WorldWideScience

Sample records for boom sensor system

  1. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  2. Applications of flow visualization to the development of an innovative boom system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Wolek, A.

    1996-01-01

    A new oil retention boom system design was developed using a flow visualization technique. Hydrogen bubbles were generated on a fine wire cathode and placed in a stream of moving water with a strong light source to visualize the flow. Observations were made of the flow patterns around some basic shapes and booms modelled as cylinders with and without a skirt. The most effective system design had two booms with skirts in parallel with a submerged airfoil designed to cause the oil to separate and recirculate. Oil was allowed to flow above the airfoil into the recirculation region between the two floating booms. The new system is expected to outperform the conventional boom system only when flow velocity is high. Its most successful application would be in situations where flow is perpendicular to the length of the boom. 1 ref., 6 figs

  3. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  4. Modeling and simulation of the agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the application process. Thus we can guarantee the quality of the chemical droplets distribution on the crops. In this paper we design a sprayer boom leveling system for agricultural sprayer vehicles combined with a four-rod linkage self-leveling suspension and electro-hydraulic auto-leveling system. The dynamic analysis shows that the suspension can realize an excellent self-leveling in a comparative small inclination range. In addition we build compensation controller for the electro-hydraulic system based on the mathematical model. With simulations we can optimize the performance of this controller to make sure a fast leveling response to the inclined sprayer boom. © 2011 IEEE.

  5. Simulation and controller design for an agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the operation process. Thus we can guarantee the quality of the chemical droplets distribution on the crops. In this paper we introduced a sprayer boom leveling system for agricultural sprayer vehicles with electro-hydraulic auto-leveling system. The suitable hydraulic actuating cylinder and valve were selected according to the specific systemic specifications. Furthermore, a compensation controller for the electro-hydraulic system was designed based on the mathematical model. With simulations we can optimize the performance of this controller to make sure a fast leveling response to the inclined sprayer boom. © 2011 IEEE.

  6. Modification of booming level for higher correlation with booming sensation; Booming level no koseidoka

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, S; Hashimoto, T [Seikei University, Tokyo (Japan)

    1997-10-01

    In our previous study, we proposed a objective measure, i.e., Booming Level for quantifying booming sensation caused by car interior noise. In this paper, Booming Level was modified with its weighting function and within the process of calculation 1/3 octave band level was modified for the best match with subjective result. These modifications were conducted through a subjective experiment rating booming sensation with sounds having much lower frequency contents below 63Hz. With this modified Booming Level, we have obtained higher correlation for rating booming sensation with sounds having prominent low frequency components. 1 ref., 10 figs.

  7. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  8. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  9. Analysis of load monitoring system in hydraulic mobile cranes

    Science.gov (United States)

    Kalairassan, G.; Boopathi, M.; Mohan, Rijo Mathew

    2017-11-01

    Load moment limiters or safe load control systems or are very important in crane safety. The system detects the moment of lifting load and compares this actual moment with the rated moment. The system uses multiple sensors such as boom angle sensor, boom length sensor for telescopic booms, pressure transducers for measuring the load, anti-two block switch and roller switches. The system works both on rubber and on outriggers. The sensors measure the boom extension, boom angle and load to give as inputs to the central processing, which calculate the safe working load range for that particular configuration of the crane and compare it with the predetermined safe load. If the load exceeds the safe load, actions will be taken which will reduce the load moment, which is boom telescopic retraction and boom lifting. Anti-two block switch is used to prevent the two blocking condition. The system is calibrated and load tested for at most precision.

  10. The geochemical behaviour of selenium in the Boom Clay system - a XANES and EXAFS study

    International Nuclear Information System (INIS)

    2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Breynaert, Eric; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Dom, Dirk; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Vancluysen, Jacqueline; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Kirschhock, Christine E.A.; 2S, KULeuven, B-3001Leuven (Belgium))" data-affiliation=" (Center for surface Chemistry and Catalysis - M2S, KULeuven, B-3001Leuven (Belgium))" >Maes, Andre; Scheinost, Andreas C.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay formation is studied as a reference host formation for the geological disposal of high-level and long-lived radioactive waste for more than 30 years. This formation mainly consists of mixed clay minerals (illite, inter-stratified illite-smectite), pyrite and immobile and dissolved natural organic matter. Since it provides good sorption capacities, very low permeability, and chemically reducing conditions due to the presence of pyrite (FeS 2 ), the Boom clay formation itself is considered to be the main barrier preventing radionuclide migration from the geological repository. Within this concept for geological storage Se 79 has been identified as one of the critical elements contributing to the final dose to man. Although the sorption and migration behaviour of Se in the Boom Clay system has been thoroughly studied, the speciation of Se in the Boom Clay system has never been identified spectroscopically. In all previous studies, the interpretation of the behaviour of Se in Boom Clay conditions has always been based on circumstantial evidence such as solubility measurements or comparison with the spectroscopically identified speciation of Se in model systems. Based on the XANES analysis, selenite is transformed into Se 0 confirming the previously proposed reduction of selenite in the Boom Clay system. Combination of the mass-balance for Se with the results from linear combination analysis of the XANES spectra provided new evidence for the sorption-reduction mechanism proposed to explain the interaction between Se(IV) and the BC solid phase. In addition, evidence was found that that the fate of Se(IV) in the BC system is completely dominated by its interaction with pyrite present in the Boom Clay. The combined EXAFS analysis of Se in Se 0 reference phases (hexagonal, monoclinic, Se-loaded pyrite) allowed to elucidate further details on the short-range structure of the reaction products formed

  11. Dynamic Analysis of The Intelligent Sprayer Boom

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Maagaard, Jørgen; Terp, Christian Istjord

    called “The intelligent sprayer boom”. For the sprayer boom the primary challenge is to hit the weeds with precision from a movable platform. Since the sprayer boom is mounted on a tractor the system will react to bumps in the field. The intelligent sprayer boom has an integrated camera technology......As part of the 3 year project “The intelligent Sprayer Boom”, financed by The Danish National Advanced Technology Foundation, the dynamics of the sprayer boom is to be analysed. In order to minimize the amount of herbicides used to kill the weeds in agriculture a new sprayer boom is being developed...

  12. Domestic Crop Booms, Livelihood Pathways and Nested Transitions: Charting the Implications of Bangladesh’s Pangasius Boom

    NARCIS (Netherlands)

    Belton, B.; Asseldonk, van I.J.M.; Bush, S.R.

    2017-01-01

    Rapidly transforming Asian food systems are oriented largely towards domestic markets, yet literature on Asian crop booms deals almost exclusively with commodities produced for export. With reference to pangasius aquaculture in Bangladesh, we argue that ‘domestic crop booms’ - agricultural booms

  13. Subjective Response to Simulated Sonic Booms in Homes

    Science.gov (United States)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic

  14. X-Boom, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed X-Boom is an innovation on rollable boom design directly relevant to NASA SBIR topic H5.01, Deployable Structures. The X-boom is a rollable Carbon Fiber...

  15. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  16. Realism Assessment of Sonic Boom Simulators

    Science.gov (United States)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  17. Pendulation control system and method for rotary boom cranes

    Science.gov (United States)

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A command shaping control system and method for rotary boom cranes provides a way to reduce payload pendulation caused by real-time input signals, from either operator command or automated crane maneuvers. The method can take input commands and can apply a command shaping filter to reduce contributors to payload pendulation due to rotation, elevation, and hoisting movements in order to control crane response and reduce tangential and radial payload pendulation. A filter can be applied to a pendulation excitation frequency to reduce residual radial pendulation and tangential pendulation amplitudes.

  18. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    Document available in extended abstract form only. In the framework the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). In the frame of the performance assessments of a disposal system located in the Boom Clay Formation, the transport of radionuclides diffusing through the clay barrier into the aquifers located above is modelled. The transport model for the Neogene aquifer is based on a series of groundwater flow models simulating the aquifer systems in the surroundings of the Boom Clay. This series of groundwater models include the regional north-eastern Belgium model simulating flow both above and below the Boom Clay, the recently updated deep-aquifer pumping model, simulating transient flow in the over-exploited aquifers below the Boom Clay and finally the catchment-scale Neogene aquifer model, simulating flow in the aquifer system above the Boom Clay. The Neogene aquifer system consists of two main aquifers. The Pliocene aquifer is located at the top, separated from the underlying Miocene aquifer by the Kasterlee Clay aquitard. The Miocene aquifer consists of three hydrostratigraphic units: the Diest, Berchem and Voort Formations; with the last two having a lower hydraulic conductivity than the Diest unit. The transport model for the Neogene aquifer represents a fraction of the catchment-scale Neogene aquifer model. It stretches from the local divide between the Grote and Kleine Nete Rivers up to the Kleine Nete River, representing the main model sink. The boundary conditions and the sources/sinks in the Pliocene aquifer are defined mostly by the surface water features, such as the rivers, brooks, lakes and canals. In the partially confined Miocene aquifer, the effect of the surface water features is dampened and the heads at the model

  19. Airborne Sensor Thermal Management Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  20. Structural analysis of oil containment booms

    International Nuclear Information System (INIS)

    Badesha, S.S.; Hunt, J.; Wenck, E.

    1993-01-01

    In recent years, major oil spills, such as the Exxon Valdez incident, and many smaller spills have given rise to a worldwide marine environmental concern. One of the most successful devices for containing and facilitating the recovery of spilled oil, and one which does not endanger or alter the environment in any way, is the oil containment boom. Described in this paper is a finite element (FE)-based method for structural analysis of oil booms. In general, a number of FE models for a typical oil boom section are set up using the COSMOS FEA code. These models differ from one another in oil boom geometry, deployment configurations, and oil boom components. The FEA (fimite element analysis) models are made from the plate elements (skirt and tube), truss elements (tension members and ballast chain), and beam elements (end connector). Loads due to tow/current velocity, wind velocity, wave action, and ballasting, as determined from aero/hydrodynamics analysis, are applied as distributed pressures on the plate and beam elements. This method will predict boom tensile load strength, detailed stress distribution, and distortion characteristics for a particular boom with specific deployment configuration and environmental condition. The derived information can be used to highlight critical design features, thereby optimizing the oil boom design. Alternatively, this information can be used for the selection of an oil boom suited for a particular application and, more importantly, can provide the user with a control evaluation tool to determine whether a given oil boom design can withstand the stresses of its intended application

  1. The Boom in 3D-Printed Sensor Technology

    Science.gov (United States)

    Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei

    2017-01-01

    Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability. PMID:28534832

  2. The NET articulated boom: Preliminary investigations and justification for a full scale prototype

    International Nuclear Information System (INIS)

    Suppan, A.

    1990-12-01

    The articulated boom system is the favourite in-vessel handling system for NET which will be used to maintain or replace in-vessel components during short term interventions. The testbed EDITH is the prototype of this system and is the logical step between the proof of principle of the system, which is already performed by the JET articulated boom, and the operational equipment for NET. EDITH is required to demonstrate that maintenance of plasma facing components can be carried out with the anticipated reliability and time. To achieve this aim EDITH is based on the experience of the JET boom and will be constructed in full scale, supplemented by a full scale mock-up. A further goal of EDITH is to allow the testing of boom components and subassemblies. The results of preliminary investigations for the boom are summarized, the need of the testbed EDITH and a full scale mock-up is discussed and both EDITH and the mock-up are described. (orig.) [de

  3. The Funding of the Irish Domestic Banking System During the Boom?

    OpenAIRE

    Lane, Philip R.

    2015-01-01

    (read before the Society, 15th January 2015) This paper analyses the funding of the Irish domestic banking system during the boom period. We highlight: the shifting roles of deposit and bond funding; the prominence of foreign banks as funding counterparties; the role of interoffice funding; and the scale of US dollar and Sterling funding. From August 2007, the deterioration in funding conditions is clearly evident across a range of indicators.

  4. Methodology for the Regulation of Boom Sprayers Operating in Circular Trajectories

    Directory of Open Access Journals (Sweden)

    Alfredo Serreta

    2011-04-01

    Full Text Available A methodology for the regulation of boom sprayers working in circular trajectories has been developed. In this type of trajectory, the areas of the plots of land treated by the outer nozzles of the boom are treated at reduced rates, and those treated by the inner nozzles are treated in excess. The goal of this study was to establish the methodology to determine the flow of the individual nozzles on the boom to guarantee that the dose of the product applied per surface unit is similar across the plot. This flow is a function of the position of the equipment (circular trajectory radius and of the displacement velocity such that the treatment applied per surface unit is uniform. GPS technology was proposed as a basis to establish the position and displacement velocity of the tractor. The viability of this methodology was simulated considering two circular plots with radii of 160 m and 310 m, using three sets of equipment with boom widths of 14.5, 24.5 and 29.5 m. Data showed as increasing boom widths produce bigger errors in the surface dose applied (L/m2. Error also increases with decreasing plot surface. As an example, considering the three boom widths of 14.5, 24.5 and 29.5 m working on a circular plot with a radius of 160 m, the percentage of surface with errors in the applied surface dose greater than 5% was 30%, 58% and 65% respectively. Considering a circular plot with radius of 310 m the same errors were 8%, 22% and 31%. To obtain a uniform superficial dose two sprayer regulation alternatives have been simulated considering a 14.5 m boom: the regulation of the pressure of each nozzle and the regulation of the pressure of each boom section. The viability of implementing the proposed methodology on commercial boom sprayers using GPS antennas to establish the position and displacement velocity of the tractor was justified with a field trial in which a self-guiding commercial GPS system was used along with three precision GPS systems located in

  5. Shuttle sonic boom - Technology and predictions. [environmental impact

    Science.gov (United States)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  6. Recent Progress on Sonic Boom Research at NASA

    Science.gov (United States)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  7. NASA's Advanced Solar Sail Propulsion System for Low-Cost Deep Space Exploration and Science Missions that Use High Performance Rollable Composite Booms

    Science.gov (United States)

    Fernandez, Juan M.; Rose, Geoffrey K.; Younger, Casey J.; Dean, Gregory D.; Warren, Jerry E.; Stohlman, Olive R.; Wilkie, W. Keats

    2017-01-01

    Several low-cost solar sail technology demonstrator missions are under development in the United States. However, the mass saving derived benefits that composites can offer to such a mass critical spacecraft architecture have not been realized yet. This is due to the lack of suitable composite booms that can fit inside CubeSat platforms and ultimately be readily scalable to much larger sizes, where they can fully optimize their use. With this aim, a new effort focused at developing scalable rollable composite booms for solar sails and other deployable structures has begun. Seven meter booms used to deploy a 90 m2 class solar sail that can fit inside a 6U CubeSat have already been developed. The NASA road map to low-cost solar sail capability demonstration envisioned, consists of increasing the size of these composite booms to enable sailcrafts with a reflective area of up to 2000 m2 housed aboard small satellite platforms. This paper presents a solar sail system initially conceived to serve as a risk reduction alternative to Near Earth Asteroid (NEA) Scout's baseline design but that has recently been slightly redesigned and proposed for follow-on missions. The features of the booms and various deployment mechanisms for the booms and sail, as well as ground support equipment used during testing, are introduced. The results of structural analyses predict the performance of the system under microgravity conditions. Finally, the results of the functional and environmental testing campaign carried out are shown.

  8. Basin sidewall effects during comparable boom testing

    International Nuclear Information System (INIS)

    DeVitis, D.S.; Hannon, L.

    1995-01-01

    A quantitative investigation of the effects of boom sidewall clearance during first and gross oil loss speed tests was discussed. A second measure of sidewall was quantified in terms of flow characteristics at specific location in the boom apex. The test boom was rigged in 5 different configurations. First oil loss and gross oil loss tow speeds, and relative horizontal flow velocities within the boom apex were obtained for each configuration. Flow velocities of 0.5 to 1.5 knots in 0.25 knot increments were measured. Flow velocities illustrated similar flow characteristics within the apex regardless of side wall clearance. The results of the study illustrated that boom to basin sidewall clearance may be an independent test parameter without a significant bias. 5 tabs., 8 figs.,

  9. Swarm Deployable Boom Assembly (DBA) Development of a Deployable Magnetometer Boom for the Swarm Spacecraft

    Science.gov (United States)

    McMahon, Paul; Jung, Hans-Juergen; Edwards, Jeff

    2013-09-01

    The Swarm programme consists of 3 magnetically clean satellites flying in close formation designed to measure the Earth's magnetic field using 2 Magnetometers mounted on a 4.3m long deployable boom.Deployment is initiated by releasing 3 HDRMs, once released the boom oscillates back and forth on a pair of pivots, similar to a restaurant kitchen door hinge, for around 120 seconds before coming to rest on 3 kinematic mounts which are used to provide an accurate reference location in the deployed position. Motion of the boom is damped through a combination of friction, spring hysteresis and flexing of the 120+ cables crossing the hinge. Considerable development work and accurate numerical modelling of the hinge motion was required to predict performance across a wide temperature range and ensure that during the 1st overshoot the boom did not damage itself, the harness or the spacecraft.Due to the magnetic cleanliness requirements of the spacecraft no magnetic materials could be used in the design of the hardware.

  10. A natural ice boom

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.R. [Manitoba Hydro, Winnipeg, MB (Canada)

    1998-10-01

    Planning for ice jams and ice movements are critical on the Nelson River in northern Manitoba in designing cofferdams. Experience on the St. Lawrence River demonstrated the possibility of exercising some control over ice action by judicious placement of log booms or ice control structures. The success of experiments with man-made controls led to field tests in which an ice sheet of sufficient magnitude and competence was introduced into the open water stream of the Nelson River. The ice sheet was subsequently jammed in a narrow channel, thereby creating a natural ice bridge or boom upstream of a proposed hydro development. Under favourable conditions, this boom would initiate the progression of the ice cover from its location upstream, cutting off the downstream reach from the ice producing potential of the upstream reach. Although ice would still be generated downstream, the length of the reach between the ice boom and the development site would be short enough that ice jamming at the development site would never occur. Although problems in blasting prevented the introduction of a competent ice sheet into the main stream of the river at the location chosen, sufficient confidence in the theory was gained to warrant further consideration. 4 refs., 1 tab., 10 figs.

  11. Testing fire resistant boom in waves and flames

    International Nuclear Information System (INIS)

    McCourt, J.; Buist, I.; Pratte, B.; Jamieson, W.; Mullin, J.

    1997-01-01

    A near full-scale screening test to evaluate the durability and ability of refractory-fabric fire resistant booms to contain oil during an in-situ burn without the environmental problems of burning crude oil or the cost of testing offshore, was developed. The boom was first flexed under tension for two hours, then deployed in a U-configuration in an outdoor wave tank. Propane gas was burned in the pocket of the boom to simulate the collection and burning phases of an in-situ burn. Finally, the boom was returned to the indoor wave flume for another two hours of wave action and then inspected for damage. Results indicated damage of the same type as suffered in previously conducted sea trials, although the extent of damage was less severe. These results led to recommendations for improvement of the test protocol which included: (1) increasing the heat flux to the boom, (2) improving the heat flux measurement, (3) increasing the tension in the fire boom during flame testing, and (4) improving the characterization of the waves near the fire boom. 16 refs., 6 figs

  12. Waveforms and Sonic Boom Perception and Response (WSPR): Low-Boom Community Response Program Pilot Test Design, Execution, and Analysis

    Science.gov (United States)

    Page, Juliet A.; Hodgdon, Kathleen K.; Krecker, Peg; Cowart, Robbie; Hobbs, Chris; Wilmer, Clif; Koening, Carrie; Holmes, Theresa; Gaugler, Trent; Shumway, Durland L.; hide

    2014-01-01

    The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods.

  13. Del Boom y otras onomatopeyas literarias

    Directory of Open Access Journals (Sweden)

    Jorge Iván Parra Londoño

    2016-03-01

    Full Text Available Este artículo trata de examinar los alcances literarios del llamado Boom latinoamericano, a medio siglo de su estallido, las cuatro obras más representativas y sus respectivos autores, además de proponer un quinto autor, según la invitación que hiciera en su momento el crítico Ángel Rama. Por otro lado, evalua la respuesta literaria por parte del Post Boom, analizando sus características y su vigencia y, de manera concomitante, los movimientos anejos o posteriores a dicho movimiento, como el Crack y la Generación Granta. A manera de propuesta, se pondrán a consideración treinta autores como integrantes del Post Boom y una novela de Carlos Fuentes como el “crash” del Boom. Por último, presenta un breve vistazo a la narrativa española paralela a los mencionados movimientos.

  14. Modeling and simulation of the agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian; Miao, Yubin

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the application process. Thus we can

  15. Elastic Deployable Composite Tubular Roll-Out Boom, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) has developed an affordable and ultra-lightweight elastically self-deployable Roll-Out Boom technology that provides affordability and...

  16. Analysis of Offshore Knuckle Boom Crane - Part Two: Motion Control

    Directory of Open Access Journals (Sweden)

    Morten K. Bak

    2013-10-01

    Full Text Available In this paper design of electro-hydraulic motion control systems for offshore knuckle boom cranes is discussed. The influence of the control valve bandwidth along with the ramp time for the control signal are investigated both analytically with simplified system models and numerically with an experimentally verified crane model. The results of both types of investigations are related to general design rules for selection of control valves and ramp times and the relevance of these design rules is discussed. Generally, they are useful but may be too conservative for offshore knuckle boom cranes. However, as demonstrated in the paper, the only proper way to determine this is to evaluate the motion control system design by means of simulation.

  17. The Use of Structural-Acoustic Techniques to Assess Potential Structural Damage From Sonic Booms

    Science.gov (United States)

    Garrelick, Joel; Martini, Kyle

    1996-01-01

    The potential impact of supersonic operations includes structural damage from the sonic boom overpressure. This paper describes a study of how structural-acoustic modeling and testing techniques may be used to assess the potential for such damage in the absence of actual flyovers. Procedures are described whereby transfer functions relating structural response to sonic boom signature may be obtained with a stationary acoustic source and appropriate data processing. Further, by invoking structural-acoustic reciprocity, these transfer functions may also be acquired by measuring the radiated sound from the structure under a mechanical drive. The approach is based on the fundamental assumption of linearity, both with regard to the (acoustic) propagation of the boom in the vicinity of the structure and to the structure's response. Practical issues revolve around acoustic far field and source directivity requirements. The technique was implemented on a specially fabricated test structure at Edwards AFB, CA with the support of Wyle Laboratories, Inc. Blank shots from a cannon served as our acoustic source and taps from an instrumented hammer generated the mechanical drive. Simulated response functions were constructed. Results of comparisons with corresponding measurements recorded during dedicated supersonic flyovers with F-15 aircraft are presented for a number of sensor placements.

  18. Characterization of groundwater flow in the environment of the Boom Clay (Campine, Belgium)

    International Nuclear Information System (INIS)

    Gedeon, M.; Labat, S.; Wemaere, I.; Wouters, L.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay formation is considered as reference host rock for the geological disposal of radioactive waste. Aquifers surrounding the Boom Clay play a passive role in the context of the disposal safety whereby the radionuclides are diluted by groundwater flow. The groundwater flow in these aquifers has been studied since decades. This research involves observations of groundwater levels in the regional and local piezo-metric networks, several site investigations including geophysics and core-drilled boreholes and groundwater modelling. In this context, groundwater modelling represents the integration of the site characterization efforts and provides a comprehensive tool for constraining the models used in the safety assessment of the geological disposal. Since 1985, groundwater levels are observed monthly in the regional piezo-metric network. It consists of 142 filters monitoring the groundwater levels at 45 sites. Along with the observed groundwater levels from the local piezo-metric network (concentrated around the Mol-Dessel site for surface disposal), these data provide an excellent insight into the evolution of the groundwater levels. Moreover, they represent a calibration (validation) dataset for groundwater flow modelling. The groundwater system forming the environment of the Boom Clay host rock was characterized during several site investigation campaigns, within which seven core-drilled boreholes were realized, whereby hydraulic parameters and hydro-stratigraphy of the groundwater system could be collected. The dataset obtained from the above mentioned campaigns was complemented by archived data on hydraulic testing in the aquifers in order to build a comprehensive groundwater model integrating these data into a single numerical representation of the groundwater system. Three regional groundwater models have been developed integrating the site characterization data collected in the north

  19. Simulation and controller design for an agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian; Miao, Yubin

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the operation process. Thus we can

  20. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  1. Full-Carpet Design of a Low-Boom Demonstrator Concept

    Science.gov (United States)

    Ordaz, Irian; Wintzer, Mathias; Rallabhandi, Sriram K.

    2015-01-01

    The Cart3D adjoint-based design framework is used to mitigate the undesirable o -track sonic boom properties of a demonstrator concept designed for low-boom directly under the flight path. First, the requirements of a Cart3D design mesh are determined using a high-fidelity mesh adapted to minimize the discretization error of the CFD analysis. Low-boom equivalent area targets are then generated at the under-track and one off-track azimuthal position for the baseline configuration. The under-track target is generated using a trim- feasible low-boom target generation process, ensuring that the final design is not only low-boom, but also trimmed at the specified flight condition. The o -track equivalent area target is generated by minimizing the A-weighted loudness using an efficient adjoint-based approach. The configuration outer mold line is then parameterized and optimized to match the off-body pressure distributions prescribed by the low-boom targets. The numerical optimizer uses design gradients which are calculated using the Cart3D adjoint- based design capability. Optimization constraints are placed on the geometry to satisfy structural feasibility. The low-boom properties of the final design are verified using the adaptive meshing approach. This analysis quantifies the error associated with the CFD mesh that is used for design. Finally, an alternate mesh construction and target positioning approach offering greater computational efficiency is demonstrated and verified.

  2. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on the NASA role in the logistics and operations of the effort, including human response subject recruitment, the operational processes involved in implementing the surveys throughout the community, instrumentation systems, logistics, flight planning, and flight operations. Findings discussed in this paper include critical lessons learned in all of the above-mentioned areas, as well as flight operations results. Analysis of the accuracy and repeatability of planning and executing the unique aircraft maneuver used to generate low sonic booms concluded that the sonic booms had overpressures within 0.15 lbft2 of the planned values for 76 percent of the attempts. Similarly, 90 percent of the attempts to generate low sonic booms within the community were successful.

  3. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  4. Development in helicopter tail boom strake applications in the US

    Science.gov (United States)

    Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.

    1988-01-01

    The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.

  5. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  6. NOFI oil Vee-Sweep and extension boom test at OHMSETT

    International Nuclear Information System (INIS)

    Bitting, K.R.; Vicedomine, J.

    1993-01-01

    The NOFI Vee-Sweep is an inflatable oil collection boom held in a V configuration by cross netting attached to the skirt of the boom. The NOFI 600S is an inflatable oil boom used to divert oil into the Vee-Sweep. The lower section of the 600S skirt consists of a feather net and a ballast chain. The booms are designed for open-ocean skimming where a skimmer is placed in the Vee-Sweep apex to remove the collected oil. During testing, the booms were preloaded with oil and towed in the OHMSETT tank at various speeds and wave conditions. Each boom was tested for its first and gross (continuous) oil loss speeds. The Vee-Sweep was also evaluated for wave performance, oil thickness vs tow speed, oil loss rate, and critical tow speed. Finally, a DESMI-250 oil skimmer was placed in the Vee-Sweep apex and oil loss tests were run while the skimmer was operating. During the critical tow speed testing, failures occurred due to apex submergence at ca 3.5 knots in calm water and short-crested waves, and 2.4 knots in harbor chop. The oil loss tests showed that the Vee-Sweep retains oil at speeds significantly higher than conventional booms. First oil loss speeds ranged from 1.3 knots in calm water to 1.0 knot in regular waves. The Vee-Sweep's high buoyancy/weight ratio gave it good wave performance in all conditions tested. The 600S oil loss speeds were higher than those of most conventional booms, and performance was better when the feather net was attached. 1 ref., 4 figs., 4 tabs

  7. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  8. The Iron Law of Financial Markets: Self-fulfilling Prophecies and Speculative Booms and Busts

    Directory of Open Access Journals (Sweden)

    Ognjen Radonjić

    2016-02-01

    Full Text Available This paper discusses the factors which, in the absence of strong financial regulation, sustain the Iron Law of the Financial Markets asserting that speculative booms and busts occur more or less regularly from 17 century to the present. The first factor is that financial markets are self-fulfilling system. The second is that human nature does not change and is based on egoism, materialism, loss aversion, exaggerated hopes and fears, emulation, propensity to gamble, herd behavior and so on. Lastly, there is the extreme brevity of the financial memory. In order to enable economic authorities and/or individuals to detect timely that the unsustainable boom is under the way, we have identified the common features of historically recorded speculative episodes. Stages through which the system passes on its way from unsustainable rise to inevitable fall are: displacement, boom, overtrading, financial distress and discredit or revulsion.

  9. Environmental Pollution: Noise Pollution - Sonic Boom

    Science.gov (United States)

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  10. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Science.gov (United States)

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative

  11. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  12. Evaluating a protocol for testing fire-resistant oil-spill containment boom

    International Nuclear Information System (INIS)

    Walton, W.D.; Twilley, W.H.; Hiltabrand, R.R.; Mullin, J.V.

    1998-01-01

    A series of experiments were conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves. Most response plans for in situ burning of oil at sea require the use of a fire-resistant boom to contain the oil during a burn. For this study, a wave tank was designed and constructed to assess the capabilities of a 15 m section of a boom subjected to a 5 m diameter fire with 0.15 m high waves. Five typical fire-resistant oil-spill containment booms were tested. The purpose of the project was to evaluate the test procedure, therefore the overall performance of the boom was not evaluated on a pass-fail criterion. The two most important aspects of the test method were repeatability and reproducibility. Some of the parameters tested included the effect of wind, waves, fire size, and fire duration. Methods to constrain the booms were also tested. 7 refs., 6 tabs., 7 figs

  13. State of the art of sonic boom modeling

    Science.gov (United States)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  14. Stress Analysis of Boom of Special Mobile Crane for Plain Region in Transmission Line

    Science.gov (United States)

    Qin, Jian; Shao, Tao; Chen, Jun; Wan, Jiancheng; Li, Zhonghuan; Jiang, Ming

    2017-10-01

    Basis of the boom force analysis of special mobile crane for plain region in transmission line, the load type of boom design is confirmed. According to the different combinations of boom sections, the composite pattern of the different boom length is obtained to suit the actual conditions of boom overlapping. The large deformation model is employed with FEM to simulate the stress distribution of boom, and the calculation results are checked. The performance curves of rated load with different arm length and different working range are obtained, which ensures the lifting capacity of special mobile crane meeting the requirement of tower erection of transmission line. The proposed FEM of boom of mobile crane would provide certain guiding and reference to the boom design.

  15. Design of the De-Orbit Sail Boom Deployment Unit

    Science.gov (United States)

    Meyer, Sebastian; Hillebrandt, Martin; Straubel, Marco; Huhne, Christian

    2014-06-01

    The design of the De-Orbit Sail boom deployment unit is strongly driven by volume constraints, which are given by the cubesat container. Four CFRP (carbon fiber reinforced polymer) booms [4] with a cross-sectional shape of a double-omega and a length of 3.6 m are reeled on one spool in the center of the unit. The deployment of the four booms are controlled by an electric motor, which acts on the boom spool. Due to the volume limitation caused by the dimensions of the cubesat deployer the deployment unit has little room for the mechanisms components. With the aim to achieve a robust design, the deployment concept of the unit has greatly changed during the development process. The history of the design as well as the mechanisms are described. Additionally the results of the flight model testing are presented.

  16. Rural North Dakota's oil boom and its impact on social services.

    Science.gov (United States)

    Weber, Bret A; Geigle, Julia; Barkdull, Carenlee

    2014-01-01

    Over the last five years, North Dakota has experienced an oil boom based on high oil prices and hydraulic fracturing technologies. This has brought economic expansion and population growth to rural communities that had previously experienced decades of depopulation and economic struggle. Although the state has enjoyed many benefits--especially in juxtaposition to a sluggish national economy--the boom has also meant the arrival of economic refugees and dramatic impacts on largely rural social service systems. In the midst of a rapidly changing situation, available information tends to swing between euphoria over economic success and hysteria about rising crime and shifting cultures. In response, the authors used a primary focus group with county social service directors from across the state and a followup focus group with social workers operating on the edge of oil activity. Grounded in resilience theory, qualitative analysis of the primary focus group, and triangulation of data from other sources, this study provides a more objective report of the housing and social challenges, the benefits of the boom, and the challenges to solutions.

  17. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  18. High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing

    Science.gov (United States)

    McCurdy, David A. (Editor)

    1999-01-01

    The third High-Speed Research Sonic Boom Workshop was held at NASA Langley Research Center on June 1-3, 1994. The purpose of this workshop was to provide a forum for Government, industry, and university participants to present and discuss progress in their research. The workshop was organized into sessions dealing with atmospheric propagation; acceptability studies; and configuration design, and testing. Attendance at the workshop was by invitation only. The workshop proceedings include papers on design, analysis, and testing of low-boom high-speed civil transport configurations and experimental techniques for measuring sonic booms. Significant progress is noted in these areas in the time since the previous workshop a year earlier. The papers include preliminary results of sonic boom wind tunnel tests conducted during 1993 and 1994 on several low-boom designs. Results of a mission performance analysis of all low-boom designs are also included. Two experimental methods for measuring near-field signatures of airplanes in flight are reported.

  19. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    Science.gov (United States)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  20. Laboratory hydro-mechanical characterisation of Boom Clay at Essen and Mol

    International Nuclear Information System (INIS)

    Deng, Y. F.; Tang, A. M.; Cui, Y. J.; Nguyen, X. P.; Li, X. L.; Wouters, L.

    2011-01-01

    Boom Clay has been selected as a potential host rock formation for the geological disposal of radioactive waste in Belgium. In the present work, the hydro-mechanical behaviour of Boom Clay samples from the borehole Essen-1 at a depth of 220-260 m and from HADES that is the underground rock laboratory at Mol in Belgium, at 223-m depth was investigated in the laboratory by performing low pressure odometer tests (vertical effective stress ranging from 0.05 to 3.2 MPa), high pressure odometer tests (vertical effective stress ranging from 0.125 to 32 MPa), isotropic consolidation tests (confining effective stress ranging from the in situ stress to 20 MPa) and triaxial shear tests. It has been observed that the mineralogy, geotechnical properties and hydro-mechanical behaviour of Boom Clay from Essen at 227-m, 240-m and 248-m depths are similar to that of Boom Clay from Mol. As in the case of Boom Clay at Mol, the failure envelope of Boom Clay at Essen in the p'- q plane is not linear. The slope of the portion beyond the pre-consolidation stress of Boom Clay from Essen is almost the same as that from Mol, suggesting a similar internal friction angle of about 13 deg. The compression curves (void index I v versus logarithm of vertical stress) beyond the pre-consolidation stress are the same for both samples from Mol and Essen, and situated between the intrinsic compression line (ICL) and the sedimentation compression line (SCL). The yield stress determined from odometer tests seems to be stress-path dependent and lower than the pre-consolidation stress. Thus determining the over-consolidation ratio (OCR) using the yield stress value would lead to an incorrect estimate. From a practical point view, the laboratory test results from Essen and their comparison with those from Mol provide important information regarding the transferability of knowledge on Boom Clay at different sites, taking into account the fact that most investigations have been carried out on Boom Clay at

  1. Sonic boom predictions using a modified Euler code

    Science.gov (United States)

    Siclari, Michael J.

    1992-04-01

    The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.

  2. Facts and features of radionuclide migration in Boom Clay

    International Nuclear Information System (INIS)

    De Regge, P.; Henrion, P.; Monsecour, M.; Put, M.

    1988-01-01

    The evolution which took place during ten years of research on the behaviour of radionuclides in Boom Clay is described. Initially, the Boom Clay was regarded as a chemically inert exchanger and the radiochemical research aimed at determining the distribution of cations between the clay and some liquid phases. The observation that Boom Clay deteriorates in contact with air and loses important intrinsic properties formed a major breakthrough in the research and led to a careful examination of the real in-situ conditions. Efforts devoted to the understanding of the chemical factors pertaining to the pH, the redox potential, the extent of the buffering capacity of FeS 2 and CaCO 3 in equilibrium with the interstitial aqueous phase are reviewed. Also emerging from the overall picture was the role of the organic material present in the Boom Clay. In contrast to the water percolating fractured formations which may not be in equilibrium with the rock, the interstitial aqueous phase is completely in equilibrium with Boom Clay mainly because of its low permeability and the large excesses of buffering components. As the retention mechanisms are better understood, a more coherent picture is obtained from distribution and diffusion experiments and the effects of consolidation are being investigated in detail. 23 refs.; 4 figs.; 3 tabs

  3. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  4. Managing Credit Booms and Busts : A Pigouvian Taxation Approach

    NARCIS (Netherlands)

    Jeanne, O.; Korinek, A.

    2010-01-01

    We study a dynamic model in which the interaction between debt ac- cumulation and asset prices magni es credit booms and busts. We find that borrowers do not internalize these feedback e¤ects and therefore suf- fer from excessively large booms and busts in both credit flows and asset prices. We show

  5. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  6. Regional modelling of the confined aquifers below the Boom clay in NE-Belgium

    International Nuclear Information System (INIS)

    Vandersteen, K.; Gedeon, M.; Marivoet, J.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). The hydrogeological program at SCK.CEN supports the long-term performance assessments of the geological disposal of radioactive waste by performing a phenomenological research of the aquifer systems surrounding the studied disposal system. One of the important components of this programme is the regional hydrogeological modelling. The regional hydrogeology is studied using two main models - the steady state Neogene aquifer model (NAM) and the transient deep aquifer pumping model (DAP), developed to characterize and quantify the regional groundwater flow in, respectively, the aquifers lying above the Boom Clay in the Nete catchment area (NAM), and the aquifers lying below the Boom Clay in the Campine area (DAP). This paper describes the most recent update of the DAP model. The DAP model represents the confined part of the groundwater system located stratigraphically below the Boom Clay. This includes the parts of the Oligocene aquifer, the Bartoon aquitard system and the Ledo-Paniselian-Brusselian aquifer buried under the Boom Clay. Due to the considerable pumping from these aquifers in combination with a limited recharge, a gradual decrease in groundwater levels has been observed in more than 30-year piezometric records. In the DAP model, the shallow aquifer system overlying the Boom Clay is replaced by fixed head boundaries: this aquifer system is dominated by close-to-surface hydrological processes and the heads fluctuate seasonally without any apparent long-term trend. In the horizontal direction, the model extends to the south as far as the outcrops of the major aquitards: the Maldegem Formation confining the Ledo

  7. Development of Intelligent Spray Systems for Nursery Crop Production

    Science.gov (United States)

    Two intelligent sprayer prototypes were developed to increase pesticide application efficiency in nursery production. The first prototype was a hydraulic vertical boom system using ultrasonic sensors to detect tree size and volume for liner-sized trees and the second prototype was an air-assisted sp...

  8. Bust without boom.

    Science.gov (United States)

    Goldzieher, J W

    2000-01-01

    Just like injectables, oral contraceptives (OCs), including progestin-only ¿minipill¿ and ¿morning-after¿ pill regimens, have experienced a bust without a boom. Fear of political and religious backlash over emergency contraceptives containing estrogen and progestin prompted large companies not to market these regimens. Another major factor in the bust phase of OC use and acceptance has been a small coterie of English and American epidemiologists focused on the adverse effects of Ocs, including risks of thrombotic events, heart attacks, and strokes. The media played a crucial role in the bust phase of these OCs. In the UK, the alleged increase of cancer risk with pill use, which leaked before publication in London newspapers, resulted in 50,000 additional unintended pregnancies. Nevertheless, there is no doubt that boom-and-bust cycles will continue simply because many of the actors in this drama have too great a vested interest to desist. Groups involved in this field must recognize the hazards that come with the territory and be proactive, anticipatory, and well armed with facts--and get good with media access. Drug companies should think on a long-term basis the potential effects of leaving the field, as they have done, or shooting down competitive innovations.

  9. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  10. Raw material boom in an industrial country. Rohstoffboom in einem Industrieland

    Energy Technology Data Exchange (ETDEWEB)

    Enders, K S

    1984-01-01

    First of all, a theoretical investigation is carried out to discover under which conditions a raw material boom displaces traditional sectors of industry, and which groups win and lose in the process. Subsequently, the peculiarities of the adaption process induced by the boom are analysed. Particular attention is paid to the possibility of transition (short-term) unemployment (Dutch disease). In conclusion, Norway's experiences in the oil and gas boom in the North Sea ar described and then compared with theoretical statements.

  11. Study of a 30-M Boom For Solar Sail-Craft: Model Extendibility and Control Strategy

    Science.gov (United States)

    Keel, Leehyun

    2005-01-01

    Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the

  12. Flow distortion on boom mounted cup anemometers

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Friis Pedersen, Troels; Gottschall, Julia

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models...... are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted...

  13. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  14. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  15. Sheath-Based Rollable Lenticular-Shaped and Low-Stiction Composite Boom

    Science.gov (United States)

    Fernandez, Juan M. (Inventor)

    2018-01-01

    Various embodiments provide rollable and deployable composite booms that may be used in a wide range of applications both for space and terrestrial structural solutions. Various embodiment composite booms may be bistable, i.e. having a stable strain energy minimum in the coiled configuration as well as the in the deployed configuration. In various embodiments, a boom may be fabricated by aligning two independent tape-springs front-to-front encircled by a durable seamless polymer sleeve. The durable seamless polymer sleeve may allow the two tape-springs to slide past each other during the coiling/deployment process so as to reduce, e.g., minimize, shear and its derived problems.

  16. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  17. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  18. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  19. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  20. Dynamic simulation of a planar flexible boom for tokamak in-vessel operations

    International Nuclear Information System (INIS)

    Ambrosino, G.; Celentano, G.; Garofalo, F.; Maisonnier, D.

    1991-01-01

    In this paper we present a dynamic model for the analysis of the vibrations of a planar articulated flexible boom to be used for tokamak in-vessel maintenance operations. The peculiarity of the mechanical structure of the boom enables us to consider separately the oscillations in the horizontal and vertical planes so that two separate models can be constructed for describing these phenomena. The results of simulations based on booms like that proposed for NET in-vessel operations are presented. (orig.)

  1. MODEL CORRELATION STUDY OF A RETRACTABLE BOOM FOR A SOLAR SAIL SPACECRAFT

    Science.gov (United States)

    Adetona, O.; Keel, L. H.; Oakley, J. D.; Kappus, K.; Whorton, M. S.; Kim, Y. K.; Rakpczy, J. M.

    2005-01-01

    To realize design concepts, predict dynamic behavior and develop appropriate control strategies for high performance operation of a solar-sail spacecraft, we developed a simple analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion of the vehicle is dominated by retractable booms that support the structure, our study concentrates on developing and validating a dynamic model of a long retractable boom. Extensive tests with various configurations were conducted for the 30 Meter, light-weight, retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a solar-sail spacecraft currently under construction. Experimental data were then compared with the corresponding response of the analytical model. Though mixed results were obtained, the analytical model emulates several key characteristics of the boom. The paper concludes with a detailed discussion of issues observed during the study.

  2. Icelandic boom and bust - Immigration and the housing market

    OpenAIRE

    Lúðvík Elíasson

    2014-01-01

    Possible explanations for the rapid increase in house prices and housing investment in Iceland between 2004 and 2007 and the subsequent market crash are studied. The boom was driven in part by banking liberalisation, international financial conditions, and domestic policies. A simple demand and supply model, based on the study by Elíasson and Pétursson (2009), is fitted to data through the recent boom-bust period. The model is remarkably robust through the cycle despite its unprecedented ampl...

  3. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  4. Presence and evolution of natural organic matter in the boom clay

    International Nuclear Information System (INIS)

    Van Geet, M.; Deniau, I.; Largeau, C.; Bruggeman, C.; Maes, A.; Dierckx, A.

    2004-01-01

    Because of its very low hydraulic conductivity, reducing conditions, slightly alkaline pH, high specific surface, high cation exchange capacity and high plasticity, the Boom Clay is studied as a reference host formation for the deep disposal of high-level long-lived radioactive waste (NIRAS/ONDRAF, 1989). However, Boom Clay also contains up to 5% wt. of organic matter (OM). As radionuclides can form complexes with this organic matter, a detailed characterisation and knowledge of the evolution of the organic matter is necessary. An overview of the characteristics of the organic matter present in Boom Clay is given by Van Geet et al., (2003). The solid phase OM can be up to 5%. The dissolved OM fraction is around 200 mg C per liter of Boom Clay pore water. Both kinds of OM will be discussed. Concerning the solid phase OM the focus will be on the past evolution and its possible future evolution due to a thermal stress. For the dissolved OM, the focus will be on its origin. (author)

  5. A summary of the lateral cutoff analysis and results from NASA's Farfield Investigation of No-boom Thresholds

    Science.gov (United States)

    Cliatt, Larry J.; Hill, Michael A.; Haering, Edward A.; Arnac, Sarah R.

    2015-10-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  6. Sobre o Boom e outras onomatopeias literárias

    OpenAIRE

    Londoño, Jorge Iván Parra

    2016-01-01

    Este artículo trata de examinar los alcances literarios del llamado Boom latinoamericano, a medio siglo de su estallido, las cuatro obras más representativas y sus respectivos autores, además de proponer un quinto autor, según la invitación que hiciera en su momento el crítico Ángel Rama. Por otro lado, evalua la respuesta literaria por parte del Post Boom, analizando sus características y su vigencia y, de manera concomitante, los movimientos anejos o posteriores a dicho movimiento, como el ...

  7. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  8. Measuring and explaining the baby boom in the developed world in the mid-twentieth century

    Directory of Open Access Journals (Sweden)

    Jesús J. Sánchez-Barricarte

    2018-03-01

    Full Text Available Background: The early research on the baby boom tried to account for it as a logical recovery following the end of the Second World War (WWII. But it cannot be understood merely as a post-war phenomenon because its origins go back to the 1930s and early 1940s. Objective: I shall describe the methodology used to measure the total and marital baby boom and provide a detailed description of it. I shall attempt to explain the possible reasons that led to the sharp increase in the marital fertility rates and its subsequent decline. Methods: I will use various fertility indices that track the historical development of fertility (total and marital; period and cohort. Results: I show that there are major differences in the measurement of the baby boom depending on the index used. I found that the baby boom is highly heterogeneous in the 25 countries that form part of my study. It represented the logical response that families made to one period of prolonged political, economic, and military crisis (the crash of 1929 and WWII. Conclusions: Researchers who use only the total fertility indices are really analysing only the nuptiality boom, which took place during those years, rather than changes in reproductive behaviour. Contribution: I measure total and marital baby boom for 25 developed countries and perform the calculations to measure the impact of marital fertility and nuptiality on the total baby boom (TBB. I present a new explanation of the origins of the baby boom.

  9. Design methodology for a community response questionnaire on sonic boom exposure

    Science.gov (United States)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-01-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  10. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    Science.gov (United States)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  11. Migrant labor supply in a booming non-renewable resource economy: Cure and transmission mechanism for de-industrialization?

    Science.gov (United States)

    Nulle, Grant Mark

    This paper challenges the determinism that booming resource economies suffer from de-industrialization, the "Dutch Disease". For several decades, economists have attempted to explain how a sudden surge in mineral and energy extraction affects an economy's output and employment from an aggregate and sectoral perspective. Economic theory shows that a "boom" in mineral and energy production is welfare enhancing to the economy experiencing it. However, the phenomenon also induces inter-sectoral adjustments among non-renewable resource (NRR), traditional traded, and non-traded industries that tend to crowd out traditional export sectors such as agriculture and manufacturing. In turn, this paper asks two fundamental questions: 1) Can the inter-sectoral adjustments wrought by a boom in NRR production be mitigated in the resource-abundant economy experiencing it; 2) Can the inter-sectoral adjustments be exported to a neighboring non-resource economy by movements in migrant labor supply? The theoretical model and empirical estimation approach presented in this paper introduces an endogenous migrant labor supply response to booms in NRR output to test the extent traditional tradable sectors shrink in the NRR-abundant economy during the boom and if such effects are exported to a neighboring jurisdiction. Using data at the U.S. county level, the empirical results show that booming economies experience positive and statistically significant rates of real income and traded sector job growth during the boom, attributable to the influx of migrant labor. By contrast, little evidence is found that non-booming counties adjacent to the booming counties experience declines in income or job growth because of labor supply outflows. Instead, the results suggest the larger the number of potential "donor" counties that can supply labor to the booming economies, the more likely the transmission of booming economy effects, namely evidence of de-industrialization, is diffused across all of the

  12. Economic booms and risky sexual behavior: evidence from Zambian copper mining cities.

    Science.gov (United States)

    Wilson, Nicholas

    2012-12-01

    Existing studies suggest that individual and household level economic shocks affect the demand for and supply of risky sex. However, little evidence exists on the effects of an aggregate shock on equilibrium risky sexual behavior. This paper examines the effects of the early twenty-first century copper boom on risky sexual behavior in Zambian copper mining cities. The results suggest that the copper boom substantially reduced rates of transactional sex and multiple partnerships in copper mining cities. These effects were partly concentrated among young adults and copper boom induced in-migration to mining cities appears to have contributed to these reductions. Copyright © 2012. Published by Elsevier B.V.

  13. 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 2; Configuration Design, Analysis, and Testing

    Science.gov (United States)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.

  14. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  15. Low-Speed Control of Heavy-Load Transfer Robot with Long Telescopic Boom Based on Stribeck Friction Model

    Directory of Open Access Journals (Sweden)

    Bo You

    2012-01-01

    Full Text Available The severe low-speed creep phenomenon occurs in the telescopic boom system of a heavy-load transfer robot with a long telescopic boom as a result of nonlinear friction. In order to improve control precision and operation performance at low speeds, we built a three-loop control nonlinear model of an AC servo motor with Stribeck friction disturbance. Traditional proportional-integral-derivative controller (PID and fuzzy PID controls were, respectively, adopted in the position loop, and the control performance was simulated. The results showed that a system with fuzzy PID control eliminates “flat top” position tracking and “dead zone” speed tracking, which are generated by traditional PID, and thereby decreases the effect of friction on the performance of the servo system. This elimination also improved the tracking accuracy and robustness of the system.

  16. Thermo-hydro-mechanical behaviour of Boom clay; Comportement thermo-hydro-mecanique de l'argile de Boom

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T

    2008-01-15

    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  17. 76 FR 20532 - Safety Zone; Boom Days, Niagara River, Niagara Falls, NY

    Science.gov (United States)

    2011-04-13

    ...-AA00 Safety Zone; Boom Days, Niagara River, Niagara Falls, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Niagara River... Marina and a portion of the Niagara River, Niagara Falls, NY during the Boom Days Fireworks on April 16...

  18. Babies Bottom Out--A 'Maybe Boom'

    Science.gov (United States)

    Science News, 1977

    1977-01-01

    Data for the period September 1976 through April 1977 indicate a rise in the United States birth rate; however, the rate is still below the replacement level. It is speculated that the increase is an "echo" effect to the post-World War II baby boom which peaked in 1957. (SL)

  19. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  20. Sensor-guided threat countermeasure system

    Science.gov (United States)

    Stuart, Brent C.; Hackel, Lloyd A.; Hermann, Mark R.; Armstrong, James P.

    2012-12-25

    A countermeasure system for use by a target to protect against an incoming sensor-guided threat. The system includes a laser system for producing a broadband beam and means for directing the broadband beam from the target to the threat. The countermeasure system comprises the steps of producing a broadband beam and directing the broad band beam from the target to blind or confuse the incoming sensor-guided threat.

  1. Big boom ahead for New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Wes

    2011-10-15

    The technological advances in shale gas extraction make it now feasible to exploit this hydrocarbon resource. Shale gas activity has been booming recently in New Brunswick and the province possibly holds more than 80 trillion cubic feet of natural gas. A new pipeline system has already been put in place. New Brunswick is a socially, politically and economically stable region. In addition, the royalty system in New Brunswick is competitive. For example, right now Corridor Resources Inc. is working on three major projects and some existing production from the McCully field in New Brunswick. Corridor also has prospects at Anticosti Island, Prince Edward Island and Old Harry. Although the government can benefit from royalty revenues generated by the hydrocarbon industry, environmental issues are of concern to citizens' groups, environmentalists and political opposition parties. A moratorium has been called for to make sure the proper protections are in place and the industry is adequately monitored.

  2. Sensor system for web inspection

    Science.gov (United States)

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  3. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  4. Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks

    Science.gov (United States)

    2013-12-01

    communication technology ARPANET Advanced Research Projects Agency Network ASN autonomous sensor network CBR constant bit rate CDMA code...transmission energy NFC near field communication OV1 operational view xxii PA power amplifier RFC request for comment RFID radio frequency identification...fact that the integrated chip (IC) technology boom during the past 20+ years has miniaturized IC hardware while increasing computational capability

  5. Common bus multinode sensor system

    International Nuclear Information System (INIS)

    Kelly, T.F.; Naviasky, E.H.; Evans, W.P.; Jefferies, D.W.; Smith, J.R.

    1988-01-01

    This patent describes a nuclear power plant including a common bus multinode sensor system for sensors in the nuclear power plant, each sensor producing a sensor signal. The system consists of: a power supply providing power; a communication cable coupled to the power supply; plural remote sensor units coupled between the cable and one or more sensors, and comprising: a direct current power supply, connected to the cable and converting the power on the cable into direct current; an analog-to-digital converter connected to the direct current power supply; an oscillator reference; a filter; and an integrated circuit sensor interface connected to the direct current power supply, the analog-to-digital converter, the oscillator crystal and the filter, the interface comprising: a counter receiving a frequency designation word from external to the interface; a phase-frequency comparator connected to the counter; an oscillator connected to the oscillator reference; a timing counter connected to the oscillator, the phase/frequency comparator and the analog-to-digital converter; an analog multiplexer connectable to the sensors and the analog-to-digital converter, and connected to the timing counter; a shift register operatively connected to the timing counter and the analog-to-digital converter; an encoder connected to the shift register and connectable to the filter; and a voltage controlled oscillator connected to the filter and the cable

  6. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  7. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  8. Spill-Overs of a Resource Boom: Evidence from Zambian Copper Mines

    OpenAIRE

    Alexander Lippert

    2014-01-01

    Do local populations benefit from resource booms? How strong are market linkages between the mining sector and the regional economy? This paper exploits exogenous variation in mine-level production volumes generated by the recent copper boom in Zambia to shed light on these questions. Using a novel dataset, I find robust evidence that an increase in local copper production improves living standards in the surroundings of the mines even for households not directy employed in the mining sector:...

  9. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  10. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  11. Vibration characteristics of a deployable controllable-geometry truss boom

    Science.gov (United States)

    Dorsey, J. T.

    1983-01-01

    An analytical study was made to evaluate changes in the fundamental frequency of a two dimensional cantilevered truss boom at various stages of deployment. The truss could be axially deployed or retracted and undergo a variety of controlled geometry changes by shortening or lengthening the telescoping diagonal members in each bay. Both untapered and tapered versions of the truss boom were modeled and analyzed by using the finite element method. Large reductions in fundamental frequency occurred for both the untapered and tapered trusses when they were uniformly retracted or maneuvered laterally from their fully deployed position. These frequency reductions can be minimized, however, if truss geometries are selected which maintain cantilever root stiffness during truss maneuvers.

  12. ATLAS IV in situ heating test in Boom Clay

    International Nuclear Information System (INIS)

    Chen, Guangjing; Li, Xiangling; Verstricht, Jan; Sillen, Xavier

    2012-01-01

    Document available in extended abstract form only. The small scale in-situ ATLAS (Admissible Thermal Loading for Argillaceous Storage) tests are performed to assess the hydro-mechanical effects of a thermal transient on the host Boom clay at the HADES underground research facility in Mol, Belgium. The initial test set-up, consisting of a heater borehole and two observation boreholes, was installed in 1991-1992. The first test (later named 'ATLAS I') was then performed from July 1993 to June 1996; during this time, the heater dissipated a constant power of 900 W. During the second phase ('ATLAS II'), the heating power was doubled (1800 W) and maintained constant from June 1996 to May 1997. This was followed by shutdown and natural cooling starting from June 1997 on. To broaden the THM characterization of the Boom clay at a larger scale and at different temperature levels, the test set-up was extended in 2006 by drilling two additional instrumented boreholes (AT97E and AT98E). The heater was switched on again from April 2007 to April 2008 with a stepwise power increase, followed by an instantaneous shutdown. This phase is called 'ATLAS III'. The above tests have provided a large set of good quality and well documented data on temperature, pore water pressure and total stress; these data allowed to make several interesting observations regarding the thermal anisotropy and THM coupling in the Boom clay. The straightforward geometry and well defined boundary conditions of the tests facilitate the comparison between measurement and numerical modeling studies. Based on the three dimensional coupled THM modeling of the ATLAS III test, the good agreement between measurement and numerical modeling of temperature and pore water pressure yields a set of THM parameters and confirms the thermo-mechanical anisotropy of the Boom clay. To get a better insight in the anisotropic THM behavior of the Boom clay, a new upward instrumented borehole was drilled above the ATLAS heater at

  13. A portable readout system for silicon microstrip sensors

    International Nuclear Information System (INIS)

    Marco-Hernandez, Ricardo

    2010-01-01

    This system can measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256. The system is able to operate with different types (p- and n-type) and different sizes (up to 3 cm 2 ) of microstrip silicon sensors, both irradiated and non-irradiated. Heavily irradiated sensors will be used at the Super Large Hadron Collider, so this system can be used to research the performance of microstrip silicon sensors in conditions as similar as possible to the Super Large Hadron Collider operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format. The main characteristics of the system are described. Results of measurements acquired with n- and p-type detectors using both the laser and the radioactive source setup are also presented and discussed.

  14. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  15. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  16. Energy Saving Potential in Knuckle Boom Cranes using a Novel Pump Controlled Cylinder Drive

    Directory of Open Access Journals (Sweden)

    Søren Ketelsen

    2018-04-01

    Full Text Available This paper is considering the application of a novel pump controlled cylinder drive, the so-called Speed-variable Switched Differential Pump (SvSDP, for knuckle boom crane actuation. Especially the control system for the SvSDP drive is considered, and aiming on improving energy efficiency a refinement of the existing control structure is proposed. An energy efficient sizing algorithm for the SvSDP drive is developed, and fundamental differences between the achievable operating range for the SvSDP drive compared to a conventional valve-cylinder drive are discussed. A case study is conducted with knuckle boom crane actuation, and compared to a conventional valve actuation. Simulation results show that the motion tracking performance is on a similar level compared to the valve actuation approach, while the energy consumption is drastically decreased. For the given test trajectory the valve actuation system consumes 0.79 kWh of electrical energy, while the SvSDP drive consume 0.06 kWh, if ideal energy recovery and storage is assumed.

  17. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States)

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  18. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  19. The marriage boom and marriage bust in the United States: An age-period-cohort analysis.

    Science.gov (United States)

    Schellekens, Jona

    2017-03-01

    In the 1950s and 1960s there was an unprecedented marriage boom in the United States. This was followed in the 1970s by a marriage bust. Some argue that both phenomena are cohort effects, while others argue that they are period effects. The study reported here tested the major period and cohort theories of the marriage boom and bust, by estimating an age-period-cohort model of first marriage for the years 1925-79 using census microdata. The results of the analysis indicate that the marriage boom was mostly a period effect, although there were also cohort influences. More specifically, the hypothesis that the marriage boom was mostly a response to rising wages is shown to be consistent with the data. However, much of the marriage bust can be accounted for by unidentified cohort influences, at least until 1980.

  20. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  1. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  2. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  3. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  4. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  5. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Science.gov (United States)

    2010-07-01

    ...-voltage lines. 77.807-2 Section 77.807-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any...

  6. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  7. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  8. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  9. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  10. Layout of the manipulator-arm (boom) for the TFTR fusion reactor (Princeton, USA) under UHV-conditions

    International Nuclear Information System (INIS)

    Klaubert, J.

    1987-01-01

    This presentation shows the main criteria for the layout of the manipulator - arm and the antechamber - vessel of the TFTR - FUSION - REACTOR at Princeton University, PLASMA PHYSICS LABORATORY (USA). The main problem during layout of a manipulator system like the TFTR - Boom has been the limitation of the vertical deflections due to deadweight of the construction. The design problem is rather a deformation problem and a problem of stability than a stress problem. The way of optimizing the ratio between stiffness and deadweight is the most important part during the complete design - process. Additional earthquake requirements need further investigations for a satisfying layout (horizontal forces, weak-axis of moment of inertia). The details of the construction (welding, connections etc.) have to be designed in respect to UHV - requirements --> no holes and no fillet welds (outgasing - rate.) are allowed. All weldings have to be designed as bevel-welds. This manipulator system is designed for working in a plane system (two degrees of freedom). A manipulator system with the same operating capabilities in a three degree of freedom system needs larger cross sections for the different beam-elements than those of the discussed TFTR - BOOM

  11. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  12. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  13. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  14. An evaluation of propane as a fuel for testing fire-resistant oil spill containment booms

    International Nuclear Information System (INIS)

    Walton, W. D.; Twilley, W. H.

    1997-01-01

    A series of experiments have been conducted to measure and compare the thermal exposure to a fire-resistant boom from liquid hydrocarbon fuel and propane fires. The objective was to test the potential of propane fueled fires as a fire source for testing fire-resistant oil spill containment booms.Thermal exposure from propane fires have been measured with and without waves. Results indicated that although propane diffusion flames on water look like liquid hydrocarbon fuel flames and produce very little smoke, the heat flux at the boom location from propane fires is about 60 per cent of that from liquid hydrocarbon fuel fires. Despite the attractive features in terms of ease of application, control and smoke emissions, it was concluded that the low heat flux would preclude the application of propane as a fuel for evaluating fire resistant containment booms. 2 refs., 7 figs

  15. Economic Booms and Risky Sexual Behavior: Evidence from Zambian Copper Mining Cities

    OpenAIRE

    Nicholas Wilson

    2010-01-01

    Existing studies suggest that individual and household level economic shocks affect the demand for and supply of risky sex. However, little evidence exists on the effects of an aggregate shock on equilibrium risky sexual behavior. This paper examines the effects of the early twenty-first century copper boom on risky sexual behavior in Zambian copper mining cities. The results indicate that the copper boom substantially reduced rates of transactional sex and multiple partnerships in copper min...

  16. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  17. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  18. Prioritizing Wetlands for Waterbirds in a Boom and Bust System: Waterbird Refugia and Breeding in the Murray-Darling Basin.

    Science.gov (United States)

    Bino, Gilad; Kingsford, Richard T; Porter, John

    2015-01-01

    Dryland rivers have considerable flow variability, producing complex ecosystems, processes, and communities of organisms that vary over space and time. They are also among the more vulnerable of the world's ecosystems. A key strategy for conservation of dryland rivers is identifying and maintaining key sites for biodiversity conservation, particularly protecting the quantity and quality of flow and flooding regimes. Extreme variability considerably challenges freshwater conservation planning. We systematically prioritised wetlands for waterbirds (simultaneously for 52 species), across about 13.5% of the Murray-Darling Basin (1,061,469 km2), using a 30-year record of systematic aerial surveys of waterbird populations. Nine key wetlands in this area, primarily lakes, floodplains, and swamps, consistently contributed to a representation target (80%) of total abundances of all 52 waterbird species. The long temporal span of our data included dramatic availability (i.e., booms) and scarcity (i.e., busts) of water, providing a unique opportunity to test prioritisation at extremes of variation. These extremes represented periods when waterbirds were breeding or concentrating on refugia, varying wetland prioritisation. In dry years, important wetlands for waterbirds were riverine and lacustrine (12 wetlands) but this changed in wet years to lacustrine and palustrine (8 wetlands). Such variation in ecosystem condition substantially changes the relative importance of individual wetlands for waterbirds during boom and bust phases. Incorporating this variability is necessary for effective conservation of Murray-Darling Basin waterbirds, with considerable generality for other similarly variable systems around the world.

  19. Prioritizing Wetlands for Waterbirds in a Boom and Bust System: Waterbird Refugia and Breeding in the Murray-Darling Basin.

    Directory of Open Access Journals (Sweden)

    Gilad Bino

    Full Text Available Dryland rivers have considerable flow variability, producing complex ecosystems, processes, and communities of organisms that vary over space and time. They are also among the more vulnerable of the world's ecosystems. A key strategy for conservation of dryland rivers is identifying and maintaining key sites for biodiversity conservation, particularly protecting the quantity and quality of flow and flooding regimes. Extreme variability considerably challenges freshwater conservation planning. We systematically prioritised wetlands for waterbirds (simultaneously for 52 species, across about 13.5% of the Murray-Darling Basin (1,061,469 km2, using a 30-year record of systematic aerial surveys of waterbird populations. Nine key wetlands in this area, primarily lakes, floodplains, and swamps, consistently contributed to a representation target (80% of total abundances of all 52 waterbird species. The long temporal span of our data included dramatic availability (i.e., booms and scarcity (i.e., busts of water, providing a unique opportunity to test prioritisation at extremes of variation. These extremes represented periods when waterbirds were breeding or concentrating on refugia, varying wetland prioritisation. In dry years, important wetlands for waterbirds were riverine and lacustrine (12 wetlands but this changed in wet years to lacustrine and palustrine (8 wetlands. Such variation in ecosystem condition substantially changes the relative importance of individual wetlands for waterbirds during boom and bust phases. Incorporating this variability is necessary for effective conservation of Murray-Darling Basin waterbirds, with considerable generality for other similarly variable systems around the world.

  20. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  1. Real estate boom and export performance bust in Croatia

    Directory of Open Access Journals (Sweden)

    Marina Tkalec

    2014-06-01

    Full Text Available The goal of this research is to estimate the effect of resource reallocation from the manufacturing to the real estate economic sector on exporting activity in Croatia, a small open post-transition country that experienced a real estate boom during the previous decade. This paper follows the work by Égert and Kierzenkowski (2014 as we test the hypothesis that the real estate boom had an adverse impact on country’s export performance. For that purpose we use quarterly data ranging from 1Q1998 to 3Q2013, and estimate export equations using maximum likelihood and dynamic ordinary least squares estimators of cointegration. Our results indicate that the distortion of relative prices in favor of non-tradable sectors (construction and real estate, which is a direct by-product of the real estate boom, has had stifling effects on export performance. Our results also suggest that ailing cost competitiveness and governments’ inability to implement policies promoting private sector economic development adversely influenced export performance during the period analyzed. The basic conclusion of our research is that the expansion of a non-tradable sector in a country with limited supply of production factors can have a detrimental effect on the ability of the tradable sector to increase its output and compete in international markets.

  2. Bearings for the biomass boom

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan

    2011-03-15

    Biomass energy is booming –– more than two billion people depend on biomass for their energy and the International Energy Agency predicts that biomass' share of the global energy supply will treble by 2050. But in many developing countries it is still regarded as a traditional and dirty solution that is often criminalised, unsustainable and poorly paid. A more sophisticated approach that legalises and secures sustainable production by and for local people could help improve energy security, cut carbon emissions, protect forests and reduce poverty.

  3. The research and application of electricity economic boom model under the constraint of energy conservation and emission reduction

    Science.gov (United States)

    Chen, Guangyan; Xia, Huaijian; Chen, Meiling; Wang, Dong; Jia, Sujin

    2017-10-01

    Energy saving and emission reduction policies affects the development of high power industry, thereby affecting electricity demand, so the study of the electricity industry boom helps to master the national economy. This paper analyses the influence of energy saving and emission reduction on power generation structure and pollutant emission in power industry. Through the construction of electricity market composite boom index to indicate electricity boom, using boom index to study volatility characteristics and trend of electricity market. Here we provide a method for the enterprise and the government, that it can infer the overall operation of the national economy situation from power data.

  4. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  5. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  6. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    -diagnosis methods falling short on this problem, this paper suggests an active diagnosis procedure to isolate sensor faults at the commissioning stage, before normal operation has started. Using statistical methods, residuals are evaluated versus multiple hypothesis models in a minimization process to uniquely......Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... differently by the control system, fault-finding is difficult in practice and defects are regularly causing commissioning delays at considerable expense. Validation and handling of faults in the sensor configuration are therefore essential to cut costs during commissioning. With passive fault...

  7. Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.

    Science.gov (United States)

    Defense Documentation Center, Alexandria, VA.

    The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)

  8. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  9. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  10. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  11. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  12. Boom in boarfish abundance: insight from otolith analysis

    DEFF Research Database (Denmark)

    Coad, Julie Olivia; Hüssy, Karin

    2012-01-01

    The boarfish Capros aper is a pelagic shoaling species widely distributed along the Northeast Atlantic continental shelf. In recent years, this species has experienced a dramatic boom in abundance in the Bay of Biscay and Celtic Sea. This study aims at resolving the mechanisms responsible for thi...

  13. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  14. Optimal Sensor Selection for Health Monitoring Systems

    Science.gov (United States)

    Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.

    2005-01-01

    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.

  15. Alcohol Control: Mobile Sensor System and Numerical Signal Analysis

    Directory of Open Access Journals (Sweden)

    Rolf SEIFERT

    2016-10-01

    Full Text Available An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is also incorporated in the system. The applications demonstrate a good substance identification capability of the sensor system and a very good concentration determination of the components.

  16. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  17. Sensor Selection method for IoT systems – focusing on embedded system requirements

    Directory of Open Access Journals (Sweden)

    Hirayama Masayuki

    2016-01-01

    Full Text Available Recently, various types of sensors have been developed. Using these sensors, IoT systems have become hot topics in embedded system domain. However, sensor selections for embedded systems are not well discussed up to now. This paper focuses on embedded system’s features and architecture, and proposes a sensor selection method which is composed seven steps. In addition, we applied the proposed method to a simple example – a sensor selection for computer scored answer sheet reader unit. From this case study, an idea to use FTA in sensor selection is also discussed.

  18. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  19. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  20. Optimization of wireless Bluetooth sensor systems.

    Science.gov (United States)

    Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y

    2004-01-01

    Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.

  1. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  2. A Boom in Boomerangs

    Science.gov (United States)

    1992-01-01

    Ted Bailey, a highly-ranked international boomerang designer and thrower, used information from a variety of NASA technical reports on aerodynamics and low-speed airfoils to design more competitive boomerangs. Because the boomerang is essentially an airfoil like an airplane wing, the technology transferred effectively and even contributed to the 1981 American victory over Australian throwers. In 1985, using four NASA reports, Bailey designed a new MTA (maximum time aloft) boomerang that broke the one-minute barrier, enabled throwers to throw and catch in less than three minutes and allowed competitors to complete the difficult "Super Catch" - five throw/catch sequences after launching the original boom while it is still aloft. Bailey is now considering other boomerang applications.

  3. MicroSensors Systems: detection of a dismounted threat

    Science.gov (United States)

    Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian

    2005-05-01

    The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.

  4. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  5. On the thermal behaviour of Boom clay

    International Nuclear Information System (INIS)

    Delage, P.; Cui Yu Jun; Sultan, N.

    2004-01-01

    When temperature is increased, the various phenomena that occur in a saturated natural potential host clay for nuclear waste disposal (Boom clay from SCK-CEN in Mol, Belgium) were experimentally investigated in a temperature controlled high stress triaxial cell. Firstly, the pore pressure build-up due to the difference in thermal dilation of both water and minerals was investigated through thermal consolidation tests. Interesting information was obtained about the dissipation of thermally induced pore pressure in Boom clay, based on the standard Terzaghi consolidation theory. Secondly, the volume change behaviour in drained conditions (i.e. under a very slow temperature increase) confirmed that the clay overconsolidation ratio (OCR) controlled the nature of the volume changes. Whereas overconsolidated soils use to dilate as any material when temperature is elevated, normally consolidated soils present a decrease in volume, which is less common. The principles of a coupled thermo-elasto-plastic model that was specifically developed to model this particular behaviour are finally presented. Obviously, it appears necessary to account in detail for these thermal phenomena in order to properly understand the response of the geological barrier in the near field once nuclear waste has been stored. (orig.)

  6. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  7. NASA's Pursuit of Low-Noise Propulsion for Low-Boom Commercial Supersonic Vehicles

    Science.gov (United States)

    Bridges, James; Brown, Clifford A.; Seidel, Jonathan A.

    2018-01-01

    Since 2006, when the Fundamental Aeronautics Program was instituted within NASA's Aeronautics Mission Directorate, there has been a Project looking at the technical barriers to commercial supersonic flight. Among the barriers is the noise produced by aircraft during landing and takeoff. Over the years that followed, research was carried out at NASA aeronautics research centers, often in collaboration with academia and industry, addressing the problem. In 2013, a high-level milestone was established, described as a Technical Challenge, with the objective of demonstrating the feasibility of a low-boom supersonic airliner that could meet current airport noise regulations. The Technical Challenge was formally called "Low Noise Propulsion for Low Boom Aircraft", and was completed in late 2016. This paper reports the technical findings from this Technical Challenge, reaching back almost 10 years to review the technologies and tools that were developed along the way. It also discusses the final aircraft configuration and propulsion systems required for a supersonic civilian aircraft to meet noise regulations using the technologies available today. Finally, the paper documents the model-scale tests that validated the acoustic performance of the study aircraft.

  8. Thermal shock induced dynamics of a spacecraft with a flexible deploying boom

    Science.gov (United States)

    Shen, Zhenxing; Li, Huijian; Liu, Xiaoning; Hu, Gengkai

    2017-12-01

    The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented. For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natural coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system, the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Numerical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively, and show that thermal shock has a significant influence on the dynamics of spacecraft.

  9. Semiautonomous Avionics-and-Sensors System for a UAV

    Science.gov (United States)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  10. Alcohol control: Mobile sensor system and numerical signal analysis

    OpenAIRE

    Seifert, Rolf; Keller, Hubert B.; Conrad, Thorsten; Peter, Jens

    2016-01-01

    An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is ...

  11. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    Science.gov (United States)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  12. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  13. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  14. Ultra-Low Power Sensor System for Disaster Event Detection in Metro Tunnel Systems

    Directory of Open Access Journals (Sweden)

    Jonah VINCKE

    2017-05-01

    Full Text Available In this extended paper, the concept for an ultra-low power wireless sensor network (WSN for underground tunnel systems is presented highlighting the chosen sensors. Its objectives are the detection of emergency events either from natural disasters, such as flooding or fire, or from terrorist attacks using explosives. Earlier works have demonstrated that the power consumption for the communication can be reduced such that the data acquisition (i.e. sensor sub-system becomes the most significant energy consumer. By using ultra-low power components for the smoke detector, a hydrostatic pressure sensor for water ingress detection and a passive acoustic emission sensor for explosion detection, all considered threats are covered while the energy consumption can be kept very low in relation to the data acquisition. In addition to 1 the sensor system is integrated into a sensor board. The total average power consumption for operating the sensor sub-system is measured to be 35.9 µW for lower and 7.8 µW for upper nodes.

  15. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  16. Simplified High-Performance Roll Out Composite Magnetometer Boom, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for compact, low-cost deployable magnetometer booms for CubeSats, Roccor proposes to develop a Simple High-performance Roll-Out Composite...

  17. Passenger Spaceplanes and Airplanes that Have Variable Configuration for Sonic Boom Reduction

    Directory of Open Access Journals (Sweden)

    Constantin SANDU

    2018-06-01

    Full Text Available In the last time, the interest for passenger space plane, supersonic passenger aircraft and supersonic business jets is increasing. For reducing sonic boom effects at ground level, some companies proposed airplanes having fuselage with small traversal section or having curved fuselage. This paper presents a new practical method for exciting vibrations in the leading edge of wing, tail and airplane's nose surfaces in order to scatter the shock wave and to reduce the sonic boom impact at ground level. The leading edges of wing, tail and airplane nose are covered with thin elastic fairings made of carbon fiber composite material which are separated through small gaps by the adjacent surfaces of wing, tail and nose. When the aircraft flies over populated areas, compressed air bleed from the engine compressors excites the vibration of carbon fiber fairings. The air is released through calibrated nozzles and directly impinges on the fairing surface generating their vibration. Thus, the shock waves are scattered and the impact of sonic boom on ground is much reduced.

  18. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    Science.gov (United States)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  19. A study of sonic boom overpressure trends with respect to weight, altitude, Mach number, and vehicle shaping

    Science.gov (United States)

    Needleman, Kathy E.; Mack, Robert J.

    1990-01-01

    This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.

  20. Heimdall System for MSSS Sensor Tasking

    Science.gov (United States)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved

  1. Analysis of Offshore Knuckle Boom Crane - Part One: Modeling and Parameter Identification

    Directory of Open Access Journals (Sweden)

    Morten K. Bak

    2013-10-01

    Full Text Available This paper presents an extensive model of a knuckle boom crane used for pipe handling on offshore drilling rigs. The mechanical system is modeled as a multi-body system and includes the structural flexibility and damping. The motion control system model includes the main components of the crane's electro-hydraulic actuation system. For this a novel black-box model for counterbalance valves is presented, which uses two different pressure ratios to compute the flow through the valve. Experimental data and parameter identification, based on both numerical optimization and manual tuning, are used to verify the crane model. The demonstrated modeling and parameter identification techniques target the system engineer and takes into account the limited access to component data normally encountered by engineers working with design of hydraulic systems.

  2. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  3. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  4. The Control of Welding Deformation of the Three-Section Arm of Placing Boom of HB48B Pump Truck

    Science.gov (United States)

    Wang, Zhi-ling

    2018-02-01

    The concrete pump truck is the construction equipment of conveying concrete with self contained base plate and distributing boom. It integrates the pump transport mechanism of the concrete pump, and the hydraulic roll-folding type distributing boom used to distribute materials, and the supporting mechanism into the automobile chassis, and it is the concrete conveying equipment with high efficient and the functions of driving, pumping, and distributing materials. The placing boom of the concrete pump truck is the main force member in the pump parts with bearing great pressure, and its stress condition is complex. Taking the HB48B placing boom as an example, this paper analyzes and studies the deformation produced by placing boom of pump truck, and then obtains some main factors affecting the welding deformation. Through the riveter “joint” size, we controlled the process parameters, post-welding processing, and other aspects. These measures had some practical significance to prevent, control, and reduce the deformation of welding.

  5. Integrating soft sensor systems using conductive thread

    Science.gov (United States)

    Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.

    2018-05-01

    We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable

  6. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  7. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  8. Radionuclide solubilities in boom clay. Final report, part 2 : a report produced for ONDRAF/NIRAS

    International Nuclear Information System (INIS)

    Baker, S.; Baston, G.M.N.; Boult, K.A.

    2000-01-01

    The release of radionuclides from a High Level Radioactive Waste repository situated in the Boom Clay at Mol would depend, in part, on their retardation within the Boom Clay. A number of parameters are required to assess such retardation; these include the solubilities of key radionuclides and their sorption behaviour. ONDRAF/NIRAS has identified neptunium, technetium, selenium, uranium and plutonium as elements for study. AEA Technology plc was requested to undertake a joint experimental and modelling study to determine the solubilities of these five elements under conditions representative of those in the Boom Clay (the in situ chemical conditions are pH∼8, Eh ∼ -230 mV). The work programme was carried out over three years, and for completeness this final report includes all the results

  9. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  10. Closed-loop System Identification with New Sensors

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2008-01-01

    This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....

  11. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  12. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  13. Leading the next boom? competitive Eastern limb platinum supply

    CSIR Research Space (South Africa)

    McGill, JE

    2010-07-01

    Full Text Available in USD/troy oz (Data source: Johnson Matthey) Figure 4. Variation in nominal PGEs spot price from July 1992 till July 2010 in USD/troy oz (Data source: Johnson Matthey) PLATINUM IN TRANSITION ?BOOM OR BUST?4 each. In 1996 and 2003 merger attempts...

  14. Drilling Down: An Examination of the Boom-Crime Relationship in Resource Based Boom Counties

    Directory of Open Access Journals (Sweden)

    Rick Ruddell

    2017-03-01

    Full Text Available Objective to examine the boomcrime relationship in resourcebased boom counties and to propose socioeconomic and legal measures to reduce the boomtown effect. Methods dialectical approach to cognition of social phenomena allowing to analyze them in historical development and functioning in the context of the totality of objective and subjective factors that determined the choice of the following research methods formallogical comparativelegal survey interview focus groups generalized least squares method. Results The expansion in natural resource development in rural communities has led to a number of social problems in these places. The media community stakeholders as well as law enforcement and human service personnel have reported that the rapid growth in these communities leads to increased crime and other social ills. In order to better understand the boomcrime relationship index crimes in oil and natural gas producing counties in Montana and North Dakota were examined. Comparison of 2012 crime rates in a matched sample of counties revealed that crime rates were higher in oilimpacted counties. A prepost analysis found that violent crime in boom counties increased 18.5 between 2006 and 2012 while decreasing 25.6 in a matched sample of counties that had no oil or gas production. Inconsistent with the media portrayal of these communities as a new quotwild westquot we did not find a significant association between oil or natural gas production and property or violent crime in a series of OLS regression models. Scientific novelty for the first time the article uses index crimes in oil and natural gas producing counties in Montana and North Dakota to reveal the association between the rapid growth of towns and the crime rates. Practical significance the main provisions and conclusions of the article can be used in research and educational activity as well as for predicting the socialeconomic development of boomtowns.

  15. Reactive transport modelling of a heating and radiation experiment in the Boom clay (Belgium)

    International Nuclear Information System (INIS)

    Montenegro, L.; Samper, J.; Delgado, J.

    2003-01-01

    Most countries around the world consider Deep Geological Repositories (DGR) as the most safe option for the final disposal of high level radioactive waste (HLW). DGR is based on adopting a system of multiple barriers between the HLW and the biosphere. Underground laboratories provide information about the behaviour of these barriers at real conditions. Here we present a reactive transport model for the CERBERUS experiment performed at the HADES underground laboratory at Mol (Belgium) in order to characterize the thermal (T), hydrodynamic (H) and geochemical (G) behaviour of the Boon clay. This experiment is unique because it addresses the combined effect of heat and radiation produced by the storage of HLW in a DGR. Reactive transport models which are solved with CORE, are used to perform quantitative predictions of Boom clay thermo-hydro-geochemical (THG) behaviour. Numerical results indicate that heat and radiation cause a slight oxidation near of the radioactive source, pyrite dissolution, a pH decrease and slight changes in the pore water chemical composition of the Boom clay. (Author) 33 refs

  16. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  17. Reconfigurable Sensor Monitoring System

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  18. Progress in triboluminescence-based smart optical sensor system

    International Nuclear Information System (INIS)

    Olawale, David O.; Dickens, Tarik; Sullivan, William G.; Okoli, Okenwa I.; Sobanjo, John O.; Wang, Ben

    2011-01-01

    Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated. - Highlights: → The underlying mechanisms believed to be responsible for triboluminescence. → State-of-the-art in the development and application of TL-based sensor systems. → The challenges militating against the full exploitation and field application of TL sensor systems are identified. → Viable solutions and approaches to address these challenges are enumerated.

  19. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    Science.gov (United States)

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  20. An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Directory of Open Access Journals (Sweden)

    Keun Ho Ryu

    2012-03-01

    Full Text Available In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors’ temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time.

  1. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  2. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  3. Radionuclide solubilities in boom clay. Final report, part 2 : a report produced for ONDRAF/NIRAS

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.; Baston, G.M.N.; Boult, K.A. [and others

    2000-07-01

    The release of radionuclides from a High Level Radioactive Waste repository situated in the Boom Clay at Mol would depend, in part, on their retardation within the Boom Clay. A number of parameters are required to assess such retardation; these include the solubilities of key radionuclides and their sorption behaviour. ONDRAF/NIRAS has identified neptunium, technetium, selenium, uranium and plutonium as elements for study. AEA Technology plc was requested to undertake a joint experimental and modelling study to determine the solubilities of these five elements under conditions representative of those in the Boom Clay (the in situ chemical conditions are pH{approx}8, Eh {approx} -230 mV). The work programme was carried out over three years, and for completeness this final report includes all the results.

  4. Advanced interfacing techniques for sensors measurement circuits and systems for intelligent sensors

    CERN Document Server

    Roy, Joyanta; Kumar, V; Mukhopadhyay, Subhas

    2017-01-01

    This book presents ways of interfacing sensors to the digital world, and discusses the marriage between sensor systems and the IoT: the opportunities and challenges. As sensor output is often affected by noise and interference, the book presents effective schemes for recovering the data from a signal that is buried in noise. It also explores interesting applications in the area of health care, un-obstructive monitoring and the electronic nose and tongue. It is a valuable resource for engineers and scientists in the area of sensors and interfacing wanting to update their knowledge of the latest developments in the field and learn more about sensing applications and challenges.

  5. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  6. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  7. Optical detection system for MEMS-type pressure sensor

    International Nuclear Information System (INIS)

    Sareło, K; Górecka-Drzazga, A; Dziuban, J A

    2015-01-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm 3 ) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm 2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment. (paper)

  8. Physical model of a floating trash boom to control aquatic weeds at the TVA Widows Creek Fossil Plant

    International Nuclear Information System (INIS)

    Hopping, P.N.

    1991-01-01

    This paper reports that the Tennessee Valley Authority (TVA) Widows Creek Fossil plant seasonally encounters adverse accumulations of aquatic weeds at the intakes of the condenser cooling water pumps. To reduce the accumulations, a floating trash boom has been proposed for the intakes. To evaluate the hydraulic feasibility of a boom, a physical model of the intakes has been built at the TVA Engineering Laboratory. The model was used to determine the boom alignment and depth of skimming needed to successfully deflect weeds away from the intakes and provide self-cleaning

  9. Toward Sensor-Based Context Aware Systems

    Directory of Open Access Journals (Sweden)

    Kouhei Takada

    2012-01-01

    Full Text Available This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  10. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  11. Prisons as Panacea or Pariah? The Countervailing Consequences of the Prison Boom on the Political Economy of Rural Towns

    Directory of Open Access Journals (Sweden)

    John M. Eason

    2017-01-01

    Full Text Available The nascent literature on prison proliferation in the United States typically reveals negative impacts for communities of color. Given that Southern rural communities were the most likely to build during the prison boom (1970–2010, however, a more nuanced understanding of prison impact is warranted. Using a dataset matching and geocoding all 1663 U.S. prisons with their Census-appointed place, this study explores the countervailing consequences of the prison boom on rural towns across multiple periods. For example, locales that adopted prisons at earlier stages of the prison boom era received a short-term boom compared to those that did not, but these effects were not lasting. Furthermore, later in the boom, prison-building protected towns against additional economic decline. Thus, neither entirely pariah nor panacea, the prison functions as a state-sponsored public works program for disadvantaged rural communities but also supports perverse economic incentives for prison proliferation. Methodological, substantive, theoretical, and policy implications regarding the intersection of race and punishment are explored.

  12. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    Science.gov (United States)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific oedometer cells were used allowing “flushing” the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96.

  13. Bio-integrated electronics and sensor systems

    Science.gov (United States)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  14. A second hydrocarbon boom threatens the Peruvian Amazon: trends, projections, and policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Finer, Matt [Save America' s Forests, 4 Library Court NW, Washington, DC 20003 (United States); Orta-Martinez, Marti, E-mail: matt@saveamericasforests.or, E-mail: martiorta@gmail.co [Institut de Ciencia i Tecnologia Ambiental, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2010-01-15

    The Peruvian Amazon is home to extraordinary biological and cultural diversity, and vast swaths of this mega-diverse region remain largely intact. Recent analysis indicates, however, that the rapid proliferation of oil and gas exploration zones now threatens the region's biodiversity, indigenous peoples, and wilderness areas. To better elucidate this dynamic situation, we analyzed official Peruvian government hydrocarbon information and generated a quantitative analysis of the past, present, and future of oil and gas activities in the Peruvian Amazon. We document an extensive hydrocarbon history for the region-over 104 000 km of seismic lines and 679 exploratory and production wells-highlighted by a major exploration boom in the early 1970s. We show that an unprecedented 48.6% of the Peruvian Amazon has been recently covered by oil and gas concessions, up from just 7.1% in 2003. These oil and gas concessions overlap 17.1% of the Peruvian Amazon protected area system and over half of all titled indigenous lands. Moreover, we found that up to 72% of the Peruvian Amazon has been zoned for hydrocarbon activities (concessions plus technical evaluation agreements and proposed concessions) in the past two years, and over 84% at some point during the past 40 years. We project that the recent rapid proliferation of hydrocarbon zones will lead to a second exploration boom, characterized by over 20 000 km of new seismic testing and construction of over 180 new exploratory wells in remote, intact, and sensitive forest areas. As the Peruvian Amazon oil frontier rapidly expands, we conclude that a rigorous policy debate is urgently needed in order to avoid the major environmental impacts associated with the first exploration boom of the 1970s and to minimize the social conflict that recently led to deadly encounters between indigenous protesters and government forces.

  15. A second hydrocarbon boom threatens the Peruvian Amazon: trends, projections, and policy implications

    International Nuclear Information System (INIS)

    Finer, Matt; Orta-Martinez, Marti

    2010-01-01

    The Peruvian Amazon is home to extraordinary biological and cultural diversity, and vast swaths of this mega-diverse region remain largely intact. Recent analysis indicates, however, that the rapid proliferation of oil and gas exploration zones now threatens the region's biodiversity, indigenous peoples, and wilderness areas. To better elucidate this dynamic situation, we analyzed official Peruvian government hydrocarbon information and generated a quantitative analysis of the past, present, and future of oil and gas activities in the Peruvian Amazon. We document an extensive hydrocarbon history for the region-over 104 000 km of seismic lines and 679 exploratory and production wells-highlighted by a major exploration boom in the early 1970s. We show that an unprecedented 48.6% of the Peruvian Amazon has been recently covered by oil and gas concessions, up from just 7.1% in 2003. These oil and gas concessions overlap 17.1% of the Peruvian Amazon protected area system and over half of all titled indigenous lands. Moreover, we found that up to 72% of the Peruvian Amazon has been zoned for hydrocarbon activities (concessions plus technical evaluation agreements and proposed concessions) in the past two years, and over 84% at some point during the past 40 years. We project that the recent rapid proliferation of hydrocarbon zones will lead to a second exploration boom, characterized by over 20 000 km of new seismic testing and construction of over 180 new exploratory wells in remote, intact, and sensitive forest areas. As the Peruvian Amazon oil frontier rapidly expands, we conclude that a rigorous policy debate is urgently needed in order to avoid the major environmental impacts associated with the first exploration boom of the 1970s and to minimize the social conflict that recently led to deadly encounters between indigenous protesters and government forces.

  16. Embedded Sensor Systems for Health - A Step Towards Personalized Health.

    Science.gov (United States)

    Lindén, Maria; Björkman, Mats

    2018-01-01

    The demography is changing towards older people, and the challenge to provide an appropriate care is well known. Sensor systems, combined with IT solutions are recognized as one of the major tools to handle this situation. Embedded Sensor Systems for Health (ESS-H) is a research profile at Mälardalen University in Sweden, focusing on embedded sensor systems for health technology applications. The research addresses several important issues: to provide sensor systems for health monitoring at home, to provide sensor systems for health monitoring at work, to provide safe and secure infrastructure and software testing methods for physiological data management. The user perspective is important in order to solve real problems and to develop systems that are easy and intuitive to use. One of the overall aims is to enable health trend monitoring in home environments, thus being able to detect early deterioration of a patient. Sensor systems, signal processing algorithms, and decision support algorithms have been developed. Work on development of safe and secure infrastructure and software testing methods are important for an embedded sensor system aimed for health monitoring, both in home and in work applications. Patient data must be sent and received in a safe and secure manner, also fulfilling the integrity criteria.

  17. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  18. Urinary incontinence monitoring system using laser-induced graphene sensors

    KAUST Repository

    Nag, Anindya

    2017-12-25

    This paper presents the design and development of a sensor patch to be used in a sensing system to deal with the urinary incontinence problem primarily faced by women and elderly people. The sensor patches were developed from laser-induced graphene from low-cost commercial polyimide (PI) polymers. The graphene was manually transferred to a commercial tape, which was used as sensor patch for experimentation. Salt solutions with different concentrations were tested to determine the most sensitive frequency region of the sensor. The results are encouraging to further develop this sensor in a platform for a fully functional urinary incontinence detection system.

  19. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  20. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  1. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  2. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  3. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    Science.gov (United States)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  4. Transparent Fingerprint Sensor System for Large Flat Panel Display

    Directory of Open Access Journals (Sweden)

    Wonkuk Seo

    2018-01-01

    Full Text Available In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO TFT sensor array and associated custom Read-Out IC (ROIC are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC. To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array.

  5. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  6. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  7. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  8. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  9. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  10. Multimodal surveillance sensors, algorithms, and systems

    CERN Document Server

    Zhu, Zhigang

    2007-01-01

    From front-end sensors to systems and environmental issues, this practical resource guides you through the many facets of multimodal surveillance. The book examines thermal, vibration, video, and audio sensors in a broad context of civilian and military applications. This cutting-edge volume provides an in-depth treatment of data fusion algorithms that takes you to the core of multimodal surveillance, biometrics, and sentient computing. The book discusses such people and activity topics as tracking people and vehicles and identifying individuals by their speech.Systems designers benefit from d

  11. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  12. Seagrass Control Project: Containment Boom Evaluation. A Method to Protect Seawater Intakes from Seagrass Accumulation.

    Science.gov (United States)

    1983-10-01

    containment booms at other mooring sites with significantly different physical and environ- mental conditions is recommended before full-scale application...deployment pattern for the different ship types. Modified procedures may also be needed to deploy the boom under a different set of physical and environmental... STPM Press Publ. New York, 353pp. 1980. Pulich, W., S. Barnes and P. Parker. Trace metal cycles in seagrass communities. pp 493-506 in M. Wiley, ed

  13. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  14. Innovative thermal energy harvesting for future autonomous applications

    International Nuclear Information System (INIS)

    Monfray, Stephane

    2013-01-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies and Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market

  15. Wireless energizing system for an automated implantable sensor

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P. [Department of Electronics and Instrumentation Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030 (India)

    2016-07-15

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  16. Wireless energizing system for an automated implantable sensor

    International Nuclear Information System (INIS)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-01-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  17. Wireless energizing system for an automated implantable sensor.

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  18. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  19. Experimental Investigation of a Large-Scale Low-Boom Inlet Concept

    Science.gov (United States)

    Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.

    2011-01-01

    A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.

  20. Thermomechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Sultan, N.; Delage, P.; Cui, Y.J.

    2000-01-01

    Special attention has been recently paid on temperature effects on the behaviour of deep saturated clays, in relation with nuclear deep waste storage. However, few experimental data are presently available, and existing constitutive models need to be completed. This note is aimed at completing, both experimentally and theoretically, the understanding of the effects of the over-consolidation ration on the thermal volume changes of Boom clay (Belgium). The experimental data obtained here are in a good agreement with existing data. As a complement to existing data, they are used to develop a new elastoplastic model. The adoption of a second coupled plastic mechanism provides good simulations on a complex thermo-mechanical path. (authors)

  1. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  2. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  3. Development of sensor system for indoor location based service implementation

    International Nuclear Information System (INIS)

    Cha, Joo Heon; Lee, Kyung Ho

    2012-01-01

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment

  4. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    Science.gov (United States)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  5. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  6. In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory

    Science.gov (United States)

    Garavito, A. M.; De Cannière, P.; Kooi, H.

    Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low

  7. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  8. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  9. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  10. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    Science.gov (United States)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  11. State Estimation for Sensor Monitoring System with Uncertainty and Disturbance

    Directory of Open Access Journals (Sweden)

    Jianhong Sun

    2014-10-01

    Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.

  12. Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems

    Science.gov (United States)

    Kummer, Allen T.; Weir, Erik D.; Morris, Trey J.; Friedenberger, Corey W.; Singh, Aseem; Capuro, Robert M.; Bilen, Sven G.; Fu, Johnny; Swanson, Gregory T.; Hash, David B.

    2011-01-01

    Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions.

  13. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  14. A study on the secondary consolidation of Boom Clay at Essen site under loading and unloading compression

    International Nuclear Information System (INIS)

    Deng, Y.F.; Cui, Y.J.; Tang, A.M.; Li, X.L.; Sillen, X.

    2010-01-01

    Document available in extended abstract form only. Boom clay formation, a thick deposit of over-consolidated marine clay has been selected as a possible host material of nuclear waste disposal in Belgium. For this purpose, its deformation behaviour, especially its long-term deformation behaviour (secondary consolidation) is essential for the safety of the whole storage system and therefore needs to be investigated deeply. In the present work, odometer consolidation tests were performed on Boom clay taken from the Essen site. The loading and unloading were run in steps and the secondary consolidation coefficient C α (C α = de/dlogt) was determined for each step. This allows the secondary consolidation behaviour to be analysed. Four soil cores of Boom clay were taken from the site of Essen, Belgium, at the depths of 220-248 m. The geotechnical identification characteristics of these cores are similar: specific gravity, γ s = 2.64-2.68; liquid limit, w L = 68-78%; plastic limit, w P = 29-33%; and plastic index, I P 36-45. The soil water content (w) is between 26.5 and 29.7% and the void ratio (e) between 0.700 and 0.785. The blue methylene values (VBS) are equally similar, VBS = 6.20-6.67 (g/100 g). The clay fraction (< 2 μm) is relatively high (more than 50%). An example of the results obtained is presented (void ratio versus vertical stress and secondary consolidation coefficient versus vertical stress, determined in the e/log t plot) for the core taken at 227 m depth. After the installation of specimen in the odometer cell, an initial loading to the in-situ stress gave rise to a decrease of the void ratio from 0.730 to 0.651. The drainage system was then saturated for the subsequent loading/unloading paths in steps. The results show that the void ratio decreased to 0.270 when the vertical stress reached σ v = 32 MPa. A compression index Cc of about 0.31 can be estimated and the swelling index is estimated at 0.14. C α > 0 during loading and C α < 0 during

  15. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  16. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  17. ENERGY EFFICIENT TRACKING SYSTEM USING WIRELESS SENSORS

    OpenAIRE

    Thankaselvi Kumaresan; Sheryl Mathias; Digja Khanvilkar; Prof. Smita Dange

    2014-01-01

    One of the most important applications of wireless sensor networks (WSNs) is surveillance system, which is used to track moving targets. WSN is composed of a large number of low cost sensors which operate on the power derived from batteries. Energy efficiency is an important issue in WSN, which determines the network lifetime. Due to the need for continuous monitoring with 100% efficiency, keeping all the sensor nodes active permanently leads to fast draining of batteries. Hen...

  18. Passive sensor systems for nuclear material monitoring

    International Nuclear Information System (INIS)

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-01-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y 2 O 3 ) with 6 LiF (95% 6 Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant

  19. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  20. Active Multimodal Sensor System for Target Recognition and Tracking.

    Science.gov (United States)

    Qu, Yufu; Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-06-28

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system.

  1. Technetium behaviour in Boom Clay - a laboratory and field study

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Ilett, D.J.; Cowper, M.M.; Pilkington, N.J.; Tweed, C.J.; Williams, S.J.; Canniere, P.R. de; Wang, L.

    2002-01-01

    This paper describes a study of technetium solubility and migration under chemical conditions representative of those prevailing in a Boom Clay environment. Laboratory and in situ measurements yielded similar aqueous concentrations of technetium, of about 1 x 10 -8 mol dm -3 , close to the concentrations measured for hydrated technetium(IV) oxide TcO 2 .1.6H 2 O in the solubility studies. From fitting the curves of the Tc concentrations as function of time, distribution coefficient (K d ) values were estimated to lie between 0.8 cm 3 g -1 and 1.8 cm 3 g -1 . Exposure of the system at 80 C and to γ-radiation dose rates of several hundred Gy h -1 resulted in only minor differences in behaviour. (orig.)

  2. Integrated tunneling sensor for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Sadewasser, S.; Abadal, G.; Barniol, N.

    2006-01-01

    Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1 nm is essential, requiring the use of structures with a mobile electrode. At such small...... distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based...... on this analysis, a tunneling sensor is fabricated by Si micromachining technology and its proper operation is demonstrated. (c) 2006 American Institute of Physics....

  3. Credit Booms and Busts in Emerging Markets: The Role of Bank Governance and Risk Management

    OpenAIRE

    Brown, Martin; Andries, Alin Marius

    2014-01-01

    This paper investigates to what extent risk management and corporate governance mitigate the involvement of banks in credit boom and bust cycles. Using a unique, hand-collected dataset on 156 banks from Central and Eastern Europe during 2005-2012, we assess whether banks with stronger risk management and corporate governance display more moderate credit growth in the pre-crisis credit boom as well as a smaller credit contraction and fewer credit losses in the crisis period. With respect to ba...

  4. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  5. Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet

    Science.gov (United States)

    Sato, Koma; Kumano, Takayasu; Yonezawa, Masahito; Yamashita, Hiroshi; Jeong, Shinkyu; Obayashi, Shigeru

    Multi-Objective Optimization has been applied to a design problem of the twin engine concept for Silent Supersonic Business Jet (SSBJ). This problem aims to find main wing, body, tail wing and engine nacelle configurations, which can minimize both sonic boom and drag in a supersonic cruising flight. The multi-objective genetic algorithm (MOGA) coupled with the Kriging model has been used to globally and effectively search for optimal design candidates in the multi-objective problem. The drag and the sonic boom have been evaluated by the computational fluid dynamics (CFD) simulation and the waveform parameter method. As a result, the present optimization has successfully obtained low-boom and low-drag design candidates, which are better than the baseline design by more than 40% regarding each performance. Moreover, the structure of design space has been visualized by the self-organizing map (SOM).

  6. Pembuatan Alur Pelayaran dalam Rencana Pelabuhan Marina Pantai Boom, Banyuwangi

    Directory of Open Access Journals (Sweden)

    Muhammad Didi Darmawan

    2017-01-01

    Full Text Available Pantai Boom merupakan pantai yang ada di Kabupaten Banyuwangi. Pantai ini terletak di Kelurahan Kampung Mandar, Kecamatan Banyuwangi, Banyuwangi, Jawa Timur. Pantai tersebut rencananya akan dibangun pelabuhan marina. Pelabuhan harus dilengkapi dengan beberapa fasilitas untuk mendukung rencana tersebut seperti salah satunya adalah alur pelayaran. Untuk membuat alur pelayaran diperlukan penelitian mengenai pasang surut, topografi dasar laut, serta jenis kapal yang melintas untuk memastikan kapal yang berlayar aman dari kemungkinan kecelakaan. Penelitian ini menggunakan data hasil pemeruman, data pasang surut yang diperoleh dari pengamatan langsung, serta berbagai jenis kapal yacht. Hasil dari penelitian ini didapatkan bahwa rencana dermaga sebaiknya dibangun 60 meter menjorok ke arah laut dengan panjang dermaga 25 meter. Dalam keadaan air rendah terendah (LLWL, ketiga jenis kapal yang ditentukan dapat merapat ke rencana Dermaga Pelabuhan Marina Pantai Boom, Banyuwangi. Daerah yang tidak bisa dilewati pada saat LLWL, pada saat MSL daerah tersebut sudah dapat dilewati oleh ketiga jenis kapal tersebut. Pada keadaan muka air tinggi tertinggi (HHWL, Kapal Yacht Class 8 dan 6 dapat melewati sebagian perairan sungai Pantai Boom.         Waktu yang tidak tepat untuk melakukan pelayaran pada saat LLWL dari alur pelayaran yang telah dibuat yaitu antara pukul 04:00 – 06:00 WIB pada saat bulan November 2015-Februari 2016 dan pukul 16:00-18:00 pada saat bulan Juni-Agustus 2016. Sedangkan Waktu yang tepat untuk melakukan pelayaran pada saat HHWL yaitu antara pukul 20:00–23:00 WIB pada saat bulan Desember 2015- Maret 2016 dan pukul 8:00-11:00 pada saat bulan Juni-September 2016.

  7. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  8. Online Sensor Calibration Assessment in Nuclear Power Systems

    International Nuclear Information System (INIS)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-01-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors

  9. Micro optical sensor systems for sunsensing applications

    Science.gov (United States)

    Leijtens, Johan; de Boom, Kees

    2017-11-01

    Optimum application of micro system technologies allows building small sensor systems that will alter procurement strategies for spacecraft manufacturers. One example is the decreased size and cost for state of the art sunsensors. Integrated sensor systems are being designed which, through use of microsystem technology, are an order of magnitutde smaller than most current sunsensors and which hold due to the large reproducibility through batch manufacturing the promise of drastic price reduction. If the Commercial Of The Shelf (COTS) approach is adopted by satellite manufacturers, this will drastically decrease mass and cost budgets associated with sunsensing applications.

  10. Hybrid Exploration Agent Platform and Sensor Web System

    Science.gov (United States)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  11. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    Science.gov (United States)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  12. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  13. Validation of an Inertial Sensor System for Swing Analysis in Golf

    Directory of Open Access Journals (Sweden)

    Paul Lückemann

    2018-02-01

    Full Text Available Wearable inertial sensor systems are an upcoming tool for self-evaluation in sports, and can be used for swing analysis in golf. The aim of this work was to determine the validity and repeatability of an inertial sensor system attached to a player’s glove using a radar system as a reference. 20 subjects performed five full swings with each of three different clubs (wood, 7-iron, wedge. Clubhead speed was measured simultaneously by both sensor systems. Limits of Agreement were used to determine the accuracy and precision of the inertial sensor system. Results show that the inertial sensor system is quite accurate but with a lack of precision. Random error was quantified to approximately 17 km/h. The measurement error was dependent on the club type and was weakly negatively correlated to the magnitude of clubhead speed.

  14. Operation of remote mobile sensors for security of drinking water distribution systems.

    Science.gov (United States)

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Wearable PPG sensor based alertness scoring system.

    Science.gov (United States)

    Dey, Jishnu; Bhowmik, Tanmoy; Sahoo, Saswata; Tiwari, Vijay Narayan

    2017-07-01

    Quantifying mental alertness in today's world is important as it enables the person to adopt lifestyle changes for better work efficiency. Miniaturized sensors in wearable devices have facilitated detection/monitoring of mental alertness. Photoplethysmography (PPG) sensors through Heart Rate Variability (HRV) offer one such opportunity by providing information about one's daily alertness levels without requiring any manual interference from the user. In this paper, a smartwatch based alertness estimation system is proposed. Data collected from PPG sensor of smartwatch is processed and fed to machine learning based model to get a continuous alertness score. Utility functions are designed based on statistical analysis to give a quality score on different stages of alertness such as awake, long sleep and short duration power nap. An intelligent data collection approach is proposed in collaboration with the motion sensor in the smartwatch to reduce battery drainage. Overall, our proposed wearable based system provides a detailed analysis of alertness over a period in a systematic and optimized manner. We were able to achieve an accuracy of 80.1% for sleep/awake classification along with alertness score. This opens up the possibility for quantifying alertness levels using a single PPG sensor for better management of health related activities including sleep.

  16. Boom clay pore water, home of a diverse microbial community

    International Nuclear Information System (INIS)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie

    2012-01-01

    Document available in extended abstract form only. Boom Clay pore water (BCPW) has been studied in the framework of geological disposal of nuclear waste for over two decades, thereby mainly addressing its geochemical properties. A reference composition for synthetic clay water has been derived earlier by modelling and spatial calibration efforts, mainly based on interstitial water sampled from different layers within the Boom clay. However, since microbial activity is found in a range of extreme circumstances, the possibility of microbes interacting with future radioactive waste in a host formation like Boom Clay, cannot be ignored. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by a complementary set of microbiological and molecular techniques, in search for overall shared and abundant microorganisms. Similar to the previous characterization of the 'average' BCPW chemical composition, the primary aim of this microbiological study is to determine a representative BCPW microbial community which can be used in laboratory studies. Secondly, the in situ activity and the metabolic properties of members of this community were addressed, aiming to assess their survival and proliferation chances in repository conditions. In a first approach, total microbial DNA of the community was extracted from the BCPW samples. This molecular approach allows a broad insight in the total microbial ecology of the BCPW samples. By polymerase chain reaction (PCR) on the highly conserved 16S rRNA genes in this DNA pool and subsequent sequencing and bio-informatics analysis, operational taxonomic units (OTUs) could be assigned to the microbial community. The bacterial community was found to be quite diverse, with OTUs belonging to 8 different phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chlorobi, Spirochetes, Chloroflexi and Deinococcus-Thermus). These results provide an overall view of the

  17. Boom clay pore water, home of a diverse microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie [SCK.CEN, Environment, Health and Safety Institute, B-2400 Mol (Belgium)

    2012-10-15

    Document available in extended abstract form only. Boom Clay pore water (BCPW) has been studied in the framework of geological disposal of nuclear waste for over two decades, thereby mainly addressing its geochemical properties. A reference composition for synthetic clay water has been derived earlier by modelling and spatial calibration efforts, mainly based on interstitial water sampled from different layers within the Boom clay. However, since microbial activity is found in a range of extreme circumstances, the possibility of microbes interacting with future radioactive waste in a host formation like Boom Clay, cannot be ignored. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by a complementary set of microbiological and molecular techniques, in search for overall shared and abundant microorganisms. Similar to the previous characterization of the 'average' BCPW chemical composition, the primary aim of this microbiological study is to determine a representative BCPW microbial community which can be used in laboratory studies. Secondly, the in situ activity and the metabolic properties of members of this community were addressed, aiming to assess their survival and proliferation chances in repository conditions. In a first approach, total microbial DNA of the community was extracted from the BCPW samples. This molecular approach allows a broad insight in the total microbial ecology of the BCPW samples. By polymerase chain reaction (PCR) on the highly conserved 16S rRNA genes in this DNA pool and subsequent sequencing and bio-informatics analysis, operational taxonomic units (OTUs) could be assigned to the microbial community. The bacterial community was found to be quite diverse, with OTUs belonging to 8 different phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chlorobi, Spirochetes, Chloroflexi and Deinococcus-Thermus). These results provide an overall view of the

  18. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  19. Development of basic system for sensor calibration support in nuclear power plants

    International Nuclear Information System (INIS)

    Kusumi, Naohiro; Ohga, Yukiharu; Fukuda, Mitsuko; Ishizaki, Yuuichi; Koyama, Mikio; Maeda, Akihiko

    2004-01-01

    It is strongly desirable to reduce maintenance costs and shorten the time of periodic inspections in nuclear power plants. Therefore, it is important to reduce the amount of maintenance work during the inspection. In Japan, sensor calibration is usually performed at every periodic inspection, and the sensor calibration requires a large amount of work. A system for sensor calibration support has been developed to reduce sensor calibration work. The system is composed of two subsystems: a statistical analysis subsystem and a drift detection subsystem, as well as a human-machine interface, which offers support information. The statistical analysis subsystem supports the decision of the sensor calibration intervals based on the statistical analysis of sensor calibration data. There is the possibility that sensor drift increases beyond an allowance value before the sensor calibration intervals determined by the statistical analysis subsystem because of malfunctions, etc. To cope with this, the drift detection subsystem detects the sensor drift online during the plant operation. By combining the statistical analysis subsystem and the drift detection subsystem, a reliable sensor calibration support system is realized. The basic system composed of two subsystems was developed and evaluated using real plant data. The results showed that the sensor calibration intervals can be extended beyond current intervals and that the system is capable of detecting the sensor drift online. (author)

  20. The tsunami service bus, an integration platform for heterogeneous sensor systems

    Science.gov (United States)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing

  1. A graphics based remote handling control system

    International Nuclear Information System (INIS)

    Leinemann, K.

    1984-08-01

    A control and simulation system with an interactive graphic man-machine interface is proposed for the articulated boom in JET. The system shall support 1. the study of boom movements in the planning phase, 2. the training of operators by appropriate simulations, 3. the programming of boom movements, and 4. the on-line control of the boom. A combination of computer graphic display and TV-images is proposed for providing optimum recognition of the actual situation and for echoing to the operator actions. (orig.) [de

  2. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  3. Mobility of the dissolved organic matter through intact boom clay cores

    International Nuclear Information System (INIS)

    Put, M.J.; Dierckx, A.; Aertsens, M.; Canniere, P. de

    1998-01-01

    Performance assessment studies are expected to predict the enhancement of the migration of trivalent lanthanides and actinides due to their complexation with organic matter, which play a role as a transport agent [1]. Therefore, the mobility of the dissolved organic matter in the interstitial boom clay water is studied. For the first time, the mobile fraction present in the clay water is concentrated and labelled with a radioisotope to study the mobility of the organic matter in clay and the interaction of the mobile with the non-mobile. The isotopes tested as label are 125 I and 14 C. The 125 I label proved to be unstable and hence discarded. The labelled organic matter is then diluted for migration experiments on boom clay cores under anaerobic conditions. The influence of the molecular size on its mobility is studied by the separation of the labelled organic matter in different size fractions. (orig.)

  4. Prime Borrowers and Financial Innovation in the Housing Boom and Bust

    DEFF Research Database (Denmark)

    Bäckman, Claes; Lutz, Chandler

    for better consumption smoothing, even absent any shift in credit supply. In support of the model, we find that the introduction of interest-only mortgages was followed by a large increase in the number of buyers, even as credit quality remained constant. On the aggregate level the results indicate...... that interest-only mortgages amplified the boom-bust pattern in housing: house prices increased an additional 35 percent during the boom due to IO loans, and subsequently reverse during the bust. These effects, which cannot be explained by changes in lending standards or shifts in credit supply, are magnified...... in local housing markets with higher ex-ante house price expectations. Together, the findings document the consequences of introducing IO loans on the micro- and macro level, and illustrates how new mortgage products can have large impacts even in the absence of a shift in credit supply...

  5. Changing Fortunes: How China’s Boom Caused the Financial Crisis

    NARCIS (Netherlands)

    H. Mees (Heleen)

    2012-01-01

    textabstractThis dissertation includes five academic papers that – one way or the other – all relate to China. The first paper delivers proof for the central thesis of this thesis, which is that China’s boom caused the 2008 financial crisis and ensuing recession. As much as I hoped from the outset

  6. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  7. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  8. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  9. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System

    Directory of Open Access Journals (Sweden)

    Hyundo Choi

    2018-02-01

    Full Text Available In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  10. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.

    Science.gov (United States)

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-02-13

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  11. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  12. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    Energy Technology Data Exchange (ETDEWEB)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC.

  13. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    International Nuclear Information System (INIS)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC

  14. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  15. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  16. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  17. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  18. Tank Monitor and Control System sensor acceptance test procedure. Revision 5

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this acceptance test procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Engraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic. The TMACS has been designed in response to recommendations from the Defense Nuclear Facilities Safety Board primarily for improved monitoring of waste tank temperatures. The system has been designed with the capability to monitor other types of sensor input as well

  19. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  20. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  1. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  2. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    OpenAIRE

    Kyunghee Sun; Intae Ryoo

    2018-01-01

    When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on th...

  3. Financial services in England in the late XVII century and first equity market boom (1691–1693

    Directory of Open Access Journals (Sweden)

    S.Z. Moshenskyi

    2016-09-01

    Full Text Available The article shows the formation of the British financial services industry in the 1690's and the reasons of the first joint-stock companies’ boom of 1691–1693's. The author describes the course of events of this boom, and data on the volume of transactions in shares. The reasons of the joint-stock boom end are associated with very low capitalization of most of the new companies. The consequence of rapid economic growth in England in the late XVII century was the appearance and rapid development of financial services. Financial intermediaries appeared first and their services, in particular the services of insurance companies, were in demand. The rapid increase in the number of insurance companies has become prerequisite for becoming financial capitalism that led to the emergence of other intermediaries which provided financial services. Among them there were the so-called "notaries" that offered a full range of services related to land transactions and "bankers, jewelers," that woke the first private bankers. Thus, in the early 1690's London had a favorable environment for the rapid growth of the financial market, which was the main precondition for expanding market shares and led to the joint-stock boom.

  4. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (volume 2)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    This study is composed of two parts: The first part (Volume 1) lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton during thermal dilatation. The second part (volume 2) is devoted to the development and the application of advance constitutive modelling of mechanical behaviour of clays taking into account the extensive tests of Boom clay reported in the first volume. The development concentrated on the improvement of prediction of the volumetric response of clay skeleton: (a) improving the dilatancy prediction at low to high overconsolidation ratios (Section 2). An elasto-plastic constitutive model has been developed to account for this effect (Section 3.2.); (b) modelling of swelling effects (Section 2.5). A preliminary interpretative model for swelling prediction has been developed (Section 2.5). The application part consisted in interpreting the experimental results obtained for Boom clay to calibrate a set of constants (Section 3) for performing numerical analyses (Section 4) for the thermomechanical model already calibrated for Boom clay (Appendix). Interpretation of the tests required an assessment of influence of the strong anisotropy effects revealed by Boom clay on the basis of an interpretative model characterized by a kinematic hardening plasticity and coupled elasticity (section 3)

  5. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  6. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  7. Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Raimundo García-Olcina

    2011-07-01

    Full Text Available The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  8. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    Science.gov (United States)

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  9. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    Science.gov (United States)

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  10. A Novel Attitude Determination System Aided by Polarization Sensor

    Directory of Open Access Journals (Sweden)

    Wei Zhi

    2018-01-01

    Full Text Available This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  11. A Novel Attitude Determination System Aided by Polarization Sensor.

    Science.gov (United States)

    Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong

    2018-01-09

    This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  12. Being young in a boom town

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Christopher

    2011-08-15

    Fort McMurray is a booming town, having grown from small town to big city in a short time. A study was conducted to determine how this change affected young people. Results show they felt the changing environment required them to adapt all the time, which was a challenge but also a source of opportunities. Fort McMurray, with a labour shortage, afforded young people a lot of well-paid, flexible part time jobs during high school. These jobs were important to fund their post-secondary education. Although most of the young people saw themselves living elsewhere in 10 years, they could possibly stay if local challenges in the city were addressed.

  13. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  14. Analog Organic Electronics Building Blocks for Organic Smart Sensor Systems on Foil

    CERN Document Server

    Marien, Hagen; Heremans, Paul

    2013-01-01

     This book provides insight into organic electronics technology and in analog circuit techniques that can be used to increase the performance of both analog and digital organic circuits. It explores the domain of organic electronics technology for analog circuit applications, specifically smart sensor systems.  It focuses on all the building blocks in the data path of an organic sensor system between the sensor and the digital processing block. Sensors, amplifiers, analog-to-digital converters and DC-DC converters are discussed in detail. Coverage includes circuit techniques, circuit implementation, design decisions and measurement results of the building blocks described. Offers readers the first book to focus on analog organic circuit design; Discusses organic electronics technology for analog circuit applications in the context of smart sensor systems; Describes all building blocks necessary for an organic sensor system between the sensor and the digital processing block; Includes circuit techniques, cir...

  15. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    Science.gov (United States)

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  16. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    Science.gov (United States)

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  17. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  18. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  19. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  20. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  1. Therapeutic hypertension system based on a microbreathing pressure sensor system

    Directory of Open Access Journals (Sweden)

    Diao Z

    2011-05-01

    Full Text Available Ziji Diao1, Hongying Liu1, Lan Zhu1, Xiaoqiang Gao1, Suwen Zhao1, Xitian Pi1,2, Xiaolin Zheng1,21Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing; 2Key Laboratories for National Defense Science and Technology of Innovative Micronano Devices and System Technology, Chongqing, People’s Republic of ChinaBackground and methods: A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals.Results and conclusion: Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.Keywords: hypertension, microbreathing sensor, single-chip microcomputer, slow-pace breathing

  2. Sensor Selection and Data Validation for Reliable Integrated System Health Management

    Science.gov (United States)

    Garg, Sanjay; Melcher, Kevin J.

    2008-01-01

    For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down

  3. Internetting tactical security sensor systems

    Science.gov (United States)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control

  4. Baby boom generation at the retirement onset

    Directory of Open Access Journals (Sweden)

    Stojilković Jelena

    2010-01-01

    Full Text Available Sudden increase in the number of live births after the Second World War due to an increase in fertility rates has led to the formation of cohorts with specific characteristics or baby boom generation. This generation is unique in the history of the demographic phenomenon that has affected and affects the functioning of many segments of society. The aim of this paper is to assess structure of baby boomers who are few years away from retirement, using demographic data. Impact of baby boomer age structure of current and future retirees is described with a graphical display of current and projected age pyramid of baby boomers. Demographic pattern that women live longer than men is evident in the projected pyramid. In addition, the number of baby boomers will lead to a "younger" old population. The imbalance in the number of men and women pensioners, as well as older cohorts of women and female baby boomers was analyzed. As a result, an increasing trend of women's age pensioners who are members of the baby boom generation was clearly observed, which is opposite to the older cohort of women who often were family pensioners. Different circumstances and conditions in which female boomers lived and worked will form a new "pension model" because they will gain their benefits as well as men, for the first time in significant number, unlike their mothers, which gained the right to retire after they become widows. Number of women age pensioners is getting greater comparing to men, as the result of changes in the economic activities of women in the last half of the 20th century. When baby boomers retire and exit the working population, this will create a vacuum, because the numerically smaller generations will enter working population, while the sudden and very shortly, the number of population older than 60 or 65 will increase, most of them will likely to acquire the right to a pension. It is undeniable that baby boomers had impact on demographic structure

  5. Tank Monitor and Control System sensor acceptance test procedure. Revision 6

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this Acceptance Test Procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). The system functional requirements are contained in WHC-SD-WM-RD-013, Rev. 1 (WHC 1992a). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Enraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. The TMACS operation was verified by the original ATP (WHC 1991 c). It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic

  6. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    Science.gov (United States)

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.

  7. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai; Kosel, Jü rgen; Gooneratne, Chinthaka

    2011-01-01

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  8. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai

    2011-12-08

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  9. In situ and laboratory migration experiments through boom clay at Mol

    International Nuclear Information System (INIS)

    Preter, P. de; Put, M.; Canniere, P. de

    1993-01-01

    Physico-chemical characterization and migration studies in the Boom clay, envisaged as a potential host sediment for high level waste disposal in Belgium, were started some 15 years ago. A synthesis study of this experimental work has recently been conducted to compile all available data. From a comparison of the available migration data and the data requirements as derived from the performance assessment studies PAGIS (1988) and PACOMA (1991) the new migration programme (1991-1995) was defined. The critical radionuclides, both with relation to dose rates to man and to missing or unreliable migration data, turned out to be 14 C, 99 Tc. 135 Cs and 237 Np. A second group of radionuclides was found to be possibly critical: 79 Se, 93 Zr, 107 Pd, U - , Am - , Cm - , and Pu-isotopes. This report concentrates on the experimental results as obtained from the migration experiments started in the previous migration programme. Some of the reported radionuclides e.g. 90 Sr) have lost their critical character and will not be further studied within the new programme. New experimental data from laboratory tests have become available for Np, Cs, Sr and C (as HC0 3 - ) and the first results on the migration of organic molecules dissolved in the interstitial Boom clay water are reported. The hydraulic parameters (the hydraulic conductivity K and the storage coefficient S o ) were calculated from both laboratory percolation experiments and in situ piezometric measurements. Conclusions concerning Boom clay anisotropy are drawn. Finally, a short description of the ongoing in situ HTO injection experiment is given and the experimental data are analyzed and discussed. 10 refs., 4 figs., 1 tab

  10. Image acquisition system using on sensor compressed sampling technique

    Science.gov (United States)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  11. Sensor network infrastructure for a home care monitoring system.

    Science.gov (United States)

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  12. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    Science.gov (United States)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  13. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  14. Experimental Study of Nuclear Security System Components for Achieving the Intrusion Process via Sensor's Network System

    International Nuclear Information System (INIS)

    EL-Kafas, A.A.

    2011-01-01

    Cluster sensors are one of nuclear security system components which are used to detect any intrusion process of the nuclear sites. In this work, an experimental measuring test for sensor performance and procedures are presented. Sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensors test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The glass-breakage (G.B) and open door (O.D) sensors construction, operation and design for the investigated nuclear site are explained. Intrusion tests were carried out inside the field areas of the sensors to evaluate the sensor performance during the intrusion process. Experimental trials were performed for achieving the intrusion process via sensor network system. The performance and intrusion senses of cluster sensors inside the internal zones was recorded and evaluated. The obtained results explained that the tested and experimented G.B sensors have a probability of detection P (D) value 65% founded, and 80% P (D) of Open-door sensor

  15. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  16. A Method of Data Aggregation for Wearable Sensor Systems

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2016-06-01

    Full Text Available Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources.

  17. Did the Aid Boom Pacify Sub-Saharan Africa?

    OpenAIRE

    Azam, Jean-Paul; Thelen, Véronique

    2017-01-01

    The incidence of civil war in Sub-Saharan Africa since the turn of the century is less than half of what it was on average in the last quarter of the 20th century. This paper shows that the aid boom triggered by 9/11 played a key role in achieving purposefully this result using panel data for 46 African countries over four decades. It applies a nearidentification approach to test the aid-conflict tradeoff, taking due account of asymmetric information between the donors and the econometrician....

  18. One-port portable SAW sensor system

    Science.gov (United States)

    Hoa Nguyen, Vu; Peters, Oliver; Schnakenberg, Uwe

    2018-01-01

    A portable device using the SAW-based impedance sensor type based on one interdigital transducer simultaneously as SAW generator and sensor element (1-port approach) is introduced. As a novelty, the so far required expensive vector network analyzer (VNA) is replaced by a hand-held device to measure the impedance spectrum of the SAW sensor by RF-gain-phase meters. Hence, some of the best features from the conventional oscillator and VNA approaches are combined to develop a low-cost and self-contained measurement system, including signal in- and output ability for real-time measurements. The pivotal aspect of the portable system is the transfer of the sophisticated high frequency approach into a quasi-static one. This enables the use of simple lumped electronics without the need of impedance matching circuits. Proof-of-concept was carried out by measuring conductivities of phosphate-buffered solutions and viscosities of glycerin. Sensitivities for temperature of 0.3%/°C, viscosity of 10.1% (mPa s)-1 and conductivity of 0.5% (S cm)-1 have been determined, respectively, which are competitive results compared to the benchmark approaches.

  19. Technetium behaviour in Boom Clay - a laboratory and field study

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Ilett, D.J.; Cowper, M.M.; Pilkington, N.J.; Tweed, C.J.; Williams, S.J. [AEA Technology plc, Harwell, Didcot, Oxfordshire (United Kingdom); Canniere, P.R. de; Wang, L. [SCK.CEN, Waste and Disposal Project, Boeretang, Mol (Belgium)

    2002-07-01

    This paper describes a study of technetium solubility and migration under chemical conditions representative of those prevailing in a Boom Clay environment. Laboratory and in situ measurements yielded similar aqueous concentrations of technetium, of about 1 x 10{sup -8} mol dm{sup -3}, close to the concentrations measured for hydrated technetium(IV) oxide TcO{sub 2}.1.6H{sub 2}O in the solubility studies. From fitting the curves of the Tc concentrations as function of time, distribution coefficient (K{sub d}) values were estimated to lie between 0.8 cm{sup 3} g{sup -1} and 1.8 cm{sup 3} g{sup -1}. Exposure of the system at 80 C and to {gamma}-radiation dose rates of several hundred Gy h{sup -1} resulted in only minor differences in behaviour. (orig.)

  20. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  1. Smart container UWB sensor system for situational awareness of intrusion alarms

    Science.gov (United States)

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  2. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  3. Cardiorespiratory system monitoring using a developed acoustic sensor.

    Science.gov (United States)

    Abbasi-Kesbi, Reza; Valipour, Atefeh; Imani, Khadije

    2018-02-01

    This Letter proposes a wireless acoustic sensor for monitoring heartbeat and respiration rate based on phonocardiogram (PCG). The developed sensor comprises a processor, a transceiver which operates at industrial, scientific and medical band and the frequency of 2.54 GHz as well as two capacitor microphones which one for recording the heartbeat and another one for respiration rate. To evaluate the precision of the presented sensor in estimating heartbeat and respiration rate, the sensor is tested on the different volunteers and the obtained results are compared with a gold standard as a reference. The results reveal that root-mean-square error are determined sensor estimate sounds of [Formula: see text] to [Formula: see text] obtained PCG signal with sensitivity and specificity 98.1% and 98.3% in turn that make 3% improvement than previous works. The results prove that the sensor can be appropriate candidate for recognising abnormal condition in the cardiorespiratory system.

  4. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  5. Continuous liquid level monitoring sensor system using fiber Bragg grating

    Science.gov (United States)

    Sengupta, Dipankar; Kishore, Putha

    2014-01-01

    The design and packaging of simple, small, and low cost sensor heads, used for continuous liquid level measurement using uniformly thinned (etched) optical fiber Bragg grating (FBG) are proposed. The sensor system consists of only an FBG and a simple detection system. The sensitivity of sensor is found to be 23 pm/cm of water column pressure. A linear optical fiber edge filter is designed and developed for the conversion of Bragg wavelength shift to its equivalent intensity. The result shows that relative power measured by a photo detector is linearly proportional to the liquid level. The obtained sensitivity of the sensor is nearly -15 mV/cm.

  6. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.

    Science.gov (United States)

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-02-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  7. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-02-01

    Full Text Available Wireless sensor networks (WSNs play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT, many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  8. Sensor fusion to enable next generation low cost Night Vision systems

    Science.gov (United States)

    Schweiger, R.; Franz, S.; Löhlein, O.; Ritter, W.; Källhammer, J.-E.; Franks, J.; Krekels, T.

    2010-04-01

    The next generation of automotive Night Vision Enhancement systems offers automatic pedestrian recognition with a performance beyond current Night Vision systems at a lower cost. This will allow high market penetration, covering the luxury as well as compact car segments. Improved performance can be achieved by fusing a Far Infrared (FIR) sensor with a Near Infrared (NIR) sensor. However, fusing with today's FIR systems will be too costly to get a high market penetration. The main cost drivers of the FIR system are its resolution and its sensitivity. Sensor cost is largely determined by sensor die size. Fewer and smaller pixels will reduce die size but also resolution and sensitivity. Sensitivity limits are mainly determined by inclement weather performance. Sensitivity requirements should be matched to the possibilities of low cost FIR optics, especially implications of molding of highly complex optical surfaces. As a FIR sensor specified for fusion can have lower resolution as well as lower sensitivity, fusing FIR and NIR can solve performance and cost problems. To allow compensation of FIR-sensor degradation on the pedestrian detection capabilities, a fusion approach called MultiSensorBoosting is presented that produces a classifier holding highly discriminative sub-pixel features from both sensors at once. The algorithm is applied on data with different resolution and on data obtained from cameras with varying optics to incorporate various sensor sensitivities. As it is not feasible to record representative data with all different sensor configurations, transformation routines on existing high resolution data recorded with high sensitivity cameras are investigated in order to determine the effects of lower resolution and lower sensitivity to the overall detection performance. This paper also gives an overview of the first results showing that a reduction of FIR sensor resolution can be compensated using fusion techniques and a reduction of sensitivity can be

  9. Nondestructive Online Detection of Welding Defects in Track Crane Boom Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-04-01

    Full Text Available Nondestructive detection of structural component of track crane is a difficult and costly problem. In the present study, acoustic emission (AE was used to detect two kinds of typical welding defects, that is, welding porosity and incomplete penetration, in the truck crane boom. Firstly, a subsidiary test specimen with special preset welding defect was designed and added on the boom surface with the aid of steel plates to get the synchronous deformation of the main boom. Then, the AE feature information of the welding defect could be got without influencing normal operation of equipment. As a result, the rudimentary location analysis can be attained using the linear location method and the two kinds of welding defects can be distinguished clearly using AE characteristic parameters such as amplitude and centroid frequency. Also, through the comparison of two loading processes, we concluded that the signal produced during the first loading process was mainly caused by plastic deformation damage and during the second loading process the stress release and structure friction between sections in welding area are the main acoustic emission sources. Thus, the AE is an available tool for nondestructive online detection of latent welding defects of structural component of track crane.

  10. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  11. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  12. An expert system for sensor data validation and malfunction detection

    International Nuclear Information System (INIS)

    Hashemi, S.; Hajek, B.K.; Miller, D.W.; Chandrasekaran, B.; Punch, W.F. III.

    1987-01-01

    During recent years, applications of expert systems in different fields of engineering have been under study throughout the world. At the Ohio State University, the theories developed by the Laboratory for Artificial Intelligence Research (LAIR) have been implemented for nuclear power plants and chemical processing systems. For nuclear power plants, these techniques have been further developed to reach diagnostic conclusions about malfunctions and faulty sensors, as well as to suggest corrective actions about the malfunctions. This paper concentrates on the AI applications to plant diagnosis and faulty sensor identifications. To achieve the above goals without adding extra sensors in a plant, the use of unlike sensor data (such as relationships between pressure and temperature in a Boiling Water Reactor (BWR)) and diagnostic conclusions about malfunctions as backups for suspicious sensors has been made. This extra evidence is readily available throughout the plant and is not generally used to backup suspicious sensor data in any manner

  13. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Kyunghee Sun

    2018-03-01

    Full Text Available When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on the distance from the sink node and transmits data by setting different buffer thresholds to each group. This method reduces energy consumption of sensor devices located near the sink node and enhances the IoT system’s general energy efficiency. When a sensor device is moved and, thus, becomes unable to transmit data, it is allocated to a new group so that it can continue transmitting data to the sink node.

  14. Accelerator boom hones China's engineering expertise

    Science.gov (United States)

    Normile, Dennis

    2018-02-01

    In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.

  15. Higher Education and the Minerals Boom: A View from the Regions

    Science.gov (United States)

    Bell, Philip

    2014-01-01

    This paper examines the impact of the minerals boom to date on the demand for higher education in Central Queensland, and the sustainability of higher education providers in high economic growth environments. Several datasets were used to examine changes in the demand for higher education among specific student groups within the region, the…

  16. A Wireless Self-Powered Urinary Incontinence Sensor System

    Science.gov (United States)

    Tanaka, Ami; Utsunomiya, Fumiyasu; Douseki, Takakuni

    A self-powered urinary incontinence sensor system consisting of a urine-activated coin battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The urine-activated battery makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit and a 1-V surface acoustic wave (SAW) oscillator reduce the power dissipation of a wireless transmitter. The SAW oscillator quickly responds to the on-off control of the power supply, which is suitable for intermittent operation. To verify the effectiveness of the circuit scheme, the authors fabricated a prototype sensor system. When the volume of urine is 0.2 ml, the battery outputs a voltage of over 1.3 V; and the sensor system can transmit signals over a distance of 5 m.

  17. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  18. Development of Remote-Type Haptic Catheter Sensor System using Piezoelectric Transducer

    Science.gov (United States)

    Haruta, Mineyuki; Murayama, Yoshinobu; Omata, Sadao

    This study describes the development of Remote-Type Haptic Catheter Sensor System which enables the mechanical property evaluation of a blood vessel. This system consists of a feedback circuit and a piezoelectric ultrasound transducer, and is operated based on a phase shift method so that the entire system oscillates at its inherent resonance frequency. Ultrasound reflected by the blood vessel makes a phase shift of the resonance system depending on the acoustic impedance of the reflector. The phase shift is then measured as a change in resonance frequency of the system; therefore, the detection resolution is highly improved. The correlation between the acoustic impedance and the resonance frequency change of the sensor system was demonstrated using silicone rubbers, metals and actual blood vessels from a pig. The performance of the sensor was also examined using vessel shaped phantom model. Finally, the discussion surveys a possibility of the novel sensor system in an application for intra vascular diagnosis.

  19. Direct sensor orientation of a land-based mobile mapping system.

    Science.gov (United States)

    Rau, Jiann-Yeou; Habib, Ayman F; Kersting, Ana P; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  20. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  1. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  2. Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring

    Directory of Open Access Journals (Sweden)

    F. J. Martinez-Tabares

    2016-01-01

    Full Text Available Wearable sensor systems will soon become part of the available medical tools for remote and long term physiological monitoring. However, the set of variables involved in the performance of these systems are usually antagonistic, and therefore the design of usable wearable systems in real clinical applications entails a number of challenges that have to be addressed first. This paper describes a method to optimise the design of these systems for the specific application of cardiac monitoring. The method proposed is based on the selection of a subset of 5 design variables, sensor contact, location, and rotation, signal correlation, and patient comfort, and 2 objective functions, functionality and wearability. These variables are optimised using linear and nonlinear models to maximise those objective functions simultaneously. The methodology described and the results achieved demonstrate that it is possible to find an optimal solution and therefore overcome most of the design barriers that prevent wearable sensor systems from being used in normal clinical practice.

  3. The secret of neuroscience boom: Are there secret human experiments in Latin América?

    Directory of Open Access Journals (Sweden)

    David Salinas Flores

    2016-01-01

    Full Text Available About 6 years ago there sparked a phenomenon in science called the neuroscientific boom. Neurologists underpin this phenomenon to cost reduction techniques such as electroencephalograms and to improved noninvasive technology such as functional MRI. But the human brain, the most complex organ in the universe, has not yet been fully investigated with the existing noninvasive technologies. Thus, there is a suspicion that the real reason for this boom is a secret, forced, and illicit human experimentation in Latin America. Physicians should investigate, be alert, and report these potential unethical human experiments to prevent any further damage to the public health of the citizens of Latin societies.

  4. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  5. Economic consequences of investing in sensor systems on dairy farms

    NARCIS (Netherlands)

    Steeneveld, W.; Hogeveen, H.; Oude Lansink, A.G.J.M.

    2015-01-01

    The objective of this study was to investigate the impact of investment in sensor systems on productivity change, using farm accounting data. Farm accounting data for the years 2008–2013 was available for 217 Dutch dairy farms. In addition, information was available on the adoption of sensor systems

  6. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  7. Aerial Measuring System Sensor Modeling

    International Nuclear Information System (INIS)

    Detwiler, R.S.

    2002-01-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 microCi/m 2 . The helicopter calculations modeled the transport of americium-241 ( 241 Am) as this is

  8. Sensors and sensor systems for guidance and navigation; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Wade, Jack; Tuchman, Avi

    1991-07-01

    The present conference discusses wide field-of-view star-tracker cameras, discrete frequency vs radius reticle trackers, a sensor system for comet approach and landing, a static horizon sensor for a remote-sensing satellite, an improved ring laser gyro navigator, FM reticle trackers in the pupil plane, and the 2D encoding of images via discrete reticles. Also discussed are reduced-cost coil windings for interferometric fiber-optic gyro sensors, the ASTRO 1M space attitude-determination system, passive range-sensor refinement via texture and segmentation, a coherent launch-site atmospheric wind sounder, and a radar-optronic tracking experiment for short and medium range aerial combat. (For individual items see A93-27044 to A93-27046)

  9. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  10. Portable DMFC system with methanol sensor-less control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Liu, D.H.; Huang, C.L.; Chang, C.L. [Institute of Nuclear Energy Research (INER), No. 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546 (China)

    2007-05-15

    This work develops a prototype 20 W portable DMFC by system integration of stack, condenser, methanol sensor-less control and start-up characteristics. The effects of these key components and control schemes on the performance are also discussed. To expedite the use of portable DMFC in electronic applications, the system utilizes a novel methanol sensor-less control method, providing improved fuel efficiency, durability, miniaturization and cost reduction. The operating characteristics of the DMFC stack are applied to control the fuel ejection time and period, enabling the system to continue operating even when the MEAs of the stack are deteriorated. The portable system is also designed with several features including water balance and quick start-up (in 5 min). Notably, the proposed system using methanol sensor-less control with injection of pure methanol can power the DVD player and notebook PC. The system specific energy and energy density following three days of operation are 362 Wh kg{sup -1} and 335 Wh L{sup -1}, respectively, which are better than those of lithium batteries ({proportional_to}150 Wh kg{sup -1} and {proportional_to}250 Wh L{sup -}). This good energy storage feature demonstrates that the portable DMFC is likely to be valuable in computer, communication and consumer electronic (3C) markets. (author)

  11. Novel Hall sensors developed for magnetic field imaging systems

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  12. China’s Internet Finance Boom and Tyrannies of Inclusion

    OpenAIRE

    Loubere, Nicholas

    2018-01-01

    One of the main drivers of China’s e-commerce boom is the dramatic expansion of the country’s Internet finance industry, which has grown and diversified at a staggering rate over the past decade. The emergence of Chinese Internet finance has been discussed in largely positive terms as facilitating commercial activity. It has also been linked to the wider developmental goal of promoting financial inclusion through the provision of financial services to previously excluded populations. Emerging...

  13. Geographically distributed environmental sensor system

    Science.gov (United States)

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  14. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  15. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  16. The baby boom, the baby bust, and the housing market.

    Science.gov (United States)

    Mankiw, N G; Weil, D N

    1989-05-01

    This paper explores the impact of demographic changes on the housing market in the US, 1st by reviewing the facts about the Baby Boom, 2nd by linking age and housing demand using census data for 1970 and 1980, 3rd by computing the effect of demand on price of housing and on the quantity of residential capital, and last by constructing a theoretical model to plot the predictability of the jump in demand caused by the Baby Boom. The Baby Boom in the U.S. lasted from 1946-1964, with a peak in 1957 when 4.3 million babies were born. In 1980 19.7% of the population were aged 20-30, compared to 13.3% in 1960. Demand for housing was modeled for a given household from census data, resulting in the finding that demand rises sharply at age 20-30, then declines after age 40 by 1% per year. Thus between 1970 and 1980 the real value of housing for an adult at any given age jumped 50%, while the real disposable personal income per capita rose 22%. The structure of demand is such that the swelling in the rate of growth in housing demand peaked in 1980, with a rate of 1.66% per year. Housing demand and real price of housing were highly correlated and inelastic. If this relationship holds in the future, the real price of housing should fall about 3% per year, or 47% by 2007. The theoretical model, a variation of the Poterba model, ignoring inflation and taxation, suggests that fluctuations in prices caused by changes in demand are not foreseen by the market, even though they are predictable in principle 20 years in advance. As the effects of falling housing prices become apparent, there may be a potential for economic instability, but people may be induced to save more because their homes will no longer provide the funds for retirement.

  17. In situ burning via towed boom of oil spilled at sea

    International Nuclear Information System (INIS)

    Carrier, G.; Fendell, F.; Mitchell, J.

    1992-01-01

    In this paper, operational guidance for the efficient use of combustion in the cleanup of a surface oil film, formed as a result of a spill at sea, is sought by approximate analysis. In remediation by burning, the spilled oil itself provides the energy for its cleanup. Attention is focused on situations holding relatively far from the source of the spill and/or relatively long after the spill: the oil is taken to have so dispersed that the thickness of the film is on the order of a few millimeters. Under such conditions, the oil film is unlikely to burn without the use of multiple towed booms, each boom spreading its already-ignited, localized fire to continuously collected, previously unignited portions of the oil film. A simple, quasisteady, two-dimensional analysis suggests efficient values for the tow speed and the tow--line length as functions of such parameters as the oil density, oil-film thickness, oil burn/evaporation rate, etc. The analysis leads to specific suggestions for apparently unreported laboratory experiments that may be informative prior to at-sea operation

  18. Operational comparison of two types of tractor sprayers (microner and boom-type against wheat crop weeds

    Directory of Open Access Journals (Sweden)

    M Hamid

    2015-09-01

    Full Text Available Introduction: Nowadays, the tractor mounted boom sprayer is used in many agricultural fields. These sprayers have many advantages compared to other sprayers, but in Iran, their field efficiency is much lower than that of the developed countries, because the tank volume and consumption of pesticides per hectare is often so highthat spraying per hectare takesa long time for handling the solutions and transporting the sprayers. Also spray droplet size is ordinarily high and its distribution is unknot uniform. So, often spraying and dropping top parts of plants on the earth is inevitable. According to studies carried out in the country during the years 2005-2008 in the agricultural research centers in several provinces such as Khuzestan, four types of sprayers including tractor mounted sprayer, atomizer, microner, and electrostatic atomizer were studied and some of the results obtained include the following. From the point of view of percentage of crash crop, tractor mounted sprayer has the highest percentage, but microner sprayer had the lowest. From the point of view of the solution of consumption amount and spraying cost per hectare, the operation of the tractor mounted sprayer and electrostatic sprayer had the highest and the lowest ranks, respectively. Atomizer sprayer had the highest effect on the percentage amount of weed control, but it requires a high amount of water consumption, high drift and low operation (Safari and Lovaimi, 2010. Materials and Methods: The experiment was carried out during 2012-2013 in the field of agricultural research located in the Mollasani city located 20 km near Ahvaz. In this study, tractor mounted spinning disk sprayer (mounted microner sprayer was evaluated in comparison with conventional boom sprayer on weeds control. The treatments included medium (3500 rpm and low (2000 rpm speed rotation disk sprayer and two types of nozzle in conventional boom sprayer. One of them was an Italian tee jet nozzle and the

  19. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    Science.gov (United States)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  20. Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems

    Directory of Open Access Journals (Sweden)

    Markus Lüken

    2015-10-01

    Full Text Available We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF magnetic, angular rate and gravity (MARG sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN. The 9DOF MARG sensor is part of our recently-developed “Integrated Posture and Activity Network by Medit Aachen” (IPANEMA BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  1. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    Science.gov (United States)

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-10-13

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  2. NET in-vessel vehicle system

    International Nuclear Information System (INIS)

    Jones, H.

    1991-02-01

    The CFFTP/Spar In-vessel Vehicle System concept for in-vessel remote maintenance of the NET/ITER machine is described. It comprises a curved deployable boom, a vehicle which can travel on the boom and an end effector or work unit mounted on the vehicle. The stowed boom, vehicle, and work unit are inserted via the equatorial access port of the torus. Following insertion the boom is deployed and locked in place. The vehicle may then travel along the boom to transport the work unit to any desired location. A novel feature of the concept is the deployable boom. When fully deployed, it closely resembles a conventional curved truss structure in configuration and characteristics. However, the joints of the truss structure are hinged so that it can fold into a compact package, of less than 20% of deployed volume for storage, transportation and insertion into the torus. A full-scale 2-metre long section of this boom was produced for demonstration purposes. As part of the concept definition the work unit for divertor handling was studied to demonstrate that large payloads could be manipulated within the confines of the torus using the in-vessel vehicle system. Principal advantages of the IVVS are its high load capacity and rigidity, low weight and stowed volume, simplicity of control and operation, and its relatively high speed of transportation

  3. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  4. Sensor failure detection in dynamical systems by Kalman filtering methodology

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1991-03-01

    Design of a sensor failure detection system by Kalman filtering methodology is described. The method models the process systems in state-space form, the information on each state being provided by relevant sensors present in the process system. Since the measured states are usually subject to noise, the estimation of the states optimally is an essential requirement. To this end the detection system comprises Kalman estimation filters, the number of which is equal to the number of states concerned. The estimated state of a particular signal in each filter is compared with the corresponding measured signal and difference beyond a predetermined bound is identified as failure, the sensor being identified/isolated as faulty. (author). 19 refs.; 8 figs.; 1 tab

  5. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  6. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  7. Fracturing and Self-Healing in the Boom Clay: Evidences and Further Studies

    International Nuclear Information System (INIS)

    Bernier, Frederic

    2001-01-01

    The Boom Clay is considered as a potential host-rock for the disposal of Belgian radioactive waste. During the sinking of a new shaft to extend the underground facility HADES, an important fracturing has been evidenced around the excavation. Fracturing was already observed previously but to a lesser extent. The low support pressure imposed by the primary shaft lining, combined with the large time over which this support condition held, has favoured the decompression of the clay massif through delayed effects, and therefore the development of fracturing. In the frame of the overall performance of a radioactive waste repository, it is of prime importance to understand the fracturing process induced by excavation in Boom Clay, as well as the self-healing process. Some self-healing evidences have been observed around the HADES underground laboratory but need further investigation to be confirmed. This will be done in the SELFRAC EC project (Fractures and Self-healing within the Excavation Disturbed Zone in clays)

  8. Passive wireless sensor systems can recognize activites of daily living.

    Science.gov (United States)

    Urwyler, Prabitha; Stucki, Reto; Muri, Rene; Mosimann, Urs P; Nef, Tobias

    2015-08-01

    The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

  9. Security Techniques for Sensor Systems and the Internet of Things

    Science.gov (United States)

    Midi, Daniele

    2016-01-01

    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We…

  10. Aerial measuring system sensor modeling

    International Nuclear Information System (INIS)

    Detwiler, Rebecca

    2002-01-01

    The AMS fixed-wing and rotary-wing systems are critical National Nuclear Security Administration (NNSA) Emergency Response assets. This project is principally focused on the characterization of the sensors utilized with these systems via radiation transport calculations. The Monte Carlo N-Particle code (MCNP) which has been developed at Los Alamos National Laboratory was used to model the detector response of the AMS fixed wing and helicopter systems. To validate the calculations, benchmark measurements were made for simple source-detector configurations. The fixed-wing system is an important tool in response to incidents involving the release of mixed fission products (a commercial power reactor release), the threat or actual explosion of a Radiological Dispersal Device, and the loss or theft of a large industrial source (a radiography source). Calculations modeled the spectral response for the sensors contained, a 3-element NaI detector pod and HpGe detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 C i/m2

  11. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  12. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  13. Structural health monitoring system for bridges based on skin-like sensor

    Science.gov (United States)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  14. 75 FR 49843 - Regulated Navigation Area; Boom Deployment Strategy Testing, Great Bay, NH

    Science.gov (United States)

    2010-08-16

    ... will be marked with 32-inch floating balls to make the ends of each boom segment more visible to... east, a line drawn between the easternmost end of the Scammel Bridge (Route 4) in position 43[deg]07'41...

  15. Smart Sensors' Role in Integrated System Health Management

    Science.gov (United States)

    Perotti, Jose M.; Mata, Carlos

    2005-01-01

    During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic

  16. WIRELESS SENSOR SYSTEM FOR IMPLEMENTATION OF SMART SPACES

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2014-01-01

    Full Text Available This paper describes the design, implementation and application of a smart sensor system based in wireless communication protocol, which was developed with the main objective of facilitate the implementation of smart places, whereby monitoring and supervision of environmental physical variables in a residence or commercial buildings. Based in this system, we want to co-help taking advantage and save electric energy, optimizing the use of the lighting systems and air conditioner only in the schedules and under pre-established conditions for the final user. The system is based in a variety of nodes o modules of sensors like temperature, humidity, light, carbon monoxide, noise and LP gas which have the ability to work collaboratively in networks with topologies like star, tree and mesh.

  17. Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest.

    Science.gov (United States)

    Lybbert, Travis J; Aboudrare, Abdellah; Chaloud, Deborah; Magnan, Nicholas; Nash, Maliha

    2011-08-23

    Morocco's argan oil is now the most expensive edible oil in the world. High-value argan markets have sparked a bonanza of argan activity. Nongovernmental organizations, international and domestic development agencies, and argan oil cooperatives aggressively promote the win-win aim of simultaneously benefiting local people and the health of the argan forest. This paper tests some of these win-win claims. Analysis of a panel of detailed household data suggests that the boom has enabled some rural households to increase consumption, increase their goat herds (which bodes poorly for the argan forest), and send their girls to secondary school. The boom has predictably made households vigilant guardians of fruit on the tree, but it has not incited investments in longer term tree and forest health. We evaluate landscape-level impacts of these changes using commune-level data on educational enrollment and normalized difference vegetation index data over the period from 1981 to 2009. The results of the mesoanalysis of enrollment are consistent with the microanalysis: the argan boom seems to have improved educational outcomes, especially for girls. Our normalized difference vegetation index analysis, however, suggests that booming argan prices have not improved the forest and may have even induced degradation. We conclude by exploring the dynamic interactions between argan markets, local institutions, rural household welfare, and forest conservation and sustainability.

  18. Secure Data Exchange in Environmental Health Monitoring System through Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Amang Sudarsono

    2016-04-01

    Full Text Available Recently, disseminating latest sensory information regarding the status of environmental health in the surroundings of human life is one of very important circumstances which must be known by everyone. These circumstances should be accessible at anytime and anywhere by everyone through any type of end-user devices, both fixed and mobile devices, i.e., Desktop PCs, Laptop PCs, and Smartphones. Wireless Sensor Network (WSN is one of the networks which deals with data sensors distribution from sensor nodes to the gateway node toward a Data Center Server. However, there is a big possibility for many adversaries to intercept and even manipulate data sensors crossing the network. Hence, a secure data sensor exchange in the system would be strongly desirable. In this research, we propose an environmental health conditions monitoring system through WSN and its implementation with considering secure data sensor exchange within the network and secure data sensor access. This work may contribute to support a part of smart cities and take in part the Internet of Thing (IoT technology. In our proposed system, we collect some environmental health information such as temperature, humidity, luminosity, noise, carbon monoxide (CO and carbon dioxide (CO2 from sensor nodes. We keep the confidentiality and integrity of transmitted data sensors propagating through IEEE802.15.4-based communication toward a gateway node. Further, the collected data sensors in the gateway are synchronized to the Data Center Server through a secure TCP/IP connection for permanently storing. At anytime and anywhere, only legitimated users who successfully pass-through an attribute-based authentication system are able to access the data sensors.

  19. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    Science.gov (United States)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  20. Automatic limit switch system for scintillation device and method of operation

    International Nuclear Information System (INIS)

    Brunnett, C.J.; Ioannou, B.N.

    1976-01-01

    A scintillation scanner is described having an automatic limit switch system for setting the limits of travel of the radiation detection device which is carried by a scanning boom. The automatic limit switch system incorporates position responsive circuitry for developing a signal representative of the position of the boom, reference signal circuitry for developing a signal representative of a selected limit of travel of the boom, and comparator circuitry for comparng these signals in order to control the operation of a boom drive and indexing mechanism. (author)

  1. Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a sensor system capable of remotely probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons), such as from a...

  2. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements, volume II

    Science.gov (United States)

    2016-08-01

    This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...

  3. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  4. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Science.gov (United States)

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  5. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  6. Towards an operational sensor-fusion system for anti-personnel landmine detection

    NARCIS (Netherlands)

    Cremer, F.; Schutte, K.; Schavemaker, J.G.M.; Breejen, E. den

    2000-01-01

    To acquire detection performance required for an operational system for the detection of anti-personnel landmines, it is necessary to use multiple sensors and sensor-fusion techniques. This paper describes five decision-level sensor-fusion techniques and their common optimisation method. The

  7. A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.

    Science.gov (United States)

    Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.

  8. A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications

    Directory of Open Access Journals (Sweden)

    Akkarapol Sa-ngasoongsong

    2012-08-01

    Full Text Available This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm ´ 5 cm ´ 1 cm, high throughput (6,000 Hz data streaming rate, and low cost ($13 per unit for a 1,000 unit batch of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2, and is also capable of capturing abnormal heart sounds (S3 and S4 and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing.

  9. AN/FSY-3 Space Fence SystemSensor Site One/Operations Center Integration Status and Sensor Site Two Planned Capability

    Science.gov (United States)

    Fonder, G. P.; Hack, P. J.; Hughes, M. R.

    This paper covers two topics related to Space Fence System development: Sensor Site One / Operations Center construction and integration status including risk reduction integration and test efforts at the Moorestown, NJ Integrated Test Bed (ITB); and the planned capability of Sensor Site Two. The AN/FSY-3 Space Fence System is a ground-based system of S-band radars integrated with an Operations Center designed to greatly enhance the Air Force Space Surveillance network. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. The system is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users—such as JSpOC—and coordinating handoffs to other SSN sites. Sensor Site One construction on the Kwajalein Atoll is in progress and nearing completion. The Operations Center in Huntsville, Alabama has been configured and will be integrated with Sensor Site One in the coming months. System hardware, firmware, and software is undergoing integration testing at the Mooretown, NJ ITB and will be deployed at Sensor Site One and the Operations Center. The preliminary design for Sensor Site Two is complete and will provide critical coverage, timeliness, and operational flexibility to the overall system.

  10. Distributed sensor and actuator reconfiguration for fault-tolerant networked control systems

    NARCIS (Netherlands)

    Herdeiro Teixeira, A.M.; Araujo, Jose; Sandberg, Henrik; Johansson, Karl H.

    2017-01-01

    In this paper, we address the problem of distributed reconfiguration of networked control systems upon the removal of misbehaving sensors and actuators. In particular, we consider systems with redundant sensors and actuators cooperating to recover from faults. Reconfiguration is performed while

  11. Modelling of radionuclide migration and heat transport from an High-Level-Radioactive-Waste-repository (HLW) in Boom clay

    International Nuclear Information System (INIS)

    Put, M.; Henrion, P.

    1992-01-01

    For the modelling of the migration of radionuclides in the Boom clay formation, the analytical code MICOF has been updated with a 3-dimensional analytical solution for discrete sources. the MICOF program is used for the calculation of the release of α and β emitters from the HIGH LEVEL RADIOACTIVE WASTES (HLW). A coherent conceptual model is developed which describes all the major physico-chemical phenomena influencing the migration of radionuclides in the Boom clay. The concept of the diffusion accessible porosity is introduced and included in the MICOF code. Different types of migration experiments are described with their advantages and disadvantages. The thermal impact of the HLW disposal in the stratified Boom clay formation has been evaluated by a finite element simulation of the coupled heat and mass transport equation. The results of the simulations show that under certain conditions thermal convection cells may form, but the convective heat transfer in the clay formation is negligible. 6 refs., 19 figs., 2 tabs., 5 appendices

  12. Sensor Systems for Corrosion Monitoring in Concrete Structures

    Directory of Open Access Journals (Sweden)

    K.Kumar

    2006-05-01

    Full Text Available It is a need of permanently embedded corrosion monitoring devices to monitor the progress of corrosion problems on a new or existing reinforced concrete structures before embarking on repair or rehabilitation of the structures. Numerous devices are available for investigating corrosion problems, because no single technique exists which tells an engineer what he needs to know, namely how much damage there is on a structure now and how rapidly the damage will grow with time. In this investigation the studies on the sensors systems based on the measurements of half cell potential of rebars inside the concrete, resistivity of concrete, corrosion rate of rebars by eddy current measurements and sensing of chloride ions are reported. An integrated system consists of above sensors are fabricated and embedded into concrete. The response from each sensor was acquired and analyzed by NI hardware through LabVIEW software.

  13. Development of sensor system built into a robot hand toward environmental monitoring

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Ueshiba, Toshio; Yoshimi, Takashi; Kawai, Yoshihiro; Morisawa, Mitsuharu; Kanehiro, Fumio; Yokoi, Kazuhito

    2015-01-01

    The development of sensor system that is built into a hand of a humanoid robot toward environmental monitoring is presented in this paper. The developed system consists of a color C-MOS camera, a laser projector with a lens distributing a laser light, and a LED projector. The sensor system can activate/disable these components according to the purpose. This paper introduces the design process, pre-experimental results for evaluating components, and the specifications of the developed sensor system together with experimental results. (author)

  14. Politics and Nigerian agriculture in the first decade of the "Oil boom ...

    African Journals Online (AJOL)

    Politics and Nigerian agriculture in the first decade of the "Oil boom", 1970-1980: a preliminary assessment. A Olorunfemi, OC Adesina. Abstract. No Abstract. The Nigerian Journal of Economic History VoL. 1, 1998: 57-69. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  16. Asia-Pacific focus of coming LNG trade boom

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa

  17. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  18. Analysis of the SNR and sensing ability of different sensor types in a LIDAR system

    Science.gov (United States)

    Choi, Gyudong; Han, Munhyun; Seo, Hongseok; Mheen, Bongki

    2017-10-01

    LIDAR (light distance and ranging) systems use sensors to detect reflected signals. The performance of the sensors significantly affects the specification of the LIDAR system. Especially, the number and size of the sensors determine the FOV (field of view) and resolution of the system, regardless of which sensors are used. The resolution of an array-type sensor normally depends on the number of pixels in the array. In this type of sensor, there are several limitations to increase the number of pixels in an array for higher resolution, specifically complexity, cost, and size limitations. Another type of sensors uses multiple pairs of transmitter and receiver channels. Each channel detects different points with the corresponding directions indicated by the laser points of each channel. In this case, in order to increase the resolution, it is required to increase the number of channels, resulting in bigger sensor head size and deteriorated reliability due to heavy rotating head module containing all the pairs. In this paper, we present a method to overcome these limitations and improve the performance of the LIDAR system. ETRI developed a type of scanning LIDAR system called a STUD (static unitary detector) LIDAR system. It was developed to solve the problems associated with the aforementioned sensors. The STUD LIDAR system can use a variety of sensors without any limitations on the size or number of sensors, unlike other LIDAR systems. Since it provides optimal performance in terms of range and resolution, the detailed analysis was conducted in the STUD LIDAR system by applying different sensor type to have improved sensing performance.

  19. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  20. Wearable sensor system for human localization and motion capture

    OpenAIRE

    Zihajehzadeh, Shaghayegh

    2017-01-01

    Recent advances in MEMS wearable inertial/magnetic sensors and mobile computing have fostered a dramatic growth of interest for ambulatory human motion capture (MoCap). Compared to traditional optical MoCap systems such as the optical systems, inertial (i.e. accelerometer and gyroscope) and magnetic sensors do not require external fixtures such as cameras. Hence, they do not have in-the-lab measurement limitations and thus are ideal for ambulatory applications. However, due to the manufacturi...

  1. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  2. A review of wearable sensors and systems with application in rehabilitation

    Directory of Open Access Journals (Sweden)

    Patel Shyamal

    2012-04-01

    Full Text Available Abstract The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.

  3. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    Directory of Open Access Journals (Sweden)

    Nitha V. Panicker

    2016-01-01

    Full Text Available Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC. Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements.

  4. Modelling of natural organic matter-linked radionuclide transport in Boom clay

    International Nuclear Information System (INIS)

    Govaerts, J.; Maes, N.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on long term management of high-level and/or long-lived radioactive wastes coordinated by ONDRAF/NIRAS, Boom Clay is investigated for its potential to host a deep geological disposal repository. In order to demonstrate the suitability of the Boom Clay as a host rock, the mobility of critical radionuclides in this clay layer has been the subject of research during many years. As actinides, lanthanides and transition metals are known to form strong complexes with organic substances, the influence of the Natural Organic Matter (NOM) present in Boom Clay on the mobility of these critical radionuclides is of crucial importance. Interaction of radionuclides with OM present in Boom Clay could on the one hand retard the migration due to complexation/colloid interaction with the immobile OM, and on the other hand the mobility and solubility of the radionuclide can be enhanced by the formation of complexes/colloids with the mobile OM. The conceptual understanding (and its numerical modelling) of the kinetic stability and transport of these complexes/colloids is therefore regarded as highly important for the the long-term safety assesment of the geological disposal. This can be broken down into two subproblems: 1. Describing the transport behaviour of mobile OM in Boom Clay; 2. Describing the interaction of RN with mobile OM and the transport behaviour of the resulting complexes in Boom Clay. The first part of this paper revolves around the first subproblem, where a robust model for the description of the migration behaviour of Natural Organic Matter (NOM) is derived based on data from column migration experiments using 14 C-labelled NOM Tracer solution, obtained in the framework of the EC TRANCOM-II project. Clay plugs of different lengths and different Darcy velocities were used. Inverse modelling with the MATLAB and COMSOL numerical code was done in order to identify the

  5. Stressor sensor and stress management system

    NARCIS (Netherlands)

    2012-01-01

    A stressor detection system (100) comprises sensor means (101) arranged for being attached to a person for obtaining a time-varying signal representing a physical quantity relating to an environment of the person, and processing means (102) for deriving a stressor value from the obtained signal

  6. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  7. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Yu-Hua Li

    2011-07-01

    Full Text Available A land-based mobile mapping system (MMS is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS. The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters. In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  8. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    Science.gov (United States)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  9. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    Science.gov (United States)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  10. Monitoring the Como Railway Bridge based on dynamic FBG sensor system

    Science.gov (United States)

    Zhang, Jianzhong; Sun, Weimin; Peng, G. D.; Yuan, Libo

    2007-07-01

    A FBG-based dynamic strain sensor system, whose responding frequency and resolution can be high as 16Hz and ~1μɛ respectively, is described and the system is applied to monitor the dynamic strain of Como Railway Bridge in Australia. The results of one-month long measurement show that the system can figure out all dynamic strain caused by passed trains and also prove the stability of the sensor system.

  11. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Honty, M.; De Craen, M.; Wang, L.; Madejova, J.; Czimerova, A.; Pentrak, M.; Stricek, I.; Van Geet, M.

    2010-01-01

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH) 2 , young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  12. Advances in Sensors-Centric Microprocessors and System-on-Chip

    Directory of Open Access Journals (Sweden)

    Juan A. Gómez-Pulido

    2012-04-01

    Full Text Available Sensors-based systems are nowadays an extended technology for many markets due to their great potential in the collection of data from the environment and the processing of such data for different purposes. A typical example is the wireless sensor devices, where the outer temperature, humidity, luminosity and many other parameters can be acquired, measured and processed in order to build useful and fascinating applications that contribute to human welfare. In this scenario, the processing architectures of the sensors-based systems play a very important role. The requirements that are necessary for many such applications (real-time processing, low-power consumption, reduced size, reliability, security and many others means that research on advanced architectures of Microprocessors and System-on-Chips (SoC is needed to design and implement a successful product. In this sense, there are many challenges and open questions in this area that need to be addressed. [...

  13. Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2012-01-01

    The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.

  14. MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Anton Carl Greenwald

    2005-09-14

    The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

  15. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Science.gov (United States)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  16. Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network

    Science.gov (United States)

    Dhaya, R.; Sadasivam, V.; Kanthavel, R.

    2012-12-01

    Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.

  17. THE TSUNAMI SERVICE BUS, AN INTEGRATION PLATFORM FOR HETEROGENEOUS SENSOR SYSTEMS

    Science.gov (United States)

    Fleischer, J.; Häner, R.; Herrnkind, S.; Kriegel, U.; Schwarting, H.; Wächter, J.

    2009-12-01

    The Tsunami Service Bus (TSB) is the sensor integration platform of the German Indonesian Tsunami Early Warning System (GITEWS) [1]. The primary goal of GITEWS is to deliver reliable tsunami warnings as fast as possible. This is achieved on basis of various sensor systems like seismometers, ocean instrumentation, and GPS stations, all providing fundamental data to support prediction of tsunami wave propagation by the GITEWS warning center. However, all these sensors come with their own proprietary data formats and specific behavior. Also new sensor types might be added, old sensors will be replaced. To keep GITEWS flexible the TSB was developed in order to access and control sensors in a uniform way. To meet these requirements the TSB follows the architectural blueprint of a Service Oriented Architecture (SOA). The integration platform implements dedicated services communicating via a service infrastructure. The functionality required for early warnings is provided by loosely coupled services replacing the "hard-wired" coupling at data level. Changes in the sensor specification are confined to the data level without affecting the warning center. Great emphasis was laid on following the Sensor Web Enablement (SWE) standard [2], specified by the Open Geospatial Consortium (OGC) [3]. As a result the full functionality needed in GITEWS could be achieved by implementing the four SWE services: The Sensor Observation Service for retrieving sensor measurements, the Sensor Alert Service in order to deliver sensor alerts, the Sensor Planning Service for tasking sensors, and the Web Notification Service for conduction messages to various media channels. Beyond these services the TSB also follows SWE Observation & Measurements specifications (O&M) for data encoding and Sensor Model Language (SensorML) for meta information. Moreover, accessing sensors via the TSB is not restricted to GITEWS. Multiple instances of the TSB can be composed to realize federate warning system

  18. Remote powering platform for implantable sensor systems at 2.45 GHz.

    Science.gov (United States)

    Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine

    2014-01-01

    Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.

  19. System on chip thermal vacuum sensor based on standard CMOS process

    International Nuclear Information System (INIS)

    Li Jinfeng; Tang Zhenan; Wang Jiaqi

    2009-01-01

    An on-chip microelectromechanical system was fabricated in a 0.5 μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 10 5 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/ Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system.

  20. Smart architecture for stable multipoint fiber Bragg grating sensor system

    Science.gov (United States)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  1. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eung Jun Cho

    2013-11-01

    Full Text Available The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  2. Multistream sensor fusion-based prognostics model for systems with single failure modes

    International Nuclear Information System (INIS)

    Fang, Xiaolei; Paynabar, Kamran; Gebraeel, Nagi

    2017-01-01

    Advances in sensor technology have facilitated the capability of monitoring the degradation of complex engineering systems through the analysis of multistream degradation signals. However, the varying levels of correlation with physical degradation process for different sensors, high-dimensionality of the degradation signals and cross-correlation among different signal streams pose significant challenges in monitoring and prognostics of such systems. To address the foregoing challenges, we develop a three-step multi-sensor prognostic methodology that utilizes multistream signals to predict residual useful lifetimes of partially degraded systems. We first identify the informative sensors via the penalized (log)-location-scale regression. Then, we fuse the degradation signals of the informative sensors using multivariate functional principal component analysis, which is capable of modeling the cross-correlation of signal streams. Finally, the third step focuses on utilizing the fused signal features for prognostics via adaptive penalized (log)-location-scale regression. We validate our multi-sensor prognostic methodology using simulation study as well as a case study of aircraft turbofan engines available from NASA repository.

  3. Literatura y arte latinoamericanos hoy: ¿Boom o Burbuja?

    OpenAIRE

    Sánchez, Yvette

    2016-01-01

    Resumen El presente artículo intenta caracterizar el reemplazamiento de las letras latinoamericanas por las artes visuales, en lo referido a su proyección internacional, en el último medio siglo. Mientras que el Boom latinoamericano de la literatura de los años 60 se extinguía paulatina y casi imperceptiblemente, hay críticos que afirman que la difusión, la demanda en el mercado y el explotado valor monetario de las artes visuales amenazan con desaparecer repentinamente. Este fenómeno suele e...

  4. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  5. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  6. Hybrid online sensor error detection and functional redundancy for systems with time-varying parameters.

    Science.gov (United States)

    Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali

    2017-12-01

    Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.

  7. Novel wireless sensors for in situ measurement of sub-ice hydrologic systems

    OpenAIRE

    Bagshaw, E; Lishman, B; Wadham, J; Bowden, J; Burrow, S; Clare, L; Chandler, D

    2014-01-01

    Wireless sensors have the potential to provide significant insight into in situ physical and biogeochemical processes in sub-ice hydrologic systems. However, the nature of the glacial environment means that sensor deployment and data return is challenging. We describe two bespoke sensor platforms, electronic tracers or ‘ETracers’, and ‘cryoegg’, for untethered, wireless data collection from glacial hydrologic systems, including subglacial channels. Both employ radio frequencies for data trans...

  8. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  9. Localisation system in wireless sensor networks using ns-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-04-01

    Full Text Available -1 /************************************************************************** ********** * * File: readme.asn * * Author: Adnan Abu-Mahfouz * * Date: March 2012 * * Description: Localisation system in wireless sensor networks using ns-2... *************************************************************************** *********/ /************************************************************************** *************************************************************************** *****/ 1. Introduction: ns-2 contains several flexible features that encourage researchers to use ns-2 to investigate the characteristics of wireless sensor networks (WSNs). However, to implement and evaluate localisation algorithms, the current ns- 2...

  10. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  11. Design of a sensor network system with a self-maintenance function for homeland security applications

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki; Iyomoto, Naoko

    2008-01-01

    In this study, we develop a new concept of a robust wireless sensor network for homeland security applications. The sensor system consists of intelligent radiation sensors that can communicate each other through the wireless network. This structure can cover a wide area with a flexible geometry which is suitable for detecting a moving object with a detectable radiation source. Also, it has a tolerance against both the partial node's failure and packet errors; realized by a Self-Maintenance function. The Self-maintenance function is a function that enables an artifact to find, diagnosis and fix the trouble automatically and maintain itself. So far some approaches have been tried to realize robust monitoring system by applying the idea of multiplex system, based on ''2 out of 3'', but this requires a large amount of the hardware and is not suitable for sensor network systems. We designed a sensor network system with Self-Maintenance function based on qualitative reasoning technique for robust wireless sensor network system, and an instrument network based on ZigBee has been set up for investigations. CsI(Tl) gamma-ray detectors are used as sensors. The network system picks up correlation signals from sensors even some of sensors send false signals, which can be used as a reliable detection system for practical use. (author)

  12. ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1

    Directory of Open Access Journals (Sweden)

    Hyunwoo Lee

    1996-06-01

    Full Text Available The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  13. Sensor-integrated polymer actuators for closed-loop drug delivery system

    Science.gov (United States)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  14. A basic system architecture for sensor data diffusion of environment sensors for intelligent cruise control systems; Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Darms, M.

    2007-07-01

    The design of the system architecture for sensor data diffusion at the beginning of the development process has significant influence on the cost. With a view to intelligent cruise control systems, the author investigated general assumptions concerning data association and data filtering for sensor data diffusion of environment sensors which must be considered when designing an architecture or may be considered for optimisation. The validity of the assumption is illustrated by simulations of adaptive speed control and time-to-collision calculations as well as on the basis of available literature. A basic sytem architecture is presented as a precursor of the final architecture which is based on these assumptions. Their applicability is proved by implementation in the PRORETA project. The author's work provides a validated basis for architects of a serial system architecture enabling them to design and implement their ultimate systems. (orig.)

  15. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  16. FluoRAS Sensor - Online organic matter for optimising recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Hambly, Adam; Stedmon, Colin

    2018-01-01

    FluorRAS will develop a sensor that can save recycled fish farms 30% per year in water and energy consumption for water treatment, as well as optimize nitrogen removal. The sensor will be developed in a partnership between engineers (Krüger A / S) and researchers (DTU), and the product will be made...... both the maintenance of necessary water quality and water treatment costs. Loss of production due to poor water quality is expensive and can be avoided with correct sensor systems. Accumulation of dissolved organic matter and nutrients in the water reduce the effectiveness of UV treatment, is a source...... of nutrition for opportunistic pathogens, and reduces the effectiveness of the biofilter's removing ammonia. Modern recycling systems are therefore dependent on a network of online sensors that monitor and respond to changes in water quality, but currently there is a need for a sensor to monitor...

  17. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  18. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    Science.gov (United States)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  19. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  20. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  1. Operating systems and network protocols for wireless sensor networks.

    Science.gov (United States)

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  2. Automatic path-planning for a multilink articulated boom within the torus of a fusion reactor

    International Nuclear Information System (INIS)

    Smidt, D.

    1986-08-01

    For in-torus maintenance of fusion machines a manipulator is conveyed to the working area by a multilink-transporter, also called 'articulated boom'. Systems of this type have in general four to five links and move in the midplane of the torus. They are kinematically redundant and have a very restricted working space. In this paper automatic methods for the collision free approach of any position of the final joint within the reach of the transporter are presented, including insertion and removal. By automatic teach-in with the CAD-simulation a table of safe configurations can be generated and supplemented by a fine-positioning algorithm. (orig.) [de

  3. Comparison of sensor systems designed using multizone, zonal, and CFD data for protection of indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. Lisa; Wen, Jin [Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2010-04-15

    Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. (author)

  4. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  5. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  6. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya

    2017-08-05

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  7. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2017-01-01

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  8. Power supply for wireless sensor or actuator systems

    International Nuclear Information System (INIS)

    Reindl, L. M.

    2011-01-01

    Portable wireless sensor or actuator systems, like portable phones, remote control, or ID cards play an ever growing role in our industrialized environment. Those systems and many more were enabled due to the steady decreasing power consumption of high integrated ICs. Most such systems are powered by batteries or inductive coupling. In this presentation several concepts for an alternative power supply of wireless sensor or actuator systems are discussed in detail. Batteries, although today mostly used, suffer from a limited storage capacity, which induce a labour and sometimes cost-intensive periodic maintenance, and a problematic ecological impact. The operating range of inductive coupling systems is due to the near ?eld limited to the aperture of the coupling coil. UHF systems operate in the far field and reach higher distances. Their operating range is limited by the distance where the voltage at the feeding point of the antenna becomes too low to drive the rectifier circuit. Larger read out ranges become feasible by omitting the rectifier stage. In this case we need either a passive frequency modulating device to shift the read out signal to a side band, or a resonator with a high quality factor, like a SAW or BAW device, to store the energy until all environmental echoes are feed away. For many applications, both indoor and outdoor, energy harvesting system become feasible which convert ambient power densities like light, RF fields, special or temporal thermal gradients, or mechanical vibrations into electrical supply power of the wireless system. All those systems strongly suffer from a lack of energy. Thus new concepts for low-ering the power consumption of a wireless sensor or actuator system by keeping their features remain extreme important. Herby, a new wake up receiver is presented which operates on a current requirement as low as 3 micro A.

  9. Distributed Database Semantic Integration of Wireless Sensor Network to Access the Environmental Monitoring System

    Directory of Open Access Journals (Sweden)

    Ubaidillah Umar

    2018-06-01

    Full Text Available A wireless sensor network (WSN works continuously to gather information from sensors that generate large volumes of data to be handled and processed by applications. Current efforts in sensor networks focus more on networking and development services for a variety of applications and less on processing and integrating data from heterogeneous sensors. There is an increased need for information to become shareable across different sensors, database platforms, and applications that are not easily implemented in traditional database systems. To solve the issue of these large amounts of data from different servers and database platforms (including sensor data, a semantic sensor web service platform is needed to enable a machine to extract meaningful information from the sensor’s raw data. This additionally helps to minimize and simplify data processing and to deduce new information from existing data. This paper implements a semantic web data platform (SWDP to manage the distribution of data sensors based on the semantic database system. SWDP uses sensors for temperature, humidity, carbon monoxide, carbon dioxide, luminosity, and noise. The system uses the Sesame semantic web database for data processing and a WSN to distribute, minimize, and simplify information processing. The sensor nodes are distributed in different places to collect sensor data. The SWDP generates context information in the form of a resource description framework. The experiment results demonstrate that the SWDP is more efficient than the traditional database system in terms of memory usage and processing time.

  10. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram

    2006-01-01

    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  11. System-Level Modelling and Simulation of MEMS-Based Sensors

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan; Shafique, Mohammad

    2005-01-01

    The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration with the......The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration...... with the existing embedded system design methodologies is possible. In this paper, we present a MEMS design methodology that uses VHDL-AMS based system-level model of a MEMS device as a starting point and combines the top-down and bottom-up design approaches for design, verification, and optimization...

  12. Neuromorphic vision sensors and preprocessors in system applications

    Science.gov (United States)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  13. Technetium migration in Boom Clay - Assessing the role of colloid-facilitated transport in a deep clay formation

    International Nuclear Information System (INIS)

    Bruggeman, C.; Martens, E.; Maes, N.; Jacops, E.; Van Gompel, M.; Van Ravestyn, L.

    2010-01-01

    Document available in extended abstract form only. The role of colloids - mainly dissolved natural organic matter (NOM, 50-150 mg/l) - in the transport of radionuclides in the Boom Clay formation (Mol, Belgium), has long since been a matter of (heavy) debate. For more than 20 years, batch experiments with Boom Clay suspensions showed a pronounced influence of the dissolved organic carbon concentration on the aqueous concentrations of different radionuclides like Tc, Np, Am and U. Moreover, small fractions of these radionuclides were also observed to elute almost un-retarded out of confined clay cores in percolation experiments. In the past years, a new conceptual model for the speciation of the long-lived fission product Technetium- 99 ( 99 Tc) under Boom Clay conditions has been drafted. In brief, the stable oxidation state of 99 Tc in these conditions is +IV, and, therefore, Tc solution concentrations are limited by the solubility of TcO 2 .nH 2 O(s). However, during reduction of TcVII (in the TcO 4 - form) to TcIV, precursor TcO 2 .nH 2 O colloids are formed, which are stabilised by the dissolved organic matter present in Boom Clay interstitial pore water, and in supernatants of Boom Clay batch suspensions. Moreover, this stabilisation process occurs in such a systematic way, that (conditional) interaction constants could be established, and the behaviour was described as a 'hydrophobic sorption', or, more accurately, a 'colloid-colloid' interaction. This conceptual model was implemented into PHREEQC geochemical and Hydrus transport code to come to a reactive transport model that was used to simulate both the outflow and the tracer profile in several long-term running percolation experiments (both in lab and under in situ conditions). To account for slow dissociation kinetics of Tc from the NOM colloid, a first-order kinetic rate equation was also added to the model. In order to describe the migration of colloidal particles (NOM), an

  14. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  15. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  16. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  17. Integrated Sensor Systems for UAS

    Science.gov (United States)

    2008-04-01

    2. Optical particle counter 0.27 5.4 3. Pyranometer 0.17 ɘ.2 4. Temp. & relative humidity 0.05 ɘ.1 5. Data acquisition system 0.15 ɘ.2 6...payload volume showing sensor instrument installation. The insert shows the Manta exterior with the cloud droplet probe and pyranometer mounted on...Instrumentation Above- 2.7 Aethalometer cloud 14 Optical particle counter Up and down pyranometers Condensation particle counter In- 3.7

  18. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  19. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    Science.gov (United States)

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  20. Decline in the risk of hepatitis A virus infection in China, a country with booming economy and changing lifestyles.

    Science.gov (United States)

    Xu, Zhi-Yu; Wang, Xuan-Yi; Liu, Chang-Qing; Li, Yang-Ting; Zhuang, Fang-Chen

    2008-10-01

    The objective of the study was to identify the protective factors for the rapid decline in the risk of hepatitis A virus (HAV) infection in China between 1990 and 2006. Results of serological follow-up and data on annual hepatitis A incidence were analysed and correlated with economic growth and HAV vaccine output during the same period. In conclusion, both HAV vaccination and changing lifestyles associated with the booming economy contributed to the rapid risk decline. Changing lifestyles played a major role in the decline especially in the areas with booming economy.

  1. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    Science.gov (United States)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  2. Studying the migration behaviour of radionuclides in boom clay by electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Norbert Maes, H.; Moors, H.; Dierckx, A.; Aertsens, M.; Wang, L.; Canniere, P. de; Put, M. [SCK-CEN, Belgian Nuclear Research Centre, Waste and Disposal - R and D Geological Disposal Mol (Belgium)

    2001-07-01

    Migration studies are an important part in the assessment of the performance of the Boom Clay Formation as a candidate for geological disposal of High-Level radwaste in Belgium. However, classical diffusion experiments take a long time because of the excellent retention characteristics of the Boom Clay. Electrical fields can be used to move ionic species. Especially for low permeability soils/sediments (such as clays), this driving force is far more efficient than a hydraulic gradient. As a consequence, the experimental time can be reduced drastically. This paper gives an overview on the quantitative and qualitative use of electromigration as a powerful technique to study radionuclides migration in clays. The enormous time gain in the determination of migration parameters for strongly retarded radionuclides as {sup 137}Cs{sup +} and {sup 226}Ra{sup 2+} is first demonstrated. Secondly, we want to demonstrate that electromigration has some useful features to study the behaviour of radionuclides with a more complex chemistry like the redox sensitive element uranium and Am-Organic Matter (OM) complexes. In the case of uranium, electromigration provides information on the speciation of the migrating species while for the Am-organic Matter complexes the role of OM as a possible carrier of actinides is investigated. (orig.)

  3. Studying the migration behaviour of radionuclides in boom clay by electromigration

    International Nuclear Information System (INIS)

    Norbert Maes, H.; Moors, H.; Dierckx, A.; Aertsens, M.; Wang, L.; Canniere, P. de; Put, M.

    2001-01-01

    Migration studies are an important part in the assessment of the performance of the Boom Clay Formation as a candidate for geological disposal of High-Level radwaste in Belgium. However, classical diffusion experiments take a long time because of the excellent retention characteristics of the Boom Clay. Electrical fields can be used to move ionic species. Especially for low permeability soils/sediments (such as clays), this driving force is far more efficient than a hydraulic gradient. As a consequence, the experimental time can be reduced drastically. This paper gives an overview on the quantitative and qualitative use of electromigration as a powerful technique to study radionuclides migration in clays. The enormous time gain in the determination of migration parameters for strongly retarded radionuclides as 137 Cs + and 226 Ra 2+ is first demonstrated. Secondly, we want to demonstrate that electromigration has some useful features to study the behaviour of radionuclides with a more complex chemistry like the redox sensitive element uranium and Am-Organic Matter (OM) complexes. In the case of uranium, electromigration provides information on the speciation of the migrating species while for the Am-organic Matter complexes the role of OM as a possible carrier of actinides is investigated. (orig.)

  4. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  5. Micro digital sun sensor: system in a package

    NARCIS (Netherlands)

    Boom, C.W. de; Leijtens, J.A.P.; Duivenbode, L.M.H. van; Heiden, N. van der

    2004-01-01

    A novel micro Digital Sun Sensor (μDSS) is under development in the frame of a micro systems technology (MST) development program (Microned) from the Dutch Ministry of Economic Affairs. Use of available micro system technologies in combination with the implementation of a dedicated solarcell for

  6. Airborne Electro-Optical Sensor Simulation System. Final Report.

    Science.gov (United States)

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  7. Sensor-actuator system for dynamic chloride ion determination.

    Science.gov (United States)

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  9. Nano-Composite Foam Sensor System in Football Helmets.

    Science.gov (United States)

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  10. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Science.gov (United States)

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  11. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Directory of Open Access Journals (Sweden)

    Iván González

    2015-07-01

    Full Text Available A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  12. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  13. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  14. Optical MEMS: boom, bust and beyond

    Science.gov (United States)

    Ramani, Chandra Mouli

    2005-10-01

    Optical Telecommunications bandwidth, spurred by the growth of the internet, experienced unprecedented growth in the late 1990's. The creation of new enterprises was vast and the expansion of established component, system and services companies was also breathtaking. This period of speculative growth was followed in 2001-2004 by one of the most significant market crashes in history. While $20B of venture capital was invested in optical telecom in the last 10 years, the vast majority of that has been written off in the last four. Countless start-ups inaugurated with great fanfare at the end of the 20th century were unceremoniously shut down at the start of the 21st. (1) As in all speculative bubbles, innovative technologies were born and buried. Nonetheless, new capabilities emerge from the chaos and disruption; one such example is the advent of Optical MEMS (MOEMS). Its development was vigorously pursued in both academic and corporate laboratories during the boom and, in the author's view; MOEMS constitutes a powerful and versatile tool set that is an invaluable residual of the last few years. In Telecommunications, MOEMS has proven to be the technology of choice for many optical switching and wavelength management applications. (2) Variable Optical Attenuators (VOA), Wavelength Blockers (WB), Dynamic Gain Equalizers (DGE), and most recently Wavelength Selective Switches (WSS) are being used in the numerous recent network deployments. Moreover, agile networks of the future will have MOEMS at every node. This presentation will provide an overview of the history of MOEMS in Telecommunications, discuss its byproducts and project the future of the technology.

  15. SensorKit: A Flexible and Extensible System for In-Situ Data Acquisition

    Science.gov (United States)

    Silva, F.; Deschon, A.; Chang, J.; Westrich, S.; Cho, Y. H.; Gullapalli, S.; Benzel, T.; Graham, E. A.

    2009-12-01

    Over the years, sensor networks technology has evolved tremendously and has great potential in environmental sensing applications. However, because sensor networks are usually designed and built by computer scientists and engineers with little input from the scientific community, the resulting technology is often complex and out of reach for most field scientists. A few sensor, and data logger vendors have released data acquisition systems that can be used with their products. Unfortunately, these are generally vendor-specific, requiring scientists with heterogeneous sensors to use multiple systems to acquire data from all their sensors. A few, more generic systems, are compatible with multiple brands. However, these often offer only limited functionality, little flexibility, and no extensibility. We built SensorKit to overcome these limitations and to accelerate the adoption of sensor networks by field scientists. Using a simplicity-through-sophistication approach, we provide scientists with a powerful tool for field data collection. SensorKit is hardware agnostic, and was built using commercial off-the-shelf components. By employing a Linux-based ultra low-power generic embedded processing platform with a variety of dataloggers (including Berkeley motes, National Instruments' Compact RIOs, as well as legacy and newer PakBus-based Campbell data loggers), we support requirements from a large number of scientists. The user interfaces are designed to be intuitive so that most scientists can deploy, configure, and operate the system without extensive training. Working in close collaboration with field scientists allowed us to better understand scientific requirements and ensure system relevancy. The requirements for data acquisition, data storage, and data communication vary significantly for each deployment. Data acquisition needs to include capabilities for different analog, digital, and other complex sensors (e.g. cameras, and robotic sensors). Moreover, the

  16. Disposable Multi-Sensor Unattended Ground Sensor Systems for Detecting Personnel (Systemes de detection multi-capteurs terrestres autonome destines a detecter du personnel)

    Science.gov (United States)

    2015-02-01

    the set of DCT coefficients for all the training data corresponding to the people. Then, the matrix ][ pX can be written as: ][][][ −+ −= ppp XXX ...deployed on two types of ground conditions. This included ARL multi-modal sensors, video and acoustic sensors from the Universities of Memphis and...Mississippi, SASNet from Canada, video from Night Vision Laboratory and Pearls of Wisdom system from Israel operated in conjunction with ARL personnel. This

  17. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    Science.gov (United States)

    Yoo, Paul

    2013-01-01

    Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.

  18. Design study for a macropermeability test in an argillaceous formation (Boom clay)

    International Nuclear Information System (INIS)

    Bronders, J.

    1992-01-01

    In the present report a test design has been developed for determining the in-situ permeability of the Boom clay on a large scale at the Mol site (Belgium). Since in the Boom clay at the Mol site an Underground Repository Facility (URF) is operational the test has been designed to be run in or from this facility. The proposal is an in-situ macropermeability test with a set-up comprising a central borehole (metric scale in length) designed to allow various types of control of the water-level, surrounded by a lattice of piezometers installed in the clay mass for the monitoring of the interstitial water pressure changes in function of the various water-level controls. In one part the report describes the potential set-ups and a theoretical background as far as it can be done on the basis of existing literature and experiments. In a second part the method (technical and practical data of a test set-up) is described and documented. The method proposed is largely based on the several years of expertise gained within the field of in-situ migration and hydrogeologic investigations in the Hades-URF. 14 refs., 9 figs., 2 tabs

  19. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  20. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.