WorldWideScience

Sample records for boolean equation systems

  1. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.

    Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then

  2. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2012-10-01

    Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

  3. Boolean reasoning the logic of boolean equations

    CERN Document Server

    Brown, Frank Markham

    2012-01-01

    A systematic treatment of Boolean reasoning, this concise, newly revised edition combines the works of early logicians with recent investigations, including previously unpublished research results. Brown begins with an overview of elementary mathematical concepts and outlines the theory of Boolean algebras. Two concluding chapters deal with applications. 1990 edition.

  4. Information encryption systems based on Boolean functions

    Directory of Open Access Journals (Sweden)

    Aureliu Zgureanu

    2011-02-01

    Full Text Available An information encryption system based on Boolean functions is proposed. Information processing is done using multidimensional matrices, performing logical operations with these matrices. At the basis of ensuring high level security of the system the complexity of solving the problem of building systems of Boolean functions that depend on many variables (tens and hundreds is set. Such systems represent the private key. It varies both during the encryption and decryption of information, and during the transition from one message to another.

  5. Classical Boolean logic gates with quantum systems

    International Nuclear Information System (INIS)

    Renaud, N; Joachim, C

    2011-01-01

    An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, α = {α 1 , ..., α N }, is used to control well-identified parameters of the Hamiltonian of the system noted H 0 (α). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.

  6. Boolean modeling in systems biology: an overview of methodology and applications

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Albert, Réka; Saadatpour, Assieh

    2012-01-01

    Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)

  7. Boolean integral calculus for digital systems

    Science.gov (United States)

    Tucker, J. H.; Tapia, M. A.; Bennett, A. W.

    1985-01-01

    The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of 'integrating' (i.e., realizing) the function, if it exists, are presented. Boolean integral calculus has applications in design of logic circuits.

  8. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    Science.gov (United States)

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  9. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    Science.gov (United States)

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  10. Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits

    Science.gov (United States)

    Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang

    2010-10-01

    Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.

  11. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  12. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  13. On the Boolean extension of the Birnbaum importance to non-coherent systems

    International Nuclear Information System (INIS)

    Aliee, Hananeh; Borgonovo, Emanuele; Glaß, Michael; Teich, Jürgen

    2017-01-01

    The Birnbaum importance measure plays a central role in reliability analysis. It has initially been introduced for coherent systems, where several of its properties hold and where its computation is straightforward. This work introduces a Boolean expression for the notion of criticality that allows the seamless extension of the Birnbaum importance to non-coherent systems. As a key feature, the novel definition makes the computation and encoding straightforward with well-established techniques such as Binary Decision Diagrams (BDDs) or Fault Trees (FTs). Several examples and a case study illustrate the findings. - Highlights: • We propose a Boolean expression for the notion of criticality in coherent and non-coherent systems. • The notion is connected with the Birnbaum importance measure. • The connection with Andrew's and Beeson extension is discussed. • The Boolean expression allows straightforward encoding in Binary Decision Diagrams.

  14. Interpolative Boolean Networks

    Directory of Open Access Journals (Sweden)

    Vladimir Dobrić

    2017-01-01

    Full Text Available Boolean networks are used for modeling and analysis of complex systems of interacting entities. Classical Boolean networks are binary and they are relevant for modeling systems with complex switch-like causal interactions. More descriptive power can be provided by the introduction of gradation in this model. If this is accomplished by using conventional fuzzy logics, the generalized model cannot secure the Boolean frame. Consequently, the validity of the model’s dynamics is not secured. The aim of this paper is to present the Boolean consistent generalization of Boolean networks, interpolative Boolean networks. The generalization is based on interpolative Boolean algebra, the [0,1]-valued realization of Boolean algebra. The proposed model is adaptive with respect to the nature of input variables and it offers greater descriptive power as compared with traditional models. For illustrative purposes, IBN is compared to the models based on existing real-valued approaches. Due to the complexity of the most systems to be analyzed and the characteristics of interpolative Boolean algebra, the software support is developed to provide graphical and numerical tools for complex system modeling and analysis.

  15. Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.

    Science.gov (United States)

    Fox, Edward A.; Winett, Sheila G.

    1990-01-01

    Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…

  16. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.

    Science.gov (United States)

    Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M

    2017-11-25

    Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression

  17. A short Boolean derivation of mean failure frequency for any (also non-coherent) system

    International Nuclear Information System (INIS)

    Schneeweiss, Winfrid G.

    2009-01-01

    For stationary repairable systems it is shown that the probabilistic weights for the individual components' mean failure frequencies (MFFs) that can be added to yield the system's MFF are found easily from the first step of the Boolean fault tree function's Shannon decomposition. This way one finds a general theory of a system's MFF and the case of coherence covered in standard textbooks is shown to be a subcase. Unfortunately, elegant rules for calculating system MFF from any polynomial form of the fault tree's Boolean function are only known for the coherent case, but repeated here, because they are not yet found in many textbooks. An example known from literature is treated extensively with great care.

  18. CIRCUIT IMPLEMENTATION OF VHDL-DESCRIPTIONS OF SYSTEMS OF PARTIAL BOOLEAN FUNCTIONS

    Directory of Open Access Journals (Sweden)

    P. N. Bibilo

    2016-01-01

    Full Text Available Method for description of incompletely specified (partial Boolean functions in VHDL is proposed. Examples of synthesized VHDL models of partial Boolean functions are presented; and the results of experiments on circuit implementation of VHDL descriptions of systems of partial functions. The realizability of original partial functions in logical circuits was verified by formal verification. The results of the experiments show that the preliminary minimization in DNF class and in the class of BDD representations for pseudo-random systems of completely specified functions does not improve practically (and in the case of BDD sometimes worsens the results of the subsequent synthesis in the basis of FPGA unlike the significant efficiency of these procedures for the synthesis of benchmark circuits taken from the practice of the design.

  19. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  20. Computational complexity of Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Aleksei D [Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2012-02-28

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  1. Cryptographic Boolean functions and applications

    CERN Document Server

    Cusick, Thomas W

    2009-01-01

    Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...

  2. Geometric Operators on Boolean Functions

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter

    In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...

  3. Reliable dynamics in Boolean and continuous networks

    International Nuclear Information System (INIS)

    Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P

    2012-01-01

    We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)

  4. SETS, Boolean Manipulation for Network Analysis and Fault Tree Analysis

    International Nuclear Information System (INIS)

    Worrell, R.B.

    1985-01-01

    Description of problem or function - SETS is used for symbolic manipulation of set (or Boolean) equations, particularly the reduction of set equations by the application of set identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze non-coherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. 4. Method of solution - The SETS program is used to read, interpret, and execute the statements of a SETS user program which is an algorithm that specifies the particular manipulations to be performed and the order in which they are to occur. 5. Restrictions on the complexity of the problem - Any properly formed set equation involving the set operations of union, intersection, and complement is acceptable for processing by the SETS program. Restrictions on the size of a set equation that can be processed are not absolute but rather are related to the number of terms in the disjunctive normal form of the equation, the number of literals in the equation, etc. Nevertheless, set equations involving thousands and even hundreds of thousands of terms can be processed successfully

  5. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  6. Free Boolean Topological Groups

    Directory of Open Access Journals (Sweden)

    Ol’ga Sipacheva

    2015-11-01

    Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.

  7. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  8. Monotone Boolean functions

    International Nuclear Information System (INIS)

    Korshunov, A D

    2003-01-01

    Monotone Boolean functions are an important object in discrete mathematics and mathematical cybernetics. Topics related to these functions have been actively studied for several decades. Many results have been obtained, and many papers published. However, until now there has been no sufficiently complete monograph or survey of results of investigations concerning monotone Boolean functions. The object of this survey is to present the main results on monotone Boolean functions obtained during the last 50 years

  9. Boolean integral calculus

    Science.gov (United States)

    Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne

    1988-01-01

    The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.

  10. Properties of Boolean orthoposets

    Science.gov (United States)

    Tkadlec, Josef

    1993-10-01

    A Boolean orthoposet is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0, then a ⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets. Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough and, on the other hand, enjoys some properties of Boolean algebras. In this paper we summarize results on Boolean orthoposets involving distributivity, set representation, properties of the state space, existence of Jauch-Piron states, and results concerning orthocompleteness and completion.

  11. To Boolean or Not To Boolean.

    Science.gov (United States)

    Hildreth, Charles R.

    1983-01-01

    This editorial addresses the issue of whether or not to provide free-text, keyword/boolean search capabilities in the information retrieval mechanisms of online public access catalogs and discusses online catalogs developed prior to 1980--keyword searching, phrase searching, and precoordination and postcoordination. (EJS)

  12. A GA-P algorithm to automatically formulate extended Boolean queries for a fuzzy information retrieval system

    OpenAIRE

    Cordón García, Oscar; Moya Anegón, Félix de; Zarco Fernández, Carmen

    2000-01-01

    [ES] Although the fuzzy retrieval model constitutes a powerful extension of the boolean one, being able to deal with the imprecision and subjectivity existing in the Information Retrieval process, users are not usually able to express their query requirements in the form of an extended boolean query including weights. To solve this problem, different tools to assist the user in the query formulation have been proposed. In this paper, the genetic algorithm-programming technique is considered t...

  13. The spruce budworm and forest: a qualitative comparison of ODE and Boolean models

    Directory of Open Access Journals (Sweden)

    Raina Robeva

    2016-01-01

    Full Text Available Boolean and polynomial models of biological systems have emerged recently as viable companions to differential equations models. It is not immediately clear however whether such models are capable of capturing the multi-stable behaviour of certain biological systems: this behaviour is often sensitive to changes in the values of the model parameters, while Boolean and polynomial models are qualitative in nature. In the past few years, Boolean models of gene regulatory systems have been shown to capture multi-stability at the molecular level, confirming that such models can be used to obtain information about the system’s qualitative dynamics when precise information regarding its parameters may not be available. In this paper, we examine Boolean approximations of a classical ODE model of budworm outbreaks in a forest and show that these models exhibit a qualitative behaviour consistent with that derived from the ODE models. In particular, we demonstrate that these models can capture the bistable nature of insect population outbreaks, thus showing that Boolean models can be successfully utilized beyond the molecular level.

  14. Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems

    International Nuclear Information System (INIS)

    Piriou, Pierre-Yves; Faure, Jean-Marc; Lesage, Jean-Jacques

    2017-01-01

    This paper presents a modeling framework that permits to describe in an integrated manner the structure of the critical system to analyze, by using an enriched fault tree, the dysfunctional behavior of its components, by means of Markov processes, and the reconfiguration strategies that have been planned to ensure safety and availability, with Moore machines. This framework has been developed from BDMP (Boolean logic Driven Markov Processes), a previous framework for dynamic repairable systems. First, the contribution is motivated by pinpointing the limitations of BDMP to model complex reconfiguration strategies and the failures of the control of these strategies. The syntax and semantics of GBDMP (Generalized Boolean logic Driven Markov Processes) are then formally defined; in particular, an algorithm to analyze the dynamic behavior of a GBDMP model is developed. The modeling capabilities of this framework are illustrated on three representative examples. Last, qualitative and quantitative analysis of GDBMP models highlight the benefits of the approach.

  15. Optimal stabilization of Boolean networks through collective influence

    Science.gov (United States)

    Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming

    2018-03-01

    Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.

  16. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  17. Evaluating the Performance of Multiple Classifier Systems: A Matrix Algebra Representation of Boolean Fusion Rules

    National Research Council Canada - National Science Library

    Hill, Justin

    2003-01-01

    ...., a logical OR, AND, or a majority vote of the classifiers in the system). An established method for evaluating a classifier is measuring some aspect of its Receiver Operating Characteristic (ROC...

  18. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  19. Summing Boolean Algebras

    Institute of Scientific and Technical Information of China (English)

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

    2004-01-01

    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  20. Soliton equations and Hamiltonian systems

    CERN Document Server

    Dickey, L A

    2002-01-01

    The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau

  1. Stability of Boolean multilevel networks.

    Science.gov (United States)

    Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir

    2012-09-01

    The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.

  2. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    Science.gov (United States)

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for

  3. Systems of Inhomogeneous Linear Equations

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  4. The respiratory system in equations

    CERN Document Server

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  5. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  6. Computing preimages of Boolean networks.

    Science.gov (United States)

    Klotz, Johannes; Bossert, Martin; Schober, Steffen

    2013-01-01

    In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

  7. Logical Attractors: a Boolean Approach to the Dynamics of Psychosis

    Science.gov (United States)

    Kupper, Z.; Hoffmann, H.

    A Boolean modeling approach to attractors in the dynamics of psychosis is presented: Kinetic Logic, originating from R. Thomas, describes systems on an intermediate level between a purely verbal, qualitative description and a description using nonlinear differential equations. With this method we may model impact, feedback and temporal evolution, as well as analyze the resulting attractors. In our previous research the method has been applied to general and more specific questions in the dynamics of psychotic disorders. In this paper a model is introduced that describes different dynamical patterns of chronic psychosis in the context of vocational rehabilitation. It also shows to be useful in formulating and exploring possible treatment strategies. Finally, some of the limitations and benefits of Kinetic Logic as a modeling tool for psychology and psychiatry are discussed.

  8. Synchronization in an array of coupled Boolean networks

    International Nuclear Information System (INIS)

    Li, Rui; Chu, Tianguang

    2012-01-01

    This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results. -- Highlights: ► We analytically study synchronization in an array of coupled Boolean networks. ► The study is based on the algebraic representations of logical dynamics. ► A necessary and sufficient algebraic criterion for synchronization is established. ► It reveals some basic properties of a synchronized array of Boolean networks. ► A large mismatch between two coupled networks may result in the loss of synchrony.

  9. Identification of control targets in Boolean molecular network models via computational algebra.

    Science.gov (United States)

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  10. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  11. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  12. On the Computation of Comprehensive Boolean Gröbner Bases

    Science.gov (United States)

    Inoue, Shutaro

    We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.

  13. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate

    International Nuclear Information System (INIS)

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-01-01

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. (paper)

  14. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    Science.gov (United States)

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  15. Boolean-Valued Belief Functions

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2002-01-01

    Roč. 31, č. 2 (2002), s. 153-181 ISSN 0308-1079 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : Dempster-Schafer theory * Boolean algebra Subject RIV: BA - General Mathematics Impact factor: 0.241, year: 2002

  16. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation.

    Science.gov (United States)

    Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing

    2017-09-19

    The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.

  17. Lie symmetries for systems of evolution equations

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  18. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  19. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    Science.gov (United States)

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  20. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    Science.gov (United States)

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-08-29

    Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential

  1. Optical programmable Boolean logic unit.

    Science.gov (United States)

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  2. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  3. Boolean gates on actin filaments

    International Nuclear Information System (INIS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  4. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  5. Quantum algorithms for testing Boolean functions

    Directory of Open Access Journals (Sweden)

    Erika Andersson

    2010-06-01

    Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.

  6. GLOBAL CONVERGENCE FOR THE XOR BOOLEAN NETWORKS

    OpenAIRE

    Ho, Juei-Ling

    2009-01-01

    Shih and Ho have proved a global convergent theorem for boolean network: if a map from $\\{0,1\\}^{n}$ to itself defines a boolean network has the conditions: (1) each column of the discrete Jacobian matrix of each element of $\\{0,1\\}^{n}$ is either a unit vector or a zero vector; (2) all the boolean eigenvalues of the discrete Jacobian matrix of this map evaluated at each element of $\\{0,1\\}^{n}$ are zero, then it has a unique fixed point and this boolean network is global convergent to the fi...

  7. Rational Verification in Iterated Electric Boolean Games

    Directory of Open Access Journals (Sweden)

    Youssouf Oualhadj

    2016-07-01

    Full Text Available Electric boolean games are compact representations of games where the players have qualitative objectives described by LTL formulae and have limited resources. We study the complexity of several decision problems related to the analysis of rationality in electric boolean games with LTL objectives. In particular, we report that the problem of deciding whether a profile is a Nash equilibrium in an iterated electric boolean game is no harder than in iterated boolean games without resource bounds. We show that it is a PSPACE-complete problem. As a corollary, we obtain that both rational elimination and rational construction of Nash equilibria by a supervising authority are PSPACE-complete problems.

  8. Confluence of an extension of combinatory logic by Boolean constants

    DEFF Research Database (Denmark)

    Czajka, Łukasz

    2017-01-01

    We show confluence of a conditional term rewriting system CL-pc1, which is an extension of Combinatory Logic by Boolean constants. This solves problem 15 from the RTA list of open problems. The proof has been fully formalized in the Coq proof assistant....

  9. Parallel object-oriented term rewriting : the booleans

    NARCIS (Netherlands)

    Rodenburg, P.H.; Vrancken, J.L.M.

    As a first case study in parallel object-oriented term rewriting, we give two implementations of term rewriting algorithms for boolean terms, using the parallel object-oriented features of the language Pool-T. The term rewriting systems are specified in the specification formalism

  10. Introduction to differential equations with dynamical systems

    CERN Document Server

    Campbell, Stephen L

    2011-01-01

    Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

  11. On Boolean functions with generalized cryptographic properties

    NARCIS (Netherlands)

    Braeken, A.; Nikov, V.S.; Nikova, S.I.; Preneel, B.; Canteaut, A.; Viswanathan, K.

    2004-01-01

    By considering a new metric, we generalize cryptographic properties of Boolean functions such as resiliency and propagation characteristics. These new definitions result in a better understanding of the properties of Boolean functions and provide a better insight in the space defined by this metric.

  12. Particle Systems and Partial Differential Equations I

    CERN Document Server

    Gonçalves, Patricia

    2014-01-01

    This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012.  The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds.  The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...

  13. Message passing for quantified Boolean formulas

    International Nuclear Information System (INIS)

    Zhang, Pan; Ramezanpour, Abolfazl; Zecchina, Riccardo; Zdeborová, Lenka

    2012-01-01

    We introduce two types of message passing algorithms for quantified Boolean formulas (QBF). The first type is a message passing based heuristics that can prove unsatisfiability of the QBF by assigning the universal variables in such a way that the remaining formula is unsatisfiable. In the second type, we use message passing to guide branching heuristics of a Davis–Putnam–Logemann–Loveland (DPLL) complete solver. Numerical experiments show that on random QBFs our branching heuristics give robust exponential efficiency gain with respect to state-of-the-art solvers. We also manage to solve some previously unsolved benchmarks from the QBFLIB library. Apart from this, our study sheds light on using message passing in small systems and as subroutines in complete solvers

  14. Synthesizing biomolecule-based Boolean logic gates.

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  15. Multipath Detection Using Boolean Satisfiability Techniques

    Directory of Open Access Journals (Sweden)

    Fadi A. Aloul

    2011-01-01

    Full Text Available A new technique for multipath detection in wideband mobile radio systems is presented. The proposed scheme is based on an intelligent search algorithm using Boolean Satisfiability (SAT techniques to search through the uncertainty region of the multipath delays. The SAT-based scheme utilizes the known structure of the transmitted wideband signal, for example, pseudo-random (PN code, to effectively search through the entire space by eliminating subspaces that do not contain a possible solution. The paper presents a framework for modeling the multipath detection problem as a SAT application. It also provides simulation results that demonstrate the effectiveness of the proposed scheme in detecting the multipath components in frequency-selective Rayleigh fading channels.

  16. Synthesizing Biomolecule-based Boolean Logic Gates

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  17. Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks

    Directory of Open Access Journals (Sweden)

    Stalin Muñoz

    2018-03-01

    Full Text Available Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as “clause learning” considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.

  18. A hierarchy of systems of nonlinear equations

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1985-01-01

    Imposing isospectral invariance for the one-dimensional Dirac operator yields an infinite hierarchy of systems of chiral invariant nonlinear partial differential equations. The same system is obtained through a Lax pair construction and finally a formulation in terms of Kac-Moody generators is given. (Author)

  19. Mining TCGA data using Boolean implications.

    Directory of Open Access Journals (Sweden)

    Subarna Sinha

    Full Text Available Boolean implications (if-then rules provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression from the glioblastoma (GBM and ovarian serous cystadenoma (OV data sets from The Cancer Genome Atlas (TCGA. We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/.

  20. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  1. On A System of Rational Difference Equation

    OpenAIRE

    Din Qamar

    2014-01-01

    In this paper, we study local asymptotic stability, global character and periodic nature of solutions of the system of rational difference equations given by xn+1= , yn=, n=0, 1,…, where the parameters a; b; c; d; e; f ∊ (0; ∞), and with initial conditions x0; y0 ∊ (0; ∞). Some numerical examples are given to illustrate our results.

  2. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2016-01-01

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters

  3. Random networks of Boolean cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Enrique [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author).

  4. Random networks of Boolean cellular automata

    International Nuclear Information System (INIS)

    Miranda, Enrique

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author)

  5. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms

  6. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-29

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.

  7. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  8. On A System of Rational Difference Equation

    Directory of Open Access Journals (Sweden)

    Din Qamar

    2014-06-01

    Full Text Available In this paper, we study local asymptotic stability, global character and periodic nature of solutions of the system of rational difference equations given by xn+1= , yn=, n=0, 1,…, where the parameters a; b; c; d; e; f ∊ (0; ∞, and with initial conditions x0; y0 ∊ (0; ∞. Some numerical examples are given to illustrate our results.

  9. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    1978-01-01

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)

  10. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)

  11. Integrable systems of partial differential equations determined by structure equations and Lax pair

    International Nuclear Information System (INIS)

    Bracken, Paul

    2010-01-01

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  12. Introduction to linear systems of differential equations

    CERN Document Server

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  13. Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space

    International Nuclear Information System (INIS)

    Rodriguez D, R.

    2007-01-01

    In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)

  14. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  15. Structural equation modeling and natural systems

    Science.gov (United States)

    Grace, James B.

    2006-01-01

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

  16. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  17. Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks

    Science.gov (United States)

    Gong, Xinwei

    This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing

  18. Algebraic limit cycles in polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  19. Beyond-CMOS Device Benchmarking for Boolean and Non-Boolean Logic Applications

    OpenAIRE

    Pan, Chenyun; Naeemi, Azad

    2017-01-01

    The latest results of benchmarking research are presented for a variety of beyond-CMOS charge- and spin-based devices. In addition to improving the device-level models, several new device proposals and a few majorly modified devices are investigated. Deep pipelining circuits are employed to boost the throughput of low-power devices. Furthermore, the benchmarking methodology is extended to interconnect-centric analyses and non-Boolean logic applications. In contrast to Boolean circuits, non-Bo...

  20. A complexity theory based on Boolean algebra

    DEFF Research Database (Denmark)

    Skyum, Sven; Valiant, Leslie

    1985-01-01

    A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...

  1. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  2. Boolean Queries Optimization by Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  3. Practical algorithms for linear boolean-width

    NARCIS (Netherlands)

    ten Brinke, C.B.; van Houten, F.J.P.; Bodlaender, H.L.

    2015-01-01

    In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the

  4. Practical algorithms for linear Boolean-width

    NARCIS (Netherlands)

    ten Brinke, C.B.; van Houten, F.J.P.; Bodlaender, H.L.

    2015-01-01

    In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the

  5. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    Science.gov (United States)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  6. Business resilience system (BRS) driven through Boolean, fuzzy logics and cloud computation real and near real time analysis and decision making system

    CERN Document Server

    Zohuri, Bahman

    2017-01-01

    This book provides a technical approach to a Business Resilience System with its Risk Atom and Processing Data Point based on fuzzy logic and cloud computation in real time. Its purpose and objectives define a clear set of expectations for Organizations and Enterprises so their network system and supply chain are totally resilient and protected against cyber-attacks, manmade threats, and natural disasters. These enterprises include financial, organizational, homeland security, and supply chain operations with multi-point manufacturing across the world. Market shares and marketing advantages are expected to result from the implementation of the system. The collected information and defined objectives form the basis to monitor and analyze the data through cloud computation, and will guarantee the success of their survivability's against any unexpected threats. This book will be useful for advanced undergraduate and graduate students in the field of computer engineering, engineers that work for manufacturing com...

  7. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  8. The value of less connected agents in Boolean networks

    Science.gov (United States)

    Epstein, Daniel; Bazzan, Ana L. C.

    2013-11-01

    In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality

  9. The 'strength' of a system of differential equations

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1977-01-01

    A review of Einstein's concept of ''strength'' of a system of differential equations is given. As an example the strength of the Einstein-Maxwell equations for non-null Maxwell field is calculated and shown to be the same as for the pure vacuum Einstein equations. (auth.)

  10. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  11. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor

    2016-07-28

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.

  12. Boolean representations of simplicial complexes and matroids

    CERN Document Server

    Rhodes, John

    2015-01-01

    This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context.   Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean represent...

  13. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Science.gov (United States)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  14. Dirac equations for generalised Yang-Mills systems

    International Nuclear Information System (INIS)

    Lechtenfeld, O.; Nahm, W.; Tchrakian, D.H.

    1985-06-01

    We present Dirac equations in 4p dimensions for the generalised Yang-Mills (GYM) theories introduced earlier. These Dirac equations are related to the self-duality equations of the GYM and are checked to be elliptic in a 'BPST' background. In this background these Dirac equations are integrated exactly. The possibility of imposing supersymmetry in the GYM-Dirac system is investigated, with negative results. (orig.)

  15. Unlimited multistability and Boolean logic in microbial signalling

    DEFF Research Database (Denmark)

    Kothamachu, Varun B; Feliu, Elisenda; Cardelli, Luca

    2015-01-01

    The ability to map environmental signals onto distinct internal physiological states or programmes is critical for single-celled microbes. A crucial systems dynamics feature underpinning such ability is multistability. While unlimited multistability is known to arise from multi-site phosphorylation...... seen in the signalling networks of eukaryotic cells, a similarly universal mechanism has not been identified in microbial signalling systems. These systems are generally known as two-component systems comprising histidine kinase (HK) receptors and response regulator proteins engaging in phosphotransfer...... further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two...

  16. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have...... description. In order to identify the parameters, a Maximum likelihood estimation method is used together with a simplified truncated second order filter. Because of the continuity feature of the predictor equation, two numerical integration methods, called the Odeint and the Discretization method...

  17. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation

    Directory of Open Access Journals (Sweden)

    Mostafa M.A. Khater

    Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions

  18. The flow equation approach to many-particle systems

    CERN Document Server

    Kehrein, Stefan; Fujimori, A; Varma, C; Steiner, F

    2006-01-01

    This self-contained monograph addresses the flow equation approach to many-particle systems. The flow equation approach consists of a sequence of infinitesimal unitary transformations and is conceptually similar to renormalization and scaling methods. Flow equations provide a framework for analyzing Hamiltonian systems where these conventional many-body techniques fail. The text first discusses the general ideas and concepts of the flow equation method. In a second part these concepts are illustrated with various applications in condensed matter theory including strong-coupling problems and non-equilibrium systems. The monograph is accessible to readers familiar with graduate- level solid-state theory.

  19. Robust Satisfiability of Systems of Equations

    Czech Academy of Sciences Publication Activity Database

    Franek, Peter; Krčál, M.

    2015-01-01

    Roč. 62, č. 4 (2015), Article 26 ISSN 0004-5411 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA MŠk(CZ) LL1201 Institutional support: RVO:67985807 Keywords : nonlinear equations * satisfability * undecibility * topological extensions * uncertainty * robustness Subject RIV: IN - Informatics, Computer Science Impact factor: 1.803, year: 2015

  20. Conservation properties and potential systems of vorticity-type equations

    International Nuclear Information System (INIS)

    Cheviakov, Alexei F.

    2014-01-01

    Partial differential equations of the form divN=0, N t +curl M=0 involving two vector functions in R 3 depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R 4 (t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations, it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented

  1. Analysis and control of Boolean networks a semi-tensor product approach

    CERN Document Server

    Cheng, Daizhan; Li, Zhiqiang

    2010-01-01

    This book presents a new approach to the investigation of Boolean control networks, using the semi-tensor product (STP), which can express a logical function as a conventional discrete-time linear system. This makes it possible to analyze basic control problems.

  2. User Practices in Keyword and Boolean Searching on an Online Public Access Catalog.

    Science.gov (United States)

    Ensor, Pat

    1992-01-01

    Discussion of keyword and Boolean searching techniques in online public access catalogs (OPACs) focuses on a study conducted at Indiana State University that examined users' attitudes toward searching on NOTIS (Northwestern Online Total Integrated System). Relevant literature is reviewed, and implications for library instruction are suggested. (17…

  3. A New Algorithm for System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Abdujabar Rasulov

    2014-01-01

    Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

  4. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations in Holonomic Systems with Unilateral Constraints

    International Nuclear Information System (INIS)

    Jia Liqun; Cui Jinchao; Zhang Yaoyu; Luo Shaokai

    2009-01-01

    Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomic mechanic systems with unilateral constraints are established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups are also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results. (general)

  5. Large Sets in Boolean and Non-Boolean Groups and Topology

    Directory of Open Access Journals (Sweden)

    Ol’ga V. Sipacheva

    2017-10-01

    Full Text Available Various notions of large sets in groups, including the classical notions of thick, syndetic, and piecewise syndetic sets and the new notion of vast sets in groups, are studied with emphasis on the interplay between such sets in Boolean groups. Natural topologies closely related to vast sets are considered; as a byproduct, interesting relations between vast sets and ultrafilters are revealed.

  6. Vector Boolean Functions: applications in symmetric cryptography

    OpenAIRE

    Álvarez Cubero, José Antonio

    2015-01-01

    Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa...

  7. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  8. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  9. Modulation equations for spatially periodic systems: derivation and solutions

    NARCIS (Netherlands)

    Schielen, R.; Doelman, A.

    1996-01-01

    We study a class of partial dierential equations in one spatial dimension, which can be seen as model equations for the analysis of pattern formation in physical systems dened on unbounded, weakly oscillating domains. We perform a linear and weakly nonlinear stability analysis for solutions that

  10. Undergraduate Students' Mental Operations in Systems of Differential Equations

    Science.gov (United States)

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  11. Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes

    International Nuclear Information System (INIS)

    Liu, M; Bassler, K E

    2011-01-01

    Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.

  12. An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks

    Science.gov (United States)

    Zheng, Desheng; Yang, Guowu; Li, Xiaoyu; Wang, Zhicai; Liu, Feng; He, Lei

    2013-01-01

    Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is significantly faster in computing attractors for empirical experimental systems. Availability The software package is available at https://sites.google.com/site/desheng619/download. PMID:23585840

  13. Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming.

    Science.gov (United States)

    Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C

    2016-11-01

    Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  15. Boolean orthoposets and two-valued states on them

    Science.gov (United States)

    Tkadlec, Josef

    1992-06-01

    A Boolean orthoposet (see e.g. [2]) is the orthoposet P fulfilling the following condition: If a, b ∈ P and a ∧ b = 0 then a⊥ b. This condition seems to be a sound generalization of distributivity in orthoposets (see e.g. [8]). Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough (see [4,3]) and on the other hand, enjoys some properties of Boolean algebras [4,8,5]. In quantum logic theory an important role is played by so-called Jauch-Piron states [1,6,7]. In this paper we clarify the connection between Boolean orthoposets and orthoposets with "enough" two-valued Jauch-Piron states. Further, we obtain a characterization of Boolean orthoposets in terms of two-valued states.

  16. On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations.

    Science.gov (United States)

    Dubrovin, Boris; Grava, Tamara; Klein, Christian; Moro, Antonio

    2015-01-01

    We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P[Formula: see text]) equation or its fourth-order analogue P[Formula: see text]. As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.

  17. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Directory of Open Access Journals (Sweden)

    Shah Imran

    2011-07-01

    Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our

  18. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  19. Convex solutions of systems arising from Monge-Ampere equations

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    2009-10-01

    Full Text Available We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.

  20. Stochastic equations for complex systems theoretical and computational topics

    CERN Document Server

    Bessaih, Hakima

    2015-01-01

    Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics.  The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality.  This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations ...

  1. FORSIM-6, Automatic Solution of Coupled Differential Equation System

    International Nuclear Information System (INIS)

    Carver, M.B.; Stewart, D.G.; Blair, J.M.; Selander, W.N.

    1983-01-01

    1 - Description of problem or function: The FORSIM program is a versatile package which automates the solution of coupled differential equation systems. The independent variables are time, and up to three space coordinates, and the equations may be any mixture of partial and/or ordinary differential equations. The philosophy of the program is to provide a tool which will solve a system of differential equations for a user who has basic but unspecialized knowledge of numerical analysis and FORTRAN. The equations to be solved, together with the initial conditions and any special instructions, may be specified by the user in a single FORTRAN subroutine, although he may write a number of routines if this is more suitable. These are then loaded with the control routines, which perform the solution and any requested input and output. 2 - Method of solution: Partial differential equations are automatically converted into sets of coupled ordinary differential equations by variable order discretization in the spatial dimensions. These and other ordinary differential equations are integrated continuously in time using efficient variable order, variable step, error-controlled algorithms

  2. Systems of quasilinear equations and their applications to gas dynamics

    CERN Document Server

    Roždestvenskiĭ, B L; Schulenberger, J R

    1983-01-01

    This book is essentially a new edition, revised and augmented by results of the last decade, of the work of the same title published in 1968 by "Nauka." It is devoted to mathematical questions of gas dynamics. Topics covered include Foundations of the Theory of Systems of Quasilinear Equations of Hyperbolic Type in Two Independent Variables; Classical and Generalized Solutions of One-Dimensional Gas Dynamics; Difference Methods for Solving the Equations of Gas Dynamics; and Generalized Solutions of Systems of Quasilinear Equations of Hyperbolic Type.

  3. Null controllability of a cascade system of Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Marcos Lopez-Garcia

    2016-03-01

    Full Text Available This article presents a control problem for a cascade system of two linear N-dimensional Schrodinger equations. We address the problem of null controllability by means of a control supported in a region not satisfying the classical geometrical control condition. The proof is based on the application of a Carleman estimate with degenerate weights to each one of the equations and a careful analysis of the system in order to prove null controllability with only one control force.

  4. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    Science.gov (United States)

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  5. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.

  6. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  7. Optical reversible programmable Boolean logic unit.

    Science.gov (United States)

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  8. Boolean Operations with Prism Algebraic Patches

    Science.gov (United States)

    Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi

    2009-01-01

    In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262

  9. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  10. Some exact solutions to the potential Kadomtsev-Petviashvili equation and to a system of shallow water wave equations

    International Nuclear Information System (INIS)

    Inan, Ibrahim E.; Kaya, Dogan

    2006-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found

  11. Adiabatically steered open quantum systems: Master equation and optimal phase

    International Nuclear Information System (INIS)

    Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.

    2010-01-01

    We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.

  12. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  13. Exact solutions for a system of nonlinear plasma fluid equations

    International Nuclear Information System (INIS)

    Prahovic, M.G.; Hazeltine, R.D.; Morrison, P.J.

    1991-04-01

    A method is presented for constructing exact solutions to a system of nonlinear plasma fluid equations that combines the physics of reduced magnetohydrodynamics and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation. The system has nonlinearities that take the form of Poisson brackets involving the fluid field variables. The method relies on modifying a class of simple equilibrium solutions, but no approximations are made. A distinguishing feature is that the original nonlinear problem is reduced to the solution of two linear partial differential equations, one fourth-order and the other first-order. The first-order equation has Hamiltonian characteristics and is easily integrated, supplying information about the general structure of solutions. 6 refs

  14. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  15. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  16. Characteristic Equation of the Modified Smith predictor to MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jorge A. Herrera-Cuartas

    2013-11-01

    Full Text Available The delay in control systems is a feature frequently in real systems due to the transport of objects or information, a series connection of multiple systems or own processing and sensors delay, among others. Recently there have been several studies to identify the external delay MIMO systems, these works are focused on identification and on-line control of MIMO systems and use a multimodel structure based on modified Smith predictor using different search method. It is clear that for the implementation of the algorithm, and to obtain the convergence and stability analysis, it is necessary to have closed-loop equations of modified Smith predictor. However, in these works is not presented the analytical procedure, not be the main object, displaying only the closed loop equations without the procedure for obtaining it. Therefore, to respond, in this paper, we present an analytical way to derive the closed-loop equations of a modified Smith predictor.  

  17. Selected equation of state in the acentric factor system

    International Nuclear Information System (INIS)

    Schreiber, D.R.; Pitzer, K.S.

    1988-06-01

    A new equation of state in the acentric factor system is developed on the basis of high-precision data. The region in critical temperature T/sub r/, critical density P/sub r/ space is identified where there is good agreement as well as the regions of significant departures. The equation fits very well in the critical region. 10 refs., 6 figs., 3 tabs

  18. The action principle for a system of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo (Brazil); Kupriyanov, V G [Instituto de FIsica, Universidade de Sao Paulo (Brazil)

    2007-08-17

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples.

  19. The action principle for a system of differential equations

    International Nuclear Information System (INIS)

    Gitman, D M; Kupriyanov, V G

    2007-01-01

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples

  20. On the stability of some systems of exponential difference equations

    Directory of Open Access Journals (Sweden)

    N. Psarros

    2018-01-01

    Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.

  1. A transition calculus for Boolean functions. [logic circuit analysis

    Science.gov (United States)

    Tucker, J. H.; Bennett, A. W.

    1974-01-01

    A transition calculus is presented for analyzing the effect of input changes on the output of logic circuits. The method is closely related to the Boolean difference, but it is more powerful. Both differentiation and integration are considered.

  2. Algebraic model checking for Boolean gene regulatory networks.

    Science.gov (United States)

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  3. Lyapunov equation for infinite-dimensional discrete bilinear systems

    International Nuclear Information System (INIS)

    Costa, O.L.V.; Kubrusly, C.S.

    1991-03-01

    Mean-square stability for discrete systems requires that uniform convergence is preserved between input and state correlation sequences. Such a convergence preserving property holds for an infinite-dimensional bilinear system if and only if the associate Lyapunov equation has a unique strictly positive solution. (author)

  4. On Robust Stability of Systems of Differential-Algebraic Equations

    Directory of Open Access Journals (Sweden)

    A. Shcheglova

    2016-06-01

    The sufficient conditions of robust stability for index-one and index-two systems are obtained. We use the values of real and complex stability radii obtained for system of ordinary differential equations solved with respect to the derivatives. We consider the example illustrating the obtained results.

  5. Nonlinear threshold Boolean automata networks and phase transitions

    OpenAIRE

    Demongeot, Jacques; Sené, Sylvain

    2010-01-01

    In this report, we present a formal approach that addresses the problem of emergence of phase transitions in stochastic and attractive nonlinear threshold Boolean automata networks. Nonlinear networks considered are informally defined on the basis of classical stochastic threshold Boolean automata networks in which specific interaction potentials of neighbourhood coalition are taken into account. More precisely, specific nonlinear terms compose local transition functions that define locally t...

  6. Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations

    International Nuclear Information System (INIS)

    Qu Changzheng; Kang Jing

    2008-01-01

    In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.

  7. THE METHOD OF CONSTRUCTING A BOOLEAN FORMULA OF A POLYGON IN THE DISJUNCTIVE NORMAL FORM

    Directory of Open Access Journals (Sweden)

    A. A. Butov

    2014-01-01

    Full Text Available The paper focuses on finalizing the method of finding a polygon Boolean formula in disjunctive normal form, described in the previous article [1]. An improved method eliminates the drawback asso-ciated with the existence of a class of problems for which the solution is only approximate. The pro-posed method always allows to find an exact solution. The method can be used, in particular, in the systems of computer-aided design of integrated circuits topology.

  8. Poincare map for some polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Varin, V P

    2004-01-01

    One approach to the classical problem of distinguishing between a centre and a focus for a system of differential equations with polynomial right-hand sides in the plane is discussed. For a broad class of such systems necessary and sufficient conditions for a centre are expressed in terms of equations in variations of higher order. By contrast with the existing methods of investigation, attention is concentrated on the explicit calculation of the asymptotic behaviour of the Poincare map rather than on finding sufficient centre conditions as such; this also enables one to study bifurcations of birth of arbitrarily strongly degenerate cycles.

  9. Multiparameter extrapolation and deflation methods for solving equation systems

    Directory of Open Access Journals (Sweden)

    A. J. Hughes Hallett

    1984-01-01

    Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

  10. Convergence criteria for systems of nonlinear elliptic partial differential equations

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1986-01-01

    This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis

  11. Prolongation Loop Algebras for a Solitonic System of Equations

    Directory of Open Access Journals (Sweden)

    Maria A. Agrotis

    2006-11-01

    Full Text Available We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.

  12. PATHLOGIC-S: a scalable Boolean framework for modelling cellular signalling.

    Directory of Open Access Journals (Sweden)

    Liam G Fearnley

    Full Text Available Curated databases of signal transduction have grown to describe several thousand reactions, and efficient use of these data requires the development of modelling tools to elucidate and explore system properties. We present PATHLOGIC-S, a Boolean specification for a signalling model, with its associated GPL-licensed implementation using integer programming techniques. The PATHLOGIC-S specification has been designed to function on current desktop workstations, and is capable of providing analyses on some of the largest currently available datasets through use of Boolean modelling techniques to generate predictions of stable and semi-stable network states from data in community file formats. PATHLOGIC-S also addresses major problems associated with the presence and modelling of inhibition in Boolean systems, and reduces logical incoherence due to common inhibitory mechanisms in signalling systems. We apply this approach to signal transduction networks including Reactome and two pathways from the Panther Pathways database, and present the results of computations on each along with a discussion of execution time. A software implementation of the framework and model is freely available under a GPL license.

  13. Refined Fuchs inequalities for systems of linear differential equations

    International Nuclear Information System (INIS)

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  14. Existence of a coupled system of fractional differential equations

    International Nuclear Information System (INIS)

    Ibrahim, Rabha W.; Siri, Zailan

    2015-01-01

    We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator

  15. Some overdetermined systems of complex partial differential equations

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-01-01

    In this paper we extend some properties of analytic functions on several complex variables to solutions of overdetermined systems of complex partial differential equations. It is proved that many global properties of analytic functions are true for solutions of the Vekua system in special cases. The relation between analytic functions and solutions of quasi-linear systems is discussed in the paper. (author). 8 refs

  16. Existence of a coupled system of fractional differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Rabha W. [Multimedia unit, Department of Computer System and Technology Faculty of Computer Science & IT, University of Malaya, 50603 Kuala Lumpur (Malaysia); Siri, Zailan [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.

  17. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    Science.gov (United States)

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  18. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  19. Semilinear hyperbolic systems and equations with singular initial data

    International Nuclear Information System (INIS)

    Gramchev, T.

    1991-07-01

    We study the weak limits of solutions u ε (t, ·) for ε→0 to semilinear strictly hyperbolic systems and wave equations with initial data u ε (0, ·) approximating a distribution κ, 0 ε (t, ·) for ε→0 exists. 13 refs

  20. Local first integrals for systems of differential equations

    International Nuclear Information System (INIS)

    Zhang Xiang

    2003-01-01

    The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

  1. Almost periodic solutions to systems of parabolic equations

    Directory of Open Access Journals (Sweden)

    Janpou Nee

    1994-01-01

    Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.

  2. Consistency of a system of equations: What does that mean?

    NARCIS (Netherlands)

    Still, Georg J.; Kern, Walter; Koelewijn, Jaap; Bomhoff, M.J.

    2010-01-01

    The concept of (structural) consistency also called structural solvability is an important basic tool for analyzing the structure of systems of equations. Our aim is to provide a sound and practically relevant meaning to this concept. The implications of consistency are expressed in terms of

  3. Variables and equations in hybrid systems with structural changes

    NARCIS (Netherlands)

    Beek, van D.A.

    2001-01-01

    In many models of physical systems, structural changes are common. Such structural changes may cause a variable to change from a differential variable to an algebraic variable, or to a variable that is not defined by an equation at all. Most hybrid modelling languages either restrict the kind of

  4. On Coupled System of Navier-Stokes Equations and Temperature

    African Journals Online (AJOL)

    Dr. Anthony Peter

    ABSTRACT. This paper deals with the coupled system of Navier-Stokes equations and temperature (Thermohydraulics) in a strip in the class of spatially non-decaying (infinite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier- ...

  5. An equations of motion approach for open shell systems

    International Nuclear Information System (INIS)

    Yeager, D.L.; McKoy, V.

    1975-01-01

    A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given

  6. The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations

    International Nuclear Information System (INIS)

    Chen Jinbing; Qiao Zhijun

    2011-01-01

    A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.

  7. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed

    2012-09-06

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  8. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed; Zidan, Mohammed A.; Salama, Khaled N.

    2012-01-01

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  9. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. MINPACK-1, Subroutine Library for Nonlinear Equation System

    International Nuclear Information System (INIS)

    Garbow, Burton S.

    1984-01-01

    1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm

  11. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  12. Methodology for the hybrid solution of systems of differential equations

    International Nuclear Information System (INIS)

    Larrinaga, E.F.; Lopez, M.A.

    1993-01-01

    This work shows a general methodology of solution to systems of differential equations in hybrid computers. Taking into account this methodology, a mathematical model was elaborated. It offers wide possibilities of recording and handling the results on the basis of using the hybrid system IBM-VIDAC 1224 which the ISCTN has. It also presents the results gained when simulating a simple model of a nuclear reactor, which was used in the validation of the results of the computational model

  13. Detecting small attractors of large Boolean networks by function-reduction-based strategy.

    Science.gov (United States)

    Zheng, Qiben; Shen, Liangzhong; Shang, Xuequn; Liu, Wenbin

    2016-04-01

    Boolean networks (BNs) are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behaviour of systems. A central aim of Boolean-network analysis is to find attractors that correspond to various cellular states, such as cell types or the stage of cell differentiation. This problem is NP-hard and various algorithms have been used to tackle it with considerable success. The idea is that a singleton attractor corresponds to n consistent subsequences in the truth table. To find these subsequences, the authors gradually reduce the entire truth table of Boolean functions by extending a partial gene activity profile (GAP). Not only does this process delete inconsistent subsequences in truth tables, it also directly determines values for some nodes not extended, which means it can abandon the partial GAPs that cannot lead to an attractor as early as possible. The results of simulation show that the proposed algorithm can detect small attractors with length p = 4 in BNs of up to 200 nodes with average indegree K = 2.

  14. Differential equations, dynamical systems, and an introduction to chaos

    CERN Document Server

    Smale, Stephen; Devaney, Robert L

    2003-01-01

    Thirty years in the making, this revised text by three of the world''s leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra.The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of the Field''s Medal for his work in dynamical systems.* Developed by award-winning researchers and authors* Provides a rigorous yet accessible introduction to differential equations and dynamical systems* Includes bifurcation theory throughout* Contains numerous explorations for students to embark uponNEW IN THIS EDITION* New contemporary material and updated applications* Revisions throughout the text, including simplification...

  15. Multigrid solution of diffusion equations on distributed memory multiprocessor systems

    International Nuclear Information System (INIS)

    Finnemann, H.

    1988-01-01

    The subject is the solution of partial differential equations for simulation of the reactor core on high-performance computers. The parallelization and implementation of nodal multigrid diffusion algorithms on array and ring configurations of the DIRMU multiprocessor system is outlined. The particular iteration scheme employed in the nodal expansion method appears similarly efficient in serial and parallel environments. The combination of modern multi-level techniques with innovative hardware (vector-multiprocessor systems) provides powerful tools needed for real time simulation of physical systems. The parallel efficiencies range from 70 to 90%. The same performance is estimated for large problems on large multiprocessor systems being designed at present. (orig.) [de

  16. Randomly transitional phenomena in the system governed by Duffing's equation

    International Nuclear Information System (INIS)

    Ueda, Yoshisuke.

    1978-06-01

    This paper deals with turbulent or chaotic phenomena which occur in the system governed by Duffing's equation, a special type of 2-dimensional periodic systems. By using analog and digital computers, experiments are undertaken with special reference to the changes of attractors and of average power spectra of the random processes under the variation of the system parameters. On the basis of the experimental results, an outline of the random process is made clear. The results obtained in this paper will be applied to the phenomena of the same kind which occur in 3-dimensional autonomous systems. (author)

  17. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  18. Is Yang-Mills equation a totally integrable system. Lecture III

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1981-01-01

    Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety

  19. Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1999-01-01

    The combinational logic-level equivalence problem is to determine whether two given combinational circuits implement the same Boolean function. This problem arises in a number of CAD applications, for example when checking the correctness of incremental design changes (performed either manually...... or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...... similarities between the two circuits that are compared. These properties make BEDs suitable for verifying the equivalence of combinational circuits. BEDs can be seen as an intermediate representation between circuits (which are compact) and OBDDs (which are canonical).Based on a large number of combinational...

  20. Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.

    Science.gov (United States)

    Zhang, Jianming; Sclaroff, Stan

    2016-05-01

    We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.

  1. Advanced-Retarded Differential Equations in Quantum Photonic Systems

    Science.gov (United States)

    Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique

    2017-01-01

    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090

  2. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  3. A Boolean Approach to Airline Business Model Innovation

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...... innovation, introduce Boolean minimization methods to the field, and propose alternative business model activities to North American carriers striving for positive operating results....

  4. Refinement monoids, equidecomposability types, and boolean inverse semigroups

    CERN Document Server

    Wehrung, Friedrich

    2017-01-01

    Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.

  5. On Kolmogorov's superpositions and Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  6. Resummed memory kernels in generalized system-bath master equations

    International Nuclear Information System (INIS)

    Mavros, Michael G.; Van Voorhis, Troy

    2014-01-01

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics

  7. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  8. Modelling adversary actions against a nuclear material accounting system

    International Nuclear Information System (INIS)

    Lim, J.J.; Huebel, J.G.

    1979-01-01

    A typical nuclear material accounting system employing double-entry bookkeeping is described. A logic diagram is used to model the interactions of the accounting system and the adversary when he attempts to thwart it. Boolean equations are derived from the logic diagram; solution of these equations yields the accounts and records through which the adversary may disguise a SSNM theft and the collusion requirements needed to accomplish this feat. Some technical highlights of the logic diagram are also discussed

  9. Equation-free model reduction for complex dynamical systems

    International Nuclear Information System (INIS)

    Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.

    2010-01-01

    This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)

  10. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  11. Cellular solutions for the Poisson equation in extended systems

    International Nuclear Information System (INIS)

    Zhang, X.; Butler, W.H.; MacLaren, J.M.; van Ek, J.

    1994-01-01

    The Poisson equation for the electrostatic potential in a solid is solved using three different cellular techniques. The relative merits of these different approaches are discussed for two test charge densities for which an analytic solution to the Poisson equation is known. The first approach uses full-cell multiple-scattering theory and results in the famililar structure constant and multipole moment expansion. This solution is shown to be valid everywhere inside the cell, although for points outside the muffin-tin sphere but inside the cell the sums must be performed in the correct order to yield meaningful results. A modification of the multiple-scattering-theory approach yields a second method, a Green-function cellular method, which only requires the solution of a nearest-neighbor linear system of equations. A third approach, a related variational cellular method, is also derived. The variational cellular approach is shown to be the most accurate and reliable, and to have the best convergence in angular momentum of the three methods. Coulomb energies accurate to within 10 -6 hartree are easily achieved with the variational cellular approach, demonstrating the practicality of the approach in electronic structure calculations

  12. On the Road to Genetic Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.

    2007-01-01

    Roč. 17, č. 6 (2007), s. 675-688 ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007

  13. Document Ranking in E-Extended Boolean Logic

    Czech Academy of Sciences Publication Activity Database

    Holub, M.; Húsek, Dušan; Pokorný, J.

    1996-01-01

    Roč. 4, č. 7 (1996), s. 3-17 ISSN 1310-0513. [Annual Colloquium on IR Research /19./. Aberdeen, 08.04.1997-09.04.1997] R&D Projects: GA ČR GA102/94/0728 Keywords : information retrieval * document ranking * extended Boolean logic

  14. Free Boolean algebras over unions of two well orderings

    Czech Academy of Sciences Publication Activity Database

    Bonnet, R.; Faouzi, L.; Kubiś, Wieslaw

    2009-01-01

    Roč. 156, č. 7 (2009), s. 1177-1185 ISSN 0166-8641 Institutional research plan: CEZ:AV0Z10190503 Keywords : Well quasi orderings * Poset algebras * Superatomic Boolean algebras * Compact distributive lattices Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2009

  15. Boolean comparative analysis of qualitative data : a methodological note

    NARCIS (Netherlands)

    Romme, A.G.L.

    1995-01-01

    This paper explores the use of Boolean logic in the analysis of qualitative data, especially on the basis of so-called process theories. Process theories treat independent variables as necessary conditions which are binary rather than variable in nature, while the dependent variable is a final

  16. A Construction of Boolean Functions with Good Cryptographic Properties

    Science.gov (United States)

    2014-01-01

    be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum

  17. Assessment of Electronic Circuits Reliability Using Boolean Truth Table Modeling Method

    International Nuclear Information System (INIS)

    EI-Shanshoury, A.I.

    2011-01-01

    This paper explores the use of Boolean Truth Table modeling Method (BTTM) in the analysis of qualitative data. It is widely used in certain fields especially in the fields of electrical and electronic engineering. Our work focuses on the evaluation of power supply circuit reliability using (BTTM) which involves systematic attempts to falsify and identify hypotheses on the basis of truth tables constructed from qualitative data. Reliability parameters such as the system's failure rates for the power supply case study are estimated. All possible state combinations (operating and failed states) of the major components in the circuit were listed and their effects on overall system were studied

  18. Analytical solutions for systems of partial differential-algebraic equations.

    Science.gov (United States)

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2014-01-01

    This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

  19. Ferroelectric-antiferroelectric mixed systems. Equation of state, thermodynamic functions

    Directory of Open Access Journals (Sweden)

    N.A.Korynevskii

    2006-01-01

    Full Text Available The problem of equation of state for ferroelectric-antiferroelectric mixed systems in the whole region of a concentration change (0≤n≤1 is discussed. The main peculiarity of the presented model turns out to be the possibility for the site dipole momentum to be oriented ferroelectrically in z-direction and antiferroelectrically in x-direction. Such a situation takes place in mixed compounds of KDP type. The different phases (ferro-, antiferro-, paraelectric, dipole glass and some combinations of them have been found and analyzed.

  20. Integrability of a system of two nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  1. Iterative solution of large sparse systems of equations

    CERN Document Server

    Hackbusch, Wolfgang

    2016-01-01

    In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.

  2. Experiments and Recommendations for Partitioning Systems of Equations

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-06-01

    Full Text Available Partitioning the systems of equations is a very important process when solving it on a parallel computer. This paper presents some criteria which leads to more efficient parallelization, that must be taken into consideration. New criteria added to preconditioning process by reducing average bandwidth are pro- posed in this paper. These new criteria lead to a combination between preconditioning and partitioning of systems equations, so no need two distinct algorithms/processes. In our proposed methods - where the preconditioning is done by reducing the average bandwidth- two directions were followed in terms of partitioning: for a given preconditioned system determining the best partitioning (or one as close and the second consist in achieving an adequate preconditioning, depending on a given/desired partitioning. A mixed method it is also proposed. Experimental results, conclusions and recommendations, obtained after parallel implementation of conjugate gradient on IBM BlueGene /P supercomputer- based on a synchronous model of parallelization- are also presented in this paper.

  3. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  4. Discrete Painlevé equations from Y-systems

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Inoue, Rei

    2014-01-01

    We consider T-systems and Y-systems arising from cluster mutations applied to quivers that have the property of being periodic under a sequence of mutations. The corresponding nonlinear recurrences for cluster variables (coefficient-free T-systems) were described in the work of Fordy and Marsh, who completely classified all such quivers in the case of period 1, and characterized them in terms of the skew-symmetric exchange matrix B that defines the quiver. A broader notion of periodicity in general cluster algebras was introduced by Nakanishi, who also described the corresponding Y-systems, and T-systems with coefficients. A result of Fomin and Zelevinsky says that the coefficient-free T-system provides a solution of the Y-system. In this paper, we show that in general there is a discrepancy between these two systems, in the sense that the solution of the former does not correspond to the general solution of the latter. This discrepancy is removed by introducing additional non-autonomous coefficients into the T-system. In particular, we focus on the period 1 case and show that, when the exchange matrix B is degenerate, discrete Painlevé equations can arise from this construction. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  5. INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2016-07-01

    Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.

  6. Construction of a fuzzy and all Boolean logic gates based on DNA

    DEFF Research Database (Denmark)

    M. Zadegan, Reza; Jepsen, Mette D E; Hildebrandt, Lasse

    2015-01-01

    to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive...... DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics....

  7. Variances as order parameter and complexity measure for random Boolean networks

    International Nuclear Information System (INIS)

    Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel

    2005-01-01

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems

  8. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  9. Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras

    OpenAIRE

    Andrade, Jefferson O.; Kameyama, Yukiyoshi

    2012-01-01

    Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In thi...

  10. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification

    International Nuclear Information System (INIS)

    Yoo, Seokwon; Lee, Jinhyoung; Bang, Jeongho; Lee, Changhyoup

    2014-01-01

    We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)

  11. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    Science.gov (United States)

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  12. Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling

    NARCIS (Netherlands)

    Hesan, R.; Ghorbani, A.; Dignum, M.V.

    2014-01-01

    In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we

  13. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  14. Linear homotopy solution of nonlinear systems of equations in geodesy

    Science.gov (United States)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  15. Equilibrium and nonequilibrium properties of Boolean decision problems on scale-free graphs with competing interactions with external biases

    Science.gov (United States)

    Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.

    2013-03-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.

  16. Boolean decision problems with competing interactions on scale-free networks: Equilibrium and nonequilibrium behavior in an external bias

    Science.gov (United States)

    Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.

    2014-02-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.

  17. Langevin equation in systems with also negative temperatures

    Science.gov (United States)

    Baldovin, Marco; Puglisi, Andrea; Vulpiani, Angelo

    2018-04-01

    We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable LE, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.

  18. Boolean network representation of contagion dynamics during a financial crisis

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-01-01

    This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.

  19. Boolean Functions with a Simple Certificate for CNF Complexity

    Czech Academy of Sciences Publication Activity Database

    Čepek, O.; Kučera, P.; Savický, Petr

    2012-01-01

    Roč. 160, 4-5 (2012), s. 365-382 ISSN 0166-218X R&D Projects: GA MŠk(CZ) 1M0545 Grant - others:GA ČR(CZ) GP201/07/P168; GA ČR(CZ) GAP202/10/1188 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean functions * CNF representations Subject RIV: BA - General Mathematics Impact factor: 0.718, year: 2012

  20. Elements of Boolean-Valued Dempster-Shafer Theory

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2000-01-01

    Roč. 10, č. 5 (2000), s. 825-835 ISSN 1210-0552. [SOFSEM 2000 Workshop on Soft Computing. Milovy, 27.11.2000-28.11.2000] R&D Projects: GA ČR GA201/00/1489 Institutional research plan: AV0Z1030915 Keywords : Boolean algebra * belief function * Dempster-Shafer theory * Dempster combination rule * nonspecifity degree Subject RIV: BA - General Mathematics

  1. Nonlinear perturbations of systems of partial differential equations with constant coefficients

    Directory of Open Access Journals (Sweden)

    Carmen J. Vanegas

    2000-01-01

    Full Text Available In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.

  2. ON ENTIRE SOLUTIONS OF TWO TYPES OF SYSTEMS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Lingyun GAO

    2017-01-01

    In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex differential (difference) equations to the systems of differential-difference equations.

  3. Relating systems properties of the wave and the Schrödinger equation

    NARCIS (Netherlands)

    Zwart, Heiko J.; Le Gorrec, Yann; Maschke, B.M.

    In this article we show that systems properties of the systems governed by the second order differential equation d2wdt2=−A0w and the first order differential equation dzdt=iA0z are related. This can be used to show that, for instance, exact observability of the N-dimensional wave equation implies

  4. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    Science.gov (United States)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  5. 3D Boolean operations in virtual surgical planning.

    Science.gov (United States)

    Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun

    2017-10-01

    Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.

  6. Generation of static solutions of the self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    A theorem is proved, according to which to each solution of the Einstein equations with an arbitrary momentum-energy tensor in the right hand side there corresponds a static solution of the self-consistent system of Einstein-Maxwell equations. As a consequence of this theorem, a method is established of generating static solutions of the self-consistent system of Einstein-Maxwell equations with a charged grain as a source of vacuum solutions of the Einstein equations

  7. On the number of different dynamics in Boolean networks with deterministic update schedules.

    Science.gov (United States)

    Aracena, J; Demongeot, J; Fanchon, E; Montalva, M

    2013-04-01

    Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes.

    Directory of Open Access Journals (Sweden)

    Herman F Fumiã

    Full Text Available A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the currently known protein-protein interaction network. This system exhibits stationary protein activation patterns--attractors--dependent on the cell's microenvironment. These dynamical attractors were determined through simulations and their stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are not necessarily central in the network topology, but at least they are direct regulators of central components towards which converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.

  9. Solving differential–algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas

    2006-01-01

    of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

  10. Solving differential-algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

    2006-01-01

    of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

  11. ODEPACK, Initial Value Problems of Ordinary Differential Equation System

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    I - Description of program or function: ODEPACK is a collection of Fortran solvers for the initial value problem for ordinary differential equation systems. It consists of nine solvers, namely a basic solver called LSODE and eight variants of it -- LSODES, LSODA, LSODAR, LSODPK, LSODKR, LSODI, LSOIBT, and LSODIS. The collection is suitable for both stiff and non-stiff systems. It includes solvers for systems given in explicit form, dy/dt = f(t,y), and also solvers for systems given in linearly implicit form, A(t,y) dy/dt = g(t,y). Two of the solvers use general sparse matrix solvers for the linear systems that arise. Two others use iterative (preconditioned Krylov) methods instead of direct methods for these linear systems. The most recent addition is LSODIS, which solves implicit problems with general sparse treatment of all matrices involved. The ODEPACK solvers are written in standard Fortran 77, with a few exceptions, and with minimal machine dependencies. There are separate double and single precision versions of ODEPACK. The actual solver names are those given above with a prefix of D- or S- for the double or single precision version, respectively, i.e. DLSODE/SLSODE, etc. Each solver consists of a main driver subroutine having the same name as the solver and some number of subordinate routines. For each solver, there is also a demonstration program, which solves one or two simple problems in a somewhat self-checking manner. A. Solvers for explicitly given systems. For each of the following solvers, it is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. 1. LSODE (Livermore Solver for Ordinary Differential Equations) is the basic solver of the collection. It solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as

  12. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  13. Computer programs for solving systems of nonlinear equations

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1978-03-01

    Computer programs to find a solution, usually the one closest to some guess, of a system of simultaneous nonlinear equations are provided for real functions of the real arguments. These are based on quasi-Newton methods or projection methods, which are briefly reviewed in the present report. Benchmark tests were performed on these subroutines to grasp their characteristics. As the program not requiring analytical forms of the derivatives of the Jacobian matrix, we have dealt with NS01A of Powell, NS03A of Reid for a system with the sparse Jacobian and NONLIN of Brown. Of these three subroutines of quasi-Newton methods, NONLIN is shown to be the most useful because of its stable algorithm and short computation time. On the other hand, as the subroutine for which the derivatives of the Jacobian are to be supplied analytically, we have tested INTECH of a quasi-Newton method based on the Boggs' algorithm, PROJA of Georg and Keller based on the projection method and an option of NS03A. The results have shown that INTECH, treating variables which appear only linearly in the functions separately, takes the shortest computation time, on the whole, while the projection method requires further research to find an optimal algorithm. (auth.)

  14. Maxwell-Vlasov equations as a continuous Hamiltonian system

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1980-09-01

    The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion

  15. On the specification of structural equation models for ecological systems

    Science.gov (United States)

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the

  16. The soliton solution of BBGKY quantum kinetic equations chain for different type particles system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Avazov, U.; Hassan, T.

    2006-12-01

    In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations

  17. On a computer implementation of the block Gauss–Seidel method for normal systems of equations

    OpenAIRE

    Alexander I. Zhdanov; Ekaterina Yu. Bogdanova

    2016-01-01

    This article focuses on the modification of the block option Gauss-Seidel method for normal systems of equations, which is a sufficiently effective method of solving generally overdetermined, systems of linear algebraic equations of high dimensionality. The main disadvantage of methods based on normal equations systems is the fact that the condition number of the normal system is equal to the square of the condition number of the original problem. This fact has a negative impact on the rate o...

  18. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    International Nuclear Information System (INIS)

    Brett, Tobias; Galla, Tobias

    2014-01-01

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period

  19. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    Science.gov (United States)

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  20. Poincaré-MacMillan Equations of Motion for a Nonlinear Nonholonomic Dynamical System

    Science.gov (United States)

    Amjad, Hussain; Syed Tauseef, Mohyud-Din; Ahmet, Yildirim

    2012-03-01

    MacMillan's equations are extended to Poincaré's formalism, and MacMillan's equations for nonlinear nonholonomic systems are obtained in terms of Poincaré parameters. The equivalence of the results obtained here with other forms of equations of motion is demonstrated. An illustrative example of the theory is provided as well.

  1. On realization of nonlinear systems described by higher-order differential equations

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1987-01-01

    We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the

  2. A canonical form of the equation of motion of linear dynamical systems

    Science.gov (United States)

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  3. Probabilistic risk assessment course documentation. Volume 5. System reliability and analysis techniques Session D - quantification

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the probabilistic quantification of accident sequences and the link between accident sequences and consequences. Other sessions in this series focus on the quantification of system reliability and the development of event trees and fault trees. This course takes the viewpoint that event tree sequences or combinations of system failures and success are available and that Boolean equations for system fault trees have been developed and are available. 93 figs., 11 tabs

  4. Discrete systems related to the sixth Painleve equation

    International Nuclear Information System (INIS)

    Ramani, A; Ohta, Y; Grammaticos, B

    2006-01-01

    We present discrete Painleve equations which can be obtained as contiguity relations of the solutions of the continuous Painleve VI. The derivation is based on the geometry of the affine Weyl group D (1) 4 associated with the bilinear formalism. As an offshoot we also present the contiguity relations of the solutions of the Bureau-Ablowitz-Fokas equation, which is a Miura transformed, 'modified', P VI

  5. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  6. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  7. Asymptotic behavior of solutions of linear multi-order fractional differential equation systems

    OpenAIRE

    Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.

    2017-01-01

    In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...

  8. Equations of motion for free-flight systems of rotating-translating bodies

    International Nuclear Information System (INIS)

    Hodapp, A.E. Jr.

    1976-09-01

    General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest

  9. On the Equational Definition of the Least Prefixed Point

    DEFF Research Database (Denmark)

    Santocanale, Luigi

    2003-01-01

    We propose a method to axiomatize by equations the least prefixed point of an order preserving function. We discuss its domain of application and show that the Boolean modal μ-calculus has a complete equational axiomatization. The method relies on the existence of a “closed structure” and its rel...

  10. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  11. Bebop to the Boolean boogie an unconventional guide to electronics

    CERN Document Server

    Maxfield, Clive

    2003-01-01

    From reviews of the first edition:""If you want to be reminded of the joy of electronics, take a look at Clive (Max) Maxfield's book Bebop to the Boolean Boogie.""--Computer Design ""Lives up to its title as a useful and entertaining technical guide....well-suited for students, technical writers, technicians, and sales and marketing people.""--Electronic Design""Writing a book like this one takes audacity! ... Maxfield writes lucidly on a variety of complex topics without 'writing down' to his audience."" --EDN""A highly readable, well-illustrated guided tour

  12. Two Expectation-Maximization Algorithms for Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2014-01-01

    Roč. 130, 23 April (2014), s. 83-97 ISSN 0925-2312 R&D Projects: GA ČR GAP202/10/0262 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean Factor analysis * Binary Matrix factorization * Neural networks * Binary data model * Dimension reduction * Bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014

  13. A boolean optimization method for reloading a nuclear reactor

    International Nuclear Information System (INIS)

    Misse Nseke, Theophile.

    1982-04-01

    We attempt to solve the problem of optimal reloading of fuel assemblies in a PWR, without any assumption on the fuel nature. Any loading is marked by n 2 boolean variables usub(ij). The state of the reactor is characterized by his Ksub(eff) and the related power distribution. The resulting non-linear allocation problems are solved throught mathematical programming technics combining the simplex algorithm and an extension of the Balas-Geoffrion's one. Some optimal solutions are given for PWR with assemblies of different enrichment [fr

  14. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  15. Multi criteria evaluation for universal soil loss equation based on geographic information system

    Science.gov (United States)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  16. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  17. Solving nonlinear evolution equation system using two different methods

    Science.gov (United States)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  18. Complexity classifications for different equivalence and audit problems for Boolean circuits

    OpenAIRE

    Böhler, Elmar; Creignou, Nadia; Galota, Matthias; Reith, Steffen; Schnoor, Henning; Vollmer, Heribert

    2010-01-01

    We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.

  19. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  20. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    Science.gov (United States)

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  1. Adams Predictor-Corrector Systems for Solving Fuzzy Differential Equations

    Directory of Open Access Journals (Sweden)

    Dequan Shang

    2013-01-01

    Full Text Available A predictor-corrector algorithm and an improved predictor-corrector (IPC algorithm based on Adams method are proposed to solve first-order differential equations with fuzzy initial condition. These algorithms are generated by updating the Adams predictor-corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.

  2. On the specification of structural equation models for ecological systems

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Olff, Han; Scheiner, Samuel M.

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical Concepts using latent variables. In this paper, we discuss characteristics of ecological theory

  3. An integrated approach to determine phenomenological equations in metallic systems

    Science.gov (United States)

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  4. Fisher information at the edge of chaos in random Boolean networks.

    Science.gov (United States)

    Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail

    2011-01-01

    We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.

  5. The pseudo-Boolean optimization approach to form the N-version software structure

    Science.gov (United States)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  6. Boolean models of biosurfactants production in Pseudomonas fluorescens.

    Directory of Open Access Journals (Sweden)

    Adrien Richard

    Full Text Available Cyclolipopeptides (CLPs are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene (plcC and not restored by plcC complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained.

  7. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  8. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  9. Classification of all solutions of the algebraic Riccati equations for infinite-dimensional systems

    NARCIS (Netherlands)

    Iftime, O; Curtain, R; Zwart, H

    2003-01-01

    We obtain a complete classification of all self-adjoint solution of the control algebraic Riccati equation for infinite-dimensional systems under the following assumptions: the system is output stabilizable, strongly detectable and the filter Riccati equation has an invertible self-adjoint

  10. Quantum-mechanical transport equation for atomic systems.

    Science.gov (United States)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  11. Dynamical System Analysis of Reynolds Stress Closure Equations

    Science.gov (United States)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  12. Fractional equations of kicked systems and discrete maps

    International Nuclear Information System (INIS)

    Tarasov, Vasily E; Zaslavsky, George M

    2008-01-01

    Starting from kicked equations of motion with derivatives of non-integer orders, we obtain 'fractional' discrete maps. These maps are generalizations of well-known universal, standard, dissipative, kicked damped rotator maps. The main property of the suggested fractional maps is a long-term memory. The memory effects in the fractional discrete maps mean that their present state evolution depends on all past states with special forms of weights. These forms are represented by combinations of power-law functions

  13. Generation of static solutions of self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    The theorem, according to which the static solution of the self-consistent system of the Einstein-Maxwell equations is assigned to energy static solution of the Einstein equations with the arbitrary energy-momentum tensor in the right part, is proved. As a consequence of this theorem, the way of the generation of the static solutions of the self-consistent system of the Einstein-Maxwell equations with charged dust as a source of the vacuum solutions of the Einstein equations is shown

  14. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  15. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.

    Science.gov (United States)

    Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai

    2017-08-02

    Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.

  16. Modeling imperfectly repaired system data via grey differential equations with unequal-gapped times

    International Nuclear Information System (INIS)

    Guo Renkuan

    2007-01-01

    In this paper, we argue that grey differential equation models are useful in repairable system modeling. The arguments starts with the review on GM(1,1) model with equal- and unequal-spaced stopping time sequence. In terms of two-stage GM(1,1) filtering, system stopping time can be partitioned into system intrinsic function and repair effect. Furthermore, we propose an approach to use grey differential equation to specify a semi-statistical membership function for system intrinsic function times. Also, we engage an effort to use GM(1,N) model to model system stopping times and the associated operating covariates and propose an unequal-gapped GM(1,N) model for such analysis. Finally, we investigate the GM(1,1)-embed systematic grey equation system modeling of imperfectly repaired system operating data. Practical examples are given in step-by-step manner to illustrate the grey differential equation modeling of repairable system data

  17. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  18. Lyapunov stability and its application to systems of ordinary differential equations

    Science.gov (United States)

    Kennedy, E. W.

    1979-01-01

    An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.

  19. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  20. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Science.gov (United States)

    Ford, Neville J.; Connolly, Joseph A.

    2009-07-01

    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

  1. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  2. Adapted Boolean network models for extracellular matrix formation

    Directory of Open Access Journals (Sweden)

    Wollbold Johannes

    2009-07-01

    Full Text Available Abstract Background Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB. These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM. We applied three methods to analyse ECM regulation: data discretisation to filter out noise and to reduce complexity, Boolean network construction to implement logic relationships, and formal concept analysis (FCA for the formation of minimal, but complete rule sets from the data. Results First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFβ1 or by TNFα and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNF

  3. Periodic Solutions of a System of Delay Differential Equations for a Small Delay

    Directory of Open Access Journals (Sweden)

    Adu A.M. Wasike

    2002-06-01

    Full Text Available We prove the existence of an asymptotically stable periodic solution of a system of delay differential equations with a small time delay t > 0. To achieve this, we transform the system of equations into a system of perturbed ordinary differential equations and then use perturbation results to show the existence of an asymptotically stable periodic solution. This approach is contingent on the fact that the system of equations with t = 0 has a stable limit cycle. We also provide a comparative study of the solutions of the original system and the perturbed system.  This comparison lays the ground for proving the existence of periodic solutions of the original system by Schauder's fixed point theorem.

  4. On a computer implementation of the block Gauss–Seidel method for normal systems of equations

    Directory of Open Access Journals (Sweden)

    Alexander I. Zhdanov

    2016-12-01

    Full Text Available This article focuses on the modification of the block option Gauss-Seidel method for normal systems of equations, which is a sufficiently effective method of solving generally overdetermined, systems of linear algebraic equations of high dimensionality. The main disadvantage of methods based on normal equations systems is the fact that the condition number of the normal system is equal to the square of the condition number of the original problem. This fact has a negative impact on the rate of convergence of iterative methods based on normal equations systems. To increase the speed of convergence of iterative methods based on normal equations systems, for solving ill-conditioned problems currently different preconditioners options are used that reduce the condition number of the original system of equations. However, universal preconditioner for all applications does not exist. One of the effective approaches that improve the speed of convergence of the iterative Gauss–Seidel method for normal systems of equations, is to use its version of the block. The disadvantage of the block Gauss–Seidel method for production systems is the fact that it is necessary to calculate the pseudoinverse matrix for each iteration. We know that finding the pseudoinverse is a difficult computational procedure. In this paper, we propose a procedure to replace the matrix pseudo-solutions to the problem of normal systems of equations by Cholesky. Normal equations arising at each iteration of Gauss–Seidel method, have a relatively low dimension compared to the original system. The results of numerical experimentation demonstrating the effectiveness of the proposed approach are given.

  5. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  6. Boolean Algebra Application in Analysis of Flight Accidents

    Directory of Open Access Journals (Sweden)

    Casandra Venera BALAN

    2015-12-01

    Full Text Available Fault tree analysis is a deductive approach for resolving an undesired event into its causes, identifying the causes of a failure and providing a framework for a qualitative and quantitative evaluation of the top event. An alternative approach to fault tree analysis methods calculus goes to logical expressions and it is based on a graphical representation of the data structure for a logic - based binary decision diagram representation. In this analysis, such sites will be reduced to a minimal size and arranged in the sense that the variables appear in the same order in each path. An event can be defined as a statement that can be true or false. Therefore, Boolean algebra rules allow restructuring of a Fault Tree into one equivalent to it, but simpler.

  7. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  8. Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations

    International Nuclear Information System (INIS)

    Frank, T.D.

    2003-01-01

    Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model

  9. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  10. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    Science.gov (United States)

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  11. Parallel computation for solving the tridiagonal linear system of equations

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  12. Parametric Borel summability for some semilinear system of partial differential equations

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamazawa

    2015-01-01

    Full Text Available In this paper we study the Borel summability of formal solutions with a parameter of first order semilinear system of partial differential equations with \\(n\\ independent variables. In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst. 8 (2002, 313-322], Balser and Kostov proved the Borel summability of formal solutions with respect to a singular perturbation parameter for a linear equation with one independent variable. We shall extend their results to a semilinear system of equations with general independent variables.

  13. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    Science.gov (United States)

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  14. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    Science.gov (United States)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  15. Effective methods of solving of model equations of certain class of thermal systems

    International Nuclear Information System (INIS)

    Lach, J.

    1985-01-01

    A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)

  16. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  17. Vectorial Resilient PC(l) of Order k Boolean Functions from AG-Codes

    Institute of Scientific and Technical Information of China (English)

    Hao CHEN; Liang MA; Jianhua LI

    2011-01-01

    Propagation criteria and resiliency of vectorial Boolean functions are important for cryptographic purpose (see [1- 4, 7, 8, 10, 11, 16]). Kurosawa, Stoh [8] and Carlet [1]gave a construction of Boolean functions satisfying PC(l) of order k from binary linear or nonlinear codes. In this paper, the algebraic-geometric codes over GF(2m) are used to modify the Carlet and Kurosawa-Satoh's construction for giving vectorial resilient Boolean functions satisfying PC(l) of order k criterion. This new construction is compared with previously known results.

  18. Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.

    Science.gov (United States)

    Mori, Fumito; Mochizuki, Atsushi

    2017-07-14

    Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.

  19. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  20. Two-fluid equations for a nuclear system with arbitrary motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [Chungnam National University, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Ocean nuclear systems include a seabed-type plant, a floating-type plant, and a nuclear-propulsion ship. We asked ourselves, 'What governing equations should be used for ocean nuclear systems?' Since ocean nuclear systems are apt to move arbitrarily, the two-fluid model must be formulated in the non-inertial frame of reference that is undergoing acceleration with respect to an inertial frame. Two-phase flow systems with arbitrary motions are barely reported. Kim et al. (1996) added the centripetal and Euler acceleration forces to the homogeneous equilibrium momentum equation embedded in the RETRAN code. However, they did not look into the mass and energy equations. The purpose of this study is to derive general two-fluid equations in the non-inertial frame of reference, which can be used for safety analysis of ocean nuclear systems. The two-fluid equation forms for scalar properties such as mass, internal energy, and enthalpy equation in the moving frame are the same as those in the absolute frame. On the other hand, the fictitious effect must be included in the momentum equation.

  1. On extension of solutions of a simultaneous system of iterative functional equations

    Directory of Open Access Journals (Sweden)

    Janusz Matkowski

    2009-01-01

    Full Text Available Some sufficient conditions which allow to extend every local solution of a simultaneous system of equations in a single variable of the form \\[ \\varphi(x = h (x, \\varphi[f_1(x],\\ldots,\\varphi[f_m(x],\\] \\[\\varphi(x = H (x, \\varphi[F_1(x],\\ldots,\\varphi[F_m(x],\\] to a global one are presented. Extensions of solutions of functional equations, both in single and in several variables, play important role (cf. for instance [M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warsaw, 1968, M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics and Its Applications v. 32, Cambridge, 1990, J. Matkowski, Iteration groups, commuting functions and simultaneous systems of linear functional equations, Opuscula Math. 28 (2008 4, 531-541].

  2. Integrator Performance Analysis In Solving Stiff Differential Equation System

    International Nuclear Information System (INIS)

    B, Alhadi; Basaruddin, T.

    2001-01-01

    In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used

  3. An implicit iterative scheme for solving large systems of linear equations

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  4. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  5. Amplitude equations for a sub-diffusive reaction-diffusion system

    International Nuclear Information System (INIS)

    Nec, Y; Nepomnyashchy, A A

    2008-01-01

    A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points

  6. Full information estimations of a system of simultaneous equations with error component structure

    OpenAIRE

    Balestra, Pietro; Krishnakumar, Jaya

    1987-01-01

    In this paper we develop full information methods for estimating the parameters of a system of simultaneous equations with error component struc-ture and establish relationships between the various structural estimat

  7. Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems

    Directory of Open Access Journals (Sweden)

    Dieter Schuch

    2008-05-01

    Full Text Available The time-evolution of the maximum and the width of exact analytic wave packet (WP solutions of the time-dependent Schrödinger equation (SE represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.

  8. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    International Nuclear Information System (INIS)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-01

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations

  9. Hybrid inverse problems for a system of Maxwell’s equations

    International Nuclear Information System (INIS)

    Bal, Guillaume; Zhou, Ting

    2014-01-01

    This paper concerns the quantitative step of the medical imaging modality thermo-acoustic tomography (TAT). We model the radiation propagation by a system of Maxwell’s equations. We show that the index of refraction of light and the absorption coefficient (conductivity) can be uniquely and stably reconstructed from a sufficiently large number of TAT measurements. Our method is based on verifying that the linearization of the inverse problem forms a redundant elliptic system of equations. We also observe that the reconstructions are qualitatively quite different from the setting where radiation is modeled by a scalar Helmholtz equation as in Bal G et al (2011 Inverse Problems 27 055007). (paper)

  10. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  11. Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2008-01-01

    It is shown that the Kronecker product can be applied to constructing new discrete integrable coupling system of soliton equation hierarchy in this paper. A direct application to the fractional cubic Volterra lattice spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is also indicated that the study of discrete integrable couplings by using the Kronecker product is an efficient and straightforward method. This method can be used generally

  12. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  13. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    International Nuclear Information System (INIS)

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  14. Computer programs for the solution of systems of linear algebraic equations

    Science.gov (United States)

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  15. Implicit Lagrangian equations and the mathematical modeling of physical systems

    NARCIS (Netherlands)

    Moreau, Luc; van der Schaft, Arjan

    2002-01-01

    We introduce a class of optimal control problems on manifolds which gives rise (via the Pontryagin maximum principle) to a class of implicit Lagrangian systems (a notion which is introduced in the paper). We apply this to the mathematical modeling of interconnected mechanical systems and mechanical

  16. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  17. Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2002-11-01

    Full Text Available We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal solution preserves optimality was obtained.

  18. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization

  19. Boolean and advanced searching for EDGAR data on www.sec.gov

    Data.gov (United States)

    Securities and Exchange Commission — This search allows users to enter complex boolean queries to access all but the most recent day's EDGAR filings on www.sec.gov. Filings are from 1994 to present.

  20. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  1. Solution of degenerate hypergeometric system of Horn consisting of three equations

    Science.gov (United States)

    Tasmambetov, Zhaksylyk N.; Zhakhina, Ryskul U.

    2017-09-01

    The possibilities of constructing normal-regular solutions of a system consisting of three partial differential equations of the second order are studied by the Frobenius-Latysheva method. The method of determining unknown coefficients is shown and the relationship of the studied system with the system, which solution is Laguerre's polynomial of three variables is indicated. The generalization of the Frobenius-Latysheva method to the case of a system consisting of three equations makes it possible to clarify the relationship of such systems, which solutions are special functions of three variables. These systems include the functions of Whittaker and Bessel, 205 special functions of three variables from the list of M. Srivastava and P.W. Carlsson, as well as orthogonal polynomials of three variables. All this contributes to the further development of the analytic theory of systems consisting of three partial differential equations of the second order.

  2. On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems

    NARCIS (Netherlands)

    Knuiman, J.T.; Barneveld, P.A.

    2012-01-01

    In this paper, we elaborate on the connection between the fundamental equation of thermodynamics, which is essentially the combination of the First and Second Laws of thermodynamics, and the energy balance equation in the context of closed and open systems. We point out some misinterpretations in

  3. Symmetric positive differential equations and first order hyperbolic systems

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1981-12-01

    We prove that under some conditions the first order hyperbolic system and its associated mixed initial boundary conditions considered, for example, in Kreiss (Math. Comp. 22, 703-704 (1968)) and Kreiss and Gustafsson (Math. Comp. 26, 649-686 (1972)), can be transformed into a symmetric positive system of P.D.E.'s with admissible boundary conditions of Friedrich's type (Comm. Pure Appl. Math 11, 333-418 (1958)). (author)

  4. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    Science.gov (United States)

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  5. Circulant Matrices and Affine Equivalence of Monomial Rotation Symmetric Boolean Functions

    Science.gov (United States)

    2015-01-01

    degree of the MRS is, we have a similar result as [40, Theorem 1.1] for n = 4p (p prime), or squarefree integers n, which along with our Theorem 5.2...Boolean functions: Construction and analysis in terms of algebraic immunity, in: H. Gilbert, H. Handschuh (Eds.), Fast Software Encryption, in: LNCS...vol. 1403, Springer-Verlag, 1998, pp. 475–488. [20] J.E. Fuller, Analysis of affine equivalent Boolean functions for cryptography (Ph.D. thesis

  6. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  7. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  8. 3rd International Conference on Particle Systems and Partial Differential Equations

    CERN Document Server

    Soares, Ana

    2016-01-01

    The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose wor...

  9. Interacting multiagent systems kinetic equations and Monte Carlo methods

    CERN Document Server

    Pareschi, Lorenzo

    2014-01-01

    The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...

  10. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  11. Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian

    2000-01-01

    We consider linear systems of differential equations $I \\ddot{x}+B \\dot{x}+C{x}={0}$ where $I$ is the identity matrix and $B$ and $C$ are general complex $n$ x $n$ matrices. Our main interest is to determine conditions for complete marginalstability of these systems. To this end we find solutions...... of the Lyapunov matrix equation and characterize the set of matrices $(B, C)$ which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal...... stability.Comparison is made with some known results for equations with real system matrices.Moreover more general cases are investigated and several examples are given....

  12. Pod systems: an equivariant ordinary differential equation approach to dynamical systems on a spatial domain

    International Nuclear Information System (INIS)

    Elmhirst, Toby; Stewart, Ian; Doebeli, Michael

    2008-01-01

    We present a class of systems of ordinary differential equations (ODEs), which we call 'pod systems', that offers a new perspective on dynamical systems defined on a spatial domain. Such systems are typically studied as partial differential equations, but pod systems bring the analytic techniques of ODE theory to bear on the problems, and are thus able to study behaviours and bifurcations that are not easily accessible to the standard methods. In particular, pod systems are specifically designed to study spatial dynamical systems that exhibit multi-modal solutions. A pod system is essentially a linear combination of parametrized functions in which the coefficients and parameters are variables whose dynamics are specified by a system of ODEs. That is, pod systems are concerned with the dynamics of functions of the form Ψ(s, t) = y 1 (t) φ(s; x 1 (t)) + ··· + y N (t) φ(s; x N (t)), where s in R n is the spatial variable and φ: R n × R d → R. The parameters x i in R d and coefficients y i in R are dynamic variables which evolve according to some system of ODEs, x-dot i = G i (x, y) and y-dot i = H i (x, y), for i = 1, ..., N. The dynamics of Ψ in function space can then be studied through the dynamics of the x and y in finite dimensions. A vital feature of pod systems is that the ODEs that specify the dynamics of the x and y variables are not arbitrary; restrictions on G i and H i are required to guarantee that the dynamics of Ψ in function space are well defined (that is, that trajectories are unique). One important restriction is symmetry in the ODEs which arises because Ψ is invariant under permutations of the indices of the (x i , y i ) pairs. However, this is not the whole story, and the primary goal of this paper is to determine the necessary structure of the ODEs explicitly to guarantee that the dynamics of Ψ are well defined

  13. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...

  14. Accelerating Inexact Newton Schemes for Large Systems of Nonlinear Equations

    NARCIS (Netherlands)

    Fokkema, D.R.; Sleijpen, G.L.G.; Vorst, H.A. van der

    Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general

  15. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations.

    Science.gov (United States)

    1981-08-01

    With a third matrix-vector product, b(i) can be computed as i j ( ATAr i+l’pj)/ApjpApj), and the previous (Apj) need not be saved. Page 8 I OCR I Orthomin... Economics and Mathematical Systems, Volume 134, Springer-Verlag, Berlin, 1976. [51 Paul Concus, Gene H. Golub, and Dianne P. O’Leary. A generalized

  16. Asymmetric systems described by a pair of local covariant wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1979-07-16

    A class of asymmetric solutions of the integrability conditions for systems obeying the Leutwyler-Stern pair of covariant wave equations is obtained. The class of unequal-mass systems described by these solutions does not embed the particle-antiparticle system behaving as a relativistic harmonic oscillator.

  17. TECHNOLOGY OF CONSTRUCTING OF GUADRATIC EQUATIONS AND SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS WITH PARAMETERS IN A MAPLE-MEDIUM

    Directory of Open Access Journals (Sweden)

    Kushnir V.

    2017-12-01

    Full Text Available The problem of constructing quadratic equations and systems of equations with parameters using Maple-technology is studied. Today, the "learning tasks of reverse thinking" (V.A. Krutetsky or simply "inverse problems" (P.M.Erdniev are increasingly being introduced into the educational process. The tasks of constructing mathematical tasks in advance of a certain type and certain properties are inverse problems that unfold another aspect of the learning situation and thereby create a "surplus of its vision" (M.M. Bakhtin. The solution of inverse problems develops students’ thinking, imagination and other higher mental functions. However, their introduction into the educational process is still insufficient. One of the reasons for this situation is the insufficient number of benefits with a sufficient number of variants of the same type of tasks. Especially it concerns the construction of problems with parameters. Designing in "manual mode" requires significant temporary cognitive, physical and other efforts, carries the risks of allowing technical and computational errors. In the days of the information society and the digital economy, there are all the possibilities to perform the chain of design actions in a certain ICT environment (we have a Maple-environment. It solves the resulted difficulties of construction, creates a new educational and information environment, allows to produce automatically a sufficient number of different versions of the same type of tasks. Tasks with parameters require creativity from the students, non-standard approaches to the solution. Each task with parameters requires the creation of its own method and algorithm for solving and productive learning. The article is devoted to solving of the above problems.

  18. Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Zahoor Raja

    2011-01-01

    Full Text Available A stochastic technique has been developed for the solution of fractional order system represented by Bagley-Torvik equation. The mathematical model of the equation was developed with the help of feed-forward artificial neural networks. The training of the networks was made with evolutionary computational intelligence based on genetic algorithm hybrid with pattern search technique. Designed scheme was successfully applied to different forms of the equation. Results are compared with standard approximate analytic, stochastic numerical solvers and exact solutions.

  19. A Nonmonotone Line Search Filter Algorithm for the System of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Zhong Jin

    2012-01-01

    Full Text Available We present a new iterative method based on the line search filter method with the nonmonotone strategy to solve the system of nonlinear equations. The equations are divided into two groups; some equations are treated as constraints and the others act as the objective function, and the two groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone idea to the sufficient reduction conditions and filter technique which leads to a flexibility and acceptance behavior comparable to monotone methods. The new algorithm is shown to be globally convergent and numerical experiments demonstrate its effectiveness.

  20. A computational method for direct integration of motion equations of structural systems

    International Nuclear Information System (INIS)

    Brusa, L.; Ciacci, R.; Creco, A.; Rossi, F.

    1975-01-01

    The dynamic analysis of structural systems requires the solution of the matrix equations: Md 2 delta/dt(t) + Cddelta/dt(t) + Kdelta(t) = F(t). Many numerical methods are available for direct integration of this equation and their efficiency is due to the fulfillment of the following requirements: A reasonable order of accuracy must be obtained for the approximation of the response relevant to the first modes: the model contributions relevant to the eigenvalues with large real part must be essentially neglected. This paper presents a step-by-step numerical scheme for the integration of this equation which satisfies the requirements previously mentioned. (Auth.)

  1. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  2. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  3. Asymptotic behavior of a system of micropolar equations

    Directory of Open Access Journals (Sweden)

    Pedro Marin-Rubio

    2016-03-01

    Full Text Available This work is concerned with three-dimensional micropolar fluids flows in a bounded domain with boundary of class $C^{\\infty}.$ Based on the theory of dissipative systems, we prove the existence of a restricted global attractors for local semiflows on suitable fractional phase spaces $\\mathbf{Z}^{\\alpha}_{p},$ namely for $p\\in (3,+\\infty$ and $\\alpha\\in [1/2,1$. Moreover, we prove that all these attractors are in fact the same set. Previously, it is shown that the Lamé operator is a sectorial operator in each $L_{p}(\\Omega$ with $1

  4. Equation-free modeling unravels the behavior of complex ecological systems

    Science.gov (United States)

    DeAngelis, Donald L.; Yurek, Simeon

    2015-01-01

    Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.

  5. New Quasi-Newton Method for Solving Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2017-01-01

    Roč. 62, č. 2 (2017), s. 121-134 ISSN 0862-7940 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : nonlinear equations * systems of equations * trust-region methods * quasi-Newton methods * adjoint Broyden methods * numerical algorithms * numerical experiments Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/146699

  6. Planck constant as spectral parameter in integrable systems and KZB equations

    OpenAIRE

    Levin, A.NRU HSE, Department of Mathematics, Myasnitskaya str. 20, Moscow, 101000, Russia; Olshanetsky, M.(ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218, Russia); Zotov, A.(ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218, Russia)

    2014-01-01

    We construct special rational ${\\rm gl}_N$ Knizhnik-Zamolodchikov-Bernard (KZB) equations with $\\tilde N$ punctures by deformation of the corresponding quantum ${\\rm gl}_N$ rational $R$-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is $\\tau$. At the level of classical mechanics the deformation parameter $\\tau$ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Ne...

  7. Covariant single-time equations for a system of N spinor particles

    International Nuclear Information System (INIS)

    Dej, E.A.; Kapshaj, V.N.; Skachkov, N.B.

    1993-01-01

    Based on the field-theoretical Green functions that describe a system of N fermions in terms of a single-time variables we have derived covariant equations for the wave function of a bound state. The interaction operators in these equations and normalization conditions for the wave function are determined. As an example, the baryon is considered as a bound state of three quarks. 19 refs.; 1 fig

  8. Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system

    Directory of Open Access Journals (Sweden)

    Boris V. Kapitonov

    2010-02-01

    Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.

  9. Graphene-based non-Boolean logic circuits

    Science.gov (United States)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  10. On the economical solution method for a system of linear algebraic equations

    Directory of Open Access Journals (Sweden)

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  11. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  12. Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory

    KAUST Repository

    Hall, Cameron L.; Chapman, S. Jonathan; Ockendon, John R.

    2010-01-01

    The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.

  13. Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation

    International Nuclear Information System (INIS)

    Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.

    1977-01-01

    The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)

  14. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  15. Exploring the Phase Space of a System of Differential Equations: Different Mathematical Registers

    Science.gov (United States)

    Dana-Picard, Thierry; Kidron, Ivy

    2008-01-01

    We describe and analyze a situation involving symbolic representation and graphical visualization of the solution of a system of two linear differential equations, using a computer algebra system. Symbolic solution and graphical representation complement each other. Graphical representation helps to understand the behavior of the symbolic…

  16. On the coupling of systems of hyperbolic conservation laws with ordinary differential equations

    International Nuclear Information System (INIS)

    Borsche, Raul; Colombo, Rinaldo M; Garavello, Mauro

    2010-01-01

    Motivated by applications to the piston problem, to a manhole model, to blood flow and to supply chain dynamics, this paper deals with a system of conservation laws coupled with a system of ordinary differential equations. The former is defined on a domain with boundary and the coupling is provided by the boundary condition. For each of the examples considered, numerical integrations are provided

  17. Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

    International Nuclear Information System (INIS)

    Biazar, J.; Eslami, M.; Aminikhah, H.

    2009-01-01

    In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.

  18. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

    International Nuclear Information System (INIS)

    Biazar, J.; Ghazvini, H.

    2009-01-01

    In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

  19. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    Science.gov (United States)

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  20. Solution of the Lyapunov matrix equation for a system with a time-dependent stiffness matrix

    DEFF Research Database (Denmark)

    Pommer, Christian; Kliem, Wolfhard

    2004-01-01

    The stability of the linearized model of a rotor system with non-symmetric strain and axial loads is investigated. Since we are using a fixed reference system, the differential equations have the advantage to be free of Coriolis and centrifugal forces. A disadvantage is nevertheless the occurrence...

  1. On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations

    International Nuclear Information System (INIS)

    Zhestkov, S.V.

    2003-01-01

    The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)

  2. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    Science.gov (United States)

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  3. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

    International Nuclear Information System (INIS)

    Saha Ray, S.

    2012-01-01

    Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

  4. Solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    International Nuclear Information System (INIS)

    Rosenfeld, M.; Kwak, D.; Vinokur, M.

    1988-01-01

    A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method. 23 references

  5. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  6. Elliptic Euler–Poisson–Darboux equation, critical points and integrable systems

    International Nuclear Information System (INIS)

    Konopelchenko, B G; Ortenzi, G

    2013-01-01

    The structure and properties of families of critical points for classes of functions W(z, z-bar ) obeying the elliptic Euler–Poisson–Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(β, β-bar ;1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed. (paper)

  7. A theory of post-stall transients in axial compression systems. I - Development of equations

    Science.gov (United States)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

  8. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    Science.gov (United States)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  9. On the interpretations of Langevin stochastic equation in different coordinate systems

    International Nuclear Information System (INIS)

    Martinez, E.; Lopez-Diaz, L.; Torres, L.; Alejos, O.

    2004-01-01

    The stochastic Langevin Landau-Lifshitz equation is usually utilized in micromagnetics formalism to account for thermal effects. Commonly, two different interpretations of the stochastic integrals can be made: Ito and Stratonovich. In this work, the Langevin-Landau-Lifshitz (LLL) equation is written in both Cartesian and Spherical coordinates. If Spherical coordinates are employed, the noise is additive, and therefore, Ito and Stratonovich solutions are equal. This is not the case when (LLL) equation is written in Cartesian coordinates. In this case, the Langevin equation must be interpreted in the Stratonovich sense in order to reproduce correct statistical results. Nevertheless, the statistics of the numerical results obtained from Euler-Ito and Euler-Stratonovich schemes are equivalent due to the additional numerical constraint imposed in Cartesian system after each time step, which itself assures that the magnitude of the magnetization is preserved

  10. Master equations for degenerate systems: electron radiative cascade in a Coulomb potential

    International Nuclear Information System (INIS)

    Uskov, D B; Pratt, R H

    2004-01-01

    We examine the effects of degeneracy and its lifting for the problem of electron radiative cascade, described by master equations of the Lindblad form (quantum optical master equations). A weak external field approximation is used to study the resulting gradual transformation of cascade dynamics between degenerate and non-degenerate forms. Exploiting the spherical symmetry properties of the system we demonstrate significant difference between perturbations commuting with angular momentum and perturbations breaking the spherical symmetry, such as a homogeneous external field. We discuss the possibility and the general approach for reduction of the Lindblad master equations in the case of spectral degeneracy to the Pauli balance equations. This determines the appropriate choice of basis as, for example, spherical or parabolic

  11. On the validity of the Jarzynski equation in quantum systems; Zur Gueltigkeit der Jarzynskigleichung in Quantensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Nolte, Roman

    2009-11-20

    Discovered in 1997, the Jarzynski equation is one of several new theorems of nonequilibrium thermodynamics. Not only this equation makes a more severe statement than the second law of thermodynamics, it does also relate process quantities from processes far from equilibrium to equilibrium quantities. In particular during the investigation of very small systems there has been drawn much attention to this equation and the related fluctuation theorems during the last years. Something similar applies for the description of microbiological processes which take place often stationary but rarely in thermodynamical equilibrium. However, especially according to small systems the question of the validity of the equation in the quantum case emerges. Though meanwhile quite comprehensive proofs concerning classical systems have been found, for that case uncertainty and contradictory statements exist, founding on different definitions and interpretations of the quantum analogon of expressions of the equation. Simple examples on which the different approaches can be tested, are so far missing. In this work two such examples are investigated and it is examined, how the results differ from their classical counterparts and which properties of quantum systems influence the result. (orig.)

  12. Solution of underdetermined systems of equations with gridded a priori constraints.

    Science.gov (United States)

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  13. Conservation laws for certain time fractional nonlinear systems of partial differential equations

    Science.gov (United States)

    Singla, Komal; Gupta, R. K.

    2017-12-01

    In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.

  14. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

    Science.gov (United States)

    Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2016-04-12

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

  15. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    Science.gov (United States)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  16. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Science.gov (United States)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  17. Boundary-value problems with free boundaries for elliptic systems of equations

    CERN Document Server

    Monakhov, V N

    1983-01-01

    This book is concerned with certain classes of nonlinear problems for elliptic systems of partial differential equations: boundary-value problems with free boundaries. The first part has to do with the general theory of boundary-value problems for analytic functions and its applications to hydrodynamics. The second presents the theory of quasiconformal mappings, along with the theory of boundary-value problems for elliptic systems of equations and applications of it to problems in the mechanics of continuous media with free boundaries: problems in subsonic gas dynamics, filtration theory, and problems in elastico-plasticity.

  18. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    Science.gov (United States)

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

  19. Geometric methods of global attraction in systems of delay differential equations

    Science.gov (United States)

    El-Morshedy, Hassan A.; Ruiz-Herrera, Alfonso

    2017-11-01

    In this paper we deduce criteria of global attraction in systems of delay differential equations. Our methodology is new and consists in "dominating" the nonlinear terms of the system by a scalar function and then studying some dynamical properties of that function. One of the crucial benefits of our approach is that we obtain delay-dependent results of global attraction that cover the best delay-independent conditions. We apply our results in a gene regulatory model and the classical Nicholson's blowfly equation with patch structure.

  20. Coupled replicator equations for the dynamics of learning in multiagent systems

    Science.gov (United States)

    Sato, Yuzuru; Crutchfield, James P.

    2003-01-01

    Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.

  1. Multilevel solvers of first-order system least-squares for Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chen-Yao G. [National Chung Cheng Univ., Chia-Yi (Taiwan, Province of China)

    1996-12-31

    Recently, The use of first-order system least squares principle for the approximate solution of Stokes problems has been extensively studied by Cai, Manteuffel, and McCormick. In this paper, we study multilevel solvers of first-order system least-squares method for the generalized Stokes equations based on the velocity-vorticity-pressure formulation in three dimensions. The least-squares functionals is defined to be the sum of the L{sup 2}-norms of the residuals, which is weighted appropriately by the Reynolds number. We develop convergence analysis for additive and multiplicative multilevel methods applied to the resulting discrete equations.

  2. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  3. The boolean algebra with restricted variables as a tool for fault tree modularization

    International Nuclear Information System (INIS)

    Caldarola, L.; Wickenhaeuser, A.

    1981-08-01

    The number of minimal cut sets (m.c.s.) of very complex and highly interconnected fault trees can become extremely large (e.g. more than 10 7 ). In this case the usual analytical approach of dissecting the fault tree TOP variable into m.c.s. is not only computationally prohibitively expensive, but also meaningless because it does not offer any synthetic overview of system behavior. The method proposed in this paper overcomes the deficiencies of the analytical method. It is shown that, by applying boolean algebra with restricted variables (b.a.w.r.v.), the concept of fault tree modularization can be straightforwardly extended from a single gate to a set of gates. Thus, large fault trees are divided into smaller fault trees (modules), which are connected to each other according to a simple scheme. This scheme is represented by a block diagram in which each block is a module. The modules are analyzed separately by the m.c.s. method, and the results are combined according of the TOP event. The method allows the calculation of very large fault trees in a short time and offers a synthetic overview of systems behavior through the block diagram. Numerical examples are also included. Calculations have been carried out by using the computer code MUSTAMO, which is based on the theory developed in this paper. (orig.) [de

  4. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    KAUST Repository

    Southern, J.A.; Plank, G.; Vigmond, E.J.; Whiteley, J.P.

    2009-01-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

  5. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    KAUST Repository

    Southern, J.A.

    2009-10-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

  6. Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system

    International Nuclear Information System (INIS)

    Bishop, A.R.; Flesch, R.; Forests, M.G.; Overman, E.A.

    1990-01-01

    The purpose of this paper is to present a first step toward providing coordinates and associated dynamics for low-dimensional attractors in nearly integrable partial differential equations (pdes), in particular, where the truncated system reflects salient geometric properties of the pde. This is achieved by correlating: (1) numerical results on the bifurcations to temporal chaos with spatial coherence of the damped, periodically forced sine-Gordon equation with periodic boundary conditions; (2) an interpretation of the spatial and temporal bifurcation structures of this perturbed integrable system with regard to the exact structure of the sine-Gordon phase space; (3) a model dynamical systems problem, which is itself a perturbed integrable Hamiltonian system, derived from the perturbed sine-Gordon equation by a finite mode Fourier truncation in the nonlinear Schroedinger limit; and (4) the bifurcations to chaos in the truncated phase space. In particular, a potential source of chaos in both the pde and the model ordinary differential equation systems is focused on: the existence of homoclinic orbits in the unperturbed integrable phase space and their continuation in the perturbed problem. The evidence presented here supports the thesis that the chaotic attractors of the weakly perturbed periodic sine-Gordon system consists of low-dimensional metastable attacking states together with intermediate states that are O(1) unstable and correspond to homoclinic states in the integrable phase space. It is surmised that the chaotic dynamics on these attractors is due to the perturbation of these homocline integrable configurations

  7. Planck constant as spectral parameter in integrable systems and KZB equations

    Science.gov (United States)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  8. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  9. UNIFIED MODELS OF ELEMENTS OF POWER SUPPLY SYSTEMS BASED ON EQUATIONS IN PHASE COORDINATES

    Directory of Open Access Journals (Sweden)

    Yu.N. Vepryk

    2015-12-01

    Full Text Available Purpose. The models of electrical machines in the phase coordinates, the universal algorithm for the simulation of separate elements in a d-q coordinates system and in a phase-coordinates system are proposed. Methodology. Computer methods of investigation of transients in electrical systems are based on a compilation of systems of differential equations and their numerical integration solution methods. To solve differential equations an implicit method of numerical integration was chosen. Because it provides to complete structural simulation possibility: firstly developing models of separate elements and then forming a model of the complex system. For the mathematical simulation of electromagnetic transients in the elements of the electrical systems has been accepted the implicit Euler-Cauchy method, because it provides a higher precision and stability of the computing processes. Results. In developing the model elements identified two groups of elements: - Static elements and electrical machines in the d-q coordinates; - Rotating electrical machines in phase coordinates. As an example, the paper provides a model of synchronous and asynchronous electric machines in the d-q coordinates system and the phase coordinate system. The generalization algorithm and the unified notation form of equations of elements of an electrical system are obtained. It provides the possibility of using structural methods to develop a mathematical model of power systems under transient conditions. Practical value. In addition, the using of a computer model allows to implement multivariant calculations for research and study of factors affecting the quantitative characteristics of the transients.

  10. Forward-backward equations for nonlinear propagation in axially invariant optical systems

    International Nuclear Information System (INIS)

    Ferrando, Albert; Zacares, Mario; Fernandez de Cordoba, Pedro; Binosi, Daniele; Montero, Alvaro

    2005-01-01

    We present a general framework to deal with forward and backward components of the electromagnetic field in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components, explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples

  11. Model Selection and Risk Estimation with Applications to Nonlinear Ordinary Differential Equation Systems

    DEFF Research Database (Denmark)

    Mikkelsen, Frederik Vissing

    eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various......Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... package, episode. This package incorporates a collection of sparsity inducing penalties into two types of loss functions: a squared loss function relying on numerically solving the equations and an approximate loss function based on inverse collocation methods. The goal of this framework is to provide...

  12. An algorithmic approach to solving polynomial equations associated with quantum circuits

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Zinin, M.V.

    2009-01-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Groebner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Groebner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Groebner bases over F 2

  13. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  14. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations

    International Nuclear Information System (INIS)

    Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.

    2003-01-01

    We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations

  15. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  16. New form of the Euler-Bernoulli rod equation applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2008-01-01

    Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .

  17. Results of numerically solving an integral equation for a two-fermion system

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solov'eva, T.M.

    2003-01-01

    A two-particle system is described by integral equations whose kernels are dependent on the total energy of the system. Such equations can be reduced to an eigenvalue problem featuring an eigenvalue-dependent operator. This nonlinear eigenvalue problem is solved by means of an iterative procedure developed by the present authors. The energy spectra of a two-fermion system formed by particles of identical masses are obtained for two cases, that where the total spin of the system is equal to zero and that where the total spin of the system is equal to unity. The splitting of the ground-state levels of positronium and dimuonium, the frequency of the transition from the ground state of orthopositronium to its first excited state, and the probabilities of parapositronium and paradimuonium decays are computed. The results obtained in this way are found to be in good agreement with experimental data

  18. An Improvement to a Multi-Client Searchable Encryption Scheme for Boolean Queries.

    Science.gov (United States)

    Jiang, Han; Li, Xue; Xu, Qiuliang

    2016-12-01

    The migration of e-health systems to the cloud computing brings huge benefits, as same as some security risks. Searchable Encryption(SE) is a cryptography encryption scheme that can protect the confidentiality of data and utilize the encrypted data at the same time. The SE scheme proposed by Cash et al. in Crypto2013 and its follow-up work in CCS2013 are most practical SE Scheme that support Boolean queries at present. In their scheme, the data user has to generate the search tokens by the counter number one by one and interact with server repeatedly, until he meets the correct one, or goes through plenty of tokens to illustrate that there is no search result. In this paper, we make an improvement to their scheme. We allow server to send back some information and help the user to generate exact search token in the search phase. In our scheme, there are only two round interaction between server and user, and the search token has [Formula: see text] elements, where n is the keywords number in query expression, and [Formula: see text] is the minimum documents number that contains one of keyword in query expression, and the computation cost of server is [Formula: see text] modular exponentiation operation.

  19. Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras

    Science.gov (United States)

    Andrade, Jefferson O.; Kameyama, Yukiyoshi

    Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In this paper, we propose a novel, efficient algorithm for multi-valued bounded model checking. A notable feature of our algorithm is that it is not based on reduction of multi-values into two-values; instead, it generates a single formula which represents multi-valuedness by a suitable encoding, and asks a standard SAT solver to check its satisfiability. Our experimental results show a significant improvement in the number of variables and clauses and also in execution time compared with the reduction-based one.

  20. Attractor controllability of Boolean networks by flipping a subset of their nodes

    Science.gov (United States)

    Rafimanzelat, Mohammad Reza; Bahrami, Fariba

    2018-04-01

    The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.

  1. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  2. Inverse operator method for solutions of nonlinear dynamical system and application to Lorentz equation

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1993-01-01

    The inverse operator method (IOM) for solutions of nonlinear dynamical systems (NDS) is briefly described and realized by the Mathematics-Mechanization (MM) in computers. For the first time IOM and MM are successfully applied to study the chaotic behaviors of Lorentz equation

  3. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  4. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  5. Positive Solutions for System of Nonlinear Fractional Differential Equations in Two Dimensions with Delay

    Directory of Open Access Journals (Sweden)

    Azizollah Babakhani

    2010-01-01

    Full Text Available We investigate the existence and uniqueness of positive solution for system of nonlinear fractional differential equations in two dimensions with delay. Our analysis relies on a nonlinear alternative of Leray-Schauder type and Krasnoselskii's fixed point theorem in a cone.

  6. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    OpenAIRE

    Sun, Jiebao; Zhang, Dazhi; Wu, Boying

    2011-01-01

    We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  7. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Jiebao Sun

    2011-01-01

    parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  8. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  9. Existence and uniqueness of solution for a system of equations of ...

    African Journals Online (AJOL)

    The existence and uniqueness of solution for a system of equations of microwave heating of biologic issue is discussed. Using the Green function approach we establish the existence and uniqueness of solution. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 177-180 ...

  10. A Direct Derivation of the Equations of Motion for 3D-Flexible Mechanical Systems

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Mads Leergaard

    1998-01-01

    equations for flexible mechanical systems are derived using the principle of virtual work, which introduces inertia in a straightforward manner, because this principle treats inertia as a force. The flexible formulation is exemplified by the use of circular beam elements and some basic matrices are derived...

  11. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  12. Computational Experience with Globally Convergent Descent Methods for Large Sparse Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    1998-01-01

    Roč. 8, č. 3-4 (1998), s. 201-223 ISSN 1055-6788 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear equations * Armijo-type descent methods * Newton-like methods * truncated methods * global convergence * nonsymmetric linear systems * conjugate gradient -type methods * residual smoothing * computational experiments Subject RIV: BB - Applied Statistics, Operational Research

  13. On the solution of a class of fuzzy system of linear equations

    Indian Academy of Sciences (India)

    J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...

  14. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    International Nuclear Information System (INIS)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong

    2015-01-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations

  15. Approximate solution to the Kolmogorov equation for a fission chain-reacting system

    International Nuclear Information System (INIS)

    Ruby, L.; McSwine, T.L.

    1986-01-01

    An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution

  16. On a system of differential equations with fractional derivatives arising in rod theory

    International Nuclear Information System (INIS)

    Atanackovic, Teodor M; Stankovic, Bogoljub

    2004-01-01

    We study a system of equations with fractional derivatives, that arises in the analysis of the lateral motion of an elastic column fixed at one end and loaded by a concentrated follower force at the other end. We assume that the column is positioned on a viscoelastic foundation described by a constitutive equation of fractional derivative type. The stability boundary is determined. It is shown that as in the case of an elastic (Winkler) type of foundation the stability boundary remains the same as for the column without a foundation! Thus, with the solution analysed here, the column exhibits the so-called Hermann-Smith paradox

  17. Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system

    International Nuclear Information System (INIS)

    Wang, C.

    1992-01-01

    The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories

  18. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Science.gov (United States)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  19. Comparing direct and iterative equation solvers in a large structural analysis software system

    Science.gov (United States)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  20. Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion

    International Nuclear Information System (INIS)

    Zhang Mei-Ling; Wang Xiao-Xiao; Xie Yin-Li; Jia Li-Qun; Sun Xian-Ting

    2011-01-01

    Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results. (general)

  1. Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

    Science.gov (United States)

    Skinner, Thomas E.

    2018-01-01

    The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which

  2. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  3. Quantum Discord in Two-Qubit System Constructed from the Yang—Baxter Equation

    International Nuclear Information System (INIS)

    Gou Li-Dan; Wang Xiao-Qian; Sun Yuan-Yuan; Xu Yu-Mei

    2014-01-01

    Quantum correlations among parts of a composite quantum system are a fundamental resource for several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, we investigate the quantum discord of the two-qubit system constructed from the Yang—Baxter Equation. The density matrix of this system is generated through the unitary Yang—Baxter matrix R. The analytical expression and numerical result of quantum discord and geometric measure of quantum discord are obtained for the Yang—Baxter system. These results show that quantum discord and geometric measure of quantum discord are only connect with the parameter θ, which is the important spectral parameter in Yang—Baxter equation. (general)

  4. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  5. Improving the quantum cost of reversible Boolean functions using reorder algorithm

    Science.gov (United States)

    Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf

    2018-05-01

    This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.

  6. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    International Nuclear Information System (INIS)

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.

    2016-01-01

    Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.

  7. The coordinate system transformation of a serial kinematic structures and use in the derivation of systems motion equations

    Directory of Open Access Journals (Sweden)

    Zátopek Jiří

    2016-01-01

    Full Text Available This text discusses the use of transformation matrices to determine the motion equations of the complex mechanical structure. Use of the transformation matrix does not apply only to motion equations but has the general use in relative positions determine of objects in the 3D space. Analysed model is divided into seven physical objects, the transformation matrix and the corresponding inertia/pseudo-inertia matrix is included in each of them. This matrices are strictly necessary to the system dynamic description using the matrix form of Lagrange Equations of the Second Type. Another possibility to use the transformation matrix is shown in the camera system measurement. Model was designed in 3D CAD system SolidWorks, MATLAB was used for the mathematical calculations.

  8. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    International Nuclear Information System (INIS)

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  9. Domestic and outbound tourism demand in Australia: a System-of-Equations Approach

    OpenAIRE

    George Athanasopoulos; Minfeng Deng; Gang Li; Haiyan Song

    2013-01-01

    This study uses a system-of-equations approach to model the substitution relationship between Australian domestic and outbound tourism demand. A new price variable based on relative ratios of purchasing power parity index is developed for the substitution analysis. Short-run demand elasticities are calculated based on the estimated dynamic almost ideal demand system. The empirical results reveal significant substitution relationships between Australian domestic tourism and outbound travel to ...

  10. Ray equations of a weak shock in a hyperbolic system of ...

    Indian Academy of Sciences (India)

    differential form of this system of conservation laws is a hyperbolic system of partial differential equations. A(u)ut + B(α)(u)uxα = 0,. (1.3) where. A(u) = 〈∇u,H〉 and B(α)(u) = 〈∇u, F(α)〉,. (1.4) and we use the summation convention that a repeated symbol in subscripts and super- scripts in a term will mean summation over the ...

  11. System of delay difference equations with continuous time with lag function between two known functions

    Directory of Open Access Journals (Sweden)

    Hajnalka Péics

    2016-08-01

    Full Text Available The asymptotic behavior of solutions of the system of difference equations with continuous time and lag function between two known real functions is studied. The cases when the lag function is between two linear delay functions, between two power delay functions and between two constant delay functions are observed and illustrated by examples. The asymptotic estimates of solutions of the considered system are obtained.

  12. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  13. Application of the variational iteration method for system of initial value problems delay differential equations

    Science.gov (United States)

    Yousef, Hamood. M.; Ismail, A. I. B. MD.

    2017-08-01

    Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.

  14. Baecklund transformations and zero-curvature representations of systems of partial differential equations

    International Nuclear Information System (INIS)

    Brandt, F.

    1993-01-01

    It is shown that Baecklund transformations (BTs) and zero-curvature representations (ZCRs) of systems of partial differential equations (PDEs) are closely related. The connection is established by nonlinear representations of the symmetry group underlying the ZCR which induce gauge transformations relating different BTs. This connection is used to construct BTs from ZCRs (and vice versa). Furthermore a procedure is outlined which allows a systematic search for ZCRs of a given system of PDEs. (orig.)

  15. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  16. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    Science.gov (United States)

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  17. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  18. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  19. Matrix equation decomposition and parallel solution of systems resulting from unstructured finite element problems in electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)

    1996-12-31

    Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.

  20. Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems

    Directory of Open Access Journals (Sweden)

    Misha V. Feigin

    2009-09-01

    Full Text Available We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (v-system and we determine all trigonometric v-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric v-system; this inverts a one-way implication observed by Veselov for the rational solutions.

  1. Tensor-GMRES method for large sparse systems of nonlinear equations

    Science.gov (United States)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  2. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems

  3. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  4. Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation.

    Science.gov (United States)

    Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R

    2016-12-21

    One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.

  5. Evolution of Boolean networks under selection for a robust response to external inputs yields an extensive neutral space

    Science.gov (United States)

    Szejka, Agnes; Drossel, Barbara

    2010-02-01

    We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by changing the attractor. Mutations change the connections between the nodes and the update functions. In order to investigate the influence of the type of update functions, we perform our simulations with canalizing as well as with threshold functions. We compare the properties of the fitness landscapes that result for different versions of the selection criterion and the update functions. We find that for all studied cases the fitness landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are able to fulfill the same task and are connected by neutral paths in network (“genotype”) space. We find furthermore a connection between the attractor length and the mutational robustness, and an extremely long memory of the initial evolutionary stage.

  6. Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality

    International Nuclear Information System (INIS)

    Pabst, M.

    2014-01-01

    Single charge densities and the potential are used to describe models of electrochemical systems. These quantities can be calculated by solving a system of time dependent nonlinear coupled partial differential equations, the Poisson-Nernst-Planck equations. Assuming small deviations from the electroneutral equilibrium, the linearized and decoupled equations are solved for a radial symmetric geometry, which represents the interface between a cell and a sensor device. The densities and the potential are expressed by Fourier-Bessels series. The system considered has a ratio between the Debye-length and its geometric dimension on the order of 10 −4 so the Fourier-Bessel series can be approximated by elementary functions. The time development of the system is characterized by two time constants, τ c and τ g . The constant τ c describes the approach to the stationary state of the total charge and the potential. τ c is several orders of magnitude smaller than the geometry-dependent constant τ g , which is on the order of 10 ms characterizing the transition to the stationary state of the single ion densities

  7. The Concept of the "Imploded Boolean Search": A Case Study with Undergraduate Chemistry Students

    Science.gov (United States)

    Tomaszewski, Robert

    2016-01-01

    Critical thinking and analytical problem-solving skills in research involves using different search strategies. A proposed concept for an "Imploded Boolean Search" combines three unique identifiable field types to perform a search: keyword(s), numerical value(s), and a chemical structure or reaction. The object of this type of search is…

  8. Application of fuzzy logic to Boolean models for digital soil assessment

    NARCIS (Netherlands)

    Gruijter, de J.J.; Walvoort, D.J.J.; Bragato, G.

    2011-01-01

    Boolean models based on expert knowledge are often used to classify soils into a limited number of classes of a difficult-to-measure soil attribute. Although the primary data used for these classifications contain information on whether the soil is a typical class member or a boundary case between

  9. Boolean logic and character state identity: pitfalls of character coding in metazoan cladistics

    NARCIS (Netherlands)

    Jenner, Ronald A.

    2002-01-01

    A critical study of the morphological data sets used for the most recent analyses of metazoan cladistics exposes a rather cavalier attitude towards character coding. Binary absence/presence coding is ubiquitous, but without any explicit justification. This uncompromising application of Boolean logic

  10. A new separation algorithm for the Boolean quadric and cut polytopes

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros; Letchford, Adam N.

    2014-01-01

    A separation algorithm is a procedure for generating cutting planes. Up to now, only a few polynomial-time separation algorithms were known for the Boolean quadric and cut polytopes. These polytopes arise in connection with zero–one quadratic programming and the max-cut problem, respectively. We...

  11. Describing the What and Why of Students' Difficulties in Boolean Logic

    Science.gov (United States)

    Herman, Geoffrey L.; Loui, Michael C.; Kaczmarczyk, Lisa; Zilles, Craig

    2012-01-01

    The ability to reason with formal logic is a foundational skill for computer scientists and computer engineers that scaffolds the abilities to design, debug, and optimize. By interviewing students about their understanding of propositional logic and their ability to translate from English specifications to Boolean expressions, we characterized…

  12. Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann

    Czech Academy of Sciences Publication Activity Database

    Balcar, Bohuslav; Jech, Thomas; Pazák, Tomáš

    2005-01-01

    Roč. 37, č. 6 (2005), s. 885-898 ISSN 0024-6093 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z10190503 Keywords : Boolean algebras * Maharam submeasure * weak distributivity * independent reals Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2005

  13. Characterization of Boolean Algebras in Terms of Certain States of Jauch-Piron Type

    Science.gov (United States)

    Matoušek, Milan; Pták, Pavel

    2015-12-01

    Suppose that L is an orthomodular lattice (a quantum logic). We show that L is Boolean exactly if L possesses a strongly unital set of weakly Jauch-Piron states, or if L possesses a unital set of weakly positive states. We also discuss some general properties of Jauch-Piron-like states.

  14. Boolean-Like and Frequentistic Nonstandard Semantics for First-Order Predicate Calculus without Functions

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2001-01-01

    Roč. 5, č. 1 (2001), s. 45-57 ISSN 1432-7643 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : first-order predicate calculus * standard semantics * Boolean-like semantics * frequentistic semantics * completness theorems Subject RIV: BA - General Mathematics

  15. Exact sampling from conditional Boolean models with applications to maximum likelihood inference

    NARCIS (Netherlands)

    Lieshout, van M.N.M.; Zwet, van E.W.

    2001-01-01

    We are interested in estimating the intensity parameter of a Boolean model of discs (the bombing model) from a single realization. To do so, we derive the conditional distribution of the points (germs) of the underlying Poisson process. We demonstrate how to apply coupling from the past to generate

  16. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  17. Recent symbolic summation methods to solve coupled systems of differential and difference equations

    International Nuclear Information System (INIS)

    Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de

    2014-07-01

    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

  18. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Tam, Honwah

    2016-01-01

    In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

  19. Exact differential equation for the density and ionization energy of a many-particle system

    Science.gov (United States)

    Levy, M.; Perdew, J. P.; Sahni, V.

    1984-01-01

    The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.

  20. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    Science.gov (United States)

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Recent symbolic summation methods to solve coupled systems of differential and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-07-15

    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

  2. A method for exponential propagation of large systems of stiff nonlinear differential equations

    Science.gov (United States)

    Friesner, Richard A.; Tuckerman, Laurette S.; Dornblaser, Bright C.; Russo, Thomas V.

    1989-01-01

    A new time integrator for large, stiff systems of linear and nonlinear coupled differential equations is described. For linear systems, the method consists of forming a small (5-15-term) Krylov space using the Jacobian of the system and carrying out exact exponential propagation within this space. Nonlinear corrections are incorporated via a convolution integral formalism; the integral is evaluated via approximate Krylov methods as well. Gains in efficiency ranging from factors of 2 to 30 are demonstrated for several test problems as compared to a forward Euler scheme and to the integration package LSODE.

  3. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  4. Development and adjustment of programs for solving systems of linear equations

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  5. ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Khutornoj, N.V.

    1992-01-01

    A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs

  6. EXISTENCE OF POSITIVE SOLUTION TO TWO-POINT BOUNDARY VALUE PROBLEM FOR A SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second order ordinary differential equa-tions.

  7. Solvability of a class of systems of infinite-dimensional integral equations and their application in statistical mechanics

    International Nuclear Information System (INIS)

    Gonchar, N.S.

    1986-01-01

    This paper presents a mathematical method developed for investigating a class of systems of infinite-dimensional integral equations which have application in statistical mechanics. Necessary and sufficient conditions are obtained for the uniqueness and bifurcation of the solution of this class of systems of equations. Problems of equilibrium statistical mechanics are considered on the basis of this method

  8. About local fractional three-dimensional compressible Navier-Stokes equations in Cantor-type cylindrical co-ordinate system

    Directory of Open Access Journals (Sweden)

    Gao Guo-Ping

    2016-01-01

    Full Text Available In this article, we investigate the local fractional 3-D compressible Navier-Stokes equation via local fractional derivative. We use the Cantor-type cylindrical co-ordinate method to transfer 3-D compressible Navier-Stokes equation from the Cantorian co-ordinate system to the Cantor-type cylindrical co-ordinate system.

  9. Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity

    International Nuclear Information System (INIS)

    Yepez, Jeffrey

    2006-01-01

    Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory

  10. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  11. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  12. Non-classical relaxation cycle of a three-dimensional system of Lotka-Volterra equations

    International Nuclear Information System (INIS)

    Kolesov, Yu S

    2000-01-01

    A mathematical model of the well-known Belousov's reaction is the object of study. It is reasonable to assume that one coefficient in the corresponding system of differential equations is large, while the other parameters are finite. Non-standard tools taking account of the peculiarities of the problem bring one to a theorem on the existence of a relaxation cycle, allowing at the same time to reveal its characteristic features

  13. A vanishing diffusion limit in a nonstandard system of phase field equations

    Czech Academy of Sciences Publication Activity Database

    Colli, P.; Gilardi, G.; Krejčí, Pavel; Sprekels, J.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 257-275 ISSN 2163-2480 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : nonstandard phase field system * nonlinear partial differential equations * asympotic limit Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=9918

  14. On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces

    International Nuclear Information System (INIS)

    Leitão, A; Alves, M Marques

    2012-01-01

    In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)

  15. A combined modification of Newton`s method for systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)

    1996-12-31

    To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

  16. Existence and Uniqueness of Solutions for Coupled Systems of Higher-Order Nonlinear Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Ahmad Bashir

    2010-01-01

    Full Text Available We study an initial value problem for a coupled Caputo type nonlinear fractional differential system of higher order. As a first problem, the nonhomogeneous terms in the coupled fractional differential system depend on the fractional derivatives of lower orders only. Then the nonhomogeneous terms in the fractional differential system are allowed to depend on the unknown functions together with the fractional derivative of lower orders. Our method of analysis is based on the reduction of the given system to an equivalent system of integral equations. Applying the nonlinear alternative of Leray-Schauder, we prove the existence of solutions of the fractional differential system. The uniqueness of solutions of the fractional differential system is established by using the Banach contraction principle. An illustrative example is also presented.

  17. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    Science.gov (United States)

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  18. Quantum algorithms on Walsh transform and Hamming distance for Boolean functions

    Science.gov (United States)

    Xie, Zhengwei; Qiu, Daowen; Cai, Guangya

    2018-06-01

    Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.

  19. Incorporating ''fuzzy'' data and logical relations in the design of expert systems for nuclear reactors

    International Nuclear Information System (INIS)

    Guth, M.A.S.

    1987-01-01

    This paper applies the method of assigning probability in Dempster-Shafer Theory (DST) to the components of rule-based expert systems used in the control of nuclear reactors. Probabilities are assigned to premises, consequences, and rules themselves. This paper considers how uncertainty can propagate through a system of Boolean equations, such as fault trees or expert systems. The probability masses assigned to primary initiating events in the expert system can be derived from observing a nuclear reactor in operation or based on engineering knowledge of the reactor parts. Use of DST mass assignments offers greater flexibility to the construction of expert systems

  20. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.