerleer, Gert

    2013-01-01

    Background and purpose: For patients with N1 prostate cancer (PCa) aggressive local therapies can be advocated. We evaluated clinical outcome, gastro-intestinal (GI) and genito-urinary (GU) toxicity after intensity modulated arc radiotherapy (IMAT) + androgen deprivation (AD) for N1 PCa. Material and methods: Eighty patients with T1-4N1M0 PCa were treated with IMAT and 2–3 years of AD. A median dose of 69.3 Gy (normalized isoeffective dose at 2 Gy per fraction: 80 Gy [α/β = 3]) was prescribed in 25 fractions to the prostate. The pelvic lymph nodes received a minimal dose of 45 Gy. A simultaneous integrated boost to 72 Gy and 65 Gy was delivered to the intraprostatic lesion and/or pathologically enlarged lymph nodes, respectively. GI and GU toxicity was scored using the RTOG/RILIT and RTOG-SOMA/LENT-CTC toxicity scoring system respectively. Three-year actuarial risk of grade 2 and 3/4 GI–GU toxicity and biochemical and clinical relapse free survival (bRFS and cRFS) were calculated with Kaplan–Meier statistics. Results: Median follow-up was 36 months. Three-year actuarial risk for late grade 3 and 2 GI toxicity is 8% and 20%, respectively. Three-year actuarial risk for late grade 3–4 and 2 GU toxicity was 6% and 34%, respectively. Actuarial 3-year bRFS and cRFS was 81% and 89%, respectively. Actuarial 3-year bRFS and cRFS was, respectively 26% and 32% lower for patients with cN1 disease when compared to patients with cN0 disease. Conclusion: IMAT for N1 PCa offers good clinical outcome with moderate toxicity. Patients with cN1 disease have poorer outcome

  1. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  2. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  3. Fast neutron boost for the treatment of grade IV astrocytomas

    International Nuclear Information System (INIS)

    Breteau, N.; Destembert, B.; Favre, A.; Pheline, C.; Schlienger, M.

    1989-01-01

    A previous study, on grade IV astrocytomas, compared a combination of photons and fast neutron boost to photons only, both treatments being delivered following a concentrated irradiation schedule. A slight improvement in survival was observed after neutron boost for non operated patients, but not for operated patients. Since death was always related to local recurrence and since no complication occurred after neutron boost, the neutron dose was increased from 6 to 7 Gy in January 1985. No improvement in survival was observed for patients treated with neutron boost after complete resection. After subtotal resection, the group that was treated with the higher neutron boost (7 Gy) showed a significant benefit in survival at twelve months. When patients had only a biopsy before irradiation, there was a benefit in survival after neutron boost, but no additional benefit was gained when the size of the neutron boost was increased from 6 to 7 Gy. (orig.) [de

  4. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    International Nuclear Information System (INIS)

    Mahantshetty, Umesh; Shrivastava, Shyamkishore; Cozzi, Luca; Jamema, Swamidas; Engineer, Reena; Deshpande, Deepak; Sarin, Rajiv; Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio

    2010-01-01

    A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA) and fixed field intensity modulated therapy (IMRT) for Whole Abdomen Radiotherapy (WAR) after ovarian cancer. Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV-WAR) and 45 Gy to the pelvis and pelvic nodes (PTV-Pelvis) with Simultaneous Integrated Boost (SIB) technique. Plans were investigated for 6 MV (RA6, IMRT6) and 15 MV (RA15, IMRT15) photons. Objectives were: for both PTVs V 90% > 95%, for PTV-Pelvis: D max < 105%; for organs at risk, maximal sparing was required. The MU and delivery time measured treatment efficiency. Pre-treatment Quality assurance was scored with Gamma Agreement Index (GAI) with 3% and 3 mm thresholds. IMRT and RapidArc resulted comparable for target coverage. For PTV-WAR, V 90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV-Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U 5-95% = D 5% -D 95% /D mean ). U 5 - 95% for PTV-WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15), 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15); for PTV-Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6), 2841 ± 318 (IMRT15), 538 ± 29 (RA6), 635 ± 139 (RA15); the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15) and 4.8 ± 0.2 (RA6 and RA15). GAI IMRT6 = 97.3 ± 2.6%, GAI IMRT15 = 94.4 ± 2.1%, GAI RA6 = 98.7 ± 1.0% and GAI RA15 = 95.7 ± 3.7%. RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT

  5. Orthodontics Align Crooked Teeth and Boost Self-Esteem

    Science.gov (United States)

    ... desktop! more... Orthodontics Align Crooked Teeth and Boost Self- esteem Article Chapters Orthodontics Align Crooked Teeth and Boost Self- esteem print full article print this chapter email this ...

  6. Magnetic Resonance-Based Treatment Planning for Prostate Intensity-Modulated Radiotherapy: Creation of Digitally Reconstructed Radiographs

    International Nuclear Information System (INIS)

    Chen, Lili; Nguyen, Thai-Binh; Jones, Elan; Chen Zuoqun; Luo Wei; Wang Lu; Price, Robert A.; Pollack, Alan; Ma, C.-M. Charlie

    2007-01-01

    Purpose: To develop a technique to create magnetic resonance (MR)-based digitally reconstructed radiographs (DRR) for initial patient setup for routine clinical applications of MR-based treatment planning for prostate intensity-modulated radiotherapy. Methods and Materials: Twenty prostate cancer patients' computed tomography (CT) and MR images were used for the study. Computed tomography and MR images were fused. The pelvic bony structures, including femoral heads, pubic rami, ischium, and ischial tuberosity, that are relevant for routine clinical patient setup were manually contoured on axial MR images. The contoured bony structures were then assigned a bulk density of 2.0 g/cm 3 . The MR-based DRRs were generated. The accuracy of the MR-based DDRs was quantitatively evaluated by comparing MR-based DRRs with CT-based DRRs for these patients. For each patient, eight measuring points on both coronal and sagittal DRRs were used for quantitative evaluation. Results: The maximum difference in the mean values of these measurement points was 1.3 ± 1.6 mm, and the maximum difference in absolute positions was within 3 mm for the 20 patients investigated. Conclusions: Magnetic resonance-based DRRs are comparable to CT-based DRRs for prostate intensity-modulated radiotherapy and can be used for patient treatment setup when MR-based treatment planning is applied clinically

  7. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  8. VERIDOS: a new tool for quality assurance for intensity modulated radiotherapy.

    Science.gov (United States)

    Wiezorek, Tilo; Schwedas, Michael; Scheithauer, Marcel; Salz, Henning; Bellemann, Matthias; Wendt, Thomas G

    2002-12-01

    The use of intensity modulated radiation fields needs an extended quality assurance concept. This consists of a linac related part and a case related part. Case related means the verification of an individual treatment plan, optimized on a CT data set of an individual patient and prepared for the treatment of this patient. This part of the quality assurance work is usually time consuming, delivers only partially quantitative results and is uncomfortable without additional help. It will be shown in this paper how the software VERIDOS will improve the optimization of the case related part of the quality assurance work. The main function of the software is the quantitative comparison of the calculated dose distribution from the treatment planning software with the measured dose distribution of an irradiated phantom. Several additional functions will be explained. Two self-developed phantoms made of RW3 (solid water) and GAFCHROMIC films or Kodak EDR2 films for the measurement of the dose distributions were used. VERIDOS was tested with the treatment planning systems Helay-TMS and Brainscan. VERIDOS is a suitable tool for the import of calculated dose matrices from the treatment planning systems Helax-TMS and Brainscan and of measured dose matrices exported from the dosimetry software Mephysto (PTW). The import from other treatment planning systems and scanning software applications for film dosimetry is generally possible. In such case the import function has to be adapted to the special header of the import matrix. All other functions of this software tool like normalization (automatically, manually), working with corrections (ground substraction, factors), overlay/comparison of dose distributions, difference matrix, cutting function (profiles) and export functions work reliable. VERIDOS improves the optimization of the case related part of the quality assurance work for intensity modulated radiation therapy (IMRT). The diverse functions of the software offer the

  9. VERIDOS: A new tool for quality assurance for intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wiezorek, T.; Schwedas, M.; Scheithauer, M.; Salz, H.; Wendt, T.G.; Bellemann, M.

    2002-01-01

    Background: The use of intensity modulated radiation fields needs an extended quality assurance concept. This consists of a linac related part and a case related part. Case related means the verification of an individual treatment plan, optimized on a CT data set of an individual patient and prepared for the treatment of this patient. This part of the quality assurance work is usually time consuming, delivers only partially quantitative results and is uncomfortable without additional help. It will be shown in this paper how the software VERIDOS will improve the optimization of the case related part of the quality assurance work. Material and Methods: The main function of the software is the quantitative comparison of the calculated dose distribution from the treatment planning software with the measured dose distribution of an irradiated phantom. Several additional functions will be explained. Two self-developed phantoms made of RW3 (solid water) and GAFCHROMIC films or Kodak EDR2 films for the measurement of the dose distributions were used. VERIDOS was tested with the treatment planning systems Helax-TMS and Brainscan. Results: VERIDOS is a suitable tool for the import of calculated dose matrices from the treatment planning systems Helax-TMS and Brainscan and of measured dose matrices exported from the dosimetry software Mephysto (PTW). The import from other treatment planning systems and scanning software applications for film dosimetry is generally possible. In such case the import function has to be adapted to the special header of the import matrix. All other functions of this software tool like normalization (automatically, manually), working with corrections (ground substraction, factors), overlay/comparison of dose distributions, difference matrix, cutting function (profiles) and export functions work reliable. Conclusions: VERIDOS improves the optimization of the case related part of the quality assurance work for intensity modulated radiation therapy

  10. Boost.Unicode : a Unicode library for C++

    OpenAIRE

    Wien, Erik; Gigstad, Lars Erik

    2005-01-01

    The project has resulted in a Unicode string library for C++ that abstracts away the complexity of working with Unicode text. The idea behind the project originated from the Boost community's developer mailings lists, and is developed with inclusion into the Boost library collection in mind.

  11. Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.

    Science.gov (United States)

    Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus

    2015-12-01

    In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.

  12. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    International Nuclear Information System (INIS)

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-01-01

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% ± 9%. The 3-year local control rate was 68% ± 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival

  13. Urethra sparing - potential of combined Nickel-Titanium stent and intensity modulated radiation therapy in prostate cancer.

    Science.gov (United States)

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-05-01

    To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Intensity Modulated Neutron Radiotherapy for the Treatment of Adenocarcinoma of the Prostate

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; He, Tony; Yudelev, Mark; Forman, Jeffrey D.; Orton, Colin G.; Heuvel, Frank van den; Maughan, Richard L.; Burmeister, Jay

    2007-01-01

    Purpose: This study investigates the enhanced conformality of neutron dose distributions obtainable through the application of intensity modulated neutron radiotherapy (IMNRT) to the treatment of prostate adenocarcinoma. Methods and Materials: An in-house algorithm was used to optimize individual segments for IMNRT generated using an organ-at-risk (OAR) avoidance approach. A number of beam orientation schemes were investigated in an attempt to approach an optimum solution. The IMNRT plans were created retrospectively for 5 patients previously treated for prostate adenocarcinoma using fast neutron therapy (FNT), and a comparison of these plans is presented. Dose distributions and dose-volume histograms (DVHs) were analyzed and plans were evaluated based on percentage volumes of rectum and bladder receiving 95%, 80%, and 50% (V 95 , V 80 , V 50 ) of the prescription dose, and on V 60 for both the femoral heads and GM muscle group. Results: Plans were normalized such that the IMNRT DVHs for prostate and seminal vesicles were nearly identical to those for conventional FNT plans. Use of IMNRT provided reductions in rectum V 95 and V 80 of 10% (2-27%) and 13% (5-28%), respectively, and reductions in bladder V 95 and V 80 of 12% (3-26%) and 4% (7-10%), respectively. The average decrease in V 60 for the femoral heads was 4.5% (1-18%), with no significant change in V 60 for the GM muscle group. Conclusions: This study provides the first analysis of the application of intensity modulation to neutron radiotherapy. The IMNRT technique provides a substantial reduction in normal tissue dose in the treatment of prostate cancer. This reduction should result in a significant clinical advantage for this and other treatment sites

  15. Inelastic Boosted Dark Matter at direct detection experiments

    OpenAIRE

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-01-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experimen...

  16. A method of segment weight optimization for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pei Xi; Cao Ruifen; Jing Jia; Cheng Mengyun; Zheng Huaqing; Li Jia; Huang Shanqing; Li Gui; Song Gang; Wang Weihua; Wu Yican; FDS Team

    2011-01-01

    The error caused by leaf sequencing often leads to planning of Intensity-Modulated Radiation Therapy (IMRT) arrange system couldn't meet clinical demand. The optimization approach in this paper can reduce this error and improve efficiency of plan-making effectively. Conjugate Gradient algorithm was used to optimize segment weight and readjust segment shape, which could minimize the error anterior-posterior leaf sequencing eventually. Frequent clinical cases were tasted by precise radiotherapy system, and then compared Dose-Volume histogram between target area and organ at risk as well as isodose line in computed tomography (CT) film, we found that the effect was improved significantly after optimizing segment weight. Segment weight optimizing approach based on Conjugate Gradient method can make treatment planning meet clinical request more efficiently, so that has extensive application perspective. (authors)

  17. Boosted top: experimental tools overview

    CERN Document Server

    Usai, Emanuele

    2015-01-01

    An overview of tools and methods for the reconstruction of high-boost top quark decays at the LHC is given in this report. The focus is on hadronic decays, in particular an overview of the current status of top quark taggers in physics analyses is presented. The most widely used jet substructure techniques, normally used in combination with top quark taggers, are reviewed. Special techniques to treat pileup in large cone jets are described, along with a comparison of the performance of several boosted top quark reconstruction techniques.

  18. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  19. Concomitant boost radiotherapy for muscle invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J; Tienhoven, Geertjan van; Hulshof, Maarten C.C.M.; Koedooder, Kees; Gonzalez Gonzalez, Dionisio

    2003-07-01

    Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity {>=}G3 was observed in seven patients (14%). Severe late toxicity {>=}G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity.

  20. Concomitant boost radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Pos, Floris J.; Tienhoven, Geertjan van; Hulshof, Maarten C.C.M.; Koedooder, Kees; Gonzalez Gonzalez, Dionisio

    2003-01-01

    Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity ≥G3 was observed in seven patients (14%). Severe late toxicity ≥G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity

  1. Introducing state-trajectory control for the synchronous interleaved boost converter

    DEFF Research Database (Denmark)

    Peña-Alzola, Rafael; Ksiazek, Peter; Ordonez, Martin

    2015-01-01

    Synchronous interleaved boost converters (SIBCs) result in lower ripple currents and bidirectional power flow. The boost topology has a non-minimum phase characteristic, producing instability problems when a large bandwidth is required. Linear controllers inherently limit the boost controller...

  2. Beyond bixels: Generalizing the optimization parameters for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Markman, Jerry; Low, Daniel A.; Beavis, Andrew W.; Deasy, Joseph O.

    2002-01-01

    Intensity modulated radiation therapy (IMRT) treatment planning systems optimize fluence distributions by subdividing the fluence distribution into rectangular bixels. The algorithms typically optimize the fluence intensity directly, often leading to fluence distributions with sharp discontinuities. These discontinuities may yield difficulties in delivery of the fluence distribution, leading to inaccurate dose delivery. We have developed a method for decoupling the bixel intensities from the optimization parameters; either by introducing optimization control points from which the bixel intensities are interpolated or by parametrizing the fluence distribution using basis functions. In either case, the number of optimization search parameters is reduced from the direct bixel optimization method. To illustrate the concept, the technique is applied to two-dimensional idealized head and neck treatment plans. The interpolation algorithms investigated were nearest-neighbor, linear and cubic spline, and radial basis functions serve as the basis function test. The interpolation and basis function optimization techniques were compared against the direct bixel calculation. The number of optimization parameters were significantly reduced relative to the bixel optimization, and this was evident in the reduction of computation time of as much as 58% from the full bixel optimization. The dose distributions obtained using the reduced optimization parameter sets were very similar to the full bixel optimization when examined by dose distributions, statistics, and dose-volume histograms. To evaluate the sensitivity of the fluence calculations to spatial misalignment caused either by delivery errors or patient motion, the doses were recomputed with a 1 mm shift in each beam and compared to the unshifted distributions. Except for the nearest-neighbor algorithm, the reduced optimization parameter dose distributions were generally less sensitive to spatial shifts than the bixel

  3. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  4. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity-modulated

  5. 4 Types of Foods that Boost Your Memory

    Science.gov (United States)

    ... 4 Types of Foods to Help Boost Your Memory By Marisa Moore, MBA, RDN, LD Published November ... in brain health. The best menu for boosting memory and brain function encourages good blood flow to ...

  6. Novel Family of modified qZS buck-boost multilevel inverters with reduced switch count

    DEFF Research Database (Denmark)

    Husev, Oleksandr; Strzelecki, Ryszard; Blaabjerg, Frede

    2015-01-01

    This paper describes a novel family of modified quasi-Z-source buck-boost multilevel inverters with reduced switch count. The inverters are derived by means of the modified inverter configuration with quasi-Z-source networks. The main benefits of the proposed solutions lie in the increased amount...... of levels with all possible sequences: reduced THD, reduced voltage stress on the transistors and size of the output filter. Also their modulation techniques are proposed and described. Simulation results have confirmed all theoretical predictions. The pros and cons are discussed in the conclusions....

  7. Australia-wide comparison of intensity modulated radiation therapy prostate plans

    International Nuclear Information System (INIS)

    Skala, M.; Holloway, L.; Bailey, M.; Kneebone, A.

    2005-01-01

    The aim of this study was to investigate the ability of Australian centres to produce high-dose intensity modulated radiation therapy (IMRT) prostate plans, and to compare the planning parameters and resultant dose distributions. Five Australian radiation therapy departments were invited to participate. Each centre received an identical 5 mm-slice CT data set complete with contours of the prostate, seminal vesicles, rectum, bladder, femoral heads and body outline. The planning team was asked to produce the best plan possible, using published Memorial Sloan-Kettering Cancer Centre prescription and dose constraints. Three centres submitted plans for evaluation. All plans covered the planning target volume adequately; however, only one plan met all the critical organ dose constraints. Although the planning parameters, beam arrangements and planning systems were different for each centre, the resulting plans were similar. In Australia, IMRT for prostate cancer is in the early stages of implementation, with routine use limited to a few centres. Copyright (2005) Blackwell Science Pty Ltd

  8. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    OpenAIRE

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan w...

  9. Diode-Assisted Buck-Boost Current Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Cai, Liang; Loh, P.C.

    2007-01-01

    This paper presents a couple of novel current source inverters (CSIs) with the enhanced current buckboost capability. With the unique diode-inductor network added between current source inverter circuitry and current boost elements, the proposed buck-boost current source inverters demonstrate...... uninfluenced. Lastly, all theoretical findings were verified experimentally using constructed laboratory prototypes....

  10. Playing tag with ANN: boosted top identification with pattern recognition

    International Nuclear Information System (INIS)

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-01-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  11. Playing tag with ANN: boosted top identification with pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Leandro G. [Institut de Biologie de l’École Normale Supérieure (IBENS), Inserm 1024- CNRS 8197,46 rue d’Ulm, 75005 Paris (France); Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Cliche, Mathieu [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Perelstein, Maxim [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-07-17

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image' of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p{sub T} in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  12. Codimension-Two Big-Bang Bifurcation in a ZAD-Controlled Boost DC-DC Converter

    Science.gov (United States)

    Amador, A.; Casanova, S.; Granada, H. A.; Olivar, G.; Hurtado, J.

    In this paper, we study some nonlinear behaviors in a two-dimensional system defined by a Boost Converter controlled by CPWM (Centered Pulse-Width Modulation) and a ZAD (Zero Average Dynamics) strategy. The dynamics was analyzed using a discrete-time map, which consists of a sampled system at each switching cycle. The structure of the two-parametric space is characterized analytically. This allows proving the existence and stability of an infinite number of codimension-one curves that intersect at the same point in the two-parametric space. This phenomenon has been called a big-bang bifurcation.

  13. Primary Paralleled Isolated Boost Converter with Extended Operating Voltage Range

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Sen, Gökhan; Mira Albert, Maria del Carmen

    2012-01-01

    Applications requiring wide input and output voltage range cannot often be satisfied by using buck or boost derived topologies. Primary paralleled isolated boost converter (PPIBC) [1]-[2] is a high efficiency boost derived topology. This paper proposes a new operation mode for extending the input...

  14. Symmetry boost of the fidelity of Shor factoring

    Science.gov (United States)

    Nam, Y. S.; Blümel, R.

    2018-05-01

    In Shor's algorithm quantum subroutines occur with the structure F U F-1 , where F is a unitary transform and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F-1 can be implemented symmetrically when executing Shor's algorithm on actual, imperfect quantum hardware, such that F and F-1 have the same hardware errors, a symmetry boost in the fidelity of the combined F U F-1 quantum operation results when compared to the case in which the errors in F and F-1 are independently random. Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over- and under-rotation of controlled rotation gates, in the numerically accessible case of Shor's algorithm with a small number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing general off-diagonal SU (N ) errors (N =2 ,4 ,8 ), that the boost factor scales like a Lorentzian in δ /σ , where σ and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU (N ) errors, respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ , it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry boost persists in the practically interesting case of a large number of qubits. We illustrate this result

  15. On the possibility of gamma-laser pumping occurring at a charged particle counter motion and in density-modulated electron beams by a high frequency intensive radiation

    International Nuclear Information System (INIS)

    Maksyuta, N.V.

    1999-01-01

    The given report deals with the problem of motion and radiation of relativistic electron in a field of opposite plane density-modulated relativistic electron beam. Physical essence of high-frequency intensive radiation origin could be explained, first by the additional Lorentz reduction of the electron beam modulation period (modulation period Λ in a laboratory co-ordinate system reduces by a factor γ as compared with the modulation period in a beam co-ordinate system) and, secondly, a simultaneous γ-fold increase of transverse components of relativistic electrons of the beam electric and magnetic fields. Such a moving modulated electron beam can be regarded as a dynamic micro-ondulator. Unlike static micro-ondulators we can observe here one more positive moment along with a small period Λ = Λ'/γ, i.e. the electric and magnetic fields in a transverse direction are changed according to the law of exp(-2πx/Λ'). It means that charged particle interaction with a dynamic micro-ondulator will be effective in a wide range of transverse distances, i.e., to get an intensive short wave radiation one can use charged particle beams with rather large apertures which leads to an additional radiation intensity increase. A discussion is given showing that the proposed dynamic modulator possesses some essential merits. A detailed calculation is presented. (author)

  16. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  17. Analysis of motion of the rectum during preoperative intensity modulated radiation therapy for rectal cancer using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Takenaka, Ryousuke; Sakumi, Akira; Haga, Akihiro; Otomo, Kuni; Nakagawa, Keiichi

    2015-01-01

    The purpose of the present study was to quantify the inter-fractional motion of the rectum and the rectal and bladder volumes using CBCT scans taken during chemoradiation therapy (CRT) for rectal cancer. Also, assessment was made for a better margin for simultaneous integrated boost - intensity modulated radiation therapy (SIB-IMRT) for rectal cancer. There were 32 patients in this study undergoing preoperative CRT for rectal cancer. Each rectum and bladder was contoured on all planning CTs and CBCTs (day 1, 7, 13, 19, 25). The target volume was configured by adding margins (0, 3, 5, 7, 10, and 15 mm) to the rectum on planning CT. The respective percentage of rectal volume that exceeds the target volume was calculated for each of these margins. The percentage of bladder volume that exceeds the bladder volume in the planning CT and motion of the center of gravity of rectum were also analyzed. Planning CTs and series of each 5 CBCTs for 32 patients were analyzed in this study. The rectal volume tended to shrink week after week. The mean values (± SD) in the 32 series per patient of the percentage of rectum on the CBCTs exceeding target volume in which the margins of 0, 3, 5, 7, 10, and 15 mm were added to the rectum on planning CT were 20.7 ± 12.5%, 7.2 ± 8.3%, 3.9 ± 5.9%, 2.1 ± 3.9%, 0.7 ± 1.8%, and 0.1 ± 0.3%, respectively. No association was seen between the percentage of changes of bladder volume and motion of rectal centroid. In this study, we estimated the motion of the rectum using planning CT and CBCT. Ten to fifteen mm is a sufficient margin for the rectum during SIB-IMRT for rectal cancer in the supine position

  18. An Update on Statistical Boosting in Biomedicine.

    Science.gov (United States)

    Mayr, Andreas; Hofner, Benjamin; Waldmann, Elisabeth; Hepp, Tobias; Meyer, Sebastian; Gefeller, Olaf

    2017-01-01

    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.

  19. Analysis of small-signal intensity modulation of semiconductor ...

    Indian Academy of Sciences (India)

    Computer simulation of the model is applied to 1.55-µm ... Semiconductor laser; small-signal modulation; modulation response; gain suppression. ... originates from intraband relaxation processes of charge carriers that extend for times as ...

  20. 3D-conformal-intensity modulated radiotherapy with compensators for head and neck cancer: clinical results of normal tissue sparing

    Directory of Open Access Journals (Sweden)

    Koscielny Sven

    2006-06-01

    Full Text Available Abstract Background To investigate the potential of parotic gland sparing of intensity modulated radiotherapy (3D-c-IMRT performed with metallic compensators for head and neck cancer in a clinical series by analysis of dose distributions and clinical measures. Materials and methods 39 patients with squamous cell cancer of the head and neck irradiated using 3D-c-IMRT were evaluable for dose distribution within PTVs and at one parotid gland and 38 patients for toxicity analysis. 10 patients were treated primarily, 29 postoperatively, 19 received concomittant cis-platin based chemotherapy, 20 3D-c-IMRT alone. Initially the dose distribution was calculated with Helax ® and photon fluence was modulated using metallic compensators made of tin-granulate (n = 22. Later the dose distribution was calculated with KonRad ® and fluence was modified by MCP 96 alloy compensators (n = 17. Gross tumor/tumor bed (PTV 1 was irradiated up to 60–70 Gy, [5 fractions/week, single fraction dose: 2.0–2.2 (simultaneously integrated boost], adjuvantly irradiated bilateral cervical lymph nodes (PTV 2 with 48–54 Gy [single dose: 1.5–1.8]. Toxicity was scored according the RTOG scale and patient-reported xerostomia questionnaire (XQ. Results Mean of the median doses at the parotid glands to be spared was 25.9 (16.3–46.8 Gy, for tin graulate 26 Gy, for MCP alloy 24.2 Gy. Tin-granulate compensators resulted in a median parotid dose above 26 Gy in 10/22, MCP 96 alloy in 0/17 patients. Following acute toxicities were seen (°0–2/3: xerostomia: 87%/13%, dysphagia: 84%/16%, mucositis: 89%/11%, dermatitis: 100%/0%. No grade 4 reaction was encountered. During therapy the XQ forms showed °0–2/3: 88%/12%. 6 months postRT chronic xerostomia °0–2/3 was observed in 85%/15% of patients, none with °4 xerostomia. Conclusion 3D-c-IMRT using metallic compensators along with inverse calculation algorithm achieves sufficient parotid gland sparing in virtually all advanced

  1. Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Lahanas, Michael; Xing, Lei; Baltas, Dimos

    2004-01-01

    We propose a hybrid multiobjective (MO) evolutionary optimization algorithm (MOEA) for intensity-modulated radiotherapy inverse planning and apply it to optimize the number of incident beams, their orientations and intensity profiles. The algorithm produces a set of efficient solutions, which represent different clinical trade-offs and contains information such as variety of dose distributions and dose-volume histograms. No importance factors are required and solutions can be obtained in regions not accessible by conventional weighted sum approaches. The application of the algorithm using a test case, a prostate and a head and neck tumour case is shown. The results are compared with MO inverse planning using a gradient-based optimization algorithm

  2. Internationalization of Boost Juice to Malaysia

    OpenAIRE

    Jane L. Menzies; Stuart C. Orr

    2014-01-01

    This case describes the process that the Australian juice retail chain, Boost Juice, has used to internationalize to Malaysia. The main objective of this case is to demonstrate good practice in regard to internationalization. The case provides the background of the juice bar industry in Malaysia and determines that it is an attractive market for new start-up juice bars. An analysis of Boost Juice's capability determined that the company utilized the skills of its staff, product innovations, b...

  3. Hyperfractionated accelerated radiotherapy with concomitant integrated boost of 70-75 Gy in 5 weeks for advanced head and neck cancer. A phase I dose escalation study

    Energy Technology Data Exchange (ETDEWEB)

    Cvek, J.; Skacelikova, E.; Otahal, B.; Halamka, M.; Feltl, D. [University Hospital Ostrava (Czech Republic). Dept. of Oncology; Kubes, J. [University Hospital Bulovka, Prague (Czech Republic). Dept. of Radiation Oncology; Kominek, P. [University Hospital Ostrava (Czech Republic). Dept. of Otolaryngology

    2012-08-15

    Background and purpose: The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. Methods and materials: A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV{sub tumor}) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV{sub uninvolved}) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Results: Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was {<=} 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. Conclusion: HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.

  4. Comparison of Acute and Late Toxicity of Two Regimens of 3- and 5-Week Concomitant Boost Prone IMRT to Standard 6-Week Breast Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Shahzad; Lymberis, Stella C.; Ciervide, Raquel [Department of Radiation Oncology and Surgery, New York University School of Medicine, New York University Langone Medical Center, New York, NY (United States); Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York University Langone Medical Center, New York, NY (United States); Fenton-Kerimian, Maria; Magnolfi, Chiara; Rosenstein, Barry; DeWyngaert, J. Keith; Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology and Surgery, New York University School of Medicine, New York University Langone Medical Center, New York, NY (United States)

    2012-05-08

    Purpose: Limited information is available comparing toxicity of accelerated radiotherapy (RT) to that of standard fractionation RT for early stage breast cancer. We report early and late toxicities of two prone regimens of accelerated intensity-modulated radiation therapy (IMRT) with a concomitant boost (CB) to the tumor bed delivered over 3 or 5 weeks as compared to standard 6 week RT with a sequential electron boost. Methods: From 2/2003 to 12/2007, 169 consecutive patients with Stage I–II breast cancer were offered the choice to undergo prone RT with either: a 6-week standard RT regimen of 46 Gy/23 fractions (fx) to the whole breast (WB), followed by a14 Gy sequential boost (SB) to the tumor bed (6wSB), a 5-week regimen of 50 Gy to WB with an IMRT CB of 6.25 Gy in 25 fx (5wCB); or a 3-week protocol of 40.5 Gy to WB with an IMRT CB of 7.5 Gy in 15 fx (3wCB). These regimens were estimated as biologically equivalent, based on alpha/beta = 4 for tumor control. Toxicities were reported using RTOG and LENT/SOMA scoring. Results: 51/169 patients chose standard 6wSB, 28 selected 5wCB, and 90 enrolled in 3wCB protocol. Maximum acute toxicity was Grade 3 dermatitis in 4% of the patients in the 6wSB compared 1% in 3wCB. In general, acute complications (breast pain, fatigue, and dermatitis) were significantly less in the 3wCB than in the other schedules (P < 0.05). With a median follow-up of 61 months, the only Grade 3 late toxicity was telangiectasia in two patients: one in 3wCB and one in 5wCB group. Notably, fibrosis was comparable among the three groups (P = NS). Conclusion: These preliminary data suggest that accelerated regimens of breast RT over 3 or 5 weeks in the prone position, with an IMRT tumor bed CB, result in comparable late toxicity to standard fractionation with a sequential tumor boost delivered over 6 weeks. As predicted by radiobiological modeling the shorter regimen was associated with less acute effects.

  5. The effect of positive affect on conflict resolution: Modulated by approach-motivational intensity.

    Science.gov (United States)

    Liu, Ya; Wang, Zhenhong; Quan, Sixiang; Li, Mingjun

    2017-01-01

    The motivational dimensional model of affect proposes that the influence of positive affect on cognitive processing is modulated by approach-motivational intensity. The present research extended this model by examining the influence of positive affect varying in approach-motivational intensity on conflict resolution-the ability to resolve interference from task-irrelevant distractors in order to focus on the target. The global-local task (Experiment 1) and letter-Flanker task (Experiment 2) were used to measure conflict resolution. Additionally, the 4:2 mapping design that assigns two kinds of task-relevant stimuli to one response key and two more to another response key was used in these two tasks to dissociate stimulus and response conflict. Results showed that positive affect varying in approach motivation had opposite influences on conflict resolution. The opposite influences are primarily reflected in low approach-motivated positive affect impairing, while high approach-motivated positive affect facilitating the resolution of response conflict. Conversely, the stimulus conflict was slightly influenced. These findings highlight the utility of distinguishing stimulus and response conflict in future research.

  6. Outcome after intensity modulated radiotherapy for anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    He, Xiayun; Li, Duanshu; Hu, Chaosu; Wang, Zhuoying; Ying, Hongmei; Wu, Yi

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) is a malignancy with one of the highest fatality rates. We reviewed our recent clinical experience with intensity modulated radiotherapy (IMRT) combined with surgery and chemotherapy for the management of ATC. 13 patients with ATC who were treated by IMRT in our institution between October 2008 and February 2011, have been analyzed. The target volume for IMRT was planned to include Gross tumor volume (GTV): primary tumor plus any N + disease (66 Gy/33 F/6.6 W), with elective irradiation of thyroid bed, bilateral level II through VI and mediastinal lymph nodes to the level of the carina (54-60 Gy). Seven patients received surgical intervention and eleven patients had chemotherapy. The median radiotherapy dose to GTV was 60 Gy/30 fractions/6 weeks. The median survival time of the 13 patients was 9 months. The direct causes of death were distant metastases (75%) and progression of the locoregional disease (25%). Ten patients were spared dyspnea and tracheostomy because their primary neck lesion did not progress. The results showed that IMRT combined by surgery and chemotherapy for ATC might be beneficial to improve locoregional control. Further new therapies are needed to control metastases

  7. A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation.

    Science.gov (United States)

    Fu, Guoqing; Sonkusale, Sameer R

    2018-06-01

    Luminescence plays an important role in many scientific and industrial applications. This paper proposes a novel complementary metal-oxide-semiconductor (CMOS) sensor chip that can realize both luminescence intensity and lifetime sensing. To enable high sensitivity, we propose parasitic insensitive multicycle charge modulation scheme for low-light lifetime extraction benefiting from simplicity, accuracy, and compatibility with deeply scaled CMOS process. The designed in-pixel capacitive transimpedance amplifier (CTIA) based structure is able to capture the weak luminescence-induced voltage signal by accumulating photon-generated charges in 25 discrete gated 10-ms time windows and 10-μs pulsewidth. A pinned photodiode on chip with 1.04 pA dark current is utilized for luminescence detection. The proposed CTIA-based circuitry can achieve 2.1-mV/(nW/cm 2 ) responsivity and 4.38-nW/cm 2 resolution at 630 nm wavelength for intensity measurement and 45-ns resolution for lifetime measurement. The sensor chip is employed for measuring time constants and luminescence lifetimes of an InGaN-based white light-emitting diode at different wavelengths. In addition, we demonstrate accurate measurement of the lifetime of an oxygen sensitive chromophore with sensitivity to oxygen concentration of 7.5%/ppm and 6%/ppm in both intensity and lifetime domain. This CMOS-enabled oxygen sensor was then employed to test water quality from different sources (tap water, lakes, and rivers).

  8. Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage ...

    African Journals Online (AJOL)

    Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage Source Inverter Using Fixed-Band Hysteresis Current Controller Method. ... with the conversion of solar energy into electrical energy; boosting the dc power; inversion of the dc to ac and then synchronization of the inverter output with the utility, and consequently, ...

  9. Comparison of volumetric modulated arc therapy and intensity modulated radiation therapy for whole brain hippocampal sparing treatment plans based on radiobiological modeling

    Directory of Open Access Journals (Sweden)

    Ethan Kendall

    2018-01-01

    Full Text Available Introduction: In this article, we report the results of our investigation on comparison of radiobiological aspects of treatment plans with linear accelerator-based intensity-modulated radiation therapy and volumetric-modulated arc therapy for patients having hippocampal avoidance whole-brain radiation therapy. Materials and Methods: In this retrospective study using the dose-volume histogram, we calculated and compared biophysical indices of equivalent uniform dose, tumor control probability, and normal tissue complication probability (NTCP for 15 whole-brain radiotherapy patients. Results and Discussions: Dose-response models for tumors and critical structures were separated into two groups: mechanistic and empirical. Mechanistic models formulate mathematically with describable relationships while empirical models fit data through empirical observations to appropriately determine parameters giving results agreeable to those given by mechanistic models. Conclusions: Techniques applied in this manuscript could be applied to any other organs or types of cancer to evaluate treatment plans based on radiobiological modeling.

  10. Radiographer-led breast boost localisation – A service evaluation study

    International Nuclear Information System (INIS)

    Smith, S.; Comins, C.

    2015-01-01

    A radiation boost to the tumour bed as part of breast conserving therapy reduces the rate of local recurrence. Radiographer-led planning for tangential field radiotherapy has been the practice at our centre since 2007. The transition from conventional simulation to computed tomography (CT) and virtual simulation enhanced the radiographer's role in the breast planning process. Electron boost mark ups continued to be marked up freehand by doctors using available imaging to determine tumour bed. The paper reports on a service evaluation undertaken to establish a change in practice for electron breast boosts to be simulated using the virtual simulator by suitably trained radiographers. The retrospective simulation of ten patients confirmed the consistency of radiographer tumour bed localisation, followed by the prospective simulation of ten patients' boost fields. The introduction of a radiographer-led planning breast boost service has given greater autonomy and job satisfaction to individuals as well as resulting in a cost effective use of available resources. - Highlights: • A service evaluation study was undertaken to train a radiographer to perform breast boost planning. • Retrospective breast boost planning established proposed technique was workable. • Prospective planning by radiographer proved their competence. • Introduction of new technique provided job satisfaction and service improvement

  11. An Update on Statistical Boosting in Biomedicine

    Directory of Open Access Journals (Sweden)

    Andreas Mayr

    2017-01-01

    Full Text Available Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting. In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.

  12. Magnetic resonance sialography for investigating major salivary gland duct system after intensity-modulated radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ou Dan; He Xiayun; Zhang Yunyan

    2013-01-01

    We investigated the value of magnetic resonance sialography for evaluating xerostomia induced by intensity-modulated radiotherapy for nasopharyngeal carcinoma. Fourteen patients with nasopharyngeal carcinoma were treated with intensity-modulated radiotherapy. Salivary function was assessed by magnetic resonance sialography and subjective evaluation criteria pre-treatment, 1 week and 1 year post-radiotherapy. A magnetic resonance sialography categorical scoring system was used to compare the visibility of salivary ducts. The average mean dose was 38.93 Gy to the parotid glands and 59.34 Gy to the submandibular glands. Before radiotherapy, the visibility scores of both the parotid and submandibular ducts increased after secretion stimulation. The scores decreased and the response to stimulation was attenuated 1 week post-radiotherapy. For most of the parotid ducts, the visibility score improved at 1 year post-radiotherapy both at rest and under stimulation, but not for the submandibular ducts. With a median follow-up of 12.3 months, 8/12 patients had grade 1 xerostomia and 4/12 had grade 2 xerostomia. Magnetic resonance sialography allows non-invasive evaluation of radiation-induced ductal changes in the major salivary glands and enables reliable prediction of radiation-induced xerostomia. (author)

  13. Urethra sparing – potential of combined Nickel–Titanium stent and intensity modulated radiation therapy in prostate cancer

    International Nuclear Information System (INIS)

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-01-01

    Background and purpose: To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. Materials and methods: This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel–Titanium (Ni–Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. Results: The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. Conclusions: A new concept for urethra dose reduction is presented. The method relies on the use of a Ni–Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control.

  14. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Water, Tara A. van de, E-mail: t.a.van.de.water@rt.umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Lomax, Antony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Bijl, Hendrik P.; Schilstra, Cornelis [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Hug, Eugen B. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Langendijk, Johannes A. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality

  15. Modeling and sizing the coil in boost converters dedicated to photovoltaic sources

    Science.gov (United States)

    Atik, Lotfi; Fares, Mohammed Amine; Zaraket, Jean; Bachir, Ghalem; Aillerie, Michel

    2018-05-01

    The coil is a very important element in a wide range of power electrical systems as such as those used in converter or inverter dedicated to extract and to adapt the value and the shape of the intensity and the voltage delivered by renewable energy sources. Thus, knowing its behavior in converters is paramount to obtain a maximum conversion efficiency and reliability. In this context, this paper presents a global study of a DC/DC boost converter dedicated to photovoltaic sources based on the modeling of the behavior of the coil or the inductance as a function of the switching frequency.

  16. Boosted jets

    International Nuclear Information System (INIS)

    Juknevich, J.

    2014-01-01

    We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

  17. Three-level boost converter with zero voltage transition

    Directory of Open Access Journals (Sweden)

    Kuo-Ing Hwu

    2017-06-01

    Full Text Available As compared with the traditional boost converter, the three-level boost converter possesses several advantages, such as lower switch voltage stresses and lower inductor current ripple. To improve the efficiency, this paper proposes a zero voltage transition (ZVT three-level boost converter. With the proposed ZVT circuit, the switches can achieve soft switching. Moreover, by using the voltage balance control, the output voltage can be equally across the output capacitors. In this study, the effectiveness of the proposed topology is verified by the experimental results based on the field-programmable gate array control.

  18. Unilateral and bilateral neck SIB for head and neck cancer patients. Intensity-modulated proton therapy, tomotherapy, and RapidArc

    Energy Technology Data Exchange (ETDEWEB)

    Stromberger, Carmen; Budach, Volker; Ghadjar, Pirus; Wlodarczyk, Waldemar; Marnitz, Simone [Charite - Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany); Cozzi, Luca; Fogliata, Antonella [Humanitas Cancer Center Milan, Radiotherapy and Radiosurgery Department, Milan (Italy); Jamil, Basil [Klinikum Frankfurt Oder, Praxis fuer Strahlentherapie, Frankfurt Oder (Germany); Raguse, Jan D. [Clinic for Oral and Maxillofacial Surgery, Berlin (Germany); Boettcher, Arne [Charite - Universitaetsmedizin Berlin, Department of Otorhinolaryngology, Berlin (Germany)

    2016-04-15

    To compare simultaneous integrated boost plans for intensity-modulated proton therapy (IMPT), helical tomotherapy (HT), and RapidArc therapy (RA) for patients with head and neck cancer. A total of 20 patients with squamous cell carcinoma of the head and neck received definitive chemoradiation with bilateral (n = 14) or unilateral (n = 6) neck irradiation and were planned using IMPT, HT, and RA with 54.4, 60.8, and 70.4 GyE/Gy in 32 fractions. Dose distributions, coverage, conformity, homogeneity to planning target volumes (PTV)s and sparing of organs at risk and normal tissue were compared. All unilateral and bilateral plans showed excellent PTV coverage and acceptable dose conformity. For unilateral treatment, IMPT delivered substantially lower mean doses to contralateral salivary glands (< 0.001-1.1 Gy) than both rotational techniques did (parotid gland: 6-10 Gy; submandibular gland: 15-20 Gy). Regarding the sparing of classical organs at risk for bilateral treatment, IMPT and HT were similarly excellent and RA was satisfactory. For unilateral neck irradiation, IMPT may minimize the dry mouth risk in this subgroup but showed no advantage over HT for bilateral neck treatment regarding classical organ-at-risk sparing. All methods satisfied modern standards regarding toxicity and excellent target coverage for unilateral and bilateral treatment of head and neck cancer at the planning level. (orig.) [German] Planvergleich von intensitaetsmodulierter Protonentherapie (IMPT), Tomotherapie (HT) und RapidArc-Therapie (RA) fuer Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region unter Anwendung des simultan integrierten Boost-Konzepts (SIB). Fuer 20 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region und bilateraler (n = 14) oder unilateraler (n = 6) zervikaler primaerer Radiochemotherapie erfolgte eine IMPT-, HT- und RA-Planung mit 54,4, 60,8 und 70,4 GyE/Gy in 32 Fraktionen. Die Dosisverteilung, Abdeckung, Konformitaet und Homogenitaet der PTVs sowie die

  19. Improved Stereo Matching With Boosting Method

    Directory of Open Access Journals (Sweden)

    Shiny B

    2015-06-01

    Full Text Available Abstract This paper presents an approach based on classification for improving the accuracy of stereo matching methods. We propose this method for occlusion handling. This work employs classification of pixels for finding the erroneous disparity values. Due to the wide applications of disparity map in 3D television medical imaging etc the accuracy of disparity map has high significance. An initial disparity map is obtained using local or global stereo matching methods from the input stereo image pair. The various features for classification are computed from the input stereo image pair and the obtained disparity map. Then the computed feature vector is used for classification of pixels by using GentleBoost as the classification method. The erroneous disparity values in the disparity map found by classification are corrected through a completion stage or filling stage. A performance evaluation of stereo matching using AdaBoostM1 RUSBoost Neural networks and GentleBoost is performed.

  20. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  1. Monitor Unit Calculation for the Multileaf Intensity Modulating Collimator (MIMiCTM) in the PeacockTM Plan System

    International Nuclear Information System (INIS)

    Kania, Aleksander A.; Bleier, Alan R.; Carol, Mark P.

    1995-01-01

    A finite-size pencil beam method has been chosen for dose modelling in conformal radiotherapy when the Multileaf Intensity Modulating Collimator (MIMiC) is used to deliver the treatment. The MIMiC has two rows of 20 tungsten leaves which retract toward or away from the accelerator gantry, producing two intensity-modulated transaxial treatment slices which are 20 cm x 1 or 2 cm at isocenter. The treatment field is thus a fan beam made up of 40 sub-beams or finite-size pencil beams, leading to the choice of the model. Rotational treatments with the MIMiC are modelled in Peacock Plan as a set of ports spaced at gantry angle increments of 5 deg. to 10 deg. . The fractional time spent by the leaf in the beam during the gantry angle increment determines the intensity. The intensities from each leaf for each port are optimized in Peacock Plan, one treatment slice at a time, and then the dose from all slices is combined. The treatment planning system uses a two-dimensional measured pencil beam profile from one leaf at a selected reference depth along with measured open field, broad beam profiles at several depths. This makes beam data collection simple and dosimetrically flexible. The nature of the measured data imposes some conditions on calculation of Monitor Units (MU). The calculation must also take into consideration that two independent slices are delivered at the same time, and that multiple slices may be used to treat targets which are longer in the inferior-superior direction than the field produced by two slices. The MU calculation method is derived and presented as an enhancement of the traditional method of MU determination for treatments based on static ports. Experimental results indicative of the validity and limitations of the model will be demonstrated

  2. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy.

    Science.gov (United States)

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz; Harel, Ran

    2016-01-01

    Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1-5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). All evaluated parameters favored the VMAT plan over the IMRT plans. D min in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  3. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  4. A boost for the ISOLDE beams

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    The first HIE-ISOLDE cryomodule was commissioned at the end of October. The radioactive ion beams can now be accelerated to 4.3 MeV per nucleon.   The ISOLDE beamline that supplies the Miniball array. The first HIE-ISOLDE cryomodule can be seen in the background, in its light-grey cryostat. ISOLDE is getting an energy boost. The first cryomodule of the new superconducting linear accelerator HIE-ISOLDE (High Intensity and Energy ISOLDE), located downstream of the REX-ISOLDE accelerator, increases the energy of the radioactive ion beams from 3 to 4.3 MeV per nucleon. It supplies the Miniball array, where an experiment using radioactive zinc ions (see box) began at the end of October. This is the first stage in the commissioning of HIE-ISOLDE. The facility will ultimately be equipped with four cryomodules that will accelerate the beams to 10 MeV per nucleon. Each cryomodule has five accelerating cavities and a solenoid, which focuses the beam. All of these components are superconducting. This first ...

  5. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty

    Science.gov (United States)

    Zhang, Pengcheng; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Coatrieux, Jean-Louis; Li, Baosheng; Shu, Huazhong

    2013-09-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements.

  6. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty

    International Nuclear Information System (INIS)

    Zhang Pengcheng; Coatrieux, Jean-Louis; Shu Huazhong; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Li Baosheng

    2013-01-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements. (paper)

  7. Analysis of Factors Influencing the Development of Xerostomia during Intensity-Modulated Radiotherapy

    Science.gov (United States)

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E.; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J.; Miller, Craig S.

    2013-01-01

    OBJECTIVES Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. METHODS A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week two and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. RESULTS HNC subjects experienced mean SSFR decline of 36% by visit two (N=27; p=0.012) and 57% by visit three (N=20; p=0.0004), Concentrations of calcium and MUC5b increased, but not significantly during IMRT (p>0.05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (pxerostomia. PMID:23523462

  8. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Son, Jaeman; Baek, Taesung; Lee, Boram; Shin, Dongho; Park, Sung Yong; Park, Jeonghoon; Lim, Young Kyung; Lee, Se Byeong; Kim, Jooyoung; Yoon, Myonggeun

    2015-01-01

    This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA

  9. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy.

    Science.gov (United States)

    Son, Jaeman; Baek, Taesung; Lee, Boram; Shin, Dongho; Park, Sung Yong; Park, Jeonghoon; Lim, Young Kyung; Lee, Se Byeong; Kim, Jooyoung; Yoon, Myonggeun

    2015-09-01

    This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA.

  10. Feasibility of Pencil Beam Scanned Intensity Modulated Proton Therapy in Breath-hold for Locally Advanced Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Munck Af Rosenschold, Per; Perrin, Rosalind

    2017-01-01

    PURPOSE: We evaluated the feasibility of treating patients with locally advanced non-small cell lung cancer (NSCLC) with pencil beam scanned intensity modulated proton therapy (IMPT) in breath-hold. METHODS AND MATERIALS: Fifteen NSCLC patients who had previously received 66 Gy in 33 fractions wi...

  11. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    NARCIS (Netherlands)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; van der Heide, Uulke A.; van Herk, Marcel; Heemsbergen, Wilma D.

    2015-01-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions

  12. Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol

    International Nuclear Information System (INIS)

    Tsurumaru, Toyohiro

    2007-01-01

    In this paper, we discuss the security of the differential-phase-shift quantum-key-distribution (DPSQKD) protocol by introducing an improved version of the so-called sequential attack, which was originally discussed by Waks et al. [Phys. Rev. A 73, 012344 (2006)]. Our attack differs from the original form of the sequential attack in that the attacker Eve modulates not only the phases but also the amplitude in the superposition of the single-photon states which she sends to the receiver. Concentrating especially on the 'discretized Gaussian' intensity modulation, we show that our attack is more effective than the individual attack, which had been the best attack up to present. As a result of this, the recent experiment with communication distance of 100 km reported by Diamanti et al. [Opt. Express 14, 13073 (2006)] turns out to be insecure. Moreover, it can be shown that in a practical experimental setup which is commonly used today, the communication distance achievable by the DPSQKD protocol is less than 95 km

  13. Contribution of PET and PET/CT in CTV/PTV-modulation for planning of intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Oehler, W.; Baum, R.P.

    2004-01-01

    PET and PET/CT enlarge the possibilities of purely anatomic imaging by opening up new horizons in determining the metabolic and molecular properties of tumors. This enables to determine the spread of tumors with higher accuracy, especially concerning the primary staging and the diagnosis of recurrences. Patients with locoregional disease which are curable by surgery or local radiotherapy (eventually in combination with chemotherapy) can be differentiated from those patients, where only palliative treatment is indicated. Novel nuclear medicine procedures, which use specific tracers, open the door for the molecular treatment of tumors. This will be especially important for radiation oncology. In future it will be possible to define specific tumor areas within a morphologically homogeneous tumor (e.g. areas of tumor hypoxia, increased local tumor stem cell concentration, tumor parts with higher proliferative activity etc.). With IMRT (intensity modulated radiotherapy) we have already now the opportunity, to concentrate the dose to these specific tumor areas, without overloading normal tissues and organs at risk. (orig.)

  14. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  15. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  16. Trends in intensity modulated radiation therapy use for locally advanced rectal cancer at National Comprehensive Cancer Network centers

    OpenAIRE

    Marsha Reyngold, MD, PhD; Joyce Niland, PhD; Anna ter Veer, MS; Tanios Bekaii-Saab, MD; Lily Lai, MD; Joshua E. Meyer, MD; Steven J. Nurkin, MD, MS; Deborah Schrag, MD, MPH; John M. Skibber, MD, FACS; Al B. Benson, MD; Martin R. Weiser, MD; Christopher H. Crane, MD; Karyn A. Goodman, MD, MS

    2018-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) has been rapidly incorporated into clinical practice because of its technological advantages over 3-dimensional conformal radiation therapy (CRT). We characterized trends in IMRT utilization in trimodality treatment of locally advanced rectal cancer at National Comprehensive Cancer Network cancer centers between 2005 and 2011. Methods and materials: Using the prospective National Comprehensive Cancer Network Colorectal Cancer Database, ...

  17. Boosted black holes on Kaluza-Klein bubbles

    International Nuclear Information System (INIS)

    Iguchi, Hideo; Mishima, Takashi; Tomizawa, Shinya

    2007-01-01

    We construct an exact stationary solution of black-hole-bubble sequence in the five-dimensional Kaluza-Klein theory by using solitonic solution-generating techniques. The solution describes two stationary black holes with topology S 3 on a Kaluza-Klein bubble and has a linear momentum component in the compactified direction. We call the solution boosted black holes on Kaluza-Klein bubble because it has the linear momentum. The Arnowitt-Deser-Misner mass and the linear momentum depend on the two boosted velocity parameters of black holes. In the effective four-dimensional theory, the solution has an electric charge which is proportional to the linear momentum. The solution includes the static solution found by Elvang and Horowitz. The small and the big black holes limits are investigated. The relation between the solution and the single boosted black string are considered

  18. Centrifugal compressor design for electrically assisted boost

    International Nuclear Information System (INIS)

    Yang, M Y; Martinez-Botas, R F; Zhuge, W L; Qureshi, U; Richards, B

    2013-01-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically

  19. Solar-Based Boost Differential Single Phase Inverter | Eya | Nigerian ...

    African Journals Online (AJOL)

    Solar-Based Boost Differential Single Phase Inverter. ... Solar-based boost differential inverter is reduced down to 22.37% in closed loop system with the aid of Proportional –integral-Differential (PID) ... The dc power source is photovoltaic cell.

  20. Substructure boosts to dark matter annihilation from Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Bovy, Jo

    2009-01-01

    The recently introduced Sommerfeld enhancement of the dark matter annihilation cross section has important implications for the detection of dark matter annihilation in subhalos in the Galactic halo. In addition to the boost to the dark matter annihilation cross section from the high densities of these subhalos with respect to the main halo, an additional boost caused by the Sommerfeld enhancement results from the fact that they are kinematically colder than the Galactic halo. If we further believe the generic prediction of the cold dark matter paradigm that in each subhalo there is an abundance of substructure which is approximately self-similar to that of the Galactic halo, then I show that additional boosts coming from the density enhancements of these small substructures and their small velocity dispersions enhance the dark matter annihilation cross section even further. I find that very large boost factors (10 5 to 10 9 ) are obtained in a large class of models. The implications of these boost factors for the detection of dark matter annihilation from dwarf spheroidal galaxies in the Galactic halo are such that, generically, they outshine the background gamma-ray flux and are detectable by the Fermi Gamma-ray Space Telescope.

  1. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  2. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    International Nuclear Information System (INIS)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  3. [Intensity modulated radiation therapy for patients with gynecological malignancies after hysterectomy and chemotherapy/radiotherapy].

    Science.gov (United States)

    Chen, Zhen-yun; Ma, Yue-bing; Sheng, Xiu-gui; Zhang, Xiao-ling; Xue, Li; Song, Qu-qing; Liu, Nai-fu; Miao, Hua-qin

    2007-04-01

    To investigate the value of intensity modulated radiation therapy (IMRT) for patient with gynecological malignancies after treatment of hysterectomy and chemotherapy/radiotherapy. All 32 patients with cervical or endometrial cancer after hysterectomy received full course IMRT after 1 to 3 cycles of chemotherapy (Karnofsky performance status(KPS) > or =70). Seventeen of these patients underwent postoperative preventive irradiation and the other 15 patients were pelvic wall recurrence and/or retroperitoneal lymph node metastasis, though postoperative radiotherapy and/or chemotherapy had been given after operation. The median dose delivered to the PTV was 56.8 Gy for preventive irradiation, and 60.6 Gy for pelvic wall recurrence or retroperioneal lymph node metastasis irradiation. It was required that 90% of iso-dose curve could covere more than 99% of GTV. However, The mean dose irradiated to small intestine, bladder, rectum, kidney and spinal cord was 21.3 Gy, 37.8 Gy, 35.3 Gy, 8.5 Gy, 22.1 Gy, respectively. Fourteen patients presented grade I (11 patients) or II (3 patients) digestive tract side-effects, Five patients developed grade I or II bone marrow depression. Twelve patients had grade I skin reaction. The overall 1-year survival rate was 100%. The 2- and 3- year survival rate for preventive irradiation were both 100%, but which was 5/7 and 3/6 for the patients with pelvic wall recurrence or retroperioneal lymph node metastasis. Intensity modulated radiation therapy can provide a better dose distribution than traditional radiotherapy for both prevention and pelvic wall recurrence or retroperioneal lymph node metastasis. The toxicity is tolerable. The adjacent organs at risk can well be protected.

  4. TOPOLOGICAL REVIEW AND ANALYSIS OF DC-DC BOOST CONVERTERS

    Directory of Open Access Journals (Sweden)

    V. INDRA GANDHI

    2017-06-01

    Full Text Available DC voltage boost up is essential in numerous applications; especially considering Photovoltaic (PV based renewable power generation system. The conventional DC-DC boost converter is the most admired configuration for this scheme, even if the converter efficiency is restricted at duty cycle near to maximum value. In order to find solution to the problem and improve its conversion capability, many converter configurations have been implemented so far. With this circumstance, this research work proposes to give overview of a few most imperative research works related to DC-DC boost converters. Some configurations are covered and classified basically based on the application. The major benefits and disadvantages related to the available techniques are also briefly conveyed. At last, a proper evaluation is recognized among the important types of DC-DC boost converters in terms of efficiency, number of components, and stability.

  5. Boosted Multivariate Trees for Longitudinal Data

    Science.gov (United States)

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  6. Development of a quality control system in intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon de; Braz, Delson

    2013-01-01

    The more complex the technique of radiotherapy is, the more refined the quality control must be. The technique of Intensity Modulated Radiotherapy (IMRT) is one of the technological innovations that gained space in the whole worlds in the last decade whose parameters of quality control are not fully established yet. The present work developed a phantom for quality control in IMRT to be implemented in the routine of the Radiotherapy Quality Control Program (PQRT) of the Brazilian National Cancer Institute (INCa). The device consists of a block formed by several polystyrene slice with TDLs and radiochromic film inserted. It should be sent (or taken) to the Program participating institutions to be irradiated under certain conditions and then be returned to the PQRT., where the discrepancy degree between the planned treatment and those effectively delivered will be evaluated. The system was validated through the test cases and the pilot program preformed in nine radiotherapy centers that perform IMRT in the southeast region of Brazil. (author)

  7. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    International Nuclear Information System (INIS)

    Amdur, Robert J.; Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-01-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction

  8. Top reconstruction and boosted top experimental overview

    CERN Document Server

    Skinnari, Louise

    2015-01-01

    An overview of techniques used to reconstruct resolved and boosted top quarks is presented. Techniques for resolved top quark reconstruction include kinematic likelihood fitters and pseudo- top reconstruction. Many tools and methods are available for the reconstruction of boosted top quarks, such as jet grooming techniques, jet substructure variables, and dedicated top taggers. Different techniques as used by ATLAS and CMS analyses are described and the performance of different variables and top taggers are shown.

  9. Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Farzin, Mostafa [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Tehran University of Medical Science, Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran (Iran, Islamic Republic of); Molls, Michael; Astner, Sabrina; Oechsner, Markus [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Rondak, Ina-Christine [Klinikum rechts der Isar, Technische Universitaet Muenchen, Institut fuer Medizinische Statistik und Epidemiologie, Munich (Germany)

    2015-12-15

    In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (D{sub max} and D{sub mean}) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs. (orig.) [German] Es wurden 2 Arten der Planung fuer die volumetrisch modulierte Rotationsbestrahlung (VMAT) bei 20 Patienten mit hochgradigen Gliomen verglichen: simultan integrierter Boost (SIB) und sequenzieller Boost (SEB). Dazu wurde die Dosisverteilung in den Zielvolumina und den Risikoorganen analysiert. Es wurden Planungsvolumina (PTV), Boostvolumina (BV) und Risikoorgane konturiert sowie SIB- und SEB-Plaene erstellt. Der SEB besteht aus 2 Plaenen. Im ersten Plan erhaelt das PTV 50 Gy in 25 Fraktionen. Im zweiten Plan erhaelt das Boostvolumen 10 Gy in 5 Fraktionen (Einzeldosis jeweils 2 Gy). Die Dosis

  10. Brachytherapy Boost Utilization and Survival in Unfavorable-risk Prostate Cancer.

    Science.gov (United States)

    Johnson, Skyler B; Lester-Coll, Nataniel H; Kelly, Jacqueline R; Kann, Benjamin H; Yu, James B; Nath, Sameer K

    2017-11-01

    There are limited comparative survival data for prostate cancer (PCa) patients managed with a low-dose rate brachytherapy (LDR-B) boost and dose-escalated external-beam radiotherapy (DE-EBRT) alone. To compare overall survival (OS) for men with unfavorable PCa between LDR-B and DE-EBRT groups. Using the National Cancer Data Base, we identified men with unfavorable PCa treated between 2004 and 2012 with androgen suppression (AS) and either EBRT followed by LDR-B or DE-EBRT (75.6-86.4Gy). Treatment selection was evaluated using logistic regression and annual percentage proportions. OS was analyzed using the Kaplan-Meier method, log-rank test, Cox proportional hazards, and propensity score matching. We identified 25038 men between 2004 and 2012, during which LDR-B boost utilization decreased from 29% to 14%. LDR-B was associated with better OS on univariate (7-yr OS: 82% vs 73%; pLDR-B boost (HR 0.74, 95% CI 0.66-0.89). The OS benefit of LDR-B boost persisted when limited to men aged LDR-B boost utilization declined and was associated with better OS compared to DE-EBRT alone. LDR-B boost is probably the ideal treatment option for men with unfavorable PCa, pending long-term results of randomized trials. We compared radiotherapy utilization and survival for prostate cancer (PCa) patients using a national database. We found that low-dose rate brachytherapy (LDR-B) boost, a method being used less frequently, was associated with better overall survival when compared to dose-escalated external-beam radiotherapy alone for men with unfavorable PCa. Randomized trials are needed to confirm that LDR-B boost is the ideal treatment. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  11. Spinal cordd biological safety comparison of intensity modulated radiotherapy and conventional radiation therapy

    International Nuclear Information System (INIS)

    Xilinbaoleri; Xu Wanlong; Chen Gang; Liu Hao; Wang Ruozheng; Bai Jingping

    2010-01-01

    Objective: To compare the spine intensity modulated radiation therapy (IMRT) and the conventional radiation therapy on the beagle spinal cord neurons, in order to prove the biological safety of IMRT of the spinal cord. Methods: Twelve selected purebred beagles were randomly divided into 2 groups. A beagle clinical model of tumor was mimiced in the ninth and tenth thoracic vertebrae. Then the beagles were irradiated by 2 different models of intensity modulated radiotherapy and conventional radiation therapy, with the total irradiation doses of 50 and 70 Gy. The samples of spinal cord were taken out from the same position of the nine and tenth thoracic vertebrae at the third month after radiation.All the samples were observed by the electron microscope, and the Fas and HSP70 expression in spinal cord neurons were evaluated by immunohistochemistry method. Terminal deoxynucleatidyl transferase mediated dUTP nick and labeling (TUNEL) technique was used to examine the apoptotic cells in the spinal cord. Results: The neurons in the spinal cord of IMRT group were mainly reversible injury, and those in the conventional radiation therapy were mainly apoptosis. Compared with the conventional radiation therapy group [50 Gy group, (7.3 ± 1.1)%; 70 Gy group, (11.3 ± 1.4)%], the apoptosis rate of the spinal cord neurons of the intensity modulated radiotherapy group [50 Gy group, (1.2 ± 0.7)%; 70 Gy group (2.5 ± 0.8)%] was much lower[(50 Gy group, t=0.022, P<0.05; 70 Gy group, t=0.017, P<0.05)]. The expression levels of Fas in the IMPT group (50 Gy group, 4.6 ± 0.8; 70 Gy group, 7.4 ± 1.1) were also much lowerthan those in the other group (50 Gy group, 15.1 ± 6.4; 70 Gy group, 19.3 ± 7.6. 50 Gy group, t=0.231, P<0.05; 70 Gy group, t=0.457, P<0.05), while the expression levels of HSP70 in the IMPT group (50 Gy group, 9.1 ± 0.8; 70 Gy group, 7.3 ± 1.4)were much higher than those in the conventional radiation therapy group (50 Gy group, 2.1 ± 0.9; 70 Gy group, 1.7 ± 0

  12. arXiv Inelastic Boosted Dark Matter at Direct Detection Experiments

    CERN Document Server

    Giudice, Gian F.; Park, Jong-Chul; Shin, Seodong

    2018-05-10

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  13. Chemotherapy and intensity modulated conformational radiotherapy for locally advanced pancreas cancers; Chimiotherapie et radiotherapie conformationnelle avec modulation d'intensite pour les cancers du pancreas localement evolues

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, F. [Hopital Tenon, Paris (France); Wu, A.; Zhang, Z.; Winston, C.; Reidy, D.; Ho, A.; Allen, P.; Karyn, G. [Memorial Sloan-Kettering Cancer Center, New York (United States)

    2011-10-15

    The authors report a retrospective study of the tolerance and survival of 48 patients who have been treated by a chemotherapy followed by a chemotherapy concomitant with an intensity-modulated radiotherapy for a locally advanced pancreas cancer. Results are discussed in terms of toxicity, cancer response, operability, survival rate. Tolerance is good. Local control rates, global survival rates and secondary resection rates are promising. Short communication

  14. Clinical Realization of Sector Beam Intensity Modulation for Gamma Knife Radiosurgery: A Pilot Treatment Planning Study

    International Nuclear Information System (INIS)

    Ma, Lijun; Mason, Erica; Sneed, Penny K.; McDermott, Michael; Polishchuk, Alexei; Larson, David A.; Sahgal, Arjun

    2015-01-01

    Purpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS). Methods and Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter. We developed a SBIM solution based on available clinical planning tools, and we tested it on a cohort of 12 clinical cases as a proof of concept study. The SBIM treatment plans were compared with the original clinically delivered treatment plans to determine dosimetric differences. The goal was to investigate whether SBIM would improve the dose conformity for these treatment plans without prohibitively lengthening the treatment time. Results: A SBIM technique was developed. On average, SBIM improved the Paddick conformity index (PCI) versus the clinically delivered plans (clinical plan PCI = 0.68 ± 0.11 vs SBIM plan PCI = 0.74 ± 0.10, P=.002; 2-tailed paired t test). The SBIM plans also resulted in nearly identical target volume coverage (mean, 97 ± 2%), total beam-on times (clinical plan 58.4 ± 38.9 minutes vs SBIM 63.5 ± 44.7 minutes, P=.057), and gradient indices (clinical plan 3.03 ± 0.27 vs SBIM 3.06 ± 0.29, P=.44) versus the original clinical plans. Conclusion: The SBIM method is clinically feasible with potential dosimetric gains when compared with conventional GKSRS

  15. adabag: An R Package for Classification with Boosting and Bagging

    Directory of Open Access Journals (Sweden)

    Esteban Alfaro

    2013-09-01

    Full Text Available Boosting and bagging are two widely used ensemble methods for classification. Their common goal is to improve the accuracy of a classifier combining single classifiers which are slightly better than random guessing. Among the family of boosting algorithms, AdaBoost (adaptive boosting is the best known, although it is suitable only for dichotomous tasks. AdaBoost.M1 and SAMME (stagewise additive modeling using a multi-class exponential loss function are two easy and natural extensions to the general case of two or more classes. In this paper, the adabag R package is introduced. This version implements AdaBoost.M1, SAMME and bagging algorithms with classification trees as base classifiers. Once the ensembles have been trained, they can be used to predict the class of new samples. The accuracy of these classifiers can be estimated in a separated data set or through cross validation. Moreover, the evolution of the error as the ensemble grows can be analysed and the ensemble can be pruned. In addition, the margin in the class prediction and the probability of each class for the observations can be calculated. Finally, several classic examples in classification literature are shown to illustrate the use of this package.

  16. Thermal management, systems and modules; Thermomanagement, Systeme und Module

    Energy Technology Data Exchange (ETDEWEB)

    Flik, M. [Behr GmbH und Co., Stuttgart (Germany)

    1999-11-01

    Up till now the individual systems for engine temperature control and air conditioning of the vehicle cabin have to a large extent been viewed independently of one another. With the progress of electronic control systems, however, Behr has adopted an integrative approach to managing all heat and substance flows outside of the engine. This perspective, which is known as thermal management, has significantly boosted the rate of innovation. In a short period of time, new and optimized modules and systems have allowed considerable improvements to be made in relation to passenger comfort and safety, the integration of subsystems and modules into the vehicle and environmental compatibility. This innovation drive, which also extends to the design of major modules, will continue to gain impetus in the future. (orig.) [German] Bisher wurden die verschiedenen Systeme zur Temperierung des Motors und zur Klimatisierung der Fahrzeugkabine weitgehend unabhaengig voneinander betrachtet. Mit dem Vordringen der elektronischen Regelung hat bei Behr jedoch eine gesamtheitliche Betrachtung aller Waerme- und Stoffstroeme ausserhalb des Motors eingesetzt. Diese Sichtweise, Thermomanagement genannt, hat eine erhebliche Innovationsdynamik ermoeglicht. Mit neuen und optimierten Modulen und Systemen konnten in kurzer Zeit betraechtliche Verbesserungen erzielt werden - bei Komfort und Sicherheit der Fahrzeuginsassen, bei der Integration der Subsysteme und Module ins Fahrzeug sowie bei seiner oekologischen Vertraeglichkeit. Diese Innovationsdynamik, die auch die Bildung von Grossmodulen einschliesst, wird in Zukunft noch zunehmen. (orig.)

  17. Intermittent fasting modulates IgA levels in the small intestine under intense stress: a mouse model.

    Science.gov (United States)

    Lara-Padilla, Eleazar; Godínez-Victoria, Marycarmen; Drago-Serrano, Maria Elisa; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Campos-Rodríguez, Rafael

    2015-08-15

    Intermittent fasting prolongs the lifespan and unlike intense stress provides health benefits. Given the role of the immunoglobulin A (IgA) in the intestinal homeostasis, the aim of this study was to assess the impact of intermittent fasting plus intense stress on secretory IgA (SIgA) production and other mucosal parameters in the duodenum and ileum. Two groups of six mice, with intermittent fasting or fed ad libitum for 12weeks, were submitted to a session of intense stress by a bout of forced swimming. Unstressed ad libitum fed or intermittently fasted groups were included as controls. After sacrifice, we evaluated intestinal SIgA and plasma adrenal hormones, lamina propria IgA+ plasma-cells, mRNA expression of polymeric immunoglobulin receptor, α- and J-chains in the liver and intestinal mucosa, as well as pro- (tumor necrosis factor-α, interleukin-6 and Interferon-γ) and anti- (interleukin-2, -4, -10 and transforming growth factor-β) inflammatory cytokines in mucosal samples. Under intense stress, intermittent fasting down- or up-modulated the levels of most parameters in the duodenum and ileum, respectively while up-regulated corticosterone levels without affecting epinephrine. Our data suggest intermittent fasting plus intense stress elicited neuroendocrine pathways that differentially controlled IgA and pIgR expression in duodenum and ileum. These findings provide experimental foundations for a presumable impact of intermittent fasting under intense stress on the intestinal homeostasis or inflammation by triggering or reducing the IgA production in ileum or duodenum respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function.

    Science.gov (United States)

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-04-28

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm.

  19. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Nguyen, Nam P; Desai, Anand; Smith-Raymond, Lexie; Jang, Siyoung; Vock, Jacqueline; Vinh-Hung, Vincent; Chi, Alexander; Vos, Paul; Pugh, Judith; Vo, Richard A; Ceizyk, Misty

    2014-01-01

    In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications

  20. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-04-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.