WorldWideScience

Sample records for boolean algebra

  1. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  2. Cardinal invariants on Boolean algebras

    CERN Document Server

    Monk, J Donald

    2014-01-01

    This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the...

  3. Cardinal invariants on Boolean algebras

    CERN Document Server

    Monk, J Donald

    2009-01-01

    Deals with cardinal number valued functions defined for any Boolean algebra. This title considers the behavior of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. It covers topics such as ultraproducts and Fedorchukis theorem

  4. Generalized join-hemimorphisms on Boolean algebras

    OpenAIRE

    Sergio Celani

    2003-01-01

    We introduce the notions of generalized join-hemimorphism and generalized Boolean relation as an extension of the notions of join-hemimorphism and Boolean relation, respectively. We prove a duality between these two notions. We will also define a generalization of the notion of Boolean algebra with operators by considering a finite family of Boolean algebras endowed with a generalized join-hemimorphism. Finally, we define suitable notions of subalgebra, congruences, Boole...

  5. Duality theories for Boolean algebras with operators

    CERN Document Server

    Givant, Steven

    2014-01-01

    In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.

  6. Fast Vertical Mining Using Boolean Algebra

    Directory of Open Access Journals (Sweden)

    Hosny M. Ibrahim

    2015-01-01

    Full Text Available The vertical association rules mining algorithm is an efficient mining method, which makes use of support sets of frequent itemsets to calculate the support of candidate itemsets. It overcomes the disadvantage of scanning database many times like Apriori algorithm. In vertical mining, frequent itemsets can be represented as a set of bit vectors in memory, which enables for fast computation. The sizes of bit vectors for itemsets are the main space expense of the algorithm that restricts its expansibility. Therefore, in this paper, a proposed algorithm that compresses the bit vectors of frequent itemsets will be presented. The new bit vector schema presented here depends on Boolean algebra rules to compute the intersection of two compressed bit vectors without making any costly decompression operation. The experimental results show that the proposed algorithm, Vertical Boolean Mining (VBM algorithm is better than both Apriori algorithm and the classical vertical association rule mining algorithm in the mining time and the memory usage.

  7. On the Prime Whales of a Boolean Algebra

    OpenAIRE

    Holland, Jason

    2013-01-01

    In this note, we introduce objects called prime whales and use them to represent a Boolean algebra as an algebra of sets in a way that is analogous to Stone's Representation Theorem. We also characterize the existence of prime whales in terms of the existence of prime ideals.

  8. On atomicity of free algebras in Boolean algebras with operators, and a new result on Pinter's free algebras

    OpenAIRE

    Ahmed, Tarek Sayed

    2013-01-01

    We give some general theorems on free algebras of varieties of Boolean algebras with operators; a hitherto new result is obtained for Pinter's substitution algebras. For n\\geq 3, and m>1, there is a generating set of the free algebra freely generated by m elements, which is not a free set of generators.

  9. A complexity theory based on Boolean algebra

    DEFF Research Database (Denmark)

    Skyum, Sven; Valiant, Leslie

    1985-01-01

    A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...

  10. Reduction of Database Independence to Dividing in Atomless Boolean Algebras

    OpenAIRE

    Hyttinen, Tapani; Paolini, Gianluca

    2014-01-01

    We prove that the form of conditional independence at play in database theory and independence logic is reducible to the first-order dividing calculus in the theory of atomless Boolean algebras. This establishes interesting connections between independence in database theory and stochastic independence. As indeed, in light of the aforementioned reduction and recent work of Ben-Yaacov [4], the former case of independence can be seen as the discrete version of the latter.

  11. C*-algebras associated to Boolean dynamical systems

    OpenAIRE

    Pardo Espino, Enrique

    2016-01-01

    The goal of this talk is to present the C*-algebra $C^*(\\mathcal{B}, \\mathcal{L}, \\theta)$ of a Boolean dynamical system $(\\mathcal{B}, \\mathcal{L}, \\theta)$, that generalizes the $C^*$-algebra associated to a labelled graph introduced by Bates and Pask, and to determine its simplicity, its gauge invariant ideals, as well as compute its K-Theory. This is a joint work with Toke Meier Carlsen (Department of Science and Technology, University of the Faroe Islands) and Eduard Ortega (Departme...

  12. Disjunctive normal forms for any class of Boolean algebras with operators

    OpenAIRE

    Khaled, Mohamed

    2015-01-01

    Disjunctive normal forms can provide elegant and constructive proofs of many standard results such as completeness, decidability and so on. They were also used to show non atomicity of some free algebras of specific Boolean algebras with operators. Here, we generalize the normal forms for any class of Boolean algebras with operators.

  13. Boolean Algebra Application in Analysis of Flight Accidents

    Directory of Open Access Journals (Sweden)

    Casandra Venera BALAN

    2015-12-01

    Full Text Available Fault tree analysis is a deductive approach for resolving an undesired event into its causes, identifying the causes of a failure and providing a framework for a qualitative and quantitative evaluation of the top event. An alternative approach to fault tree analysis methods calculus goes to logical expressions and it is based on a graphical representation of the data structure for a logic - based binary decision diagram representation. In this analysis, such sites will be reduced to a minimal size and arranged in the sense that the variables appear in the same order in each path. An event can be defined as a statement that can be true or false. Therefore, Boolean algebra rules allow restructuring of a Fault Tree into one equivalent to it, but simpler.

  14. Boolean Functions, Quantum Gates, Hamilton Operators, Spin Systems and Computer Algebra

    OpenAIRE

    Hardy, Yorick; Steeb, Willi-Hans

    2014-01-01

    We describe the construction of quantum gates (unitary operators) from boolean functions and give a number of applications. Both non-reversible and reversible boolean functions are considered. The construction of the Hamilton operator for a quantum gate is also described with the Hamilton operator expressed as spin system. Computer algebra implementations are provided.

  15. Fuzzy Boolean Algebras Based on Implication Operator%基于蕴涵算子上的模糊布尔代数

    Institute of Scientific and Technical Information of China (English)

    陈华新

    2011-01-01

    文中给出R-模糊布尔代数的定义,讨论了其与模糊布尔代数的关系,证明在一定的条件下,有限个R-模糊布尔代数的交(并)还是R-模糊布尔代数,R-模糊布尔代数的同态像(原像)仍是R-模糊布尔代数.%In this paper ,we introduce the definition of fuzzy Boolean algebra. Based on that, the differences and connection between R-fuzzy Boolean algebra and fuzzy Boolean algebra are discussed. Furhtermore, it is proved that the finite intersection (union) of R-fuzzy Boolean algebra is still R-fuzzy Boolean algebra , and the homomorphic image (preimage) of R-fuzzy Boolean algebra is still R-fuzzy Boolean algebra.

  16. A Boolean algebra approach to the construction of snarks

    OpenAIRE

    Fiol Mora, Miquel Àngel

    1991-01-01

    This work deals with the construction of snarks, that is, cubic graphs that cannot be 3-edge-colored. A natural generalization of the concept of "color", that describes in a simple way the coloring ("0" or "1") of any set of (semi)edges, is introduced. This approach allows us to apply the Boolean logic theory to find an ample family of snarks, which includes many of the previous known constructions and also some interesting ones. Peer Reviewed

  17. Ω-fuzzy subalgebra of Boolean algebra%布尔代数的Ω-模糊子代数

    Institute of Scientific and Technical Information of China (English)

    刘卫锋

    2013-01-01

    Ω-fuzzy subalgebra of Boolean algebra and its properties were discussed in this paper .Ω-fuzzy subalgebra of Boolean algebra was defined and two judging theorems of Ω-fuzzy subalgebra of Boolean algebra were given , and it was stated that intersection-images and inverse-images under Boolean algebra homomorphism of Ω-fuzzy subalgebra of Boolean algebra were respectively Ω-fuzzy subalgebra of Boolean algebra . Then , by defining three operations ⊕ ,ⓧ , over RΩ where RΩexpressed all mappings from set Ωto Boolean algebra R ,a Boolean algebra was obtained ,and fuzzy subalgebra and Ω-fuzzy subalgebra about RΩwere researched .%  研究布尔代数的Ω-模糊子代数及其性质。定义布尔代数的Ω-模糊子代数,给出布尔代数的Ω-模糊子代数的两个简化判定定理,并证明布尔代数的Ω-模糊子代数的交、同态像和同态逆像等也是布尔代数的Ω-模糊子代数。然后,令RΩ表示集合Ω到布尔代数R的所有映射的集合,通过在 RΩ上定义3种运算磑,磗,,得到布尔代数枙RΩ,磑,磗,, I0,I1枛,并研究与其相关的模糊子代数和Ω-模糊子代数。

  18. Multiple Sequence Alignment using Boolean Algebra and Fuzzy Logic:A Comparative Study

    Directory of Open Access Journals (Sweden)

    Nivit Gill

    2011-09-01

    Full Text Available Multiple sequence alignment is the most fundamental and essential task of computational biology, and forms the base for other tasks of bioinformatics. In this paper, two different approaches to sequence alignment have been discussed and compared. The first method employs Boolean algebra which is a two-valued logic whereas the second is based on Fuzzy logic which is a multi-valued logic. Both the methods perform sequence matching by direct comparison method using the operations of Boolean algebra and fuzzy logic respectively. To ensure the optimal alignment, dynamic programming is employed to align multiple sequences progressively. Both the methods are implemented and then tested on various sets of real genome sequences taken from NCBI bank. The processing time for both the methods on these data sets have been computed and compared.

  19. Boolean Differential Operators

    OpenAIRE

    Catumba, Jorge; Diaz, Rafael

    2012-01-01

    We consider four combinatorial interpretations for the algebra of Boolean differential operators. We show that each interpretation yields an explicit matrix representation for Boolean differential operators.

  20. Statistical and algebraic analysis of a family of random Boolean equations

    International Nuclear Information System (INIS)

    The statistical and algebraic properties of a family of random Boolean equations are studied in this paper. Based on studying the mechanism of influence propagation from some variable fixed to 1, the giant strongly connected component and magnetization of solutions are investigated, which exhibit the splitting phenomenon of solution space and a ferromagnetic transition. Furthermore, by analyzing the semi-group property of the solution space and the influence of propagation from some variable fixed to 0, the scale of generating elements is calculated, which undergoes linear, polynomial and exponential phases. Compared with the analysis by statistical mechanics, it is suggested that these different phases of algebraic complexity correspond to the structural complexity of the solution space as replica symmetry, one-step replica symmetry breaking and further-step replica symmetry breaking phases. It is supposed that the structural complexity of solution space can be interpreted from the viewpoint of algebra

  1. Security analysis of boolean algebra based on Zhang-Wang digital signature scheme

    International Nuclear Information System (INIS)

    In 2005, Zhang and Wang proposed an improvement signature scheme without using one-way hash function and message redundancy. In this paper, we show that this scheme exits potential safety concerns through the analysis of boolean algebra, such as bitwise exclusive-or, and point out that mapping is not one to one between assembly instructions and machine code actually by means of the analysis of the result of the assembly program segment, and which possibly causes safety problems unknown to the software

  2. Ones and zeros understanding Boolean algebra digital circuits and the logic of sets

    CERN Document Server

    Gregg, John

    1998-01-01

    "Ones and Zeros explains, in lay terms, Boolean algebra, the suprisingly simple system of mathematical logic used in digital computer circuitry. Ones and Zeros follows the development of this logic system from its origins in Victorian England to its rediscovery in this century as the foundation of all modern computing machinery. Readers will learn about the interesting history of the development of symbolic logic in particular, and the often misunderstood process of mathematical invention and scientific discovery, in general. Ones and Zeros also features practical exercises with answers, real-world examples of digital circuit design, and a reading list." "Ones and Zeros will be of particular interest to software engineers who want to gain a comprehensive understanding of computer hardware." "Outstanding features include: a history of mathematical logic, an explanation of the logic of digital circuits, and hands-on exercises and examples."--Jacket.

  3. Boolean reasoning the logic of boolean equations

    CERN Document Server

    Brown, Frank Markham

    2012-01-01

    A systematic treatment of Boolean reasoning, this concise, newly revised edition combines the works of early logicians with recent investigations, including previously unpublished research results. Brown begins with an overview of elementary mathematical concepts and outlines the theory of Boolean algebras. Two concluding chapters deal with applications. 1990 edition.

  4. Boolean filters of distributive lattices

    Directory of Open Access Journals (Sweden)

    M. Sambasiva Rao

    2013-07-01

    Full Text Available In this paper we introduce the notion of Boolean filters in a pseudo-complemented distributive lattice and characterize the class of all Boolean filters. Further a set of equivalent conditions are derived for a proper filter to become a prime Boolean filter. Also a set of equivalent conditions is derived for a pseudo-complemented distributive lattice to become a Boolean algebra. Finally, a Boolean filter is characterized in terms of congruences.

  5. Boole代数上的几个新度量结构%Several New Metric Structures on Boolean Algebra

    Institute of Scientific and Technical Information of China (English)

    左卫兵; 娄妍

    2011-01-01

    设B是Boole代数,Ω是B到Boole代数{0,1}的全体格同态,μ是Ω上的概率测度,基于B中元素的尺寸的概念提出了元素之间的几个伪度量,建立了B上的度量结构,研究了其上运算的连续性及相互关系.%Let B be a Boolean algebra and ft the set of all homomorphisms from B into {0,1}, and μ be a probability measure on Ω. Based on the concept of sizes of elements of B several new metrics on the pairs of elements are introduced, and the metric structures on B are established, finally, the propositions of continuity of the operations on B are studied.

  6. Construction of 1-Resilient Boolean Functions with Optimal Algebraic Immunity and Good Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Sen-Shan Pan; Xiao-Tong Fu; Wei-Guo Zhangx

    2011-01-01

    This paper presents a construction for a class of 1-resilient functions with optimal algebraic immunity on an even number of variables. The construction is based on the concatenation of two balanced functions in associative classes. For some n, a part of 1-resilient functions with maximum algebraic immunity constructed in the paper can achieve almost optimal nonlinearity. Apart from their high nonlinearity, the functions reach Siegenthaler's upper bound of algebraic degree. Also a class of 1-resilient functions on any number n > 2 of variables with at least sub-optimal algebraic immunity is provided.

  7. Algebraic Degree of a Class Boolean Function Annihilators%一类布尔函数零化子的代数次数

    Institute of Scientific and Technical Information of China (English)

    祁传达; 俞迎达

    2012-01-01

    The effectiveness of algebraic attacks of stream ciphers depends on the algebraic degrees of annihilators of nonlinear Boolean functions.But it remains a difficult problem to construct annihilators with low degree for a given Boolean function. In this paper, we give a new proof of a result on the existence of the n-k degree annihilators formulated by Zhang Wenying,et al,and correct an error in their original proof.%序列密码代数攻击的成效取决于所使用的非线性布尔函数零化子的代数次数,但如何构造一个给定函数的低次数零化子仍是一个难题.本文对张文英等人提出的关于一类布尔函数存在n-k次零化子的结论给出了新的证明,弥补了原文证明不严密的缺陷.

  8. 基于8种常用蕴涵算子上的模糊布尔代数%Fuzzy Boolean Algebras Based on Eight Familiar Kinds of Implication Operator

    Institute of Scientific and Technical Information of China (English)

    陈华新

    2012-01-01

    Based on the work of "Fuzzy Boolean Algebras Based on Implication Operator", present work gives eight kinds of equivalent forms of fuzzy Boolean algebras based on familiar eight kinds of implication operator by using inequalities characterizatian method. This paper promotes the results of the corresponding fuzzy algebra, and enriches riches theoretical results of fuzzy algebra.%在文献[1]的基础上,利用不等式的刻画方法,给出8种常用的R-蕴涵算子下的R-模糊布尔代数的8种等价形式,推广了现有相应模糊代数的结果,丰富了模糊代数的理论成果.

  9. 偶数变元代数免疫最优布尔函数的构造方法%Class of constructions of even variables boolean function with optimum algebraic immunity

    Institute of Scientific and Technical Information of China (English)

    陈银冬; 陆佩忠

    2009-01-01

    A second order recursive construction of even variables Boolean function with optimum algebraic immunity was proposed. It could be observed that the constructed Boolean functions have well cryptographic properties, such as good balance, high algebraic degree and high nonlinearity. Further more, it was generalized to a class of constructions for Boolean functions with optimum algebraic immunity.%提出了构造偶数变元代数免疫最优的布尔函数的方法,这是一个二阶的递归构造方法.分析表明,利用该方法构造而得到的布尔函数具有优良的密码学特性,比如具有较好的平衡性,较高的代数次数和非线性度等.最后,还对该构造方法进行了推广,进一步导出了递归构造偶数变元代数免疫最优布尔函数的一类方法.

  10. Nonmonotonic logics and algebras

    Institute of Scientific and Technical Information of China (English)

    CHAKRABORTY Mihir Kr; GHOSH Sujata

    2008-01-01

    Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.

  11. Ockham Algebras Arising from Monoids

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; H.J. Silva; J.C. Varlet

    2001-01-01

    An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.

  12. Boolean-Valued Belief Functions

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2002-01-01

    Roč. 31, č. 2 (2002), s. 153-181. ISSN 0308-1079 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : Dempster-Schafer theory * Boolean algebra Subject RIV: BA - General Mathematics Impact factor: 0.241, year: 2002

  13. Boolean Logic Optimization in Majority-Inverter Graphs

    OpenAIRE

    Amarù, Luca; Gaillardon, Pierre-Emmanuel; De Micheli, Giovanni

    2015-01-01

    We present a Boolean logic optimization framework based on Majority-Inverter Graph (MIG). An MIG is a directed acyclic graph consisting of three-input majority nodes and regular/complemented edges. Current MIG optimization is supported by a consistent algebraic framework. However, when algebraic methods cannot improve a result quality, stronger Boolean methods are needed to attain further optimization. For this purpose, we propose MIG Boolean methods exploiting the error masking property of m...

  14. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  15. Boolean Logic with Fault Tolerant Coding

    OpenAIRE

    Alagoz, B. Baykant

    2009-01-01

    Error detectable and error correctable coding in Hamming space was researched to discover possible fault tolerant coding constellations, which can implement Boolean logic with fault tolerant property. Basic logic operators of the Boolean algebra were developed to apply fault tolerant coding in the logic circuits. It was shown that application of three-bit fault tolerant codes have provided the digital system skill of auto-recovery without need for designing additional-fault tolerance mechanisms.

  16. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  17. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  18. Some Aspects of Boolean Valued Analysis

    OpenAIRE

    Kusraev, A. G.; Kutateladze, S. S.

    2015-01-01

    This is a survey of some recent applications of Boolean valued analysis to operator theory and harmonic analysis. Under consideration are pseudoembedding operators, the noncommutative Wickstead problem, the Radon-Nikodym Theorem for JB-algebras, and the Bochner Theorem for lattice-valued positive definite mappings on locally compact groups.

  19. Stratification and enumeration of Boolean functions by canalizing depth

    Science.gov (United States)

    He, Qijun; Macauley, Matthew

    2016-01-01

    Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively "picked off", until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions.

  20. Stratification and enumeration of Boolean functions by canalizing depth

    CERN Document Server

    He, Qijun

    2015-01-01

    Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions.

  1. Quantum boolean functions

    OpenAIRE

    Montanaro, Ashley; Osborne, Tobias J.

    2008-01-01

    In this paper we introduce the study of quantum boolean functions, which are unitary operators f whose square is the identity: f^2 = I. We describe several generalisations of well-known results in the theory of boolean functions, including quantum property testing; a quantum version of the Goldreich-Levin algorithm for finding the large Fourier coefficients of boolean functions; and two quantum versions of a theorem of Friedgut, Kalai and Naor on the Fourier spectra of boolean functions. In o...

  2. Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hulgaard, Henrik

    2002-01-01

    This paper presents a new data structure called boolean expression diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of binary decision diagrams (BDDs) which can represent any Boolean circuit in linear space. Two algorithms are described for transforming...

  3. Monotone Boolean functions

    International Nuclear Information System (INIS)

    Monotone Boolean functions are an important object in discrete mathematics and mathematical cybernetics. Topics related to these functions have been actively studied for several decades. Many results have been obtained, and many papers published. However, until now there has been no sufficiently complete monograph or survey of results of investigations concerning monotone Boolean functions. The object of this survey is to present the main results on monotone Boolean functions obtained during the last 50 years

  4. Boolean integral calculus

    Science.gov (United States)

    Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne

    1988-01-01

    The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.

  5. Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hulgaard, Henrik

    This paper presents a new data structure called Boolean Expression Diagrams (BEDs) for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) which can represent any Boolean circuit in linear space and still maintain many of the desirable...... properties of BDDs. Two algorithms are described for transforming a BED into a reduced ordered BDD. One closely mimics the BDD apply-operator while the other can exploit the structural information of the Boolean expression. The efficacy of the BED representation is demonstrated by verifying that the...

  6. Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms and Requirements

    OpenAIRE

    Audemard, Gilles; Bertoli, Piergiorgio; Cimatti, Alessandro; Kornilowicz, Artur; Sebastiani, Roberto

    2002-01-01

    In the last years we have witnessed an impressive advance in the efficiency of boolean solving techniques, which has brought large previously intractable problems at the reach of state-of-the-art solvers. Unfortunately, simple boolean expressions are not expressive enough for representing many real-world problems, which require handling also integer or real values and operators. On the other hand, mathematical solvers, like computer-algebra systems or constraint solvers, cannot handle efficie...

  7. Boolean representations of simplicial complexes and matroids

    CERN Document Server

    Rhodes, John

    2015-01-01

    This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context.   Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean represent...

  8. Semigroups and computer algebra in algebraic structures

    Science.gov (United States)

    Bijev, G.

    2012-11-01

    Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.

  9. Proposition Algebra with Projective Limits

    CERN Document Server

    Bergstra, J A

    2008-01-01

    Sequential logic deviates from propositional logic by taking into account that atomic propositions yield different Boolean values at different times during the sequential evaluation of a single proposition. Reactive valuations capture this dynamics of a proposition's environment. This logic is phrased as an equationally specified algebra rather than in the form of proof rules. It is strictly more general than Boolean algebra to the extent that the classical connectives fail to be expressively complete in the sequential case. The proposition algebra PRA is developed in a fashion similar to the process algebra ACP and the program algebra PGA via an algebraic specification which has a meaningful initial algebra for which a range of courser congruences are considered important as well. In addition infinite objects (that is propositions, processes and programs respectively) are preferably dealt with by means of an inverse limit construction which allows the transfer of knowledge concerning finite objects to facts ...

  10. Reflexive Operator Algebras on Banach Spaces

    OpenAIRE

    Merlevède, Florence; Peligrad, Costel; Peligrad, Magda

    2012-01-01

    In this paper we study the reflexivity of a unital strongly closed algebra of operators with complemented invariant subspace lattice on a Banach space. We prove that if such an algebra contains a complete Boolean algebra of projections of finite uniform multiplicity and with the direct sum property, then it is reflexive, i.e. it contains every operator that leaves invariant every closed subspace in the invariant subspace lattice of the algebra. In particular, such algebras coincide with their...

  11. Fast Vertical Mining Using Boolean Algebra

    OpenAIRE

    Hosny M. Ibrahim; Marghny, M. H.; Noha M. A. Abdelaziz

    2015-01-01

    The vertical association rules mining algorithm is an efficient mining method, which makes use of support sets of frequent itemsets to calculate the support of candidate itemsets. It overcomes the disadvantage of scanning database many times like Apriori algorithm. In vertical mining, frequent itemsets can be represented as a set of bit vectors in memory, which enables for fast computation. The sizes of bit vectors for itemsets are the main space expense of the algorithm that restricts its ex...

  12. Towards boolean operations with thermal photons

    CERN Document Server

    Ben-Abdallah, Philippe

    2016-01-01

    The Boolean algebra is the natural theoretical framework for a classical information treatment. The basic logical operations are usually performed using logic gates. In this Letter we demonstrate that NOT, OR and AND gates can be realized exploiting the near-field radiative interaction in N-body systems with phase change materials. With the recent development of a photon thermal transistor and thermal memory, this result paves the way for a full information treatment and smart solutions for active thermal management at nanoscale with photons.

  13. Random Boolean Networks

    OpenAIRE

    Drossel, Barbara

    2007-01-01

    This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.

  14. ON REDUCED SCALAR EQUATIONS FOR SYNCHRONOUS BOOLEAN NETWORKS

    Directory of Open Access Journals (Sweden)

    Ali Muhammad Ali Rushdi

    2013-01-01

    Full Text Available A total description of a synchronous Boolean network is typically achieved by a matrix recurrence relation. A simpler alternative is to use a scalar equation which is a possibly nonlinear equation that involves two or more instances of a single scalar variable and some Boolean operator(s. Further simplification is possible in terms of a linear reduced scalar equation which is the simplest two-term scalar equation that includes no Boolean operators and equates the value of a scalar variable at a latter instance t2 to its value at an earlier instance t1. This equation remains valid when the times t1 and t2 are both augmented by any integral multiple of the underlying time period. In other words, there are infinitely many versions of a reduced scalar equation, any of which is useful for deducing information about the cyclic behavior of the network. However, to obtain correct information about the transient behavior of the network, one must find the true reduced scalar equation for which instances t1 and t2 are minimal. This study investigates the nature, derivation and utilization of reduced scalar equations. It relies on Boolean-algebraic manipulations for the derivation of such equations and suggests that this derivation can be facilitated by seeking certain orthogonality relations among certain successive (albeit not necessarily consecutive instances of the same scalar variable. We demonstrate, contrary to previously published assumptions or assertions, that there is typically no common reduced scalar equation for all the scalar variables. Each variable usually satisfies its own distinct reduced scalar equation. We also demonstrate that the derivation of a reduced scalar equation is achieved not only by proving it but also by disproving an immediately preceding version of it when such a version might exist. We also demonstrate that, despite the useful insight supplied by the reduced scalar equations, they do not provide a total solution like the

  15. Fault Tolerant Boolean Satisfiability

    CERN Document Server

    Roy, A

    2011-01-01

    A delta-model is a satisfying assignment of a Boolean formula for which any small alteration, such as a single bit flip, can be repaired by flips to some small number of other bits, yielding a new satisfying assignment. These satisfying assignments represent robust solutions to optimization problems (e.g., scheduling) where it is possible to recover from unforeseen events (e.g., a resource becoming unavailable). The concept of delta-models was introduced by Ginsberg, Parkes and Roy (AAAI 1998), where it was proved that finding delta-models for general Boolean formulas is NP-complete. In this paper, we extend that result by studying the complexity of finding delta-models for classes of Boolean formulas which are known to have polynomial time satisfiability solvers. In particular, we examine 2-SAT, Horn-SAT, Affine-SAT, dual-Horn-SAT, 0-valid and 1-valid SAT. We see a wide variation in the complexity of finding delta-models, e.g., while 2-SAT and Affine-SAT have polynomial time tests for delta-models, testing w...

  16. Computational complexity of Boolean functions

    International Nuclear Information System (INIS)

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  17. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  18. Geometric Operators on Boolean Functions

    OpenAIRE

    Frisvad, Jeppe Revall; Falster, Peter

    2007-01-01

    In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propo...

  19. Algorithms for Weighted Boolean Optimization

    OpenAIRE

    Manquinho, Vasco; Marques-Silva, Joao; Planes Cid, Jordi

    2009-01-01

    The Pseudo-Boolean Optimization (PBO) and Maximum Satisfiability (MaxSAT) problems are natural optimization extensions of Boolean Satisfiability (SAT). In the recent past, different algorithms have been proposed for PBO and for MaxSAT, despite the existence of straightforward mappings from PBO to MaxSAT and viceversa. This papers proposes Weighted Boolean Optimization (WBO), a new uni- fied framework that aggregates and extends PBO and MaxSAT. In addition, the paper proposes...

  20. Congruence Kernels of Orthoimplication Algebras

    Directory of Open Access Journals (Sweden)

    I. Chajda

    2007-10-01

    Full Text Available Abstracting from certain properties of the implication operation in Boolean algebras leads to so-called orthoimplication algebras. These are in a natural one-to-one correspondence with families of compatible orthomodular lattices. It is proved that congruence kernels of orthoimplication algebras are in a natural one-to-one correspondence with families of compatible p-filters on the corresponding orthomodular lattices. Finally, it is proved that the lattice of all congruence kernels of an orthoimplication algebra is relatively pseudocomplemented and a simple description of the relative pseudocomplement is given.

  1. Reconstructing an atomic orthomodular lattice from the poset of its Boolean sublattices

    OpenAIRE

    Constantin, Carmen; Doering, Andreas

    2013-01-01

    We show that an atomic orthomodular lattice L can be reconstructed up to isomorphism from the poset B(L) of Boolean subalgebras of L. A motivation comes from quantum theory and the so-called topos approach, where one considers the poset of Boolean sublattices of L=P(H), the projection lattice of the algebra B(H) of bounded operators on Hilbert space.

  2. Modern Algebra, Mathematics: 5293.36.

    Science.gov (United States)

    Edwards, Raymond J.

    This guidebook covers Boolean algebra, matrices, linear transformations of the plane, characteristic values, vectors, and algebraic structures. Overall course goals and performance objectives for each unit are specified; sequencing of units and various time schedules are suggested. A sample pretest and posttest are given, and an annotated list of…

  3. Symmetry in Boolean Satisfiability

    Directory of Open Access Journals (Sweden)

    Fadi A. Aloul

    2010-06-01

    Full Text Available This paper reviews recent approaches on how to accelerate Boolean Satisfiability (SAT search by exploiting symmetries in the problem space. SAT search algorithms traverse an exponentially large search space looking for an assignment that satisfies a set of constraints. The presence of symmetries in the search space induces equivalence classes on the set of truth assignments. The goal is to use symmetries to avoid traversing all assignments by constraining the search to visit a few representative assignments in each equivalence class. This can lead to a significant reduction in search runtime without affecting the completeness of the search.

  4. Boolean Orthogonalizing Combination Methods

    Directory of Open Access Journals (Sweden)

    Yavuz Can

    2015-05-01

    Full Text Available In this paper a new logical operation method called “ presented. It is used to calculate the difference, but also the complement of a function as well as the EXOR and EXNOR of two minterms respectively two ternary respectively two ternary-vector logical operation method called “orthogonal OR advantages of both methods are their results, which are already available form that has an essential advantage for continuing calculations. Since it applies, an orthogonal disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean differential calculus will be simplified.

  5. Investigating Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Neruda, Roman; Frolov, A. A.

    - : ACM, 2008 - (Ding, C.; Li, T.; Zhu, S.), s. 18-25 ISBN 978-1-60558-307-5. [DMMT'08. Workshop in Conjunction with SIGKDD 2008 /14./. Las Vegas (US), 24.08.2008-24.08.2008] Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * nonnegative matrix factorization * neural networks * information retrieval * data mining * binary data Subject RIV: BB - Applied Statistics, Operational Research http://users.cs.fiu.edu/~taoli/kdd08-workshop/DMMT08-Proceedings.pdf

  6. Fault Tolerant Boolean Satisfiability

    OpenAIRE

    Roy, A

    2011-01-01

    A delta-model is a satisfying assignment of a Boolean formula for which any small alteration, such as a single bit flip, can be repaired by flips to some small number of other bits, yielding a new satisfying assignment. These satisfying assignments represent robust solutions to optimization problems (e.g., scheduling) where it is possible to recover from unforeseen events (e.g., a resource becoming unavailable). The concept of delta-models was introduced by Ginsberg, Parkes and Roy (AAAI 1998...

  7. Approximate Reasoning with Fuzzy Booleans

    NARCIS (Netherlands)

    Broek, van den P.M.; Noppen, J.A.R.

    2004-01-01

    This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante

  8. Geometric Operators on Boolean Functions

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter

    of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...

  9. Cryptographic Boolean functions and applications

    CERN Document Server

    Cusick, Thomas W

    2009-01-01

    Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...

  10. Polynomial threshold functions and Boolean threshold circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2013-01-01

    secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two threshold circuits. Our main results in regard to this connection are: PTFs of polynomial length and polynomial degree compute exactly the functions computed by THRMAJ circuits. An exponential length lower...... bound for PTFs that holds regardless of degree, thereby extending known lower bounds for THRMAJ circuits. We generalize two-party unbounded error communication complexity to the multi-party number-on-the-forehead setting, and show that communication lower bounds for 3-player protocols would yield size...... lower bounds for THRTHR circuits. We obtain several other results about PTFs. These include relationships between weight and degree of PTFs, and a degree lower bound for PTFs of constant length. We also consider a variant of PTFs over the max-plus algebra. We show that they are connected to PTFs over...

  11. Consistent stabilizability of switched Boolean networks.

    Science.gov (United States)

    Li, Haitao; Wang, Yuzhen

    2013-10-01

    This paper investigates the consistent stabilizability of switched Boolean networks (SBNs) by using the semi-tensor product method, and presents a number of new results. First, an algebraic expression of SBNs is obtained by the semi-tensor product, based on which the consistent stabilizability is then studied for SBNs and some necessary and sufficient conditions are presented for the design of free-form and state-feedback switching signals, respectively. Finally, the consistent stabilizability of SBNs with state constraints is considered and some necessary and sufficient conditions are proposed. The study of illustrative examples shows that the new results obtained in this paper are very effective in designing switching signals for the consistent stabilizability of SBNs. PMID:23787170

  12. Quantum computation using geometric algebra

    Science.gov (United States)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  13. Techniques for solving Boolean equation systems

    OpenAIRE

    Keinänen, Misa

    2006-01-01

    Boolean equation systems are ordered sequences of Boolean equations decorated with least and greatest fixpoint operators. Boolean equation systems provide a useful framework for formal verification because various specification and verification problems, for instance, μ-calculus model checking can be represented as the problem of solving Boolean equation systems. The general problem of solving a Boolean equation system is a computationally hard task, and no polynomial time solution technique ...

  14. A Note on the Inversion Complexity of Boolean Functions in Boolean Formulas

    OpenAIRE

    Morizumi, Hiroki

    2008-01-01

    In this note, we consider the minimum number of NOT operators in a Boolean formula representing a Boolean function. In circuit complexity theory, the minimum number of NOT gates in a Boolean circuit computing a Boolean function $f$ is called the inversion complexity of $f$. In 1958, Markov determined the inversion complexity of every Boolean function and particularly proved that $\\lceil \\log_2(n+1) \\rceil$ NOT gates are sufficient to compute any Boolean function on $n$ variables. As far as we...

  15. Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras

    Science.gov (United States)

    Konig, Martinvaldo

    2014-10-01

    Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.

  16. Boolean Operations on Conic Polygons

    Institute of Scientific and Technical Information of China (English)

    Yong-Xi Gong; Yu Liu; Lun Wu; Yu-Bo Xie

    2009-01-01

    An algorithm for Boolean operations on conic polygons is proposed. Conic polygons are polygons consisting of conic segments or bounded conics with directions. Preliminaries of Boolean operations on general polygons are presented. In our algorithm, the intersection points and the topological relationships between two conic polygons are computed. Boundaries are obtained by tracking path and selecting uncrossed boundaries following rule tables to build resulting conic polygons.We define a set of rules for the intersection, union, and subtraction operations on conic polygons. The algorithm considers degeneration cases such as homology, complement, interior, and exterior. The algorithm is also evaluated and implemented.

  17. Evolutionary Design of Boolean Functions

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-yi; ZHANG Huan-guo; QIN Zhong-ping; MENG Qing-shu

    2005-01-01

    We use evolutionary computing to synthesize Boolean functions randomly. By using specific crossover and mutation operator in evolving process and modifying search space and fitness function, we get some high non-linearity functions which have other good cryptography characteristics such as autocorrelation etc. Comparing to other heuristic search techniques, evolutionary computing approach is more effective because of global search strategy and implicit parallelism.

  18. Constant communication complexity protocols for multiparty accumulative boolean functions

    CERN Document Server

    pal, S P; Kumar, S; Das, Sima; Kumar, Somesh; pal, Sudebkumar Prasant

    2005-01-01

    Generalizing a boolean function from Cleve and Buhrman \\cite{cb:sqec}, we consider the class of {\\it accumulative boolean functions} of the form $f_B(X_1,X_2,..., X_m)=\\bigoplus_{i=1}^n t_B(x_i^1x_i^2... x_i^m)$, where $X_j=(x^j_1,x^j_2,..., x^j_n), 1\\leq j\\leq m$ and $t_B(x_i^1x_i^2... x_i^m)=1$ for input $m$-tuples $x_i^1x_i^2...x_i^m\\in B\\subseteq A\\subseteq \\{0,1\\}^n$, and 0, otherwise. Here the set $A$ is the promise set for function $f_B$. The input vectors $X_j, 1\\leq j\\leq m$ are given to the $m\\geq 2$ parties respectively, who communicate classical bits in a distributed environment so that one of them (say Alice) comes up with the value of the function. We algebraically characterize entanglement assisted LOCC protocols requiring only $m-1$ cbits of communication, for certain classes of such multiparty boolean functions for $m\\geq 2$ parties under appropriate uniform parity promise restrictions on input $m$-tuples $x_i^1x_i^2...x_i^m, 1\\leq i\\leq n$. In contrast, for certain $m$-party accumulative boo...

  19. Binary higher order neural networks for realizing Boolean functions.

    Science.gov (United States)

    Zhang, Chao; Yang, Jie; Wu, Wei

    2011-05-01

    In order to more efficiently realize Boolean functions by using neural networks, we propose a binary product-unit neural network (BPUNN) and a binary π-ς neural network (BPSNN). The network weights can be determined by one-step training. It is shown that the addition " σ," the multiplication " π," and two kinds of special weighting operations in BPUNN and BPSNN can implement the logical operators " ∨," " ∧," and " ¬" on Boolean algebra 〈Z(2),∨,∧,¬,0,1〉 (Z(2)={0,1}), respectively. The proposed two neural networks enjoy the following advantages over the existing networks: 1) for a complete truth table of N variables with both truth and false assignments, the corresponding Boolean function can be realized by accordingly choosing a BPUNN or a BPSNN such that at most 2(N-1) hidden nodes are needed, while O(2(N)), precisely 2(N) or at most 2(N), hidden nodes are needed by existing networks; 2) a new network BPUPS based on a collaboration of BPUNN and BPSNN can be defined to deal with incomplete truth tables, while the existing networks can only deal with complete truth tables; and 3) the values of the weights are all simply -1 or 1, while the weights of all the existing networks are real numbers. Supporting numerical experiments are provided as well. Finally, we present the risk bounds of BPUNN, BPSNN, and BPUPS, and then analyze their probably approximately correct learnability. PMID:21427020

  20. Left Artinian Algebraic Algebras

    Institute of Scientific and Technical Information of China (English)

    S. Akbari; M. Arian-Nejad

    2001-01-01

    Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.

  1. Bounded Algebra and Current-Mode Digital Circuits

    Institute of Scientific and Technical Information of China (English)

    WU Xunwei; Massoud Pedram

    1999-01-01

    This paper proposes two boundedarithmetic operations, which are easily realized with current signals.Based on these two operations, a bounded algebra system suitable fordescribing current-mode digital circuits is developed and itsrelationship with the Boolean algebra, which is suitable for representingvoltage-mode digital circuits, is investigated. Design procedure forcurrent-mode circuits using the proposed algebra system is demonstratedon a number of common circuit elements which are used to realizearithmetic operations, such as adders and multipliers.

  2. Quantum algorithms for testing Boolean functions

    Directory of Open Access Journals (Sweden)

    Erika Andersson

    2010-06-01

    Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.

  3. Boolean Reasoning with Graphs of Partitions

    OpenAIRE

    Goossens, Daniel

    2010-01-01

    version longue du papier court "A Dynamic Boolean Knowledge Base" accepté à ICTAI 2010. This paper presents an implemented architecture for easy learning, reorganizing and navigation into a Boolean knowledge base. As the base grows with new definitions and constraints, it is normalized by the closure of a completion operator. This normalization allows arbitrary formats for Boolean expressions. It ensures basic reasoning abilities and spontaneously organizes intermingled taxonomies of conce...

  4. Model Checking of Boolean Process Models

    OpenAIRE

    Schneider, Christoph; Wehler, Joachim

    2011-01-01

    In the field of Business Process Management formal models for the control flow of business processes have been designed since more than 15 years. Which methods are best suited to verify the bulk of these models? The first step is to select a formal language which fixes the semantics of the models. We adopt the language of Boolean systems as reference language for Boolean process models. Boolean systems form a simple subclass of coloured Petri nets. Their characteristics are low tokens to mode...

  5. Using computer algebra and SMT solvers in algebraic biology

    Science.gov (United States)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  6. Progress in Applications of Boolean Functions

    CERN Document Server

    Sasao, Tsutomu

    2010-01-01

    This book brings together five topics on the application of Boolean functions. They are 1. Equivalence classes of Boolean functions: The number of n-variable functions is large, even for values as small as n = 6, and there has been much research on classifying functions. There are many classifications, each with their own distinct merit. 2. Boolean functions for cryptography: The process of encrypting/decrypting plain text messages often depends on Boolean functions with specific properties. For example, highly nonlinear functions are valued because they are less susceptible to linear attacks.

  7. Maiorana-McFarland class: Degree optimization and algebraic properties

    DEFF Research Database (Denmark)

    Pasalic, Enes

    2006-01-01

    In this paper, we consider a subclass of the Maiorana-McFarland class used in the design of resilient nonlinear Boolean functions. We show that these functions allow a simple modification so that resilient Boolean functions of maximum algebraic degree may be generated instead of suboptimized degree...... in the original class. Preserving a high-nonlinearity value immanent to the original construction method, together with the degree optimization gives in many cases functions with cryptographic properties superior to all previously known construction methods. This approach is then used to increase the...... algebraic degree of functions in the extended Maiorana-McFarland (MM) class (nonlinear resilient functions F : GF (2)(n) -> GF (2)(m) derived from linear codes). We also show that in the Boolean case, the same subclass seems not to have an optimized algebraic immunity, hence not providing a maximum...

  8. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2012-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  9. Boolean networks as modelling framework

    Directory of Open Access Journals (Sweden)

    Florian eGreil

    2012-08-01

    Full Text Available In a network, the components of a given system are represented as nodes, the interactions are abstracted as links between the nodes. Boolean networks refer to a class of dynamics on networks, in fact it is the simplest possible dynamics where each node has a value 0 or 1. This allows to investigate extensively the dynamics both analytically and by numerical experiments. The present article focuses on the theoretical concept of relevant components and the immediate application in plant biology, references for more in-depths treatment of the mathematical details are also given.

  10. Boolean Search: Current State and Perspectives.

    Science.gov (United States)

    Frants, Valery I.; Shapiro, Jacob; Taksa, Isak; Voiskunskii, Vladimir G.

    1999-01-01

    Discusses the use of Boolean logic in information-retrieval systems and analyzes existing criticisms of operational systems. Considers users' ability to use and understand Boolean operators, ranking, the quality of query formulations, and negative effects of criticism; and concludes that criticism is directed at the methodology employed in…

  11. Version Spaces and Generalized Monotone Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor); T. Ibaraki

    2002-01-01

    textabstractWe consider generalized monotone functions f: X --> {0,1} defined for an arbitrary binary relation <= on X by the property x <= y implies f(x) <= f(y). These include the standard monotone (or positive) Boolean functions, regular Boolean functions and other interesting functions as speci

  12. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  13. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2012-10-01

    Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

  14. Mining TCGA data using Boolean implications.

    Directory of Open Access Journals (Sweden)

    Subarna Sinha

    Full Text Available Boolean implications (if-then rules provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression from the glioblastoma (GBM and ovarian serous cystadenoma (OV data sets from The Cancer Genome Atlas (TCGA. We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/.

  15. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  16. Generalizing Boolean Satisfiability II: Theory

    CERN Document Server

    Dixon, H E; Luks, E M; Parkes, A J; 10.1613/jair.1555

    2011-01-01

    This is the second of three planned papers describing ZAP, a satisfiability engine that substantially generalizes existing tools while retaining the performance characteristics of modern high performance solvers. The fundamental idea underlying ZAP is that many problems passed to such engines contain rich internal structure that is obscured by the Boolean representation used; our goal is to define a representation in which this structure is apparent and can easily be exploited to improve computational performance. This paper presents the theoretical basis for the ideas underlying ZAP, arguing that existing ideas in this area exploit a single, recurring structure in that multiple database axioms can be obtained by operating on a single axiom using a subgroup of the group of permutations on the literals in the problem. We argue that the group structure precisely captures the general structure at which earlier approaches hinted, and give numerous examples of its use. We go on to extend the Davis-Putnam-Logemann-...

  17. Boolean networks with reliable dynamics

    CERN Document Server

    Peixoto, Tiago P

    2009-01-01

    We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger than in random networks, and that the probability distribution of three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a subset of all possible functions occur, and they can be classified according to their probability. More homogeneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the entire state space of the networks. We observed that with increasing systems size, fixed points become more dominant, moving the networks close to the frozen...

  18. Local Correction of Boolean Functions

    CERN Document Server

    Alon, Noga

    2011-01-01

    A Boolean function f over n variables is said to be q-locally correctable if, given a black-box access to a function g which is "close" to an isomorphism f_sigma of f, we can compute f_sigma(x) for any x in Z_2^n with good probability using q queries to g. We observe that any k-junta, that is, any function which depends only on k of its input variables, is O(2^k)-locally correctable. Moreover, we show that there are examples where this is essentially best possible, and locally correcting some k-juntas requires a number of queries which is exponential in k. These examples, however, are far from being typical, and indeed we prove that for almost every k-junta, O(k log k) queries suffice.

  19. Densities of mixed volumes for Boolean models

    OpenAIRE

    Weil, Wolfgang

    2001-01-01

    In generalization of the well-known formulae for quermass densities of stationary and isotropic Boolean models, we prove corresponding results for densities of mixed volumes in the stationary situation and show how they can be used to determine the intensity of non-isotropic Boolean models Z in d-dimensional space for d = 2, 3, 4. We then consider non-stationary Boolean models and extend results of Fallert on quermass densities to densities of mixed volumes. In particular, we present explicit...

  20. Translating Pseudo-Boolean Constraints into CNF

    CERN Document Server

    Aavani, Amir

    2011-01-01

    A Pseudo-Boolean constraint is a linear constraint over Boolean variables. This kind of constraints has been widely used in expressing NP-complete problems. This paper introduces a new algorithm for translating Pseudo-Boolean constraints into CNF clauses. The CNF produced by the proposed encoding has small size, and we also characterize the constraints for which one can expect the SAT solvers to perform well on the produced CNF. We show that there are many constraints for which the proposed encoding has a good performance.

  1. On a Boolean-valued Model of the Strict Implication System(Continuous)

    Institute of Scientific and Technical Information of China (English)

    LI Na; LIU Hua-ke

    2004-01-01

    The reference [4] proved the consistency of S 1 and S 2 among Lewis'five strict implicationsystems in the modal logic by using the method of the Boolean-valued model. But, in this method, the consistency of S 3 , S 4 and S 5 in Lewis'five strictimplication systems is not decided. This paper makes use of the properties : (1) the equivalence of the modal systems S 3 andP 3 , S 4 and P 4 ; (2) the modal systems P 3 and P 4 all contained the modal axiom T(□p) ; (3) the modal axiom T is correspondence to the reflexiveproperty in VB . Hence, the paper proves: (a) |A S 31|=1 ; (b) |A S 41|=1 ;(c) |A S 51|=1 in the model (where B is a complete Boolean algebra, R is reflexive property in VB ). Therefore, the paper finallyproves that the Boolean-valued model VB of the ZFC axiomsystem in set theory is also a Boolean-valued model of Lewis'the strict implication system S 3 , S 4 and S 5 .

  2. Combinatorics of Boolean automata circuits dynamics

    OpenAIRE

    Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain

    2012-01-01

    International audience In line with fields of theoretical computer science and biology that study Boolean automata networks to model regulation networks, we present some results concerning the dynamics of networks whose underlying structures are oriented cycles, that is, Boolean automata circuits. In the context of biological regulation, former studies have highlighted the importance of circuits on the asymptotic dynamical behaviour of the biological networks that contain them. Our work fo...

  3. Sensitivity versus block sensitivity of Boolean functions

    CERN Document Server

    Virza, Madars

    2010-01-01

    Determining relationship between sensitivity and block sensitivity of Boolean functions is of interest for computational complexity theory. We construct a sequence of Boolean functions with bs(f) = 1/2 (s(f))^2+ 1/2 s(f). The best known separation previously was bs(f) = 1/2 (s(f))^2 due to Rubinstein (1995). We also report results of computer search for functions with at most 12 variables.

  4. An Algebra of Synchronous Scheduling Interfaces

    Directory of Open Access Journals (Sweden)

    Michael Mendler

    2011-01-01

    Full Text Available In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle. The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.

  5. An Algebra of Synchronous Scheduling Interfaces

    CERN Document Server

    Mendler, Michael

    2011-01-01

    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.

  6. Supertropical algebra

    OpenAIRE

    Izhakian, Zur; Rowen, Louis

    2008-01-01

    We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...

  7. A Multiple—Valued Algebra for Modeling MOS VLSI Circuits at Switch—Level

    Institute of Scientific and Technical Information of China (English)

    胡谋

    1992-01-01

    A multiple-valued algebra for modeling MOS VLSI circuits at switch-level is proposed in this paper,Its structure and properties are studied.This algebra can be used to transform a MOS digital circuit to a swith-level algebraic expression so as to generate the truth table for the circuit and to derive a Boolean expression for it.In the paper,methods to construct a switch-level algebraic expression for a circuit and methods to simplify expressions are given.This algebra provides a new tool for MOS VLSI circuit design and analysis.

  8. 高阶布尔网络的结构%Structure of higher order Boolean networks*

    Institute of Scientific and Technical Information of China (English)

    李志强; 赵寅; 程代展

    2011-01-01

    The higher order Boolean (control) network is introduced and its topological structure is studied.Using semi-tensor product of matrices,its dynamics is converted into two algebraic forms,which are standard discrete-time dynamic systems.The one-to-one correspondence of the network dynamics and its first algebraic form is proved,and certain topological structures,including fixed points,cycles,and transient time,of higher order Boolean (control) networks are revealed.The relationship between the original system and its second algebraic form is also studied.%介绍高阶布尔(控制)网络,并研究了其拓扑结构.以矩阵的半张量积作为工具,把高阶布尔网络的动态过程转化为2种标准离散事件动态系统的代数形式.证明了高阶布尔网络和第1代数形式的一一对应关系,并由此得到其拓扑结构(不动点、极限圈以及暂态期等).还研究了高阶布尔网络系统与它第2代数形式的关系.

  9. Forced synchronization of autonomous dynamical Boolean networks

    International Nuclear Information System (INIS)

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics

  10. Boolean nested canalizing functions: a comprehensive analysis

    CERN Document Server

    Li, Yuan; Murrugarra, David; Aguilar, Boris; Laubenbacher, Reinhard

    2012-01-01

    Boolean network models of molecular regulatory networks have been used successfully in computational systems biology. The Boolean functions that appear in published models tend to have special properties, in particular the property of being nested canalizing, a property inspired by the concept of canalization in evolutionary biology. It has been shown that networks comprised of nested canalizing functions have dynamic properties that make them suitable for modeling molecular regulatory networks, namely a small number of (large) attractors, as well as relatively short limit cycles. This paper contains a detailed analysis of this class of functions, based on a novel normal form as polynomial functions over the Boolean field. The concept of layer is introduced that stratifies variables into different classes depending on their level of dominance. Using this layer concept a closed form formula is derived for the number of nested canalizing functions with a given number of variables. Additional metrics analyzed in...

  11. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  12. New Measure of Boolean Factor Analysis Quality

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    Vol. 1. Heidelberg: Springer, 2011 - (Dobnikar, A.; Lotrič, U.; Šter, B.), s. 100-109. (Lecture Notes in Computer Science. 6593). ISBN 978-3-642-20281-0. ISSN 0302-9743. [ICANNGA'2011. International Conference /10./. Ljubljana (SI), 14.04.2011-16.04.2011] R&D Projects: GA ČR GAP202/10/0262; GA ČR GA205/09/1079 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * information gain * expectation-maximization * associative memory * neural network application * Boolean matrix factorization * bars problem * Hopfield neural network Subject RIV: IN - Informatics, Computer Science

  13. Algorithms for Boolean Function Query Properties

    OpenAIRE

    Aaronson, Scott

    2001-01-01

    We present new algorithms to compute fundamental properties of a Boolean function given in truth-table form. Specifically, we give an O(N^2.322 log N) algorithm for block sensitivity, an O(N^1.585 log N) algorithm for `tree decomposition,' and an O(N) algorithm for `quasisymmetry.' These algorithms are based on new insights into the structure of Boolean functions that may be of independent interest. We also give a subexponential-time algorithm for the space-bounded quantum query complexity of...

  14. Fast Gr\\"obner Basis Computation for Boolean Polynomials

    CERN Document Server

    Hinkelmann, Franziska

    2010-01-01

    We introduce the Macaulay2 package BooleanGB, which computes a Gr\\"obner basis for Boolean polynomials using a binary representation rather than symbolic. We compare the runtime of several Boolean models from systems in biology and give an application to Sudoku.

  15. A finite alternation result for reversible boolean circuits

    OpenAIRE

    Selinger, Peter

    2016-01-01

    We say that a reversible boolean function on n bits has alternation depth d if it can be written as the sequential composition of d reversible boolean functions, each of which acts only on the top n-1 bits or on the bottom n-1 bits. We show that every reversible boolean function of n >= 4 bits has alternation depth 9.

  16. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject of...... algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group-theorists, and to...

  17. Demonstrating Boolean Logic Using Simple Electrical Circuits

    Science.gov (United States)

    McElhaney, Kevin W.

    2004-01-01

    While exploring the subject of geometric proofs, boolean logic operators AND and OR can be used to allow students to visualize their true-or-false patterns. An activity in the form of constructing electrical circuits is illustrated to explain the concept.

  18. Boolean Queries Optimization by Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409. ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  19. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20. ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  20. A Boolean Map Theory of Visual Attention

    Science.gov (United States)

    Huang, Liqiang; Pashler, Harold

    2007-01-01

    A theory is presented that attempts to answer two questions. What visual contents can an observer consciously access at one moment? Answer: only one feature value (e.g., green) per dimension, but those feature values can be associated (as a group) with multiple spatially precise locations (comprising a single labeled Boolean map). How can an…

  1. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  2. Segal algebras in commutative Banach algebras

    OpenAIRE

    INOUE, Jyunji; TAKAHASI, Sin-Ei

    2014-01-01

    The notion of Reiter's Segal algebra in commutative group algebras is generalized to a notion of Segal algebra in more general classes of commutative Banach algebras. Then we introduce a family of Segal algebras in commutative Banach algebras under considerations and study some properties of them.

  3. Algebra-Geometry of Piecewise Algebraic Varieties

    Institute of Scientific and Technical Information of China (English)

    Chun Gang ZHU; Ren Hong WANG

    2012-01-01

    Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.

  4. The algebraic structure of the Onsager algebra

    OpenAIRE

    DATE, ETSURO; Roan, Shi-shyr

    2000-01-01

    We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.

  5. A Representation of Quantum Measurement in Nonassociative Algebras

    CERN Document Server

    Niestegge, Gerd

    2010-01-01

    Starting from an abstract setting for the Lueders - von Neumann quantum measurement process and its interpretation as a probability conditionalization rule in a non-Boolean event structure, the author derived a certain generalization of operator algebras in a preceding paper. This is an order-unit space with some specific properties. It becomes a Jordan operator algebra under a certain set of additional conditions, but does not own a multiplication operation in the most general case. A major objective of the present paper is the search for such examples of the structure mentioned above that do not stem from Jordan operator algebras; first natural candidates are matrix algebras over the octonions and other nonassociative rings. Therefore, the case when a nonassociative commutative multiplication exists is studied without assuming that it satisfies the Jordan condition. The characteristics of the resulting algebra are analyzed. This includes the uniqueness of the spectral resolution as well as a criterion for i...

  6. Design of Logic Controllers Thanks to Symbolic Computation of Simultaneously Asserted Boolean Equations

    Directory of Open Access Journals (Sweden)

    Jean-Marc Roussel

    2014-01-01

    Full Text Available Formal methods can strongly contribute to improve dependability of controllers during design, by providing means to avoid flaws due to designers' omissions or specifications misinterpretations. This paper presents a synthesis method dedicated to logic controllers. Its goal is to obtain the control laws from specifications given in natural language by symbolic computation. The formal framework that underlies this method is the Boolean algebra of n-variable switching functions. In this algebra, thanks to relations and theorems presented in this paper, it is possible to formally express logical controllers specifications, to automatically detect inconsistencies in specifications, and to obtain automatically the set of solutions or to choose an optimal solution according to given optimization criteria. The application of this synthesis method to an example allows illustrating its main advantages.

  7. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  8. Zonotopal algebra

    OpenAIRE

    Holtz, Olga; Ron, Amos

    2007-01-01

    A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...

  9. Hom-Akivis algebras

    OpenAIRE

    Issa, A. Nourou

    2010-01-01

    Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...

  10. Algebraic models of deviant modal operators based on de Morgan and Kleene lattices

    OpenAIRE

    Cattaneo, G.; Ciucci, DE; Dubois, D.

    2011-01-01

    An algebraic model of a kind of modal extension of de Morgan logic is described under the name MDS5 algebra. The main properties of this algebra can be summarized as follows: (1) it is based on a de Morgan lattice, rather than a Boolean algebra; (2) a modal necessity operator that satisfies the axioms N, K, T, and 5 (and as a consequence also B and 4) of modal logic is introduced; it allows one to introduce a modal possibility by the usual combination of necessity operation and...

  11. Enveloping algebras

    International Nuclear Information System (INIS)

    Since the works of Gelfand, Harish-Chandra, Kostant and Duflo, a new theory has earned its place in the field of mathematics, due to the abundance of its results and the coherence of its methods: the theory of enveloping algebras. This study is the first to present the whole subject in textbook form. The most recent results are included, as well as complete proofs, starting from the elementary theory of Lie algebras. (Auth.)

  12. Boolean network robotics: a proof of concept

    CERN Document Server

    Roli, Andrea; Pinciroli, Carlo; Birattari, Mauro

    2011-01-01

    Dynamical systems theory and complexity science provide powerful tools for analysing artificial agents and robots. Furthermore, they have been recently proposed also as a source of design principles and guidelines. Boolean networks are a prominent example of complex dynamical systems and they have been shown to effectively capture important phenomena in gene regulation. From an engineering perspective, these models are very compelling, because they can exhibit rich and complex behaviours, in spite of the compactness of their description. In this paper, we propose the use of Boolean networks for controlling robots' behaviour. The network is designed by means of an automatic procedure based on stochastic local search techniques. We show that this approach makes it possible to design a network which enables the robot to accomplish a task that requires the capability of navigating the space using a light stimulus, as well as the formation and use of an internal memory.

  13. 布尔函数与形态算子关系的研究%On the Relationship between Boolean Function and Morphology Operator

    Institute of Scientific and Technical Information of China (English)

    段汕; 罗敬; 徐文; 贺兴

    2013-01-01

      以布尔代数理论和欧式空间中二值形态变换理论为基础,通过布尔函数引入一个结构化映射,对二值形态变换的基本运算(腐蚀、膨胀)进行了描述,探讨了布尔函数与形态变换的关系,以期为二值形态变换的扩展提供新的途径。%This paper presents binary morphological transformation ( corrosion and expansion) on the basis of the Boolean algebra theory and the theory of binary morphological transformation in Euclidean space, and introduces a structural mapping resting on Boolean function, then researches the relationship between Boolean function and morphological transformation, which will provide a new way for extending morphological transformation.

  14. Efficient Analog Circuits for Boolean Satisfiability

    OpenAIRE

    Yin, Xunzhao; Sedighi, Behnam; Varga, Melinda; Ercsey-Ravasz, Maria; Toroczkai, Zoltan; Hu, Xiaobo Sharon

    2016-01-01

    Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed (Nature Physics, 7(12), 966 (2011)) to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial ana...

  15. Using Genetic Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Owais, S.S.J.; Krömer, P.

    Calgary: ACTA Press, 2005 - (Hamza, M.), s. 178-184 ISBN 0-88986-510-8. [IASTED International Conference on Internet and Multimedia Systems and Applications /9./. Honolulu (US), 15.08.2005-17.08.2005] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : genetic algorithms * information retrieval * Boolean query * genetic programming Subject RIV: BA - General Mathematics

  16. On the Implementation of Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Krömer, P.; Platoš, J.; Húsek, Dušan

    Los Alamitos: IEEE, 2008, s. 554-558. ISBN 978-0-7695-3299-8. [ETID '08. International Workshop on Evolutionary Techniques /2./, in collocation with DEXA 2008 International Conference /19./. Turin (IT), 01.09.2008-05.09.2008] Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science

  17. Effect of memory in non-Markovian Boolean networks

    CERN Document Server

    Ebadi, Haleh; Ausloos, Marcel; Jafari, GholamReza

    2016-01-01

    One successful model of interacting biological systems is the Boolean network. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function, - one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of a cell cycle network, we discover a power law memory with a more robust dynamics than the Markovian dynamics.

  18. Which multiplier algebras are $W^*$-algebras?

    OpenAIRE

    Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.

    2013-01-01

    We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...

  19. Algebraic entropy for algebraic maps

    International Nuclear Information System (INIS)

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  20. Homotopy DG algebras induce homotopy BV algebras

    OpenAIRE

    Terilla, John; Tradler, Thomas; Wilson, Scott O.

    2011-01-01

    Let TA denote the space underlying the tensor algebra of a vector space A. In this short note, we show that if A is a differential graded algebra, then TA is a differential Batalin-Vilkovisky algebra. Moreover, if A is an A-infinity algebra, then TA is a commutative BV-infinity algebra.

  1. ON REDUCED SCALAR EQUATIONS FOR SYNCHRONOUS BOOLEAN NETWORKS

    OpenAIRE

    Ali Muhammad Ali Rushdi; Adnan Ahmad Alsogati

    2013-01-01

    A total description of a synchronous Boolean network is typically achieved by a matrix recurrence relation. A simpler alternative is to use a scalar equation which is a possibly nonlinear equation that involves two or more instances of a single scalar variable and some Boolean operator(s). Further simplification is possible in terms of a linear reduced scalar equation which is the simplest two-term scalar equation that includes no Boolean operators and equates the value of a scalar variable a...

  2. Using Boolean Constraint Propagation for Sub-clause Deduction

    OpenAIRE

    Darras, Sylvain; Dequen, Gilles; Devendeville, Laure; Mazure, Bertrand; Ostrowski, Richard; Sais, Lahkdar

    2005-01-01

    Boolean Constraint Propagation (BCP) is recognized as one of the most use- ful technique for efficient satisfiability checking. In this paper a new extension of the scope of boolean constraint propagation is proposed. It makes an original use of BCP to achieve further reduction of boolean formulas. Considering the impli- cation graph generated by the constraint propagation process as a resolution tree, sub-clauses from the original formula can be deduced. Then, we show how such extension can ...

  3. Combinational Logic-Level Verification using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1997-01-01

    Boolean Expression Diagrams (BEDs) is a new data structure for representing and manipulating Boolean functions. BEDs are a generalization of Binary Decision Diagrams (BDDs) that are capable of representing any Boolean circuit in linear space and still maintain many of the desirable properties of...... BDDs. This paper demonstrates that BEDs are well suited for solving the combinational logic-level verification problem which is, given two combinational circuits, to determine whether they implement the same Boolean functions. Based on all combinational circuits in the ISCAS 85 and LGSynth 91...

  4. Linear algebra and probability for computer science applications

    CERN Document Server

    Davis, Ernest

    2012-01-01

    MATLABDesk calculator operations Booleans Nonstandard numbers Loops and conditionals Script file Functions Variable scope and parameter passingI: Linear Algebra Vectors Definition of vectors Applications of vectorsBasic operations on vectorsDot productVectors in MATLAB: Basic operationsPlotting vectors in MATLABVectors in other programming languagesMatrices Definition of matrices Applications of matrices Simple operations on matrices Multiplying a matrix times a vector Linear transformation Systems of linear equations Matrix multiplication Vectors as matrices Algebraic properties of matrix mul

  5. Piecewise algebraic varieties

    Institute of Scientific and Technical Information of China (English)

    WANG Renhong; ZHU Chungang

    2004-01-01

    The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.

  6. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  7. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  8. Clifford algebra, geometric algebra, and applications

    OpenAIRE

    Lundholm, Douglas; Svensson, Lars

    2009-01-01

    These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The v...

  9. Cofree Hopf algebras on Hopf bimodule algebras

    OpenAIRE

    Fang, Xin; Jian, Run-Qiang

    2013-01-01

    We investigate a Hopf algebra structure on the cotensor coalgebra associated to a Hopf bimodule algebra which contains universal version of Clifford algebras and quantum groups as examples. It is shown to be the bosonization of the quantum quasi-shuffle algebra built on the space of its right coinvariants. The universal property and a Rota-Baxter algebra structure are established on this new algebra.

  10. Why Do the Quantum Observables Form a Jordan Operator Algebra?

    CERN Document Server

    Niestegge, Gerd

    2010-01-01

    The Jordan algebra structure of the bounded real quantum observables was recognized already in the early days of quantum mechanics. While there are plausible reasons for most parts of this structure, the existence of the distributive nonassociative multiplication operation is hard to justify from a physical or statistical point of view. Considering the non-Boolean extension of classical probabilities, presented in a recent paper, it is shown in this paper that such a multiplication operation can be derived from certain properties of the conditional probabilities and the observables, i.e., from postulates with a clear statistical interpretation. The well-known close relation between Jordan operator algebras and C*-algebras then provides the connection to the quantum-mechanical Hilbert space formalism, thus resulting in a novel axiomatic approach to general quantum mechanics that includes the types II and III von Neumann algebras.

  11. On uniform topological algebras

    OpenAIRE

    Azhari, M. El

    2013-01-01

    The uniform norm on a uniform normed Q-algebra is the only uniform Q-algebra norm on it. The uniform norm on a regular uniform normed Q-algebra with unit is the only uniform norm on it. Let A be a uniform topological algebra whose spectrum M (A) is equicontinuous, then A is a uniform normed algebra. Let A be a regular semisimple commutative Banach algebra, then every algebra norm on A is a Q-algebra norm on A.

  12. Generalized exterior algebras

    OpenAIRE

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...

  13. Word Hopf algebras

    OpenAIRE

    Hazewinkel, Michiel

    2004-01-01

    Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...

  14. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  15. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  16. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  17. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  18. GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA

    OpenAIRE

    Labourie, François

    2012-01-01

    We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...

  19. Smarandache Jordan Algebras - abstract

    OpenAIRE

    Vasantha Kandasamy, W. B.; Christopher, S.; A. Victor Devadoss

    2004-01-01

    We prove a S-commutative Jordan Algebra is a S-weakly commutative Jordan algebra. We define a S-Jordan algebra to be S-simple Jordan algebras if the S-Jordan algebra has no S-Jordan ideals. We obtain several other interesting notions and results on S-Jordan algebras.

  20. Learning Boolean functions with concentrated spectra

    Science.gov (United States)

    Mixon, Dustin G.; Peterson, Jesse

    2015-08-01

    This paper discusses the theory and application of learning Boolean functions that are concentrated in the Fourier domain. We first estimate the VC dimension of this function class in order to establish a small sample complexity of learning in this case. Next, we propose a computationally efficient method of empirical risk minimization, and we apply this method to the MNIST database of handwritten digits. These results demonstrate the effectiveness of our model for modern classification tasks. We conclude with a list of open problems for future investigation.

  1. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707. ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  2. Neural Network Boolean Factor Analysis and Applications

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Frolov, A.; Polyakov, P.Y.; Snášel, V.

    -: WSEAS Press, 2007 - (Katehakis, M.; And ina, D.; Mastorakis, M.), s. 30-35. (Electrical and Computer Engineering Series). ISBN 978-960-6766-21-3. [CIMMACS'07. WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics. Tenerife (ES), 14.12.2007-16.12.2007] R&D Projects: GA MŠk 1M0567; GA AV ČR 1ET100300414; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hopfield neural network * boolean factor analysis * unsupervised learning * dimension reduction * data mining Subject RIV: BB - Applied Statistics, Operational Research

  3. Solving the Satisfiability Problem Through Boolean Networks

    OpenAIRE

    Roli, Andrea; Milano, Michela

    2011-01-01

    In this paper we present a new approach to solve the satisfiability problem (SAT), based on boolean networks (BN). We define a mapping between a SAT instance and a BN, and we solve SAT problem by simulating the BN dynamics. We prove that BN fixed points correspond to the SAT solutions. The mapping presented allows to develop a new class of algorithms to solve SAT. Moreover, this new approach suggests new ways to combine symbolic and connectionist computation and provides a general framework f...

  4. Solving the Satisfiability Problem Through Boolean Networks

    CERN Document Server

    Roli, Andrea

    2011-01-01

    In this paper we present a new approach to solve the satisfiability problem (SAT), based on boolean networks (BN). We define a mapping between a SAT instance and a BN, and we solve SAT problem by simulating the BN dynamics. We prove that BN fixed points correspond to the SAT solutions. The mapping presented allows to develop a new class of algorithms to solve SAT. Moreover, this new approach suggests new ways to combine symbolic and connectionist computation and provides a general framework for local search algorithms.

  5. Representations of Boolean Functions by Perceptron Networks

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra

    Prague : Institute of Computer Science AS CR, 2014 - (Kůrková, V.; Bajer, L.; Peška, L.; Vojtáš, R.; Holeňa, M.; Nehéz, M.), s. 68-70 ISBN 978-80-87136-19-5. [ITAT 2014. European Conference on Information Technologies - Applications and Theory /14./. Demänovská dolina (SK), 25.09.2014-29.09.2014] R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : perceptron networks * model complexity * Boolean functions Subject RIV: IN - Informatics, Computer Science

  6. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  7. Algebraic Topology

    CERN Document Server

    Oliver, Bob; Pawałowski, Krzystof

    1991-01-01

    As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.

  8. Constructions of vector output Boolean functions with high generalized nonlinearity

    Institute of Scientific and Technical Information of China (English)

    KE Pin-hui; ZHANG Sheng-yuan

    2008-01-01

    Carlet et al. recently introduced generalized nonlinearity to measure the ability to resist the improved correlation attack of a vector output Boolean function. This article presents a construction of vector output Boolean functions with high generalized nonlinearity using the sample space. The relation between the resilient order and generalized nonlinearity is also discussed.

  9. E-Referencer: Transforming Boolean OPACs to Web Search Engines.

    Science.gov (United States)

    Khoo, Christopher S. G.; Poo, Danny C. C.; Toh, Teck-Kang; Hong, Glenn

    E-Referencer is an expert intermediary system for searching library online public access catalogs (OPACs) on the World Wide Web. It is implemented as a proxy server that mediates the interaction between the user and Boolean OPACs. It transforms a Boolean OPAC into a retrieval system with many of the search capabilities of Web search engines.…

  10. Terse Integer Linear Programs for Boolean Optimization

    Directory of Open Access Journals (Sweden)

    Christoph Buchheim

    2009-05-01

    Full Text Available We present a new polyhedral approach to nonlinear Boolean optimization. Compared to other methods, it produces much smaller integer programming models, making it more efficient from a practical point of view. We mainly obtain this by two different ideas: first, we do not require the objective function to be in any normal form. The transformation into a normal form usually leads to the introduction of many additional variables or constraints. Second, we reduce the problem to the degree-two case in a very efficient way, by slightly extending the dimension of the original variable space. The resulting model turns out to be closely related to the maximum cut problem; we show that the corresponding polytope is a face of a suitable cut polytope in most cases. In particular, our separation problem reduces to the one for the maximum cut problem. In practice, the approach appears to be very competitive for unconstrained Boolean optimization problems. First experimental results, which have been obtained for some particularly hard instances of the Max-SAT Evaluation 2007, show that our very general implementation can outperform even special-purpose Max-SAT solvers. The software is accessible online under “we.logoptimize.it”.

  11. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed suq(2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  12. Central simple Poisson algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai; XU; Xiaoping

    2004-01-01

    Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

  13. The Onsager Algebra

    OpenAIRE

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...

  14. Ordered Boolean List (OBL): reducing the footprint for evaluating Boolean expressions.

    Science.gov (United States)

    Rossignac, Jaroslaw Jarek

    2011-09-01

    An Expanded Boolean Expression (EBE) does not contain any XOR or EQUAL operators. The occurrence of each variable is a different literal. We provide a linear time algorithm that converts an EBE of n literals into a logically equivalent Ordered Boolean List (OBL) and show how to use the OBL to evaluate the EBE in n steps and O(log log n) space, if the values of the literals are each read once in the order prescribed by the OBL. (An evaluation workspace of 5 bits suffices for all EBEs of up to six billion literals.) The primary application is the SIMD architecture, where the same EBE is evaluated in parallel for different input vectors when rendering solid models on the GPU directly from their Constructive Solid Geometry (CSG) representation. We compare OBL to the Reduced Ordered Binary Decision Diagram (ROBDD) and suggest possible applications of OBL to logic verification and to circuit design. PMID:21737862

  15. Exotic Elliptic Algebras

    OpenAIRE

    Chirvasitu, Alex; Smith, S. Paul

    2015-01-01

    This paper examines a general method for producing twists of a comodule algebra by tensoring it with a torsor then taking co-invariants. We examine the properties that pass from the original algebra to the twisted algebra and vice versa. We then examine the special case where the algebra is a 4-dimensional Sklyanin algebra viewed as a comodule algebra over the Hopf algebra of functions on the non-cyclic group of order 4 with the torsor being the 2x2 matrix algebra. The twisted algebra is an "...

  16. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  17. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.

  18. Robust Boolean Operation for Sculptured Models

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To enhance the ability of current modeling system, an uniformed representation is designed to represent wire-frame, solid, surface models. We present an algorithm for Boolean operation between the models under this representation. Accuracy, efficiency and robustness are the main consideration. The geometric information is represented with trimmed parametric patches and trimmed parametric splines. The topological information is represented with an extended half-edge data structure. In the process of intersection calculation, hierarchy intersection method is applied for unified classification. Tracing the intersection curve to overcome degenerate cases that occur frequently in practice. The algorithm has been implemented as the modeling kernel of a feature based modeling system named GS-CAD98, which was developed on Windows/NT platform.

  19. SYNTHESIS METHODS OF ALGEBRAIC NORMAL FORM OF MANY-VALUED LOGIC FUNCTIONS

    Directory of Open Access Journals (Sweden)

    A. V. Sokolov

    2016-03-01

    Full Text Available The rapid development of methods of error-correcting coding, cryptography, and signal synthesis theory based on the principles of many-valued logic determines the need for a more detailed study of the forms of representation of functions of many-valued logic. In particular the algebraic normal form of Boolean functions, also known as Zhegalkin polynomial, that well describe many of the cryptographic properties of Boolean functions is widely used. In this article, we formalized the notion of algebraic normal form for many-valued logic functions. We developed a fast method of synthesis of algebraic normal form of 3-functions and 5-functions that work similarly to the Reed-Muller transform for Boolean functions: on the basis of recurrently synthesized transform matrices. We propose the hypothesis, which determines the rules of the synthesis of these matrices for the transformation from the truth table to the coefficients of the algebraic normal form and the inverse transform for any given number of variables of 3-functions or 5-functions. The article also introduces the definition of algebraic degree of nonlinearity of the functions of many-valued logic and the S-box, based on the principles of many-valued logic. Thus, the methods of synthesis of algebraic normal form of 3-functions applied to the known construction of recurrent synthesis of S-boxes of length N = 3k, whereby their algebraic degrees of nonlinearity are computed. The results could be the basis for further theoretical research and practical applications such as: the development of new cryptographic primitives, error-correcting codes, algorithms of data compression, signal structures, and algorithms of block and stream encryption, all based on the perspective principles of many-valued logic. In addition, the fast method of synthesis of algebraic normal form of many-valued logic functions is the basis for their software and hardware implementation.

  20. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  1. Categorical Formulation of Finite-Dimensional Quantum Algebras

    Science.gov (United States)

    Vicary, Jamie

    2011-06-01

    We describe how †-Frobenius monoids give the correct categorical description of certain kinds of finite-dimensional `quantum algebras'. We develop the concept of an involution monoid, and use it to construct a correspondence between finite-dimensional C*-algebras and certain types of †-Frobenius monoids in the category of Hilbert spaces. Using this technology, we recast the spectral theorems for commutative C*-algebras and for normal operators into an explicitly categorical language, and we examine the case that the results of measurements do not form finite sets, but rather objects in a finite Boolean topos. We describe the relevance of these results for topological quantum field theory.

  2. Rigid current Lie algebras

    OpenAIRE

    Goze, Michel; Remm, Elisabeth

    2006-01-01

    A current Lie algebra is contructed from a tensor product of a Lie algebra and a commutative associative algebra of dimension greater than 2. In this work we are interested in deformations of such algebras and in the problem of rigidity. In particular we prove that a current Lie algebra is rigid if it is isomorphic to a direct product gxg...xg where g is a rigid Lie algebra.

  3. Solvable quadratic Lie algebras

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.

  4. Graded cluster algebras

    OpenAIRE

    Grabowski, Jan

    2015-01-01

    In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...

  5. Approximate Counting for Complex-Weighted Boolean Constraint Satisfaction Problems

    CERN Document Server

    Yamakami, Tomoyuki

    2010-01-01

    Constraint satisfaction problems (or CSPs) have been extensively studied in AI, database theory, graph theory, etc. From an approximation viewpoint, it has been important to approximate the total number of assignments that satisfy all given Boolean constraints. There is a trichotomy theorem for such approximate counting for (non-weighted) Boolean CSPs; namely, all such counting problems are neatly classified into three categories under polynomial-time approximation-preserving reductions [Dyer, Goldberg, and Jerrum, 2010]. We extend this result to approximate counting for complex-weighted Boolean CSPs, provided that all arity-1 constraints are freely available to use. This makes a significant progress in the quest for the approximation classification of all counting Boolean CSPs in the most general form. To deal with complex weights, we employ proof techniques along the line of solving Holant problems [Valiant, 2002, 2008]. Our result also gives an approximation version of the dichotomy theorem of the complexi...

  6. Automatic Ranked Output from Boolean Searches in SIRE

    Science.gov (United States)

    Noreault, Terry; And Others

    1977-01-01

    This study examined the effectiveness using an automatic algorithm to rank the results of Boolean searches of an inverted file design document retrieval system. Relevant documents were ranked significantly higher than nonrelevant documents on output lists. (Author/KP)

  7. Boolean Burritos: How the Faculty Ate Up Keyword Searching.

    Science.gov (United States)

    York, Sherry

    1999-01-01

    Describes an activity that librarians can use to acquaint teachers with keyword searching and Boolean operators to more successfully use the library's online catalog. Uses food ingredients to represent various possible combinations. (LRW)

  8. Boolean functions with a vertex-transitive group of automorphisms

    Czech Academy of Sciences Publication Activity Database

    Savický, Petr

    -, submitted 2015 (2016) R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : Boolean Functions * hypercube * isometric transformation * vertex-transitive group of automorphisms Subject RIV: BA - General Mathematics

  9. Linear Programming Formulation of the Boolean Satisfiability Problem

    CERN Document Server

    Diaby, Moustapha

    2008-01-01

    In this paper, we present a new, graph-based modeling approach and a polynomial-sized linear programming (LP) formulation of the Boolean satisfiability problem (SAT). The approach is illustrated with a numerical example.

  10. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.

  11. On vertex Leibniz algebras

    OpenAIRE

    Li, Haisheng; Tan, Shaobin; Wang, Qing

    2012-01-01

    In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra with...

  12. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  13. On the number of attractors of Boolean automata circuits

    OpenAIRE

    Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    In line with fields of theoretical computer science and biology that study Boolean automata networks often seen as models of regulation networks, we present some results concerning the dynamics of networks whose underlying interaction graphs are circuits, that is Boolean automata circuits. In the context of biological regulation, former studies have highlighted the importance of circuits on the asymptotic dynamical behaviour of the biological networks that contain them. Our work focuses on th...

  14. Boolean Equi-propagation for Optimized SAT Encoding

    CERN Document Server

    Metodi, Amit; Lagoon, Vitaly; Stuckey, Peter J

    2011-01-01

    We present an approach to propagation based solving, Boolean equi-propagation, where constraints are modelled as propagators of information about equalities between Boolean literals. Propagation based solving applies this information as a form of partial evaluation resulting in optimized SAT encodings. We demonstrate for a variety of benchmarks that our approach results in smaller CNF encodings and leads to speed-ups in solving times.

  15. Inadmissible Class of Boolean Functions under Stuck-at Faults

    OpenAIRE

    Das, Debesh K.; Chowdhury, Debabani; Bhattacharya, Bhargab B; Sasao, Tsutomu

    2013-01-01

    Many underlying structural and functional factors that determine the fault behavior of a combinational network, are not yet fully understood. In this paper, we show that there exists a large class of Boolean functions, called root functions, which can never appear as faulty response in irredundant two-level circuits even when any arbitrary multiple stuck-at faults are injected. Conversely, we show that any other Boolean function can appear as a faulty response from an irredundant realization ...

  16. Enhancing Boolean networks with fuzzy operators and edge tuning

    OpenAIRE

    Poret, Arnaud; Monteiro Sousa, Claudio; Boissel, Jean-Pierre

    2014-01-01

    Quantitative modeling in systems biology can be difficult due to the scarcity of quantitative details about biological phenomenons, especially at the subcellular scale. An alternative to escape this difficulty is qualitative modeling since it requires few to no quantitative information. Among the qualitative modeling approaches, the Boolean network formalism is one of the most popular. However, Boolean models allow variables to be valued at only true or false, which can appear too simplistic ...

  17. IMS Algorithm for Learning Representations in Boolean Neural Networks

    OpenAIRE

    Biswas, Nripendra N; Murthy, TVMK; Chandrasekhar, M.

    1991-01-01

    A new algorithm for learning representations in Boolean neural networks, where the inputs and outputs are binary bits, is presented. The algorithm has become feasible because of a newly discovered theorem which states that any non-linearly separable Boolean function can be expressed as a convergent series of linearly separable functions connected by the logical OR (+) and the logical INHIBIT (-) operators. The formation of the series is carried out by many important properties exhibited by th...

  18. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Zheng Lijing

    2015-11-01

    Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].

  19. Boolean network model predicts knockout mutant phenotypes of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available BOOLEAN NETWORKS (OR: networks of switches are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.

  20. Algebra cohomology over a commutative algebra revisited

    OpenAIRE

    Pirashvili, Teimuraz

    2003-01-01

    The aim of this paper is to give a relatively easy bicomplex which computes the Shukla, or Quillen cohomology in the category of associative algebras over a commutative algebra $A$, in the case when $A$ is an algebra over a field.

  1. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY

    Institute of Scientific and Technical Information of China (English)

    TaoChangli; LuShijie; ChenPeixin

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  2. 基于布尔语义的Gentzen推导模型%Gentzen Deduction Model Based on Boolean Logic Semantics

    Institute of Scientific and Technical Information of China (English)

    陈博; 眭跃飞

    2015-01-01

    Deduction systems are important arts of searching technology. This paper gives a new correspondence between the propositional logic and Boolean algebra, where an inequation is corresponding to a Gentzen sequent, so that the inequation is true in every Boolean algebra if and only if the Gentzen sequent is provable. In information retrieval, the information inference can effectively turn into the operation on poset. Precisely, the logical language for the propositional logic contains operators Ø'Ù'Ú;the terms instead of formulas are defined (a|Øt|t1 Ù t2|t1 Ú t2 , where a is an element) and used to represent elements in Boolean algebra. This paper defines an assignment v using Boolean algebra as its domain, and assigns the terms to be the element in Boolean algebra. The sequence ΓÞΔ is satisfied if tv £tv. Finally, this paper gives a Gentzen system to prove the soundness and completeness theorem.%布尔模型是信息检索系统的一种基础模型。给出了命题逻辑和布尔代数间的一种新的对应关系,其中布尔代数中的不等式对应Gentzen系统中的矢列式,使得当一个不等式在任意布尔代数中为真,当且仅当它所对应的矢列式是可证的。并且使得在信息检索中,针对信息的推理可以有效地转为偏序集上的运算。讨论的命题逻辑语言的运算符为Ø、Ù、Ú;并且定义了项(a|Øt|t1Ù t2|t1Ú t2'其中a是一个元素)来替代原先的公式和表示布尔代数中的元素。此外,定义了以布尔代数为论域的赋值v,将命题逻辑中的项赋值为布尔代数中的元素,并且如果tv £t v ,则矢列式ΓÞ D为真。最后给出了Gentzen系统下的可靠性和完备性定理的证明。tÎΓtÎΔ

  3. Enveloping algebras of some quantum Lie algebras

    OpenAIRE

    Pourkia, Arash

    2014-01-01

    We define a family of Hopf algebra objects, $H$, in the braided category of $\\mathbb{Z}_n$-modules (known as anyonic vector spaces), for which the property $\\psi^2_{H\\otimes H}=id_{H\\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\\psi^2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analog...

  4. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  5. Efficient Analog Circuits for Boolean Satisfiability

    CERN Document Server

    Yin, Xunzhao; Varga, Melinda; Ercsey-Ravasz, Maria; Toroczkai, Zoltan; Hu, Xiaobo Sharon

    2016-01-01

    Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed (Nature Physics, 7(12), 966 (2011)) to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial analog time-complexity on even the hardest benchmark $k$-SAT ($k \\geq 3$) formulas, but at an energy cost through exponentially driven auxiliary variables. With some modifications to the CTDS equations, here we present a novel analog hardware SAT solver, AC-SAT, implementing the CTDS. AC-SAT is intended to be used as a co-processor, and with its modular design can be readily extended to different problem sizes. The circuit is designed and simulated based on a 32nm CMOS technology. SPICE simulation results show speedup factor...

  6. Measuring Mutual Information in Random Boolean Networks

    CERN Document Server

    Luque, B; Luque, Bartolo; Ferrera, Antonio

    1999-01-01

    During the last few years an area of active research in the field of complex systems is that of their information storing and processing abilities. Common opinion has it that the most interesting beaviour of these systems is found ``at the edge of chaos'', which would seem to suggest that complex systems may have inherently non-trivial information proccesing abilities in the vicinity of sharp phase transitions. A comprenhensive, quantitative understanding of why this is the case is however still lacking. Indeed, even ``experimental'' (i.e., often numerical) evidence that this is so has been questioned for a number of systems. In this paper we will investigate, both numerically and analitically, the behavior of Random Boolean Networks (RBN's) as they undergo their order-disorder phase transition. We will use a simple mean field approximation to treat the problem, and without lack of generality we will concentrate on a particular value for the connectivity of the system. In spite of the simplicity of our argume...

  7. Position Automata for Kleene Algebra with Tests

    Directory of Open Access Journals (Sweden)

    A. Silva

    2012-01-01

    Full Text Available Kleene algebra with tests (KAT is an equational system that combines Kleene and Boolean algebras. One can model basic programming constructs and assertions in KAT, which allowed for its application in compiler optimization, program transformation and dataflow analysis. To provide semantics for KAT expressions, Kozen first introduced emph{automata on guarded strings}, showing that the regular sets of guarded strings plays the same role in KAT as regular languages play in Kleene algebra. Recently, Kozen described an elegant algorithm, based on ``derivatives'', to construct a deterministic automaton that accepts the guarded strings denoted by a KAT expression. This algorithm generalizes Brzozowski's algorithm for regular expressions and inherits its inefficiency arising from the explicit computation of derivatives. In the context of classical regular expressions, many efficient algorithms to compile expressions to automata have been proposed. One of those algorithms was devised by Berry and Sethi in the 80's (we shall refer to it as Berry-Sethi construction/algorithm, but in the literature it is also referred to as position or Glushkov automata algorithm. In this paper, we show how the Berry-Sethi algorithm can be used to compile a $KAT$ expression to an automaton on guarded strings. Moreover, we propose a new automata model for KAT expressions and adapt the construction of Berry and Sethi to this new model.

  8. Workshop on Commutative Algebra

    CERN Document Server

    Simis, Aron

    1990-01-01

    The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.

  9. Idempotents of Clifford Algebras

    OpenAIRE

    Ablamowicz, R.; Fauser, B.; Podlaski, K.; Rembielinski, J.

    2003-01-01

    A classification of idempotents in Clifford algebras C(p,q) is presented. It is shown that using isomorphisms between Clifford algebras C(p,q) and appropriate matrix rings, it is possible to classify idempotents in any Clifford algebra into continuous families. These families include primitive idempotents used to generate minimal one sided ideals in Clifford algebras. Some low dimensional examples are discussed.

  10. Historical Topics in Algebra.

    Science.gov (United States)

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…

  11. Generalized Quantum Current Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu

    2001-01-01

    Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.

  12. On fermionic Novikov algebras

    International Nuclear Information System (INIS)

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. They are a class of left-symmetric algebras with commutative right multiplication operators, which can be viewed as bosonic. Fermionic Novikov algebras are a class of left-symmetric algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we commence a study on fermionic Novikov algebras from the algebraic point of view. We will show that any fermionic Novikov algebra in dimension ≤3 must be bosonic. Moreover, we give the classification of real fermionic Novikov algebras on four-dimensional nilpotent Lie algebras and some examples in higher dimensions. As a corollary, we obtain kinds of four-dimensional real fermionic Novikov algebras which are not bosonic. All of these examples will serve as a guide for further development including the application in physics

  13. Algebraically periodic translation surfaces

    OpenAIRE

    Calta, Kariane; Smillie, John

    2007-01-01

    Algebraically periodic directions on translation surfaces were introduced by Calta in her study of genus two translation surfaces. We say that a translation surface with three or more algebraically periodic directions is an algebraically periodic surface. We show that for an algebraically periodic surface the slopes of the algebraically periodic directions are given by a number field which we call the periodic direction field. We show that translation surfaces with pseudo-Anosov automorphisms...

  14. Clifford Algebra with Mathematica

    OpenAIRE

    Aragon-Camarasa, G.; Aragon-Gonzalez, G; Aragon, J. L.; Rodriguez-Andrade, M. A.

    2008-01-01

    The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical ob...

  15. Second moment method for a family of boolean CSP

    CERN Document Server

    Boufkhad, Yacine

    2011-01-01

    The estimation of phase transitions in random boolean Constraint Satisfaction Problems (CSP) is based on two fundamental tools: the first and second moment methods. While the first moment method on the number of solutions permits to compute upper bounds on any boolean CSP, the second moment method used for computing lower bounds proves to be more tricky and in most cases gives only the trivial lower bound 0. In this paper, we define a subclass of boolean CSP covering the monotone versions of many known NP-Complete boolean CSPs. We give a method for computing non trivial lower bounds for any member of this subclass. This is achieved thanks to an application of the second moment method to some selected solutions called characteristic solutions that depend on the boolean CSP considered. We apply, as an example, this method to establish that the threshold r_{k} of monotone 1-in-k-SAT is \\log k/k\\leq r_{k}\\leq\\log^{2}k/k

  16. Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    CERN Document Server

    Glasser, Christian; Selivanov, Victor

    2008-01-01

    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level $\\Sigma_1$ of the dot-depth hierarchy are decidable in $NL$ (previously only the decidability was known). The same remains true if predicates mod $d$ for fixed $d$ are allowed. - If modular predicates for arbitrary $d$ are allowed, then the classes of the Boolean hierarchy over level $\\Sigma_1$ are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level $\\Sigma_2$ of the Straubing-Th\\'erien hierarchy are decidable in $NL$. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for $NL$. - T...

  17. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    Jia-feng; Lü

    2007-01-01

    [1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995

  18. Maps from the enveloping algebra of the positive Witt algebra to regular algebras

    OpenAIRE

    Sierra, Susan J.; Walton, Chelsea

    2015-01-01

    We construct homomorphisms from the universal enveloping algebra of the positive (part of the) Witt algebra to several different Artin-Schelter regular algebras, and determine their kernels and images. As a result, we produce elementary proofs that the universal enveloping algebras of the Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither left nor right noetherian.

  19. Algebraic and relational models for a system based on a poset of two elements

    OpenAIRE

    Iturrioz, Luisa

    2014-01-01

    The aim of this paper is to present a very simple set of conditions, necessary for the management of knowledge of a poset $T$ of two agents, which are partially ordered by the capabilities available in the system. We build up a formal system and we elaborate suitable semantic models in order to derive information from the poset. The system is related to three-valued Heyting algebras with Boolean operators.

  20. A more robust Boolean model describing inhibitor binding

    Institute of Scientific and Technical Information of China (English)

    Zhaoqian Steven XIE; Chao TANG

    2008-01-01

    From the first application of the Boolean model to the cell cycle regulation network of budding yeast, new regulative pathways have been discovered, par-ticularly in the G1/S transition circuit. This discovery called for finer modeling to study the essential biology, and the resulting outcomes are first introduced in the ar-ticle. A traditional Boolean network model set up for the new G1/S transition circuit shows that it cannot correctly simulate real biology unless the model parameters are fine tuned. The deficiency is caused by an overly coarse-grained description of the inhibitor binding process, which shall be overcome by a two-vector model proposed whose robustness is surveyed using random perturba-tions. Simulations show that the proposed two-vector model is much more robust in describing inhibitor binding processes within the Boolean framework.

  1. The Influence of Canalization on the Robustness of Boolean Networks

    CERN Document Server

    Kadelka, Claus; Laubenbacher, Reinhard

    2016-01-01

    Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by $k$-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to $c$-sensitivity and provides formulas for the activities and $c$-sensitivity of general $k$-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the $c$-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally eff...

  2. Optimal Computation of Symmetric Boolean Functions in Collocated Networks

    CERN Document Server

    Kowshik, Hemant

    2011-01-01

    We consider collocated wireless sensor networks, where each node has a Boolean measurement and the goal is to compute a given Boolean function of these measurements. We first consider the worst case setting and study optimal block computation strategies for computing symmetric Boolean functions. We study three classes of functions: threshold functions, delta functions and interval functions. We provide exactly optimal strategies for the first two classes, and a scaling law order-optimal strategy with optimal preconstant for interval functions. We also extend the results to the case of integer measurements and certain integer-valued functions. We use lower bounds from communication complexity theory, and provide an achievable scheme using information theoretic tools. Next, we consider the case where nodes measurements are random and drawn from independent Bernoulli distributions. We address the problem of optimal function computation so as to minimize the expected total number of bits that are transmitted. In ...

  3. Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.

    Science.gov (United States)

    Zhang, Jianming; Sclaroff, Stan

    2016-05-01

    We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets. PMID:26336114

  4. Order-to-chaos transition in the hardness of random Boolean satisfiability problems

    Science.gov (United States)

    Varga, Melinda; Sumi, Róbert; Toroczkai, Zoltán; Ercsey-Ravasz, Mária

    2016-05-01

    Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems, and even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability (k -SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate κ , an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution. We show that for a given density of constraints and fixed number of Boolean variables N , the hardness of formulas in random k -SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints α , hardness appears through a second-order phase transition at αχ in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such a transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter κ ˜NB |α - αχ|1-γ with 0 <γ <1 . We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints α is increased.

  5. Brackets in representation algebras of Hopf algebras

    OpenAIRE

    Massuyeau, Gwenael; Turaev, Vladimir

    2015-01-01

    For any graded bialgebras $A$ and $B$, we define a commutative graded algebra $A_B$ representing the functor of so-called $B$-representations of $A$. When $A$ is a cocommutative graded Hopf algebra and $B$ is a commutative ungraded Hopf algebra, we introduce a method deriving a Gerstenhaber bracket in $A_B$ from a Fox pairing in $A$ and a balanced biderivation in $B$. Our construction is inspired by Van den Bergh's non-commutative Poisson geometry, and may be viewed as an algebraic generaliza...

  6. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  7. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  8. Workshop on Lie Algebras

    CERN Document Server

    Osborn, J

    1989-01-01

    During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.

  9. Relation between dual S-algebras and BE-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2015-05-01

    Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.  

  10. A Boolean Approach to Airline Business Model Innovation

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study...... analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities lead to operational profitability. The research aim is threefold: complement airline literature in the realm of business model...... innovation, introduce Boolean minimization methods to the field, and propose alternative business model activities to North American carriers striving for positive operating results....

  11. On Kolmogorov's superpositions and Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on an explicit numerical (i.e., constructive) algorithm for Kolmogorov's superpositions they will show that for obtaining minimum size neutral networks for implementing any Boolean function, the activation function of the neurons is the identity function. Because classical AND-OR implementations, as well as threshold gate implementations require exponential size (in the worst case), it will follow that size-optimal solutions for implementing arbitrary Boolean functions require analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  12. Experimental Comparison of Schemes for Interpreting Boolean Queries

    OpenAIRE

    Lee, Whay C.; Edward A Fox

    1988-01-01

    The standard interpretation of the logical operators in a Boolean retrieval system is in general too strict. A standard Boolean query rarely comes close to retrieving all and only those documents which are relevant to the user. An AND query is often too narrow and an OR query is often too broad. The choice of the AND results in retrieving on the left end of a typical average recall-precision graph, while the choice of the OR results in retrieving on the right end, implying a tradeoff between ...

  13. Some Properties of Inclusions of Multisets and Contractive Boolean Operators

    OpenAIRE

    Hyvernat, Pierre

    2011-01-01

    10 pages, including appendix Consider the following curious puzzle: call an n-tuple X=(X_1, ..., X_n) of sets smaller than another n-tuple Y if it has fewer //unordered sections//. We show that equivalence classes for this preorder are very easy to describe and characterize the preorder in terms of the simpler pointwise inclusion and the existence of a special increasing boolean operator f:B^n -> B^n. We also show that contrary to increasing boolean operators, the relevant operators are no...

  14. Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Zakarias, Sarah Nouhad Haddad

    We present a protocol for securely computing a Boolean circuit $C$ in presence of a dishonest and malicious majority. The protocol is unconditionally secure, assuming access to a preprocessing functionality that is not given the inputs to compute on. For a large number of players the work done by...... each player is the same as the work needed to compute the circuit in the clear, up to a constant factor. Our protocol is the first to obtain these properties for Boolean circuits. On the technical side, we develop new homomorphic authentication schemes based on asymptotically good codes with an...

  15. Boolean Logic: An Aid for Searching Computer Databases in Special Education and Rehabilitation.

    Science.gov (United States)

    Summers, Edward G.

    1989-01-01

    The article discusses using Boolean logic as a tool for searching computerized information retrieval systems in special education and rehabilitation technology. It includes discussion of the Boolean search operators AND, OR, and NOT; Venn diagrams; and disambiguating parentheses. Six suggestions are offered for development of good Boolean logic…

  16. Representations of twisted current algebras

    OpenAIRE

    Lau, Michael

    2013-01-01

    We use evaluation representations to give a complete classification of the finite-dimensional simple modules of twisted current algebras. This generalizes and unifies recent work on multiloop algebras, current algebras, equivariant map algebras, and twisted forms.

  17. Hom-alternative algebras and Hom-Jordan algebras

    CERN Document Server

    Makhlouf, Abdenacer

    2009-01-01

    The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.

  18. Cellularity of diagram algebras as twisted semigroup algebras

    CERN Document Server

    Wilcox, Stewart

    2010-01-01

    The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.

  19. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    CERN Document Server

    Hinkelmann, Franziska; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2010-01-01

    Motivation: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based models. Simulation is a common practice for analyzing discrete models, but many systems are far too large to capture all the relevant dynamical features through simulation alone. Results: We convert discrete models into algebraic models and apply tools from computational algebra to analyze their dynamics. The key feature of biological systems that is exploited by our algorithms is their sparsity: while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes. In our experience with models arising in systems biology and random models, this structure leads to fast computations when using algebraic models, and thus efficient analysis. Availability: All algorithms and methods are available in our package Analysis of Dynamic Algebraic Models (ADAM), a user friendly web-interf...

  20. Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra

    OpenAIRE

    Lagraa, M.; Touhami, N.

    1997-01-01

    We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.

  1. Realizations of Galilei algebras

    International Nuclear Information System (INIS)

    All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations. (paper)

  2. Homotopy Algebras for Operads

    OpenAIRE

    Leinster, Tom

    2000-01-01

    We present a definition of homotopy algebra for an operad, and explore its consequences. The paper should be accessible to topologists, category theorists, and anyone acquainted with operads. After a review of operads and monoidal categories, the definition of homotopy algebra is given. Specifically, suppose that M is a monoidal category in which it makes sense to talk about algebras for some operad P. Then our definition says what a homotopy P-algebra in M is, provided only that some of the ...

  3. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  4. Quantum Lie algebra solitons

    International Nuclear Information System (INIS)

    We construct a special type of quantum soliton solutions for quantized affine Toda models. The elements of the principal Heisenberg subalgebra in the affinised quantum Lie algebra are found. Their eigenoperators inside the quantized universal enveloping algebra for an affine Lie algebra are constructed to generate quantum soliton solutions

  5. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  6. Connecting Arithmetic to Algebra

    Science.gov (United States)

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  7. Clifford Algebras and Graphs

    OpenAIRE

    Khovanova, Tanya

    2008-01-01

    I show how to associate a Clifford algebra to a graph. I describe the structure of these Clifford graph algebras and provide many examples and pictures. I describe which graphs correspond to isomorphic Clifford algebras and also discuss other related sets of graphs. This construction can be used to build models of representations of simply-laced compact Lie groups.

  8. Algebraic formulation of duality

    International Nuclear Information System (INIS)

    Two dimensional lattice spin (chiral) models over (possibly non-abelian) compact groups are formulated in terms of a generalized Pauli algebra. Such models over cyclic groups are written in terms of the generalized Clifford algebra. An automorphism of this algebra is shown to exist and to lead to the duality transformation

  9. Crisp Sets and Boolean Algebra: A Research Strategy for Student Affairs

    Science.gov (United States)

    Banning, James; Eversole, Barbara; Most, David; Kuk, Linda

    2008-01-01

    A review of student affairs journals clearly points out that most, if not all, research strategies within the field fall within traditional approaches based on quantitative methods and, more recently, qualitative methods. The purpose of this article is not to discourage use of these time honored research strategies, but to suggest the inclusion of…

  10. Generalized Flip-Flop Input Equations Based on a Four-Valued Boolean Algebra

    Science.gov (United States)

    Tucker, Jerry H.; Tapia, Moiez A.

    1996-01-01

    A procedure is developed for obtaining generalized flip-flop input equations, and a concise method is presented for representing these equations. The procedure is based on solving a four-valued characteristic equation of the flip-flop, and can encompass flip-flops that are too complex to approach intuitively. The technique is presented using Karnaugh maps, but could easily be implemented in software.

  11. Bases of Schur algebras associated to cellularly stratified diagram algebras

    CERN Document Server

    Bowman, C

    2011-01-01

    We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.

  12. Boolean approaches to graph embeddings related to VLSI

    Institute of Scientific and Technical Information of China (English)

    刘彦佩

    2001-01-01

    This paper discusses the development of Boolean methods in some topics on graph em-beddings which are related to VLSI. They are mainly the general theory of graph embeddability, the orientabilities of a graph and the rectilinear layout of an electronic circuit.

  13. On the Road to Genetic Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.

    2007-01-01

    Roč. 17, č. 6 (2007), s. 675-688. ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithms * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007

  14. On the Road to Genetic Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Húsek, Dušan; Frolov, A.

    2007-01-01

    Roč. 17, č. 6 (2007), s. 675-688. ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * genetic algorithm s * Boolean factorization * binary data * machine learning * feature extraction Subject RIV: IN - Informatics, Computer Science Impact factor: 0.280, year: 2007

  15. Boolean linear differential operators on elementary cellular automata

    Science.gov (United States)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  16. Pointwise Approximation for the Iterated Boolean Sums of Bernstein Operators

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-yan; LI Cui-xiang; YAO Qiu-mei

    2013-01-01

    In this paper,with the help of modulus of smoothness ω2r(4)(f,t),we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator Bnn and obtain direct and inverse theorems when 1-1/r ≤ λ ≤ 1,r ∈ N.

  17. Constant-overhead secure computation of Boolean circuits using preprocessing

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Zakarias, S.

    2013-01-01

    We present a protocol for securely computing a Boolean circuit C in presence of a dishonest and malicious majority. The protocol is unconditionally secure, assuming a preprocessing functionality that is not given the inputs. For a large number of players the work for each player is the same as...

  18. New Considerations for Spectral Classification of Boolean Switching Functions

    Directory of Open Access Journals (Sweden)

    J. E. Rice

    2011-01-01

    Full Text Available This paper presents some new considerations for spectral techniques for classification of Boolean functions. These considerations incorporate discussions of the feasibility of extending this classification technique beyond n=5. A new implementation is presented along with a basic analysis of the complexity of the problem. We also note a correction to results in this area that were reported in previous work.

  19. Graphical interpretation of Boolean operators for protein NMR assignments

    NARCIS (Netherlands)

    Verdegem, Dries; Dijkstra, Klaas; Hanoulle, Xavier; Lippens, Guy

    2008-01-01

    We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-

  20. Group identities on the units of algebraic algebras with applications to restricted enveloping algebras

    OpenAIRE

    Jespers, Eric; Riley, David; Siciliano, Salvatore

    2007-01-01

    An algebra is called a GI-algebra if its group of units satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite?

  1. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  2. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  3. The Colombeau Quaternion Algebra

    OpenAIRE

    Cortes, W.; Ferrero, M. A.; Juriaans, S. O.

    2008-01-01

    We introduce the Colombeau Quaternio Algebra and study its algebraic structure. We also study the dense ideal, dense in the algebraic sense, of the algebra of Colombeau generalized numbers and use this show the existence of a maximal ting of quotions which is Von Neumann regular. Recall that it is already known that then algebra of COlombeau generalized numbers is not Von Neumann regular. We also use the study of the dense ideals to give a criteria for a generalized holomorphic function to sa...

  4. A Note on Z* algebras

    OpenAIRE

    Taghavi, Ali

    2013-01-01

    We study some properies of $Z^{*}$ algebras, thos C^* algebra which all positive elements are zero divisors. We show by means of an example that an extension of a Z* algebra by a Z* algebra is not necessarily Z* algebra. However we prove that an extension of a non Z* algebra by a non Z* algebra is again a Z^* algebra. As an application of our methods, we prove that evey compact subset of the positive cones of a C* algebra has an upper bound in the algebra.

  5. 2-Local derivations on matrix algebras over commutative regular algebras

    OpenAIRE

    Ayupov, Sh. A.; Kudaybergenov, K. K.; Alauadinov, A. K.

    2012-01-01

    The paper is devoted to 2-local derivations on matrix algebras over commutative regular algebras. We give necessary and sufficient conditions on a commutative regular algebra to admit 2-local derivations which are not derivations. We prove that every 2-local derivation on a matrix algebra over a commutative regular algebra is a derivation. We apply these results to 2-local derivations on algebras of measurable and locally measurable operators affiliated with type I von Neumann algebras.

  6. Operator Algebras of Functions

    CERN Document Server

    Mittal, Meghna

    2009-01-01

    We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Agler's theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.

  7. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  8. On Derivations Of Genetic Algebras

    International Nuclear Information System (INIS)

    A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two

  9. On Generalized I-Algebras and 4-valued Modal Algebras

    CERN Document Server

    Figallo, Aldo V

    2012-01-01

    In this paper we establish a new characterization of 4-valued modal algebras considered by A. Monteiro. In order to obtain this characterization we introduce a new class of algebras named generalized I-algebras. This class contains strictly the class of C-algebras defined by Y. Komori as an algebraic counterpart of the infinite-valued implicative Lukasiewicz propositional calculus. On the other hand, the relationship between I-algebras and conmutative BCK-algebras, defined by S. Tanaka in 1975, allows us to say that in a certain sense G-algebras are also a generalization of these latter algebras

  10. Omni-Lie Color Algebras and Lie Color 2-Algebras

    OpenAIRE

    Zhang, Tao

    2013-01-01

    Omni-Lie color algebras over an abelian group with a bicharacter are studied. The notions of 2-term color $L_{\\infty}$-algebras and Lie color 2-algebras are introduced. It is proved that there is a one-to-one correspondence between Lie color 2-algebras and 2-term color $L_{\\infty}$-algebras.

  11. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  12. Stable endomorphism algebras of modules over special biserial algebras

    OpenAIRE

    Schröer, Jan; Zimmermann, Alexander

    2002-01-01

    We prove that the stable endomorphism algebra of a module without self-extensions over a special biserial algebra is a gentle algebra. In particular, it is again special biserial. As a consequence, any algebra which is derived equivalent to a gentle algebra is gentle.

  13. $L_{\\infty}$ algebra structures of Lie algebra deformations

    OpenAIRE

    Gao, Jining

    2004-01-01

    In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or $L_{\\infty}$ algebra. All such obstructions have been transfered to the revelvant $L_{\\infty}$ algebras which contain only three terms

  14. Order-to-chaos transition in the hardness of random Boolean satisfiability problems

    Science.gov (United States)

    Varga, Melinda; Sumi, Robert; Ercsey-Ravasz, Maria; Toroczkai, Zoltan

    Transient chaos is a phenomenon characterizing the dynamics of phase space trajectories evolving towards an attractor in physical systems. We show that transient chaos also appears in the dynamics of certain algorithms searching for solutions of constraint satisfaction problems (e.g., Sudoku). We present a study of the emergence of hardness in Boolean satisfiability (k-SAT) using an analog deterministic algorithm. Problem hardness is defined through the escape rate κ, an invariant measure of transient chaos, and it expresses the rate at which the trajectory approaches a solution. We show that the hardness in random k-SAT ensembles has a wide variation approximable by a lognormal distribution. We also show that when increasing the density of constraints α, hardness appears through a second-order phase transition at αc in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic, however, such transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter. We demonstrate that the transition is generated by the appearance of non-solution basins in the solution space as the density of constraints is increased.

  15. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  16. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  17. Relative Homological Algebra Volume 1

    CERN Document Server

    2011-01-01

    This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.

  18. Finite-dimensional (*)-serial algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.

  19. Commutative combinatorial Hopf algebras

    OpenAIRE

    Hivert, F.; Novelli, J. -C.; Thibon, J. -Y.

    2006-01-01

    We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary tre...

  20. Algebraic nonlinear collective motion

    OpenAIRE

    Troupe, J.; Rosensteel, G.

    1999-01-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...

  1. A quantum field algebra

    OpenAIRE

    Brouder, Christian

    2002-01-01

    The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise...

  2. Geometric Algebras and Extensors

    OpenAIRE

    Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.

    2007-01-01

    This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...

  3. Symmetric Extended Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; Jie Fang

    2003-01-01

    The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30

  4. borealis - A generalized global update algorithm for Boolean optimization problems

    CERN Document Server

    Zhu, Zheng; Katzgraber, Helmut G

    2016-01-01

    Optimization problems with Boolean variables that fall into the nondeterministic polynomial (NP) class are of fundamental importance in computer science, mathematics, physics and industrial applications. Most notably, solving constraint-satisfaction problems, which are related to spin-glass-like Hamiltonians in physics, remains a difficult numerical task. As such, there has been great interest in designing efficient heuristics to solve these computationally difficult problems. Inspired by parallel tempering Monte Carlo in conjunction with the rejection-free isoenergetic cluster algorithm developed for Ising spin glasses, we present a generalized global update optimization heuristic that can be applied to different NP-complete problems with Boolean variables. The global cluster updates allow for a wide-spread sampling of phase space, thus considerably speeding up optimization. By carefully tuning the pseudo-temperature (needed to randomize the configurations) of the problem, we show that the method can efficie...

  5. High Quality Test Pattern Generation and Boolean Satisfiability

    CERN Document Server

    Eggersglüß, Stephan

    2012-01-01

    This book provides an overview of automatic test pattern generation (ATPG) and introduces novel techniques to complement classical ATPG, based on Boolean Satisfiability (SAT).  A fast and highly fault efficient SAT-based ATPG framework is presented which is also able to generate high-quality delay tests such as robust path delay tests, as well as tests with long propagation paths to detect small delay defects. The aim of the techniques and methodologies presented in this book is to improve SAT-based ATPG, in order to make it applicable in industrial practice. Readers will learn to improve the performance and robustness of the overall test generation process, so that the ATPG algorithm reliably will generate test patterns for most targeted faults in acceptable run time to meet the high fault coverage demands of industry. The techniques and improvements presented in this book provide the following advantages: Provides a comprehensive introduction to test generation and Boolean Satisfiability (SAT); Describes a...

  6. Algorithms for Finding Small Attractors in Boolean Networks

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2007-01-01

    Full Text Available A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.

  7. Boolean network representation of contagion dynamics during a financial crisis

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-01-01

    This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.

  8. Complexity of Propositional Abduction for Restricted Sets of Boolean Functions

    CERN Document Server

    Creignou, Nadia; Thomas, Michael

    2009-01-01

    Abduction is a fundamental and important form of non-monotonic reasoning. Given a knowledge base explaining how the world behaves it aims at finding an explanation for some observed manifestation. In this paper we focus on propositional abduction, where the knowledge base and the manifestation are represented by propositional formulae. The problem of deciding whether there exists an explanation has been shown to be SigmaP2-complete in general. We consider variants obtained by restricting the allowed connectives in the formulae to certain sets of Boolean functions. We give a complete classification of the complexity for all considerable sets of Boolean functions. In this way, we identify easier cases, namely NP-complete and polynomial cases; and we highlight sources of intractability. Further, we address the problem of counting the explanations and draw a complete picture for the counting complexity.

  9. Cayley-Dickson and Clifford Algebras as Twisted Group Algebras

    OpenAIRE

    Bales, John W.

    2011-01-01

    The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.

  10. Quiver W-algebras

    CERN Document Server

    Kimura, Taro

    2015-01-01

    For a quiver with weighted arrows we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al., and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  11. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  12. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  13. Basic notions of algebra

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    2005-01-01

    This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

  14. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  15. Worst-Case Groundness Analysis Using Definite Boolean Functions

    OpenAIRE

    Genaim, Samir; Codish, Michael; Howe, Jacob M.

    2004-01-01

    This note illustrates theoretical worst-case scenarios for groundness analyses obtained through abstract interpretation over the abstract domains of definite (Def) and positive (Pos) Boolean functions. For Def, an example is given for which any Def-based abstract interpretation for groundness analysis follows a chain which is exponential in the number of argument positions as well as in the number of clauses but sub-exponential in the size of the program. For Pos, we strengthen a previous res...

  16. Estimation of Boolean Factor Analysis Performance by Informational Gain

    Czech Academy of Sciences Publication Activity Database

    Frolov, A.; Húsek, Dušan; Polyakov, P.Y.

    Berlin : Springer, 2010 - (Snášel, V.; Szczepaniak, P.; Abraham, A.; Kacprzyk, J.), s. 83-94 ISBN 978-3-642-10686-6. - (Advances in Intelligent and Soft Computing. 67). [AWIC 2009. Atlantic Web Intelligence Conference /6./. Prague (CZ), 09.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * informational gain * Hopfield-like network Subject RIV: IN - Informatics, Computer Science

  17. Yes/No/Maybe: A Boolean attempt at feedback

    OpenAIRE

    12130478 - Louw, Henk; 10095519 - Van Rooy, Albertus Jacobus

    2010-01-01

    This paper describes an experiment in which Boolean feedback (a kind of checklist) was used to provide feedback on the paragraph structures of first year students in an Academic Literacy course. We begin by introducing the major problems with feedback on L2 writing and establishing why a focus on paragraph structures in particular is of importance. The experiment conducted was a two-draft assignment in which three different kinds of feedback (technique A: handwritten comments, B: consciousnes...

  18. A Boolean Approach to Airline Business Model Innovation

    OpenAIRE

    Hvass, Kristian

    2012-01-01

    Research in business model innovation has identified its significance in creating a sustainable competitive advantage for a firm, yet there are few empirical studies identifying which combination of business model activities lead to success and therefore deserve innovative attention. This study analyzes the business models of North America low-cost carriers from 2001 to 2010 using a Boolean minimization algorithm to identify which combinations of business model activities le...

  19. Boolean logic device done with DFB laser diode

    OpenAIRE

    Hurtado Villavieja, Antonio; González Marcos, Ana; Martín Pereda, José Antonio

    2004-01-01

    We present simulation results on how power output-input characteristic Instability in Distributed FeedBack -DFB semiconductor laser diode SLA can be employed to implemented Boolean logic device. Two configurations of DFB Laser diode under external optical injection, either in the transmission or in the reflective mode of operation, is used to implement different Optical Logic Cells (OLCs), called the Q- and the P-Device OLCs. The external optical injection correspond to two inputs data plus a...

  20. Mapping Complex Networks: Exploring Boolean Modeling of Signal Transduction Pathways

    OpenAIRE

    Bhardwaj, Gaurav; Wells, Christine P.; Albert, Reka; van Rossum, Damian B.; Patterson, Randen L

    2009-01-01

    In this study, we explored the utility of a descriptive and predictive bionetwork model for phospholipase C-coupled calcium signaling pathways, built with non-kinetic experimental information. Boolean models generated from these data yield oscillatory activity patterns for both the endoplasmic reticulum resident inositol-1,4,5-trisphosphate receptor (IP3R) and the plasma-membrane resident canonical transient receptor potential channel 3 (TRPC3). These results are specific as randomization of ...

  1. Boolean Functions, Projection Operators and Quantum Error Correcting Codes

    OpenAIRE

    Aggarwal, Vaneet; Calderbank, A. Robert

    2006-01-01

    This paper describes a fundamental correspondence between Boolean functions and projection operators in Hilbert space. The correspondence is widely applicable, and it is used in this paper to provide a common mathematical framework for the design of both additive and non-additive quantum error correcting codes. The new framework leads to the construction of a variety of codes including an infinite class of codes that extend the original ((5,6,2)) code found by Rains [21]. It also extends to o...

  2. Matroids, hereditary collections and simplicial complexes having boolean representations

    OpenAIRE

    Rhodes, John; Silva, Pedro V.

    2012-01-01

    Inspired by the work of Izakhian and Rhodes, a theory of representation of hereditary collections by boolean matrices is developed. This corresponds to representation by finite $\\vee$-generated lattices. The lattice of flats, defined for hereditary collections, lattices and matrices, plays a central role in the theory. The representations constitute a lattice and the minimal and strictly join irreducible elements are studied, as well as various closure operators.

  3. Soft Rough Approximation Operators on a Complete Atomic Boolean Lattice

    OpenAIRE

    Heba I. Mustafa

    2013-01-01

    The concept of soft sets based on complete atomic Boolean lattice, which can be seen as a generalization of soft sets, is introduced. Some operations on these soft sets are discussed, and new types of soft sets such as full, keeping infimum, and keeping supremum are defined and supported by some illustrative examples. Two pairs of new soft rough approximation operators are proposed and the relationship among soft set is investigated, and their related properties are given. We show that Järvin...

  4. Boolean Functions with a Simple Certificate for CNF Complexity

    Czech Academy of Sciences Publication Activity Database

    Čepek, O.; Kučera, P.; Savický, Petr

    2012-01-01

    Roč. 160, 4-5 (2012), s. 365-382. ISSN 0166-218X R&D Projects: GA MŠk(CZ) 1M0545 Grant ostatní: GA ČR(CZ) GP201/07/P168; GA ČR(CZ) GAP202/10/1188 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean functions * CNF representations Subject RIV: BA - General Mathematics Impact factor: 0.718, year: 2012

  5. Relations Between BZMVdM-Algebra and Other Algebras

    Institute of Scientific and Technical Information of China (English)

    高淑萍; 邓方安; 刘三阳

    2003-01-01

    Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.

  6. Boolean Models of Biological Processes Explain Cascade-Like Behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen

    2016-01-01

    Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes. PMID:26821940

  7. MILES FORMULAE FOR BOOLEAN MODELS OBSERVED ON LATTICES

    Directory of Open Access Journals (Sweden)

    Joachim Ohser

    2011-05-01

    Full Text Available The densities of the intrinsic volumes – in 3D the volume density, surface density, the density of the integral of the mean curvature and the density of the Euler number – are a very useful collection of geometric characteristics of random sets. Combining integral and digital geometry we develop a method for efficient and simultaneous calculation of the intrinsic volumes of random sets observed in binary images in arbitrary dimensions. We consider isotropic and reflection invariant Boolean models sampled on homogeneous lattices and compute the expectations of the estimators of the intrinsic volumes. It turns out that the estimator for the surface density is proved to be asymptotically unbiased and thusmultigrid convergent for Boolean models with convex grains. The asymptotic bias of the estimators for the densities of the integral of the mean curvature and of the Euler number is assessed for Boolean models of balls of random diameters. Miles formulae with corresponding correction terms are derived for the 3D case.

  8. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    Hijligenberg, N.W. van den; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g

  9. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    Zheng-xin CHEN; Ya-nan LIN

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.

  10. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.

  11. Universal Algebras of Hurwitz Numbers

    OpenAIRE

    A. Mironov; Morozov, A; Natanzon, S.

    2009-01-01

    Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.

  12. Tilting theory and cluster algebras

    OpenAIRE

    Reiten, Idun

    2010-01-01

    We give an introduction to the theory of cluster categories and cluster tilted algebras. We include some background on the theory of cluster algebras, and discuss the interplay with cluster categories and cluster tilted algebras.

  13. Fields and Forms on -Algebras

    Indian Academy of Sciences (India)

    Cătălin Ciupală

    2005-02-01

    In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.

  14. A novel Lie algebra of the genetic code over the Galois field of four DNA bases.

    Science.gov (United States)

    Sánchez, Robersy; Grau, Ricardo; Morgado, Eberto

    2006-07-01

    Starting from the four DNA bases order in the Boolean lattice, a novel Lie Algebra of the genetic code is proposed. Here, the main partitions of the genetic code table were obtained as equivalent classes of quotient spaces of the genetic code vector space over the Galois field of the four DNA bases. The new algebraic structure shows strong connections among algebraic relationships, codon assignments and physicochemical properties of amino acids. Moreover, a distance defined between codons expresses a physicochemical meaning. It was also noticed that the distance between wild type and mutant codons tends to be small in mutational variants of four genes: human phenylalanine hydroxylase, human beta-globin, HIV-1 protease and HIV-1 reverse transcriptase. These results strongly suggest that deterministic rules in genetic code origin must be involved. PMID:16780898

  15. Symplectic $C_\\infty$-algebras

    OpenAIRE

    Hamilton, Alastair; Lazarev, Andrey

    2007-01-01

    In this paper we show that a strongly homotopy commutative (or $C_\\infty$-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic $C_\\infty$-algebra (an $\\infty$-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a $\\ci$-algebra and does not generalize to algebras over other operads.

  16. On algebraic volume density property

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank

    2012-01-01

    A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admi...

  17. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yuan YAO; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  18. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).

  19. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).

  20. Computer algebra in gravity

    CERN Document Server

    Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.

    2001-01-01

    We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.

  1. Generalized Schur Algebras

    OpenAIRE

    May, Robert D.

    2016-01-01

    Left and right "generalized Schur algebras", previously introduced by the author, are defined and analyzed. Filtrations of these algebras lead, in most cases, to parameterizations of the their irreducible representations over fields of characteristic 0 and fields of positive characteristic p.

  2. Computing upper cluster algebras

    OpenAIRE

    Matherne, Jacob; Muller, Greg

    2013-01-01

    This paper develops techniques for producing presentations of upper cluster algebras. These techniques are suited to computer implementation, and will always succeed when the upper cluster algebra is totally coprime and finitely generated. We include several examples of presentations produced by these methods.

  3. Lineare Algebra I & II

    OpenAIRE

    Greuel, Gert-Martin

    2000-01-01

    Inhalte der Grundvorlesungen Lineare Algebra I und II im Winter- und Sommersemester 1999/2000: Gruppen, Ringe, Körper, Vektorräume, lineare Abbildungen, Determinanten, lineare Gleichungssysteme, Polynomring, Eigenwerte, Jordansche Normalform, endlich-dimensionale Hilberträume, Hauptachsentransformation, multilineare Algebra, Dualraum, Tensorprodukt, äußeres Produkt, Einführung in Singular.

  4. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  5. Algebraic Differential Characters

    CERN Document Server

    Esnault, H

    1996-01-01

    We give a construction of algebraic differential characters, receiving classes of algebraic bundles with connection, lifitng the Chern-Simons invariants defined with S. Bloch, the classes in the Chow group and the analytic secondary invariants if the variety is defined over the field of complex numbers.

  6. On Hadamard algebras

    Directory of Open Access Journals (Sweden)

    Carlos C. Peña

    2000-05-01

    Full Text Available Topological algebras of sequences of complex numbers are introduced, endowed with a Hadamard product type. The complex homomorphisms on these algebras are characterized, and units, prime cyclic ideals, prime closed ideals, and prime minimal ideals, discussed. Existence of closed and maximal ideals are investigated, and it is shown that the Jacobson and nilradicals are both trivial.

  7. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  8. Deutsch-Jozsa Algorithm Revisited in the Domain of Cryptographically Significant Boolean Functions

    CERN Document Server

    Maitra, S; Maitra, Subhamoy; Mukhopadhyay, Partha

    2004-01-01

    Boolean functions are important building blocks in cryptography for their wide application in both stream and block cipher systems. For cryptanalysis of such systems one tries to find out linear functions that are correlated to the Boolean functions used in the crypto system. Let $f$ be an $n$-variable Boolean function and its Walsh spectra is denoted by $W_f(\\omega)$ at the point $\\omega \\in \\{0, 1\\}^n$. The Boolean function is available in the form of an oracle. We like to find an $\\omega$ such that $W_f(\\omega) \

  9. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  10. Introduction to noncommutative algebra

    CERN Document Server

    Brešar, Matej

    2014-01-01

    Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

  11. Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

    OpenAIRE

    Ashihara, Takahiro; Miyamoto, Masahiko

    2008-01-01

    If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...

  12. Homotopy commutative algebra and 2-nilpotent Lie algebra

    OpenAIRE

    Dubois-Violette, Michel; Popov, Todor

    2012-01-01

    The homotopy transfer theorem due to Tornike Kadeishvili induces the structure of a homotopy commutative algebra, or $C_{\\infty}$-algebra, on the cohomology of the free 2-nilpotent Lie algebra. The latter $C_{\\infty}$-algebra is shown to be generated in degree one by the binary and the ternary operations.

  13. The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; V S Sunder

    2006-11-01

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.

  14. Algebraic K-theory and algebraic topology

    International Nuclear Information System (INIS)

    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers

  15. A new algebra which transmutes to the braided algebra

    OpenAIRE

    Yildiz, A

    1999-01-01

    We find a new braided Hopf structure for the algebra satisfied by the entries of the braided matrix $BSL_q(2)$. A new nonbraided algebra whose coalgebra structure is the same as the braided one is found to be a two parameter deformed algebra. It is found that this algebra is not a comodule algebra under adjoint coaction. However, it is shown that for a certain value of one of the deformation parameters the braided algebra becomes a comodule algebra under the coaction of this nonbraided algebr...

  16. Certain Clifford-like algebra and quantum vertex algebras

    OpenAIRE

    Li, Haisheng; Tan, Shaobin; Wang, Qing

    2015-01-01

    In this paper, we study in the context of quantum vertex algebras a certain Clifford-like algebra introduced by Jing and Nie. We establish bases of PBW type and classify its $\\mathbb N$-graded irreducible modules by using a notion of Verma module. On the other hand, we introduce a new algebra, a twin of the original algebra. Using this new algebra we construct a quantum vertex algebra and we associate $\\mathbb N$-graded modules for Jing-Nie's Clifford-like algebra with $\\phi$-coordinated modu...

  17. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  18. Evolution and Controllability of Cancer Networks: A Boolean Perspective.

    Science.gov (United States)

    Srihari, Sriganesh; Raman, Venkatesh; Leong, Hon Wai; Ragan, Mark A

    2014-01-01

    Cancer forms a robust system capable of maintaining stable functioning (cell sustenance and proliferation) despite perturbations. Cancer progresses as stages over time typically with increasing aggressiveness and worsening prognosis. Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer progression and to develop effective anti-cancer therapies. In this work, we propose a novel model for the `cancer system' as a Boolean state space in which a Boolean network, built from protein-interaction and gene-expression data from different stages of cancer, transits between Boolean satisfiability states by "editing" interactions and "flipping" genes. Edits reflect rewiring of the PPI network while flipping of genes reflect activation or silencing of genes between stages. We formulate a minimization problem min flip to identify these genes driving the transitions. The application of our model (called BoolSpace) on three case studies-pancreatic and breast tumours in human and post spinal-cord injury (SCI) in rats-reveals valuable insights into the phenomenon of cancer progression: (i) interactions involved in core cell-cycle and DNA-damage repair pathways are significantly rewired in tumours, indicating significant impact to key genome-stabilizing mechanisms; (ii) several of the genes flipped are serine/threonine kinases which act as biological switches, reflecting cellular switching mechanisms between stages; and (iii) different sets of genes are flipped during the initial and final stages indicating a pattern to tumour progression. Based on these results, we hypothesize that robustness of cancer partly stems from "passing of the baton" between genes at different stages-genes from different biological processes and/or cellular components are involved in different stages of tumour progression thereby allowing tumour cells to evade targeted therapy, and therefore an effective therapy should target a "cover set" of

  19. The value of less connected agents in Boolean networks

    Science.gov (United States)

    Epstein, Daniel; Bazzan, Ana L. C.

    2013-11-01

    In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality

  20. The Stabilized Poincare-Heisenberg algebra: a Clifford algebra viewpoint

    OpenAIRE

    Gresnigt, N. G.; Renaud, P. F.; Butler, P. H.

    2006-01-01

    The stabilized Poincare-Heisenberg algebra (SPHA) is the Lie algebra of quantum relativistic kinematics generated by fifteen generators. It is obtained from imposing stability conditions after attempting to combine the Lie algebras of quantum mechanics and relativity which by themselves are stable, however not when combined. In this paper we show how the sixteen dimensional Clifford algebra CL(1,3) can be used to generate the SPHA. The Clifford algebra path to the SPHA avoids the traditional ...

  1. Algebraic Signal Processing Theory

    OpenAIRE

    Pueschel, Markus; Moura, Jose M. F.

    2006-01-01

    This paper presents an algebraic theory of linear signal processing. At the core of algebraic signal processing is the concept of a linear signal model defined as a triple (A, M, phi), where familiar concepts like the filter space and the signal space are cast as an algebra A and a module M, respectively, and phi generalizes the concept of the z-transform to bijective linear mappings from a vector space of, e.g., signal samples, into the module M. A signal model provides the structure for a p...

  2. Transgression and Clifford algebras

    OpenAIRE

    Rohr, Rudolf Philippe

    2007-01-01

    Let $W$ be a differential (not necessarily commutative) algebra which carries a free action of a polynomial algebra $SP$ with homogeneous generators $p_1, >..., p_r$. We show that for $W$ acyclic, the cohomology of the quotient $H(W/)$ is isomorphic to a Clifford algebra $\\text{Cl}(P,B)$, where the (possibly degenerate) bilinear form $B$ depends on $W$. This observation is an analogue of an old result of Borel in a non-commutative context. As an application, we study the case of $W$ given by ...

  3. Symplectic algebraic dynamics algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the algebraic dynamics solution of ordinary differential equations andintegration of  ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.

  4. On Griess Algebras

    OpenAIRE

    Michael Roitman

    2003-01-01

    In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V = V_0 \\oplus V_2 \\oplus V_3\\oplus ...$, such that $\\dim V_0 = 1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with...

  5. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  6. Diassociative algebras and their derivations

    International Nuclear Information System (INIS)

    The paper concerns the derivations of diassociative algebras. We introduce one important class of diassociative algebras, give simple properties of the right and left multiplication operators in diassociative algebras. Then we describe the derivations of complex diassociative algebras in dimension two and three

  7. Expectation-Maximization Approach to Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    Piscataway: IEEE, 2011, s. 559-566. ISBN 978-1-4244-9636-5. [IJCNN 2011. International Joint Conference on Neural Networks. San Jose (US), 31.07.2011-05.08.2011] R&D Projects: GA ČR GAP202/10/0262; GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * bars problem * dendritic inhibition * expectation-maximization * neural network application * statistics Subject RIV: IN - Informatics, Computer Science

  8. Neural Network Based Boolean Factor Analysis of Parliament Voting

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Polyakov, P.Y.; Húsek, Dušan; Řezanková, H.

    Heidelberg : Springer, 2006 - (Rizzi, A.; Vichi, M.), s. 861-868 ISBN 3-7908-1708-2. [COMPSTAT 2006. Symposium /17./. Rome (IN), 28.08.2006-01.09.2006] R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Grant ostatní: RFBR(RU) 05-07-90049 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * neural networks * social networks Subject RIV: BB - Applied Statistics, Operational Research

  9. Self-organized networks of competing boolean agents

    Science.gov (United States)

    Paczuski; Bassler; Corral

    2000-04-01

    A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths. PMID:11019043

  10. Symmetric Groups and Quotient Complexity of Boolean Operations

    OpenAIRE

    Bell, Jason; Brzozowski, Janusz; Moreira, Nelma; Reis, Rogério

    2013-01-01

    The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n ...

  11. Dimensionality Reduction in Boolean Data: Comparison of Four BMF Methods

    Czech Academy of Sciences Publication Activity Database

    Bartl, E.; Bělohlávek, R.; Osicka, P.; Řezanková, Hana

    Berlin: Springer, 2015 - (Masulli, F.; Petrosino, A.; Rovetta, S.), s. 118-133. (Lecture Notes in Computer Science. 7627). ISBN 978-3-662-48576-7. ISSN 0302-9743. [CHDD 2012. Clustering High-Dimensional Data. International Workshop /1./. Naples (IT), 15.05.2012-15.05.2012] R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk CZ.1.07/2.3.00/20.0059 Keywords : binary data * dimensionality reduction * Boolean factor analysis * matrix decomposition Subject RIV: BB - Applied Statistics, Operational Research

  12. Two Expectation-Maximization Algorithms for Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2014-01-01

    Roč. 130, 23 April (2014), s. 83-97. ISSN 0925-2312 R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean Factor analysis * Binary Matrix factorization * Neural networks * Binary data model * Dimension reduction * Bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014

  13. Comparison of Two Neural Networks Approaches to Boolean Matrix Factorization

    Czech Academy of Sciences Publication Activity Database

    Polyakov, P.Y.; Frolov, A. A.; Húsek, Dušan

    Los Alamitos: IEEE Computer Society, 2009 - (Snášel, V.; Pokorný, J.; Pichappan, P.; El-Qawasmeh, E.), s. 316-321 ISBN 978-1-4244-4614-8. [NDT 2009. International Conference on Networked Digital Technologies /1./. Ostrava (CZ), 29.07.2009-31.07.2009] R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : data mining * artificial inteligence * neural networks * multivariate statistics * Boolean factor analysis * Hopfield-like neural networks * feed forward neural network Subject RIV: BB - Applied Statistics, Operational Research

  14. Boolean approaches to graph embeddings related to VLSI

    Institute of Scientific and Technical Information of China (English)

    LIU; Yanpei(

    2001-01-01

    [1]Hu, T. C., Kuh, S. E., Theory and concepts of circuit layout, in VLSI Circuit Layout: Theory and Design, New York:IEEE Press, 1985, 3-18.[2]Liu Yanpei, Embeddability in Graphs, Boston-Beijing: Kluwer Science, 1995.[3]Liu Yanpei, Some combinatorial optimization problems arising from VLSI circuit design, Applied Math. -JCU, 1993, 38:218-235.[4]Liu Yanpei, Marchioro, P. , Petreschi, R., At most single bend embeddings of cubic graphs, Applied Math. -CJU, 1994,39: 127-142.[5]Liu Yanpei, Marchioro, P. , Petreschi, R. et al. , Theoretical results on at most 1-bend embeddability of graphs, Acta Math.Appl. Sinica, 1992, 8: 188-192.[6]Liu Yanpei, Morgana, A., Simeone, B., General theoretical results on rectilinear embeddability of graphs, Acta Math. Ap- pl. Simca, 1991, 7: 187-192.[7]Calamoneri, T., Petreschi, R., Liu Yanpei, Optimally Extending Bistandard Graphs on the Orthogonal Grid, ASCM2000 Symposium, Tailand, Dec.17-21, 2000.[8]Liu Yanpei, Morgana, A., Simeone, B., A graph partition problem, Acta Math. Appl. Sinica, 1996, 12: 393-400.[9]Liu Yanpei, Morgana, A. , Simeone, B. , A linear algorithm for 2-bend embeddings of planar graphs in the two dimensional grid, Discrete Appl. Math., 1998, 81: 69-91.[10]Liu Yanpei, Boolean approach to planar embeddings of a graph, Acta Math. Sinica, New Series, 1989, 5: 64-79.[11]Hammer, P. L., Liu Yanpei, Simeone, B., Boolean approaches to combinatorial optimization, J. Math. Res. Expos.,1990, 10: 300-312, 455-468, 619-628.[12]Liu Yanpei, Boolean planarity characterization of graphs, Acta Math. Sinica, New Series, 1988, 4: 316-329.[13]Liu Yanpei, Boolean characterizations of planarity and planar embeddings of graphs, Ann. O. R., 1990, 24: 165-174.

  15. Soft Rough Approximation Operators on a Complete Atomic Boolean Lattice

    Directory of Open Access Journals (Sweden)

    Heba I. Mustafa

    2013-01-01

    Full Text Available The concept of soft sets based on complete atomic Boolean lattice, which can be seen as a generalization of soft sets, is introduced. Some operations on these soft sets are discussed, and new types of soft sets such as full, keeping infimum, and keeping supremum are defined and supported by some illustrative examples. Two pairs of new soft rough approximation operators are proposed and the relationship among soft set is investigated, and their related properties are given. We show that Järvinen's approximations can be viewed as a special case of our approximation. If , then our soft approximations coincide with crisp soft rough approximations (Feng et al. 2011.

  16. The number system hidden inside the Boolean satisfiability problem

    OpenAIRE

    Cho, Keum-Bae

    2014-01-01

    The Boolean satisfiability (SAT) problem is the first known example of an NP-complete problem, and thousands of NP-compete problems have been identified by reducing the SAT to the problems. Researchers have tried to find a definite mathematical expression that distinguishes among NL-complete, P-complete, and NP-complete problems such as 2-SAT, Horn-SAT, and 3-SAT. In this paper, we introduce the natural number system hidden inside the SAT structure. We reduce a SAT instance to an integer-prog...

  17. Graphical interpretation of Boolean operators for protein NMR assignments.

    Science.gov (United States)

    Verdegem, Dries; Dijkstra, Klaas; Hanoulle, Xavier; Lippens, Guy

    2008-09-01

    We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal. PMID:18762868

  18. Boolean Operators and the Naive End-User: Moving to AND.

    Science.gov (United States)

    Proctor, Edward

    2002-01-01

    Discusses the confusion among end users in using Boolean operators when searching electronic resources. Highlights include search engines; site-specific search engines; the counterintuitive nature of Boolean logic; hidden defaults; the problem of conceptualization; reprogramming defaults; and a lack of user education. (LRW)

  19. A Graphical Filter/Flow Representation of Boolean Queries: A Prototype Implementation and Evaluation.

    Science.gov (United States)

    Young, Degi; Shneiderman, Ben

    1993-01-01

    Literature showing the disadvantages of Boolean logic in online searching is reviewed, and research comparing the Filter/Flow visual interface (i.e., a graphical representation of Boolean operators) with a text-only interface is described. A significant difference in the total number of correct queries is reported that favored Filter/Flow. (16…

  20. A Theoretical Framework for Defining Similarity Measures for Boolean Search Request Formulations, Including Some Experimental Results.

    Science.gov (United States)

    Radecki, Tadeusz

    1985-01-01

    Reports research results into a methodology for determining similarity between queries characterized by Boolean search request formulations and discusses similarity measures for Boolean combinations of index terms. Rationale behind these measures is outlined, and conditions ensuring their equivalence are identified. Results of an experiment…

  1. Irreducible Lie-Yamaguti algebras

    OpenAIRE

    Benito, Pilar; Elduque, Alberto; Martín-Herce, Fabián

    2008-01-01

    Lie-Yamaguti algebras (or generalized Lie triple systems) are binary-ternary algebras intimately related to reductive homogeneous spaces. The Lie-Yamaguti algebras which are irreducible as modules over their Lie inner derivation algebra are the algebraic counterpart of the isotropy irreducible homogeneous spaces. These systems will be shown to split into three disjoint types: adjoint type, non-simple type and generic type. The systems of the first two types will be classified and most of them...

  2. Hom-power associative algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert's result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative.

  3. Unitary spaces on Clifford algebras

    OpenAIRE

    Marchuk, N. G.; Shirokov, D. S.

    2007-01-01

    For the complex Clifford algebra Cl(p,q) of dimension n=p+q we define a Hermitian scalar product. This scalar product depends on the signature (p,q) of Clifford algebra. So, we arrive at unitary spaces on Clifford algebras. With the aid of Hermitian idempotents we suggest a new construction of, so called, normal matrix representations of Clifford algebra elements. These representations take into account the structure of unitary space on Clifford algebra.

  4. Natural Editing of Algebraic Expressions

    OpenAIRE

    Nicaud, Jean-François

    2007-01-01

    We call “natural editing of algebraic expressions” the editing of algebraic expressions in their natural representation, the one that is used on paper and blackboard. This is an issue we have investigated in the Aplusix project, a project which develops a system aiming at helping students to learn algebra. The paper summarises first the Aplusix project. Second it presents a notion of algebraic expressions, of representations of algebraic expressions. The last section develops ideas about natu...

  5. Meadow enriched ACP process algebras

    OpenAIRE

    J.A. Bergstra; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization of the notion of an ACP process algebra to processes in which data are involved. In meadow enriched ACP process algebras, the mathematical structure for data is a meadow.

  6. The Algebra of -relations

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; R Srinivasan; V S Sunder

    2000-08-01

    In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).

  7. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  8. Geometric Algebra for Physicists

    Science.gov (United States)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  9. Hopf Algebra of Sashes

    OpenAIRE

    Law, Shirley

    2014-01-01

    International audience A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell permutations. The...

  10. Holomorphically Equivalent Algebraic Embeddings

    OpenAIRE

    Feller, Peter; Stampfli, Immanuel

    2014-01-01

    We prove that two algebraic embeddings of a smooth variety $X$ in $\\mathbb{C}^m$ are the same up to a holomorphic coordinate change, provided that $2 \\dim X + 1$ is smaller than or equal to $m$. This improves an algebraic result of Nori and Srinivas. For the proof we extend a technique of Kaliman using generic linear projections of $\\mathbb{C}^m$.

  11. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  12. Star Algebra Projectors

    OpenAIRE

    Gaiotto, Davide; Rastelli, Leonardo; Sen, Ashoke; Zwiebach, Barton

    2002-01-01

    Surface states are open string field configurations which arise from Riemann surfaces with a boundary and form a subalgebra of the star algebra. We find that a general class of star algebra projectors arise from surface states where the open string midpoint reaches the boundary of the surface. The projector property of the state and the split nature of its wave-functional arise because of a nontrivial feature of conformal maps of nearly degenerate surfaces. Moreover, all such projectors are i...

  13. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  14. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  15. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  16. On isomorphisms of integral table algebras

    Institute of Scientific and Technical Information of China (English)

    FAN; Yun(樊恽); SUN; Daying(孙大英)

    2002-01-01

    For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.

  17. The Algebraic Way

    Science.gov (United States)

    Hiley, B. J.

    In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.

  18. DG Poisson algebra and its universal enveloping algebra

    Science.gov (United States)

    Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin

    2016-05-01

    In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.

  19. Evolution of a designless nanoparticle network into reconfigurable Boolean logic

    Science.gov (United States)

    Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.

  20. Direct relations between morphology and transport in Boolean models.

    Science.gov (United States)

    Scholz, Christian; Wirner, Frank; Klatt, Michael A; Hirneise, Daniel; Schröder-Turk, Gerd E; Mecke, Klaus; Bechinger, Clemens

    2015-10-01

    We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold. PMID:26565348

  1. Boolean Models of Biosurfactants Production in Pseudomonas fluorescens

    Science.gov (United States)

    Richard, Adrien; Rossignol, Gaelle; Comet, Jean-Paul; Bernot, Gilles; Guespin-Michel, Jannine; Merieau, Annabelle

    2012-01-01

    Cyclolipopeptides (CLPs) are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene () and not restored by complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained. PMID:22303435

  2. Direct relations between morphology and transport in Boolean models

    Science.gov (United States)

    Scholz, Christian; Wirner, Frank; Klatt, Michael A.; Hirneise, Daniel; Schröder-Turk, Gerd E.; Mecke, Klaus; Bechinger, Clemens

    2015-10-01

    We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.

  3. Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations

    CERN Document Server

    Heckel, Reinhard; Bossert, Martin

    2011-01-01

    Consider a large Boolean network with a feed forward structure. Given a probability distribution for the inputs, can one find-possibly small-collections of input nodes that determine the states of most other nodes in the network? To identify these nodes, a notion that quantifies the determinative power of an input over states in the network is needed. We argue that the mutual information (MI) between a subset of the inputs X = {X_1, ..., X_n} of node i and the function f_i(X)$ associated with node i quantifies the determinative power of this subset of inputs over node i. To study the relation of determinative power to sensitivity to perturbations, we relate the MI to measures of perturbations, such as the influence of a variable, in terms of inequalities. The result shows that, maybe surprisingly, an input that has large influence does not necessarily have large determinative power. The main tool for the analysis is Fourier analysis of Boolean functions. Whether a function is sensitive to perturbations or not...

  4. Evolution of a designless nanoparticle network into reconfigurable Boolean logic.

    Science.gov (United States)

    Bose, S K; Lawrence, C P; Liu, Z; Makarenko, K S; van Damme, R M J; Broersma, H J; van der Wiel, W G

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures. PMID:26389658

  5. Topological ∗-algebras with *-enveloping Algebras II

    Indian Academy of Sciences (India)

    S J Bhatt

    2001-02-01

    Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.

  6. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    OpenAIRE

    Hijligenberg, van den, N.W.; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.

  7. L-o cto-algebras

    Institute of Scientific and Technical Information of China (English)

    An Hui-hui; Wang Zhi-chun

    2016-01-01

    L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.

  8. Controllability and observability of Boolean control networks%布尔控制网络的能控性与能观性

    Institute of Scientific and Technical Information of China (English)

    李志强; 宋金利

    2013-01-01

    Using the semi-tensor product,we convert the Boolean control network to its algebraic form.From the structure matrix of Boolean control network,the controllability and observability of the Boolean control network are discussed.A novel necessary and sufficient condition for controllability,which improves the recent results,is given.The new controllability condition eliminates the redundant computation of controllability matrix.The highest power of matrix is reduced from 2m+n to 2 n.Also,a sufficient condition for observability is obtained,which can be computed easily.A numerical example is presented to show the applicability of our controllability and observability condition.%利用矩阵的半张量积,布尔控制网络被转化为离散时间系统.本文从离散时间系统的结构矩阵出发,讨论了逻辑控制系统的能控能观性条件,得到了一个新的能控性条件.新的条件简化了原有能控性矩阵的计算复杂性,矩阵的最高阶数由原来的2m+n降到了2n.另外,还得到了检验布尔控制网络能观性的条件.与原有条件相比,新的条件更容易计算检验.最后,给出一个实例,检验给出的能控能观性判断条件的正确性.

  9. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  10. A2-Planar Algebras I

    CERN Document Server

    Evans, David E

    2009-01-01

    We give a diagrammatic representation of the A_2-Temperley-Lieb algebra, and show that it is isomorphic to Wenzl's representation of a Hecke algebra. Generalizing Jones's notion of a planar algebra, we construct an A_2-planar algebra which will capture the structure contained in the SU(3) ADE subfactors. We show that the subfactor for an SU(3) ADE graph with a flat connection has a description as a flat A_2-planar algebra, and give the A_2-planar algebra description of the dual subfactor.

  11. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  12. Simple Algebras of Invariant Operators

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Shen; J.D.H. Smith

    2001-01-01

    Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.

  13. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A[D]=A[D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra [D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D-simple and A[D] acts faithfully on A. Thus we obtain a lot of simple algebras.

  14. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Directory of Open Access Journals (Sweden)

    Shah Imran

    2011-07-01

    Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our

  15. Algebraic mesh quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    KNUPP,PATRICK

    2000-04-24

    Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.

  16. Boolean modeling in systems biology: an overview of methodology and applications

    International Nuclear Information System (INIS)

    Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)

  17. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets and...... finite quivers, respectively. The geometric background of these algebras gives us an intuitive idea of the construction of their maximal ring of quotients....

  18. Differential operators on non-commutative algebras

    OpenAIRE

    Hazewinkel, Michiel

    2013-01-01

    There is a relatively well-known description of the algebra of (higher order) left differential operators on commutative algebras. This note gives a construction of similar flavor for algebras of differential operators on not necessarily commutative algebras.

  19. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    D. A. Robbins

    1994-12-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  20. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  1. Resonant algebras and gravity

    CERN Document Server

    Durka, R

    2016-01-01

    We explore the $S$-expansion framework to analyze freedom in closing the multiplication tables for the abelian semigroups. Including possibility of the zero element in the resonant decomposition and relating the Lorentz generator with the semigroup identity element leads to the wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results we find not only all the Maxwell algebras of type $\\mathfrak{B}_m$, $\\mathfrak{C}_m$, and recently introduced $\\mathfrak{D}_m$, but we also produce new examples. We discuss some prospects concerning further enlarging the algebras and provide all necessary constituents for constructing the gravity actions based on the obtained results.

  2. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  3. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  4. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  5. On Griess Algebras

    Directory of Open Access Journals (Sweden)

    Michael Roitman

    2008-08-01

    Full Text Available In this paper we prove that for any commutative (but in general non-associative algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V_0 oplus V2 oplus V3 oplus ..., such that dim V_0 = 1 and V_2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  6. On Griess Algebras

    Science.gov (United States)

    Roitman, Michael

    2008-08-01

    In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  7. Chaos synchronization of two stochastically coupled random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Y.-C. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China) and Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)]. E-mail: d9123801@student.nsysu.edu.tw; Ho, M.-C. [Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)]. E-mail: t1603@nknucc.nknu.edu.tw; Lih, J.-S. [Department of Physics and Geoscience, National Pingtung University of Education, Pingtung, Taiwan (China); Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Jiang, I-M. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Nonlinear Science Group, Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)

    2006-07-24

    In this Letter, we study the chaos synchronization of two stochastically coupled random Boolean networks (RBNs). Instead of using the 'site-by-site and all-to-all' coupling, the coupling mechanism we consider here is that: the nth cell in a network is linked by an arbitrarily chosen cell in the other network with probability {rho}, and it possesses no links with probability 1-{rho}. The mechanism is useful to investigate the coevolution of biological species via horizontal genetic exchange. We show that the density evolution of networks can be described by two deterministic coupled polynomial maps. The complete synchronization occurs when the coupling parameter exceeds a critical value. Moreover, the reverse bifurcations in inhomogeneous condition are observed and under our discussion.

  8. Complete Boolean Satisfiability Solving Algorithms Based on Local Search

    Institute of Scientific and Technical Information of China (English)

    Wen-Sheng Guo; Guo-Wu Yang; William N.N.Hung; Xiaoyu Song

    2013-01-01

    Boolean satisfiability (SAT) is a well-known problem in computer science,artificial intelligence,and operations research.This paper focuses on the satisfiability problem of Model RB structure that is similar to graph coloring problems and others.We propose a translation method and three effective complete SAT solving algorithms based on the characterization of Model RB structure.We translate clauses into a graph with exclusive sets and relative sets.In order to reduce search depth,we determine search order using vertex weights and clique in the graph.The results show that our algorithms are much more effective than the best SAT solvers in numerous Model RB benchmarks,especially in those large benchmark instances.

  9. Optimization, Randomized Approximability, and Boolean Constraint Satisfaction Problems

    CERN Document Server

    Yamakami, Tomoyuki

    2011-01-01

    We give a unified treatment to optimization problems that can be expressed in the form of nonnegative-real-weighted Boolean constraint satisfaction problems. Creignou, Khanna, Sudan, Trevisan, and Williamson studied the complexity of approximating their optimal solutions whose optimality is measured by the sums of outcomes of constraints. To explore a wider range of optimization constraint satisfaction problems, following an early work of Marchetti-Spaccamela and Romano, we study the case where the optimality is measured by products of constraints' outcomes. We completely classify those problems into three categories: PO problems, NPO-hard problems, and intermediate problems that lie between the former two categories. To prove this trichotomy theorem, we analyze characteristics of nonnegative-real-weighted constraints using a variant of the notion of T-constructibility developed earlier for complex-weighted counting constraint satisfaction problems.

  10. Boolean Factor Analysis by Expectation-Maximization Method

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    Heidelberg : Springer, 2013 - (Kudělka, M.; Pokorný, J.; Snášel, V.; Abraham, A.), s. 243-254 ISBN 978-3-642-31602-9. ISSN 2194-5357. - (Advances in Intelligent Systems and Computing. 179). [IHCI 2011. International Conference on Intelligent Human Computer Interaction /3./. Prague (CZ), 29.08.2011-31.08.2011] R&D Projects: GA ČR GAP202/10/0262; GA ČR GA205/09/1079 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural networks * hidden pattern search * Boolean factor analysis * generative model * information redundancy * exceptation-maximization Subject RIV: IN - Informatics, Computer Science

  11. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    Science.gov (United States)

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.

    2016-07-01

    We present a characterization of short-term stability of Kauffman's N K (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.

  12. Improving the User Query for the Boolean Model Using Genetic Algorithms

    CERN Document Server

    Nassar, Mohammad Othman; Mashagba, Eman Al

    2011-01-01

    The Use of genetic algorithms in the Information retrieval (IR) area, especially in optimizing a user query in Arabic data collections is presented in this paper. Very little research has been carried out on Arabic text collections. Boolean model have been used in this research. To optimize the query using GA we used different fitness functions, different mutation strategies to find which is the best strategy and fitness function that can be used with Boolean model when the data collection is the Arabic language. Our results show that the best GA strategy for the Boolean model is the GA (M2, Precision) method.

  13. Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators

    OpenAIRE

    Drucker, Andrew

    2012-01-01

    We study the circuit complexity of Boolean operators, i.e., collections of Boolean functions defined over a common input. Our focus is the well-studied model in which arbitrary Boolean functions are allowed as gates, and in which a circuit's complexity is measured by its depth and number of wires. We show sharp limitations of several existing lower-bound methods for this model. First, we study an information-theoretic lower-bound method due to Cherukhin, that yields bounds of form $\\Omega_d(n...

  14. Improving the User Query for the Boolean Model UsingGenetic Algorithms

    Directory of Open Access Journals (Sweden)

    Mohammad Othman Nassar

    2011-09-01

    Full Text Available The Use of genetic algorithms in the Information retrieval (IR area, especially in optimizing a user query in Arabic data collections is presented in this paper. Very little research has been carried out on Arabic text collections. Boolean model have been used in this research. To optimize the query using GA we used different fitness functions, different mutation strategies to find which is the best strategy and fitness function that can be used with Boolean model when the data collection is the Arabic language. Our results show that the best GA strategy for the Boolean model is the GA (M2, Precision method.

  15. Commutative post-Lie algebra structures on Lie algebras

    OpenAIRE

    Burde, Dietrich; Moens, Wolfgang Alexander

    2015-01-01

    We show that any CPA-structure (commutative post-Lie algebra structure) on a perfect Lie algebra is trivial. Furthermore we give a general decomposition of inner CPA-structures, and classify all CPA-structures on parabolic subalgebras of simple Lie algebras.

  16. The Planar Algebra Associated to a Kac Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; Zeph Landau; V S Sunder

    2003-02-01

    We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  17. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  18. A Boolean delay equation model of ENSO variability

    Science.gov (United States)

    Saunders, Amira; Ghil, Michael

    2001-12-01

    Boolean delay equations (BDEs) provide a mathematical framework to formulate and analyze conceptual models of complex multi-component systems. This framework is used here to construct a simple conceptual model for the El-Niño/Southern Oscillation (ENSO) phenomenon. ENSO involves the coupling of atmospheric and oceanic processes that are far from being completely understood. Our BDE model uses Boolean variables to represent key atmospheric and oceanic quantities and equations that involve logical operators to describe their evolution. Two distinct time-delay parameters, one for the local atmosphere-ocean coupling effects and the other for oceanic wave propagation, are introduced. Over a range of physically relevant delay values, this truly minimal model captures two essential features of ENSO’s interannual variability - its regularity and its tendency to phase-lock to the annual cycle. Oscillations with average cycle length that is an integer multiple of the seasonal cycle are prevalent and range from 2 to 7 years. Transition zones - where the average period lengths are noninteger rational multiples of the forcing period - exhibit Devil’s staircases, a signature of the quasi-periodic (QP) route to chaos. Our BDE model thus validates results from previous studies of the interaction of the seasonal cycle with ENSO’s “delayed oscillator”. It gives therewith support to the view that the observed irregularity results predominantly from low-order chaotic processes rather than from stochastic weather noise. Moreover, in the transition zone between the two integer periodicities of 2 and 3 years, a heretofore unsuspected, self-similar “fractal sunburst” pattern emerges in phase-parameter space. This pattern provides a distinct and more complex scenario than the QP route to chaos found in earlier, more detailed ENSO models. Period selection in this 2-3-year transitional region seems to play a key role in ENSO’s irregularity, as well as in the appearance of

  19. Structure of Solvable Quadratic Lie Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin-sheng

    2005-01-01

    @@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.

  20. Frobenius Splitting in Commutative Algebra

    OpenAIRE

    Smith, Karen E.; ZHANG, WENLIANG

    2014-01-01

    This is a survey of Frobenius splitting techniques in commutative algebra, based on the first author's lectures at the introductory workshop for the special year in commutative algebra at MSRI in fall 2012.

  1. Linear Mappings of Quaternion Algebra

    OpenAIRE

    Kleyn, Aleks

    2011-01-01

    In the paper I considered linear and antilinear automorphisms of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of linear and antilinear automorphisms.

  2. Reflexive functors in Algebraic Geometry

    OpenAIRE

    Sancho, Pedro

    2015-01-01

    Reflexive functors of modules naturally appear in Algebraic Geometry. In this paper we define a wide and elementary family of reflexive functors of modules, closed by tensor products and homomorphisms, in which Algebraic Geometry can be developed.

  3. Cluster algebras and derived categories

    CERN Document Server

    Keller, Bernhard

    2012-01-01

    This is an introductory survey on cluster algebras and their (additive) categorification using derived categories of Ginzburg algebras. After a gentle introduction to cluster combinatorics, we review important examples of coordinate rings admitting a cluster algebra structure. We then present the general definition of a cluster algebra and describe the interplay between cluster variables, coefficients, c-vectors and g-vectors. We show how c-vectors appear in the study of quantum cluster algebras and their links to the quantum dilogarithm. We then present the framework of additive categorification of cluster algebras based on the notion of quiver with potential and on the derived category of the associated Ginzburg algebra. We show how the combinatorics introduced previously lift to the categorical level and how this leads to proofs, for cluster algebras associated with quivers, of some of Fomin-Zelevinsky's fundamental conjectures.

  4. Phantom energy from graded algebras

    OpenAIRE

    Chaves, Max; Singleton, Douglas

    2006-01-01

    We construct a model of phantom energy using the graded Lie algebra SU(2/1). The negative kinetic energy of the phantom field emerges naturally from the graded Lie algebra, resulting in an equation of state with w

  5. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  6. $\\sigma $ -Approximately Contractible Banach Algebras

    OpenAIRE

    Momeni, M; Yazdanpanah, T.; Mardanbeigi, M. R.

    2012-01-01

    We investigate $\\sigma $ -approximate contractibility and $\\sigma $ -approximate amenability of Banach algebras, which are extensions of usual notions of contractibility and amenability, respectively, where $\\sigma $ is a dense range or an idempotent bounded endomorphism of the corresponding Banach algebra.

  7. Projector bases and algebraic spinors

    International Nuclear Information System (INIS)

    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  8. Order Units in a *-Algebra

    Indian Academy of Sciences (India)

    Anil K Karn

    2003-02-01

    Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  9. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  10. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  11. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  12. Lie 2-algebra models

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Patricia [Centro de Estudios Científicos (CECs),Avenida Arturo Prat 514, Valdivia (Chile); Sämann, Christian [Maxwell Institute for Mathematical Sciences,Department of Mathematics, Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)

    2014-04-09

    In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ{sup 3}, S{sup 3} and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ{sup 3}, we obtain higher BF-theory on this quantized space.

  13. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  14. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  15. Lie 2-algebra models

    International Nuclear Information System (INIS)

    In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ3, S3 and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ3, we obtain higher BF-theory on this quantized space

  16. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  17. Recollements of extension algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)

    2003-01-01

    Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).

  18. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  19. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  20. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  1. Selectivity in Quaternion Algebras

    OpenAIRE

    Linowitz, Benjamin

    2010-01-01

    We prove an integral version of the classical Albert-Brauer-Hasse-Noether theorem regarding quaternion algebras over number fields. Let $\\mathfrak A$ be a quaternion algebra over a number field $K$ and assume that $\\mathfrak A$ satisfies the Eichler condition; that is, there exists an archimedean prime of $K$ which does not ramify in $\\mathfrak A$. Let $\\Omega$ be a commutative, quadratic $\\mathcal{O}_K$-order and let $\\mathcal{R}\\subset \\mathfrak A$ be an order of full rank. Assume that ther...

  2. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  3. Lie algebra cohomology

    International Nuclear Information System (INIS)

    We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator t where both operators act on invariant polynomials in anticommuting variables Ci and commuting variables Xi. Ci and Xi transform according to the adjoint representation of the Lie algebra of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The present investigation completes the proof of the completeness and nontriviality of these solutions and, as a by-product, determines the cohomology of the underlying Lie algebra. (orig.)

  4. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  5. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  6. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  7. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1975-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  8. Derivations of generalized Weyl algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(苏育才)

    2003-01-01

    A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.

  9. Optimal Algorithm for Algebraic Factoring

    Institute of Scientific and Technical Information of China (English)

    支丽红

    1997-01-01

    This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.

  10. Automorphism groups of pointed Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    YANG Shilin

    2007-01-01

    The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.

  11. Hyperholomorphic functions on commutative algebras

    OpenAIRE

    Pogorui, Anatoliy A.

    2006-01-01

    In this paper we study properties of hyperholomorphic functions on commutative finite algebras. It is investigated the Cauchy-Riemann type conditions for hyperholomorphic functions. We prove that a hyperholomorphic function on a commutative finite algebra can be expanded in a Taylor series. We also present a technique for computing zeros of polynomials in some commutative algebras.

  12. Challenges in Computational Commutative Algebra

    OpenAIRE

    Abbott, John

    2006-01-01

    In this paper we consider a number of challenges from the point of view of the CoCoA project one of whose tasks is to develop software specialized for computations in commutative algebra. Some of the challenges extend considerably beyond the boundary of commutative algebra, and are addressed to the computer algebra community as a whole.

  13. An Algebra of Reversible Computation

    OpenAIRE

    Wang, Yong

    2014-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  14. Spinors in the hyperbolic algebra

    OpenAIRE

    Ulrych, S.

    2006-01-01

    The three-dimensional universal complex Clifford algebra is used to represent relativistic vectors in terms of paravectors. In analogy to the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix representation of the algebra.

  15. 'Twisted duality' for Clifford Algebras

    OpenAIRE

    Robinson, P. L.

    2014-01-01

    Viewing the complex Clifford algebra $C(V)$ of a real inner product space $V$ as a superalgebra, we offer several proofs of the fact that if $W$ is a subspace of the complexification of $V$ then the supercommutant of the Clifford algebra $C(W)$ is precisely the Clifford algebra $C(W^{\\perp})$.

  16. Computer Algebra in Particle Physics

    OpenAIRE

    Weinzierl, Stefan

    2002-01-01

    These lectures given to graduate students in theoretical particle physics, provide an introduction to the ``inner workings'' of computer algebra systems. Computer algebra has become an indispensable tool for precision calculations in particle physics. A good knowledge of the basics of computer algebra systems allows one to exploit these systems more efficiently.

  17. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization o

  18. Skein algebras and cluster algebras of marked surfaces

    OpenAIRE

    Muller, Greg

    2012-01-01

    This paper defines several algebras associated to an oriented surface S with a finite set of marked points on the boundary. The first is the skein algebra Sk_q(S), which is spanned by links in the surface which are allowed to have endpoints at the marked points, modulo several locally defined relations. The product is given by superposition of links. A basis of this algebra is given, as well as several algebraic results. When S is triangulable, the quantum cluster algebra A_q(S) and quantum u...

  19. The Maximal Graded Left Quotient Algebra of a Graded Algebra

    Institute of Scientific and Technical Information of China (English)

    Gonzalo ARANDA PINO; Mercedes SILES MOLINA

    2006-01-01

    We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.

  20. The Power of Algebra.

    Science.gov (United States)

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…

  1. Finitary Algebraic Superspace

    CERN Document Server

    Zapatrin, R R

    1998-01-01

    An algebraic scheme is suggested in which discretized spacetime turns out to be a quantum observable. As an example, a toy model producing spacetimes of four points with different topologies is presented. The possibility of incorporating this scheme into the framework of non-commutative differential geometry is discussed.

  2. Questions on Algebraic Varieties

    CERN Document Server

    Marchionna, E

    2011-01-01

    P. Dolbeault: Residus et courants.- D. Mumford: Varieties defined by quadratic equations.- A. Neron: Hauteurs et theorie des intersections.- A. Seidenberg: Report on analytic product.- C.S. Seshadri: Moduli of p-vector bundles over an algebraic curve.- O. Zariski: Contributions to the problem of equi-singularity.

  3. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...

  4. Thinking Visually about Algebra

    Science.gov (United States)

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  5. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  6. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  7. A SAT-based algorithm for finding attractors in synchronous Boolean networks.

    Science.gov (United States)

    Dubrova, Elena; Teslenko, Maxim

    2011-01-01

    This paper addresses the problem of finding attractors in synchronous Boolean networks. The existing Boolean decision diagram-based algorithms have limited capacity due to the excessive memory requirements of decision diagrams. The simulation-based algorithms can be applied to larger networks, however, they are incomplete. We present an algorithm, which uses a SAT-based bounded model checking to find all attractors in a Boolean network. The efficiency of the presented algorithm is evaluated by analyzing seven networks models of real biological processes, as well as 150,000 randomly generated Boolean networks of sizes between 100 and 7,000. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible. PMID:21778527

  8. Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2002-11-01

    Full Text Available We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal solution preserves optimality was obtained.

  9. A novel generalized design methodology and realization of Boolean operations using DNA.

    Science.gov (United States)

    Zoraida, B S E; Arock, Michael; Ronald, B S M; Ponalagusamy, R

    2009-09-01

    The biological deoxyribonucleic acid (DNA) strand has been increasingly seen as a promising computing unit. A new algorithm is formulated in this paper to design any DNA Boolean operator with molecular beacons (MBs) as its input. Boolean operators realized using the proposed design methodology is presented. The developed operators adopt a uniform representation for logical 0 and 1 for any Boolean operator. The Boolean operators designed in this work employ only a hybridization operation at each stage. Further, this paper for the first time brings out the realization of a binary adder and subtractor using molecular beacons. Simulation results of the DNA-based binary adder and subtractor are given to validate the design. PMID:19505531

  10. Boolean and advanced searching for EDGAR data on www.sec.gov

    Data.gov (United States)

    Securities and Exchange Commission — This search allows users to enter complex boolean queries to access all but the most recent day's EDGAR filings on www.sec.gov. Filings are from 1994 to present.

  11. Certain associative algebras similar to $U(sl_{2})$ and Zhu's algebra $A(V_{L})$

    OpenAIRE

    Dong, Chongying; Li, Haisheng; Mason, Geoffrey

    1996-01-01

    It is proved that Zhu's algebra for vertex operator algebra associated to a positive-definite even lattice of rank one is a finite-dimensional semiprimitive quotient algebra of certain associative algebra introduced by Smith. Zhu's algebra for vertex operator algebra associated to any positive-definite even lattice is also calculated and is related to a generalization of Smith's algebra.

  12. Operator algebras and topology

    International Nuclear Information System (INIS)

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  13. CSR expansions of matrix powers in max algebra

    CERN Document Server

    Sergeev, Sergei

    2009-01-01

    We study the behavior of max-algebraic powers of a reducible nonnegative n by n matrix A. We show that for t>3n^2, the powers A^t can be expanded in max-algebraic powers of the form CS^tR, where C and R are extracted from columns and rows of certain Kleene stars and S is diadonally similar to a Boolean matrix. We study the properties of individual terms and show that all terms, for a given t>3n^2, can be found in O(n^4 log n) operations. We show that the powers have a well-defined ultimate behavior, where certain terms are totally or partially suppressed, thus leading to ultimate CS^tR terms and the corresponding ultimate expansion. We apply this expansion to the question whether {A^ty, t>0} is ultimately linear periodic for each starting vector y, showing that this question can be also answered in O(n^4 log n) time. We give examples illustrating our main results.

  14. Boolean Delay Equations: A simple way of looking at complex systems

    OpenAIRE

    Ghil, Michael; Zaliapin, Ilya; Coluzzi, Barbara

    2006-01-01

    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit ...

  15. SAT-based Distributed Reactive Control Protocol Synthesis for Boolean Networks

    OpenAIRE

    Sahin, Yunus Emre; Ozay, Necmiye

    2016-01-01

    This paper considers the synthesis of distributed reactive control protocols for a Boolean network in a distributed manner. We start with a directed acyclic graph representing a network of Boolean subsystems and a global contract, given as an assumption-guarantee pair. Assumption captures the environment behavior, and guarantee is the requirements to be satisfied by the system. Local assumption-guarantee contracts, together with local control protocols ensuring these local contracts, are comp...

  16. On the Number of Attractors of Positive and Negative Boolean Automata Circuits.

    OpenAIRE

    Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain

    2010-01-01

    International audience In line with fields of theoretical computer science and biology that study Boolean automata networks often seen as models of regulation networks, we present some results concerning the dynamics of networks whose underlying interaction graphs are circuits, that is, Boolean automata circuits. In the context of biological regulation, former studies have highlighted the importance of circuits on the asymptotic dynamical behaviour of the biological networks that contain t...

  17. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  18. Propagation of external regulation and asynchronous dynamics in random Boolean networks

    OpenAIRE

    Mahmoudi, Hamed; Pagnani, Andrea; Weigt, Martin; Zecchina, Riccardo

    2007-01-01

    Boolean Networks and their dynamics are of great interest as abstract modeling schemes in various disciplines, ranging from biology to computer science. Whereas parallel update schemes have been studied extensively in past years, the level of understanding of asynchronous updates schemes is still very poor. In this paper we study the propagation of external information given by regulatory input variables into a random Boolean network. We compute both analytically and numerically the time evol...

  19. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  20. Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology

    OpenAIRE

    Das, Jayanta Kumar; Rout, Ranjeet Kumar; Choudhury, Pabitra Pal

    2014-01-01

    Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generate...

  1. Characteristic matrix of covering and its application to boolean matrix decomposition and axiomatization

    OpenAIRE

    Wang, Shiping; Zhu, Qingxin; Zhu, William; Min, Fan

    2012-01-01

    Covering is an important type of data structure while covering-based rough sets provide an efficient and systematic theory to deal with covering data. In this paper, we use boolean matrices to represent and axiomatize three types of covering approximation operators. First, we define two types of characteristic matrices of a covering which are essentially square boolean ones, and their properties are studied. Through the characteristic matrices, three important types of covering approximation ...

  2. The Complexity of Satisfiability for Sub-Boolean Fragments of ALC

    OpenAIRE

    Meier, Arne; Schneider, Thomas

    2010-01-01

    The standard reasoning problem, concept satisfiability, in the basic description logic ALC is PSPACE-complete, and it is EXPTIME-complete in the presence of unrestricted axioms. Several fragments of ALC, notably logics in the FL, EL, and DL-Lite family, have an easier satisfiability problem; sometimes it is even tractable. All these fragments restrict the use of Boolean operators in one way or another. We look at systematic and more general restrictions of the Boolean operators and establish ...

  3. Cost-Optimal Execution of Trees of Boolean Operators with Shared Streams

    OpenAIRE

    Casanova, Henri; Lim, Lipyeow; Robert, Yves; Vivien, Frédéric; Zaidouni, Dounia

    2013-01-01

    The processing of queries expressed as trees of boolean operators applied to predicates on sensor data streams has several applications in mobile computing. Sensor data must be retrieved from the sensors to a query processing device, such as a smartphone, over one or more network interfaces. Retrieving a data item incurs a cost, e.g., an energy expense that depletes the smartphone's battery. Since the query tree contains boolean operators, part of the tree can be shortcircuited depending on t...

  4. Automated Method for Building CNOT Based Quantum Circuits for Boolean Functions

    CERN Document Server

    Younes, A; Younes, Ahmed; Miller, Julian

    2003-01-01

    In this paper we discuss an efficient technique that can implement any given Boolean function as a quantum circuit. The method converts a truth table of a Boolean function to the corresponding quantum circuit using a minimal number of auxiliary qubits. We give examples of some circuits synthesized with this technique. A direct result that follows from the technique is a new way to convert any classical digital circuit to its classical reversible form.

  5. Quantum algebra of $N$ superspace

    CERN Document Server

    Hatcher, N; Stephany, J

    2006-01-01

    We identify the quantum algebra of position and momentum operators for a quantum system in superspace bearing an irreducible representation of the super Poinca\\'e algebra. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D=4 $N$ superspace to construct explicit position and momentum operators satisfying the algebra. They act on wave functions corresponding to different supermultiplets classified by its superspin. We show that the quantum algebra associated to the massive superparticle is a particular case described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently.

  6. The q-Brauer algebras

    OpenAIRE

    Nguyen, Tien Dung

    2013-01-01

    This thesis studies structural properties of the q-Brauer algebra over a commutative ring with identity or a field of any characteristic p ≥ 0. Over a commutative ring with identity we first construct a cell basis for the q-Brauer algebra and then show that the q-Brauer algebra is a cellular algebra in the sense of Graham and Lehrer. Subsequently, we classify all simple modules, up to isomorphism, of the q-Brauer algebra over a field of any characteristic. This classification is reprove...

  7. Combinatorial Hopf algebras from renormalization

    CERN Document Server

    Brouder, Christian; Menous, Frederic

    2009-01-01

    In this paper we describe the right-sided combinatorial Hopf structure of three Hopf algebras appearing in the context of renormalization in quantum field theory: the non-commutative version of the Fa\\`a di Bruno Hopf algebra, the non-commutative version of the charge renormalization Hopf algebra on planar binary trees for quantum electrodynamics, and the non-commutative version of the Pinter renormalization Hopf algebra on any bosonic field. We also describe two general ways to define the associative product in such Hopf algebras, the first one by recursion, and the second one by grafting and shuffling some decorated rooted trees.

  8. On FRT-Clifford Algebras

    OpenAIRE

    Heckenberger, I.; Schueler, A.

    2000-01-01

    We study the q-Clifford algebras Cl_q(N,c), called FRT-Clifford algebras, introduced by Faddeev, Reshetikhin and Takhtajan. It is shown that Cl_q(N,c) acts on the q-exterior algebra \\Lambda(O_q^N). Moreover, explicit formulas for the embedding of U_q(so_N) into Cl_q(N,c) and its relation to the vector and spin representations of U_q(so_N) are given and proved. Key Words: q-Clifford algebra, Drinfeld-Jimbo algebra, spin representation

  9. On ultraproducts of operator algebras

    Institute of Scientific and Technical Information of China (English)

    LI; Weihua

    2005-01-01

    Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.

  10. The Green formula and heredity of algebras

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.

  11. Notes on Piecewise-Koszul Algebras

    Institute of Scientific and Technical Information of China (English)

    Jia Feng L(U); Xiao Lan YU

    2011-01-01

    The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".

  12. Twin TQFTs and Frobenius Algebras

    Directory of Open Access Journals (Sweden)

    Carmen Caprau

    2013-01-01

    Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.

  13. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  14. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  15. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  16. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  17. $A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras

    Indian Academy of Sciences (India)

    Hongliang Yao

    2010-04-01

    Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.

  18. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  19. A Reformulation of Matrix Graph Grammars with Boolean Complexes

    OpenAIRE

    Pérez Velasco, Pedro Pablo; Lara, Juan De

    2009-01-01

    Prior publication in the Electronic Journal of Combinatorics. Graph transformation is concerned with the manipulation of graphs by means of rules. Graph grammars have been traditionally studied using techniques from category theory. In previous works, we introduced Matrix Graph Grammars (MGG) as a purely algebraic approach for the study of graph dynamics, based on the representation of simple graphs by means of their adjacency matrices. The observation that, in addition to positive inf...

  20. On branchwise implicative BCI-algebras

    OpenAIRE

    Muhammad Anwar Chaudhry

    2002-01-01

    We introduce a new class of BCI-algebras, namely the class of branchwise implicative BCI-algebras. This class contains the class of implicative BCK-algebras, the class of weakly implicative BCI-algebras (Chaudhry, 1990), and the class of medial BCI-algebras. We investigate necessary and sufficient conditions for two types of BCI-algebras to be branchwise implicative BCI-algebras.