WorldWideScience

Sample records for bonner sphere spectrometry

  1. Real-Time Bonner Sphere Spectrometry on the HL-2A Tokamak

    Science.gov (United States)

    Jiang, Chunyu; Cao, Jing; Jiang, Xiaofei; Zhao, Yanfeng; Song, Xianying; Yin, Zejie

    2016-06-01

    Real-time Bonner sphere spectrometry (BSS) at the HL-2A tokamak for the neutron spectrum diagnostic is described. The spectrometer consists of eight different size Bonner spheres made of polyethylene and with a 3helium-filled detector in the center, pre-amplifiers, and parallel-processing data acquisition system (DAQ). Dynamic neutrons from plasma discharges of the HL-2A tokamak were measured and the real-time neutron spectrum was presented. supported by National Natural Science Foundation of China (No. 11375195) and the National Magnetic Confinement Fusion Science Program of China (No. 2013GB104003)

  2. Neutron spectrometry using artificial neural networks for a Bonner sphere spectrometer with a 3He detector

    International Nuclear Information System (INIS)

    Neutron spectra unfolding and dose equivalent calculation are complicated tasks in radiation protection, are highly dependent of the neutron energy, and a precise knowledge on neutron spectrometry is essential for all dosimetry-related studies as well as many nuclear physics experiments. In previous works have been reported neutron spectrometry and dosimetry results, by using the artificial neural networks (Ann) technology as alternative solution, starting from the count rates of a Bonner spheres system with a 6LiI(Eu) thermal neutrons detector, 7 polyethylene spheres and the UTA4 response matrix with 31 energy bins. In this work, an Ann was designed and optimized by using the RDAnn methodology for the Bonner spheres system used at CIEMAT Spain, which is composed of a 3He neutron detector, 12 moderator spheres and a response matrix for 72 energy bins. For the Ann design process a neutrons spectra catalogue compiled by the IAEA was used. From this compilation, the neutrons spectra were converted from lethargy to energy spectra. Then, the resulting energy fluence spectra were re-bin ned by using the MCNP code to the corresponding energy bins of the 3He response matrix before mentioned. With the response matrix and the re-bin ned spectra the counts rate of the Bonner spheres system were calculated and the resulting re-bin ned neutrons spectra and calculated counts rate were used as the Ann training data set. (Author)

  3. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres

    International Nuclear Information System (INIS)

    NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with 6Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10-8 up to 231.2 MeV. (Author)

  4. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ortiz R, J. M., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas (Mexico)

    2011-10-15

    NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with {sup 6}Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10{sup -8} up to 231.2 MeV. (Author)

  5. Bonner sphere neutron spectrometry at spent fuel casks

    CERN Document Server

    Rimpler, A

    2002-01-01

    For transport and interim storage of spent fuel elements from power reactors and vitrified highly active waste (HAW) from reprocessing, various types of casks are used. The radiation exposure of the personnel during transportation and storage of these casks is caused by mixed photon-neutron fields and, frequently, the neutron dose is predominant. In operational radiation protection, survey meters and even personal dosemeters with imperfect energy dependence of the dose-equivalent response are used, i.e. the fluence response of the devices does not match the fluence-to-dose equivalent conversion function. In order to achieve more accurate dosimetric information and to investigate the performance of dosemeters, spectrometric investigations of the neutron fields are necessary. Therefore, fluence spectra and dose rates were measured by means of a simple portable Bonner multisphere spectrometer (BSS). The paper describes briefly the experimental set-up and evaluation procedure. Measured spectra for different locat...

  6. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres

    International Nuclear Information System (INIS)

    NSDUAZ (Neutron Spectrometry and Dosimetry from the Universidad Autónoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with 6LiI(Eu) developed under LabView® environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectra to start the iterations. The NSDUAZ performance was evaluated using 252Cf, 252Cf/D2O, 241AmBe neutron sources and the neutrons outside the radial beam port of a TRIGA Mark III nuclear reactor running to 10 W. - Highlights: ► This paper presents the NSDUAZ unfolding package. ► Advantages and drawbacks of NSDUAZ package are pointed out. ► NSDUAZ is evaluated with neutrons from a nuclear reactor and isotopic neutron sources.

  7. Comparing standard Bonner spheres and high-sensitivity Bonner cylinders

    International Nuclear Information System (INIS)

    Standard Bonner spheres and proposed high-sensitivity Bonner cylinders were calibrated in a neutron calibration room, using a 252Cf source. The Bonner sphere system consists of 11 polyethylene (PE) spheres of various diameters and 4 extended spheres that comprise embedded metal shells. Similar to the design of Bonner spheres, a set of Bonner cylinders was assembled using a large cylindrical 3He tube as the central probe, which was wrapped using various thicknesses of PE. A layer of lead was employed inside one of the PE cylinders to increase the detection efficiency of high-energy neutrons. The central neutron probe used in the Bonner cylinders exhibited an efficiency of ∼17.9 times higher than that of the Bonner spheres. However, compared with the Bonner spheres, the Bonner cylinders are not fully symmetric in their geometry, exhibiting angular dependence in their responses to incoming neutrons. Using a series of calculations and measurements, this study presents a systematic comparison between Bonner spheres and cylinders in terms of their response functions, detection efficiencies, angular dependences and spectrum unfolding. A high-sensitivity Bonner cylinder spectrometer was developed to facilitate neutron spectrum measurement in low-intensity environments such as the site boundaries of nuclear facilities or accelerators. The proposed spectrometer system comprises 11 cylinders of various PE thicknesses and an extended cylinder with an embedded lead shell. Compared with the standard Bonner spheres, the detection efficiency of the device increased by a factor of >10 because a large 3He tube was employed. However, the Bonner cylinders are not symmetric in their polar angle, and this causes the advantage of isotropic response to be lost. A systematic comparison was conducted between the standard Bonner spheres and the proposed Bonner cylinders, examining their response functions, calibration measurements, angular dependences and spectrum unfolding. (authors)

  8. Comparison between standard unfolding and Bayesian methods in Bonner spheres neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Medkour Ishak-Boushaki, G., E-mail: gmedkour@yahoo.com [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Allab, M. [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria)

    2012-10-11

    This paper compares the use of both standard unfolding and Bayesian methods to analyze data extracted from neutron spectrometric measurements with a view to deriving some integral quantities characterizing a neutron field. We consider, as an example, the determination of the total neutron fluence and dose in the vicinity of an Am-Be source from Bonner spheres measurements. It is shown that the Bayesian analysis provides a rigorous estimation of these quantities and their correlated uncertainties and overcomes difficulties encountered in the standard unfolding methods.

  9. Comparison between standard unfolding and Bayesian methods in Bonner spheres neutron spectrometry

    International Nuclear Information System (INIS)

    This paper compares the use of both standard unfolding and Bayesian methods to analyze data extracted from neutron spectrometric measurements with a view to deriving some integral quantities characterizing a neutron field. We consider, as an example, the determination of the total neutron fluence and dose in the vicinity of an Am–Be source from Bonner spheres measurements. It is shown that the Bayesian analysis provides a rigorous estimation of these quantities and their correlated uncertainties and overcomes difficulties encountered in the standard unfolding methods.

  10. Investigation of the neutron spectrum of americium–beryllium sources by Bonner sphere spectrometry

    International Nuclear Information System (INIS)

    Americium–beryllium neutron sources are certainly the most widely used in neutron dosimetry laboratories, basically due to their long half-life and their energy distribution, which covers the energy domain of interest for many applications in ambient and personal dosimetry. Nevertheless, the spectrum of this source depends on the materials and dimension of the capsule and on the amount and physical–chemical properties of the active material, thus affecting relevant quantities such as the spectrum-averaged fluence-to-dose equivalent conversion coefficient. A EURAMET (European Association of National Metrology Institutes) project (n. 1104) was initiated to experimentally investigate how the neutron spectrum changes for different source sizes and encapsulations with a view to providing improved data for a planned revision of the ISO 8529 Standard Series. The experimental campaign was carried out in the low scatter facility at NPL. Here three different Bonner sphere spectrometers, BSSs, were exposed to the neutron fields produced by three different neutron sources formats: one X3 capsule (1 Ci) and two X14 capsules (10 Ci and 15 Ci). The specific advantage of the BSS is the large sensitivity to low-energy neutrons (E<0.1 MeV) which is the component expected to be most affected by the capsule-to-capsule variations and the component which is least well known. This paper summarises the results of the campaign with emphasis on (1) estimating the low-energy component of the Am–Be neutron spectrum, according to the encapsulation type; (2) evaluating the coherence between the Bonner spheres data and the previous studies performed with high-resolution spectrometers but limited in energy to E>0.1 MeV; (3) understanding whether the ISO-recommended Am–Be spectrum needs to be amended, and for which source formats

  11. Investigation of the neutron spectrum of americium–beryllium sources by Bonner sphere spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN—LNF (Frascati National Laboratories), Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [GRRI, Departament de Fisica, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain); Roberts, N.; Thomas, D.J. [National Physical Laboratory, Hampton Road, TW11 0LW Teddington, Middlesex (United Kingdom); Chiti, M.; Esposito, A. [INFN—LNF (Frascati National Laboratories), Via E. Fermi n. 40, 00044 Frascati (Italy); Garcia, M.J. [GRRI, Departament de Fisica, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain); Gentile, A [INFN—LNF (Frascati National Laboratories), Via E. Fermi n. 40, 00044 Frascati (Italy); Liu, Z.Z. [National Physical Laboratory, Hampton Road, TW11 0LW Teddington, Middlesex (United Kingdom); San-Pedro, M. de [GRRI, Departament de Fisica, Universitat Autónoma de Barcelona, E-08193 Bellaterra (Spain)

    2014-11-01

    Americium–beryllium neutron sources are certainly the most widely used in neutron dosimetry laboratories, basically due to their long half-life and their energy distribution, which covers the energy domain of interest for many applications in ambient and personal dosimetry. Nevertheless, the spectrum of this source depends on the materials and dimension of the capsule and on the amount and physical–chemical properties of the active material, thus affecting relevant quantities such as the spectrum-averaged fluence-to-dose equivalent conversion coefficient. A EURAMET (European Association of National Metrology Institutes) project (n. 1104) was initiated to experimentally investigate how the neutron spectrum changes for different source sizes and encapsulations with a view to providing improved data for a planned revision of the ISO 8529 Standard Series. The experimental campaign was carried out in the low scatter facility at NPL. Here three different Bonner sphere spectrometers, BSSs, were exposed to the neutron fields produced by three different neutron sources formats: one X3 capsule (1 Ci) and two X14 capsules (10 Ci and 15 Ci). The specific advantage of the BSS is the large sensitivity to low-energy neutrons (E<0.1 MeV) which is the component expected to be most affected by the capsule-to-capsule variations and the component which is least well known. This paper summarises the results of the campaign with emphasis on (1) estimating the low-energy component of the Am–Be neutron spectrum, according to the encapsulation type; (2) evaluating the coherence between the Bonner spheres data and the previous studies performed with high-resolution spectrometers but limited in energy to E>0.1 MeV; (3) understanding whether the ISO-recommended Am–Be spectrum needs to be amended, and for which source formats.

  12. Definition by modelling, optimization and characterization of a neutron spectrometry system based on Bonner spheres extended to the high-energy range

    International Nuclear Information System (INIS)

    This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range

  13. Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry

    International Nuclear Information System (INIS)

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package 'complex mixed radiation fields at workplaces' was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft fuer Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.

  14. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part II: Bonner sphere spectrometry

    CERN Document Server

    Wiegel, B; Bedogni, R; Caresana, M; Esposito, A; Fehrenbacher, G; Ferrarini, M; Hohmann, E; Hranitzky, C; Kasper, A; Khurana, S; Mares, V; Reginatto, M; Rollet, S; Rühm, W; Schardt, D; Silari, M; Simmer, G; Weitzenegger, E

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package “complex mixed radiation fields at workplaces” was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft für Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an int...

  15. Measurement with Bonner spheres spectrometer in pulsed neutron fields

    Czech Academy of Sciences Publication Activity Database

    Králik, M.; Turek, Karel; Vondráček, V.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.

    2010-01-01

    Roč. 45, č. 10 (2010), s. 1245-1249. ISSN 1350-4487. [Neutron and Ion Dosimetry Symposium /11./. Cape Town, 12.10.2009-16.10.2009] Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100523 Keywords : neutron spectrometry * bonner spheres * track detector s Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.019, year: 2010

  16. Bonner sphere spectrometer: A CONRAD project intercomparison

    International Nuclear Information System (INIS)

    The most widely used system in neutrons measurements for radiological protection is the Bonner Sphere Spectrometer (BSS). The BSS is applied to characterise neutron fields from thermal to hundreds of MeVs. The Nuclear Regulatory Authority of Argentina has developed and calibrated its own BSS system, which has been used in many Argentine facilities during the last eleven years when the regulatory activities have been carried out. Following this line of work, the present development has been done in the framework of the International Intercomparison ''Uncertainty Assessment in Computational Dosimetry: A Comparison of Approaches'', organised by the CONRAD project (Coordinated Network for Radiation Dosimetry). The aim of intercomparison was to study the response of a proposed widespread neutron spectrometer exposed to arbitrary neutron sources. With this goal in mind, the experimental system has been modelled in detail according to the provided layout. The modelled neutron spectrometer consists of 8 Bonner spheres made of high-density polyethylene (δ=0.95gc/m3). The spheres diameter range between 2' and 12' in addition to a 12' diameter leadloaded sphere. The defined active thermal neutron detector, a 6LiI(Eu) scintillation crystal, was according to provided dimensions (4 mm (diameter) by 4 mm (height)), and located at each sphere centre. Irradiation geometry has been according to measurements carried out during the experimental part of the intercomparison. The theoretical neutron response has been calculated applying the well-known MCNPX code. The complete response matrix of the system has been obtained in the energy range between thermal neutron and 17.77 MeV. The obtained system theoretical response to ISO standard 241Am-Be and 252Cf sources shows an excellent agreement with experimental results provided by EURADOS. This response can be used to calibrate the system. The obtained matrix response can be coupled to any unfolding code to complete the BSS system used in

  17. A Bonner Sphere Spectrometer for pulsed fields.

    Science.gov (United States)

    Aza, E; Dinar, N; Manessi, G P; Silari, M

    2016-02-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828

  18. Neutron spectrometry and dosimetry study at two research nuclear reactors using bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS)

    International Nuclear Information System (INIS)

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h-1, while at MNR, these values were between 0.07 and 2.8 mSv h-1 inside the beam port and -1 between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix. (authors)

  19. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    International Nuclear Information System (INIS)

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  20. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  1. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  2. The response of a Bonner sphere spectrometer to charged hadrons

    International Nuclear Information System (INIS)

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN. (authors)

  3. Photoneutron spectrum measured with Bonner Spheres in Planetary method mode

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    We measured the spectrum of photoneutrons at 100 cm isocenter linear accelerator (Linac) Varian ix operating at 15 MV Bremsstrahlung mode. In this process was used a radiation field of 20 x 20 cm{sup 2} at a depth of 5 cm in a solid water phantom with dimensions of 30 x 30 x 15 cm{sup 3}. The measurement was performed with a system using it Bonner Spheres spectrometric method Planetary mode. As neutron detector of the spectrometer is used thermoluminescent dosimeters pairs of type 600 and 700. (Author)

  4. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator

    International Nuclear Information System (INIS)

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. - Highlights: • Boric acid solution is useful to improve the energy resolution of Bonner sphere. • Uncertainty of the device configuration is critical for neutron spectrometry. • It is important to reduce and evaluate the uncertainty

  5. Response matrix of an extended Bonner sphere system

    International Nuclear Information System (INIS)

    We have developed a system of Bonner spheres designed for use around high-energy accelerators. The upper energy limit of the system was extended using a lead radiator, which acts as an energy converter via the (n,xn) reaction. In addition, we use 11C activation as an additional component integrated into the system and the spectra unfolding process. In the first version of the system, the lead radiator was present in only one sphere with diameter of 30.48 cm. The object of the present work was to investigate the geometry of the lead radiator and its use in moderators of several different sizes. As a result, we have developed a modular design and calculated the response matrix of the new system

  6. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    International Nuclear Information System (INIS)

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system

  7. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.

  8. Measurement of spectrum and dose rate of natural neuron using Bonner spheres

    International Nuclear Information System (INIS)

    The natural neutron spectrum indoor was measured by using Bonner spheres spectrometer in Hefei. A Bonner sphere spectrometer with maximum entropy method was used to unfold neutron spectrum. Then according to the fluence to dose coefficient, the dose rate was calculated. The software EXPACS Ver2.21 based on the analytic methods for simulating the natural neutron spectrum was adopted to verify the neutron spectrum, and the BF3 natural neutron monitors were used to confirm the effective dose rate. The verification and analysis indicated that the results from Bonner spheres spectrometer consistent with others. The ambient dose equivalent rate of neutron in Hefei was between 2.6 nSv · h-1 and 14.38 nSv · h-1. (authors)

  9. Iterative code for the reconstruction of the neutrons spectrum using the Bonner spheres

    International Nuclear Information System (INIS)

    The neutrons are the particles more difficult of detecting for their intrinsic nature. The absence of the neutrons charge makes that an interaction exists with the matter in a different way. The term radiation spectrometry can use to describe the measurement of the intensity of a radiation field with regard to the energy. The intensity distribution with relationship to the energy is commonly known as spectrum. A method to know the neutrons spectrum in the radiation fields to those that people are exposed is the use of the known system as spectrometry system of Bonner spheres, being the more used for the purposes of the radiological protection. The current interest in the electrons spectrometry has stimulated the development of several procedures to carry out the reconstruction of the spectra. During the last decades new codes have been developed such as BUNKIUT, Bums, Fruit, UMG, etc., however, these methods still present several inconveniences as the complexity in their use, the necessity of an expert user and a very near initial spectrum to the spectrum that is wanted to obtain. To solve the mentioned problems it was development the program NSDUAZ (Neutron Spectrometry and Dosimetry from Autonomous University of Zacatecas). The objective of the present work is to prove and to validate the code before mentioned making an analysis of likeness and differences and of advantages and disadvantages with relationship to the codes used at the present time. (Author)

  10. Determining the neutron spectrum of 241Am-Be and 252Cf sources using bonner sphere spectrometer

    Directory of Open Access Journals (Sweden)

    M.A Varshabi

    2016-06-01

    Full Text Available Bonner spheres system is one of the ways of measuring neutron energy distribution which is often applied in spectrometry and neutron dosimetry. This system includes a thermal neutron detector, being located in the center of several polyethylene spheres, and it is still workable due to the isotropic response of the system which in turn is derived from the spherical symmetry of moderators and the broad measurable range of the energy. In order to practically use this spectrometer, it is necessary to calibrate this system using standard neutron sources. This research aimed to determine the calibration factor of Bonner spheres spectrometry system and energy spectrum of two standard 241Am-Be and 252Cf sources in the atomic energy organization. Calibration and experimental measurement were done via the two standard sources. The response vector of each detector was derived by using MCNPX simulation code, based on the Monte Carlo method. The spectra unfolding of this system was performed through iterative method using the SPUNIT code done in software NSDUAZ6LiI and BUMS. 

  11. Iterative code for the reconstruction of the neutrons spectrum using the Bonner spheres; Codigo iterativo para la reconstruccion del espectro de neutrones usando las esferas Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Reyes H, A.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-10-15

    The neutrons are the particles more difficult of detecting for their intrinsic nature. The absence of the neutrons charge makes that an interaction exists with the matter in a different way. The term radiation spectrometry can use to describe the measurement of the intensity of a radiation field with regard to the energy. The intensity distribution with relationship to the energy is commonly known as spectrum. A method to know the neutrons spectrum in the radiation fields to those that people are exposed is the use of the known system as spectrometry system of Bonner spheres, being the more used for the purposes of the radiological protection. The current interest in the electrons spectrometry has stimulated the development of several procedures to carry out the reconstruction of the spectra. During the last decades new codes have been developed such as BUNKIUT, Bums, Fruit, UMG, etc., however, these methods still present several inconveniences as the complexity in their use, the necessity of an expert user and a very near initial spectrum to the spectrum that is wanted to obtain. To solve the mentioned problems it was development the program NSDUAZ (Neutron Spectrometry and Dosimetry from Autonomous University of Zacatecas). The objective of the present work is to prove and to validate the code before mentioned making an analysis of likeness and differences and of advantages and disadvantages with relationship to the codes used at the present time. (Author)

  12. Application of Neural Networks for unfolding neutron spectra measured by means of Bonner Spheres

    International Nuclear Information System (INIS)

    A Neural Network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set. The present work used the 'Stuttgart Neural Network Simulator' as the interface for designing, training and validation of a MultiLayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 10 MeV. Two types of neutron spectra were numerically investigated: monoenergetic and continuous. Good results were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron spectrum unfolding methodologies

  13. Photoneutron spectrum measured with a Bonner sphere spectrometer in planetary method mode

    International Nuclear Information System (INIS)

    The spectrum of photoneutrons produced by a 15 MV VARIAN iX linac working in Bremsstrahlung mode was measured a 100 cm from the IC located 5 cm-depth of a solid water phantom. The spectrum was measured with a Bonner spheres spectrometer with pairs of TLDs as thermal neutron detector. The measurements were carried out using the spectrometer in planetary method mode where a single shoot of the LINAC was required. - Highlights: • The photoneutrons spectrum of a 15 MV LINAC was measured. • A Bonner sphere spectrometer with pairs of TLDs were used. • Measurements were carried out with the BSS in Planetary method mode. • Measured spectrum is compared with calculated spectrum

  14. Quantification of neutron field at the neutron therapy room of KCCH using a Bonner sphere

    International Nuclear Information System (INIS)

    In order to quantify the neutron fields at the neutron therapy room of KCCH the Bonner Sphere spectrometry system (BS) was used for the measurement of neutron spectra produced from two kinds of Be targets (1.0 and 10.5 mm bombarded by protons of 35 and 45 MeV. It was found that additional neutrons produced from the beam line tube and the beam stopper, which are made of Aluminum, were included considerably as a part of neutron spectrum in the neutron field made from the thin (1.0 mm) Be target. Neutrons from the thick (10.5 mm) Be were hardened by a iron filter of 2.6 cm and collimated by the gantry, and the beam size was fitted 26 x 16 cm2) to cover the cross sectional area of a BS used in this measurement. Six kinds of neutron spectra were measured and the dosimetric quantities such as the fluence averaged energy (Eave.), the spectrum weighted dose conversion coefficient (h*) and the dose equivalent rate (H) per nano ampere were determined. These were ranged as follows, Eave. was from 4.3 to 15.1 MeV, and h* was from 326 to 447 pSv.cm2, and H was from 0.17 to 5.66 mSv.h-1.nA-1. The MXDFC31 code was used to unfold the measured data of BS and the MCNPX code (Ver. 2.4) implemented to calculate the default spectra which are necessary for unfolding as a prior information

  15. Monte Carlo calculation of the response matrix of a Bonner spheres spectrometer

    International Nuclear Information System (INIS)

    The Bonner spheres spectrometer is utilized to estimate the neutron spectrum of neutrons from thermal up to several MeV neutrons. Its response is increased to few GeV neutrons by introducing large Z materials as inner shells. To use the spectrometer a matrix response and an unfolding method are required; these are crucial to assure the quality of spectrometer output. The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter the spectrometer has a 0.4 θ x 0.4 cm2 6LiI(Eu) scintillator which is located at the centre of a set of polyethylene spheres. The response functions were calculated for 0, 2, 3, 5, 8, 10, and 12 inches-diameter polyethylene spheres for neutrons whose energy goes from 10-8 to 100 MeV. For energies from 10-8 to 20 MeV the MCNP4C code was utilized while for neutrons from 20 to 100 MeV calculations were carried out with MCNPX code. The response functions were compared with those reported in the literature. (author)

  16. Reconstruction of neutron spectra using neural networks starting from the Bonner spheres spectrometric system

    International Nuclear Information System (INIS)

    The artificial neural networks (RN) have been used successfully to solve a wide variety of problems. However to determine an appropriate set of values of the structural parameters and of learning of these, it continues being even a difficult task. Contrary to previous works, here a set of neural networks is designed to reconstruct neutron spectra starting from the counting rates coming from the detectors of the Bonner spheres system, using a systematic and experimental strategy for the robust design of multilayer neural networks of the feed forward type of inverse propagation. The robust design is formulated as a design problem of Taguchi parameters. It was selected a set of 53 neutron spectra, compiled by the International Atomic Energy Agency, the counting rates were calculated that would take place in a Bonner spheres system, the set was arranged according to the wave form of those spectra. With these data and applying the Taguchi methodology to determine the best parameters of the network topology, it was trained and it proved the same one with the spectra. (Author)

  17. Calculations of the response functions of Bonner spheres with a spherical 3He proportional counter using a realistic detector model

    International Nuclear Information System (INIS)

    A realistic geometry model of a Bonner sphere system with a spherical 3He-filled proportional counter and 12 polyethylene moderating spheres with diameters ranging from 7,62 cm (3'') to 45,72 cm (18'') is introduced. The MCNP Monte Carlo computer code is used to calculate the responses of this Bonner sphere system to monoenergetic neutrons in the energy range between 1 meV to 20 MeV. The relative uncertainties of the responses due to the Monte Carlo calculations are less than 1% for spheres up to 30,48 cm (12'') in diameter and less than 2% for the 15'' and 18'' spheres. Resonances in the carbon cross section are seen as significant structures in the response functions. Additional calculations were made to study the influence of the 3He number density and the polyethylene mass density on the response as well as the angular dependence of the Bonner sphere system. The calculated responses can be adjusted to a large set of calibration measurements with only a single fit factor common to all sphere diameters and energies. (orig.)

  18. Response Matrix of a Bonner Spheres Spectrometer with 3 He Detector

    International Nuclear Information System (INIS)

    Using MCNP code the response matrix of a Bonner spheres spectrometer was calculated. The spectrometer has a 3.2 cm-diameter thermal neutron detector; this is a 3 He-filled proportional counter that is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12 and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10-9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources, from this comparison calculated matrix is in agreement with the experimental results. Also this matrix was compared against the response matrix calculated for the PTB C spectrometer, Nevertheless that calculation was carried out using a detailed model to describe the proportional counter both matrices were in agreement, small differences are observed in the bare case because the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons probable due to the differences in the cross sections used during both calculations. (Author)

  19. NEMUS--the PTB Neutron Multisphere Spectrometer Bonner spheres and more

    CERN Document Server

    Wiegel, B

    2002-01-01

    The original Bonner sphere spectrometer as it is used and characterized by PTB consists of 12 polyethylene spheres with diameters from 7.62 cm (3'') to 45.72 cm (18'') and a sup 3 He-filled spherical proportional counter used as a central thermal-neutron-sensitive detector and as a bare or cadmium-shielded bare detector. In this paper, a set of four new spheres made of polyethylene with copper or lead inlets is introduced. All spheres are less than 18 kg in mass and their responses to high energy neutrons increase with energy as a result of the increasing (n,xn) cross-sections of copper and lead. The fluence response matrix was calculated up to 10 GeV using an extended neutron cross-section library (LA150) and the MCNP(X) Monte Carlo code. Calibration measurements with neutron energies up to 60 MeV were used to compare the calculated response functions to measured values. For measurements outside the laboratory, a miniaturized, battery-powered electronic set-up was developed. This system with the additional, ...

  20. Spectral analysis of some fission neutron sources with the SOHO code from BONNER sphere data

    International Nuclear Information System (INIS)

    For several tests fission neutron sources particularly 252Cf bare and D2O moderated, we present some spectral analysis results obtained with the new iterative code SOHO from BONNER spheres data. The approximative solutions are obtained upon discretization of the Fredholm Equation of the first kind whose Resolution Function is experimentally known and mathematically defined by the Log-Normal Hypothesis given in our previous reports CEA-N--2241 (1981) and CEA-R--5181 (1982). The iterative procedure solve systems of non-exact homogeneous linear equations QX = e (by optimum liquidation of the residuals esub(i) with positivity constraint and absolute convergence, leading to an appropriate physical solution with a relative error in our tests typically of the order of a fraction of one percent for the INPUT - OUTPUT Data. For the applications to Health Physics the SOHO Code has been programmed for use with a HP-41 CV calculator

  1. Reprint of The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-12-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26508275

  2. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-10-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26133664

  3. Test of the Bonner Sphere Spectrometer Response Matrix in the 252Cf Neutron Field

    International Nuclear Information System (INIS)

    Full text: Since its development in 1960, a Bonner sphere spectrometer (BSS) has been the only instrument, which enables the spectral neutron fluence to be measured in a wide range of energies from thermal up to 20 MeV. Its resolution is poor but sufficient for dosimetric specification of neutron fields at workplaces. Experimentally determined BSS count rates depends mainly on the accuracy of the response matrix characterising certain type of BSS. At presemt the BSS response matrices are calculate by neutron transport Monte Carlo codes which allow detailed description of the BSS setup. The best verification of calculated response matrix is a calibration of the BSS in fields of monoenergetic neutrons. As so as these fields are not simply achievable a simple method how to test quality of BSS response matrix in the neutron field of 252Cf source is described. Applying distance variation method we get count rates of the BSS in the 252Cf field from which contributions of scattered neutrons and influence of finite detector and source dimensions were removed. These count rates are compared with the integrals of pure 252Cf spectrum and responses for individual spheres of the BSS. Disagreement indicates for which sphere the response is not properly determined. (author)

  4. Experimental tests of the Bonner Sphere spectrometer using filtered neutron beams

    International Nuclear Information System (INIS)

    The operation of a Bonner Sphere neutron detector system has been tested using several unqiue neutron sources. Filtered neutron beams at beamport F at the University of Missouri Research Reactor (MURR) were used as a source of known quasi-monoenergetic neutrons for precise energy spectra analysis and calibration. A PuBe neutron source was used for absolute flux magnitude and spectral verification. Two computer codes, SWIFT and Least Squares Unfolding Techniques (LSUT), were used to unfold the experimental data. Several operational problems were encountered during these tests. First, many of the measurements involved neutron beam measurements in which the beams had a smaller diameter than the moderating spheres. This caused partial illumination of the spheres for which correction factors had to be developed. A partial illumination correction factor has been proposed and tested to account for this problem. Second, reactor core gamma-ray contamination in the neutron beams was of sufficient magnitude to interfere with some measurements. Gamma-ray background subtraction techniques using a multi-channel analyzer were used to alleviate this problem. After correcting for gamma-ray background and applying partial illumination correction factors, unfolded neutron spectra from the unfolding codes gave good results for most neutron sources. In particular the SWIFT results were quite good, exceeding expectations in terms of energy resolution and spectral accuracy. (orig.)

  5. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    International Nuclear Information System (INIS)

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  6. Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV – Potential impact on neutron dosimetry at energies higher than 20 MeV

    CERN Document Server

    Rühm, W; Pioch, C; Agosteo, S; Endo, A; Ferrarini, M; Rakhno, I; Rollet, S; Satoh, D; Vincke, H

    2014-01-01

    Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calcula...

  7. Neutron measurements in the Vandellos II nuclear power plant with a Bonner sphere system

    International Nuclear Information System (INIS)

    In some Spanish nuclear power plants of pressurised water reactor (PWR) type, albedo thermoluminescence dosemeters are used for personal dosimetry while survey meters, based on a thermal-neutron detector inside a cylindrical or spherical moderator, are used for dose rate assessment in routine monitoring. The response of both systems is highly dependent on the energy of the existing neutron fields. They are usually calibrated by means of ISO neutron sources with energy distributions quite different from those encountered at these installations. Spectrometric measurements with a Bonner sphere system (BSS) allow us to determine the reference dosimetric values. The UAB group, under request from the National Coordinated Research Action, was in charge of characterising the neutron fields and evaluating the response of personal dosemeters at several measurement points inside the containment building of the Catalan Nuclear Power Plant Vandellos II. The neutron fields were characterised at five places using the UAB-BSS and a home made unfolding code called MITOM. The results obtained confirm the presence of low-energy components in the neutron field in most of the selected points. Moreover, we have found no influence of the nuclear fuel burning on the shape of the spectrum. (authors)

  8. BUMS--Bonner sphere Unfolding Made Simple: an HTML based multisphere neutron spectrometer unfolding package

    International Nuclear Information System (INIS)

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at http://nukeisit.gatech.edu/bums

  9. Monte Carlo calculations and experimental results of Bonner spheres systems with a new cylindrical Helium-3 proportional counter

    CERN Document Server

    Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L

    2002-01-01

    The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...

  10. Neutron reference spectra measurements with the Bonner multi-spheres spectrometer; Medidas de espectros de referencia de neutrons com o espectrometro de multiesferas de Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Junior, Roberto Mendonca de

    2004-07-01

    This paper aims to define a procedure to use the Bonner Multisphere Spectrometer with a {sup 6}LiI(Eu) detector in order to determine of neutron spectra. It was measured {sup 238}PuBe spectra and same of reference ({sup 241}AmBe, {sup 252}Cf e {sup 252}Cf+D{sub 2}O) published in ISO 8529-1 (2001) Norm. The data were processed by a computer program (BUNKI), which presents the results in neutrons energy fluency. Each input parameter of the program was studied in order to establish their influence in the adjustment result. The environment dose equivalent rate obtained placing the detector 1 m from the {sup 241}AmBe source was 122 {+-} 4 {mu}Sv/h with 7% of uncertainty and 95% of confidence level. The procedure established in this work was tested with the {sup 238}PuBe spectrum, obtaining an environment dose equivalent rate of 286 {+-} 9 {mu}Sv/h, 8% lower than the value measured experimentally used as reference. Through this procedure will be possible to measure neutron spectra in different work places where neutrons sources are used. Knowing these spectra, it will be possible to evaluate which area monitors, are more suitable, as well as, to study better the response of individual neutron monitors, as for instance, to obtain a conversion coefficient more appropriate to the albedo dosimeter used in different work places. As the measurements need a long time to be accomplished, the work optimization is fundamental to reduce the exposing time of the Bonner spectrometer operator. For this reason, an important parameter examined in this paper was the possibility of reducing the number of spheres used during the measurement without changing the final result. Considering the radiation protection standards, this parameter has a huge importance when the measurements are performed in work places where the neutron fluency and gamma rate offer risks to the operator's health, as for instance, in nuclear centrals. Studying this parameter, it was possible to conclude that

  11. Application of neural networks for unfolding neutron spectra measured by means of Bonner spheres and activation foils

    CERN Document Server

    Braga, C C

    2001-01-01

    A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results wer...

  12. Application of neural networks for unfolding neutron spectra measured by means of Bonner spheres and activation foils

    International Nuclear Information System (INIS)

    A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results were obtained, indicating that the Neural Network can be considered an interesting alternative among the neutron spectrum unfolding methodologies. (author)

  13. Measurement of the neutron fluence and dose spectra using an extended Bonner sphere and a tissue-equivalent proportional counter

    International Nuclear Information System (INIS)

    A conventional Bonner Sphere (BS) set consisting of six polyethylene spheres was modified to enhance its response to a high-energy neutron by putting a lead shell inside a polyethylene moderator. The response matrix of an extended BS was calculated using the MCNPX code and calibrated using a 252Cf neutron source. In order to survey the unknown photon and neutron mixed field, a spherical tissue equivalent proportional counter (TEPC) was constructed and assembled as a portable measurement system. The extended BS and the self-constructed TEPC were employed to determine the dosimetric quantities of the neutron field produced from the thick lead target bombarded by the 2.5 GeV electron beam of Pohang Accelerator Laboratory (PAL) and the neutron calibration field of Korea Atomic Energy Research Inst. (KAERI). (authors)

  14. Application of a Bonner sphere spectrometer for the determination of the angular neutron energy spectrum of an accelerator-based BNCT facility

    International Nuclear Information System (INIS)

    Experimental activities are underway at INFN Legnaro National Laboratories (LNL) (Padua, Italy) and Pisa University aimed at angular-dependent neutron energy spectra measurements produced by the 9Be(p,xn) reaction, under a 5 MeV proton beam. This work has been performed in the framework of INFN TRASCO-BNCT project. Bonner Sphere Spectrometer (BSS), based on 6LiI (Eu) scintillator, was used with the shadow-cone technique. Proper unfolding codes, coupled to BSS response function calculated by Monte Carlo code, were finally used. The main results are reported here. - Highlights: • Bonner sphere spectrometer is used to determine the angular neutron energy spectrum of an accelerator-based BNCT facility. • The shadow-cone technique is a method used with Bonner sphere spectrometer to remove the neutron scattered contribution. • The response function matrix for the set of Bonner sphere spectrometer is calculated by Monte Carlo code. • Unfolding codes are used to obtain neutron spectra at different neutron emission angles (0°, 40°, 80° and 120°)

  15. First test of SP2: A novel active neutron spectrometer condensing the functionality of Bonner spheres in a single moderator

    International Nuclear Information System (INIS)

    The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries

  16. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    Science.gov (United States)

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings. PMID:27203706

  17. Measurement of cosmic ray neutrons with Bonner sphere spectrometer and neutron monitor at 79{sup o}N

    Energy Technology Data Exchange (ETDEWEB)

    Pioch, C., E-mail: christian.pioch@helmholtz-muenchen.d [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Mares, V. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Vashenyuk, E.V.; Balabin, Yu.V. [Polar Geophysical Institute, Kola Science Center, Russian Academy of Sciences, Apatity (Russian Federation); Ruehm, W. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany)

    2011-01-21

    In 2007, a Bonner spheres spectrometer (BSS) was installed in Ny-Alesund, Spitsbergen, at about 79{sup o}N. The spectrometer allows continuous measurement of the spectral fluence rate distribution of secondary neutrons from cosmic radiation in absolute terms. In this way, the system complements a neutron monitor (NM) that was installed in 2005, in Barentsburg, Spitsbergen, at about 78{sup o}N. To compare the readings of both systems, the NM response functions to neutrons and protons were calculated by means of the GEANT4 code, in the energy range between 10 meV and 100 GeV, and between 40 MeV and 10 GeV, respectively, using different intra-nuclear cascade (INC) models at energies above 20 MeV. Sample spectral fluence distributions as measured by means of the BSS system for neutrons in November and December 2007 were used and folded with the calculated GEANT4 NM response. The resulting calculated NM count rates were then compared to those actually measured by the NM system and a reasonable agreement between 7% and 43% was obtained, depending on the nuclear models used in the GEANT4 calculations and the assumed {sup 10}B enrichment of the NM counters used to detect the neutrons.

  18. Reconstruction of neutron spectra using neural networks starting from the Bonner spheres spectrometric system; Reconstruccion de espectros de neutrones usando redes neuronales a partir del sistema espectrometrico de esferas de Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Arteaga A, T.; Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)

    2005-07-01

    The artificial neural networks (RN) have been used successfully to solve a wide variety of problems. However to determine an appropriate set of values of the structural parameters and of learning of these, it continues being even a difficult task. Contrary to previous works, here a set of neural networks is designed to reconstruct neutron spectra starting from the counting rates coming from the detectors of the Bonner spheres system, using a systematic and experimental strategy for the robust design of multilayer neural networks of the feed forward type of inverse propagation. The robust design is formulated as a design problem of Taguchi parameters. It was selected a set of 53 neutron spectra, compiled by the International Atomic Energy Agency, the counting rates were calculated that would take place in a Bonner spheres system, the set was arranged according to the wave form of those spectra. With these data and applying the Taguchi methodology to determine the best parameters of the network topology, it was trained and it proved the same one with the spectra. (Author)

  19. Correction and verification of AECL Bonner Sphere response matrix based on mono-energetic neutron calibration performed at NPL

    International Nuclear Information System (INIS)

    The AECL Bonner Sphere Spectrometer (BSS) was taken to National Physical Laboratory (NPL) for calibration in mono-energetic neutron fields and bare 252Cf neutron fields. The mono-energetic radiations were performed using ISO-8529 prescribed neutron energies: 0.071, 0.144, 0.565, 1.2, 5 and 17 MeV. A central SP9 proportional counter was also evaluated at the NPL thermal neutron calibration facility in order to assess an effective pressure of 3He inside the counter, i.e. number density of 3He atoms. Based on these measurements and methods outlined by Thomas and Soochak, a new BSS response matrix was generated. The response matrix is then verified by unfolding spectra corresponding to various neutron fields. Those are NPL bare 252Cf source, National Institute of Standards and Technology bare and heavy water moderated 252Cf source and 241AmBe calibration source located at National Research Council. A good agreement was observed with expected neutron fluence rates, as well as derived dosimetric quantities, such as International Commission on Radiological Protection-74 ambient dose equivalent. The AECL BSS response matrix was created based on methods proposed by Wiegel et al., Thomas and Thomas and Soochak. The response matrix was further corrected for the mono-energetic neutron measurements taken and NPL. In order to experimentally verify the response matrix, four neutron measurements were taken at three laboratories: NPL, NIST and NRC. Good agreement with expected values both for integrated neutron fluence and derived dosimetric quantities was observed in all four cases. (authors)

  20. Monte Carlo simulation of a Bonner sphere spectrometer for application to the determination of neutron field in the Experimental Advanced Superconducting Tokamak experimental hall.

    Science.gov (United States)

    Hu, Z M; Xie, X F; Chen, Z J; Peng, X Y; Du, T F; Cui, Z Q; Ge, L J; Li, T; Yuan, X; Zhang, X; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Gorini, G; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    To assess the neutron energy spectra and the neutron dose for different positions around the Experimental Advanced Superconducting Tokamak (EAST) device, a Bonner Sphere Spectrometer (BSS) was developed at Peking University, with totally nine polyethylene spheres and a SP9 (3)He counter. The response functions of the BSS were calculated by the Monte Carlo codes MCNP and GEANT4 with dedicated models, and good agreement was found between these two codes. A feasibility study was carried out with a simulated neutron energy spectrum around EAST, and the simulated "experimental" result of each sphere was obtained by calculating the response with MCNP, which used the simulated neutron energy spectrum as the input spectrum. With the deconvolution of the "experimental" measurement, the neutron energy spectrum was retrieved and compared with the preset one. Good consistence was found which offers confidence for the application of the BSS system for dose and spectrum measurements around a fusion device. PMID:25430324

  1. Application of a Bonner sphere spectrometer for determination of the energy spectra of neutrons generated by ≅1 MJ plasma focus

    International Nuclear Information System (INIS)

    The spectra of neutrons outside the plasma focus device PF-1000 with an upper energy limit of ≅1 MJ was measured using a Bonner spheres spectrometer in which the active detector of thermal neutrons was replaced by nine thermoluminescent chips. As an a priori spectrum for the unfolding procedure, the spectrum calculated by means of the Monte Carlo method with a simplified model of the discharge chamber was selected. Differences between unfolded and calculated spectra are discussed with respect to properties of the discharge vessel and the laboratory layout.

  2. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    International Nuclear Information System (INIS)

    The accurate determination of the ambient dose equivalent in the mixed neutron–photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an “in-field” calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H⁎(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  3. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    Science.gov (United States)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  4. First test of SP{sup 2}: A novel active neutron spectrometer condensing the functionality of Bonner spheres in a single moderator

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Bortot, D. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B.; Esposito, A. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Introini, M.V.; Lorenzoli, M.; Pola, A. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Sacco, D. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); INAIL—DPIA Via di Fontana Candida n.1, 00040 Monteporzio C. (Italy)

    2014-12-11

    The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries.

  5. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to Eo and 90o with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  6. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Esposito, A.; Gentile, A.; Carinci, G. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Russo, S. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 44, 95123 Catania (Italy)

    2011-10-21

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0{sup o} and 90{sup o} with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and

  7. Bonner sphere measurements of 241Am-B and 241Am-F neutron energy spectra unfolded using high-resolution a priori data

    International Nuclear Information System (INIS)

    High-resolution neutron energy spectra, covering the entire energy range of interest, for two standard radionuclide neutron sources (241Am-B and 241Am-F) have been derived from Bonner sphere measurements by using high-resolution a priori data in the unfolding process. In each case, two a priori spectra were used, one from a two-stage calculation and also one from a combination of the calculated spectrum with a high-resolution measured spectrum. The unfolded spectra are compared with those published elsewhere and show significant differences from the ISO- and IAEA-recommended spectra for 241Am-B and 241Am-F, respectively. Values for the fluence-average energy and fluence-to-dose-equivalent conversion coefficients are presented for the new spectra, and the implications of the new spectra for the emission rates of the sources when measured by the manganese bath technique are also determined. A combination of calculations and measurements has been performed to determine the spectral fluence from two reference neutron sources over the entire energy range of interest. For the Am-B source, this approach has supported the spectra of Marsh et al. and Zimbal and reduced confidence in the ISO 8529 spectrum. However, in terms of derived quantities, there is a good agreement between all the available spectra. In contrast, the new Am-F spectrum presented here is significantly different from those already published. The fluence to dose conversion coefficients derived from the new spectrum are 9 % lower than the currently accepted values, and the emission rates of Am-F sources measured by the manganese bath technique may need to be increased by up to 0.5 %. (authors)

  8. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    International Nuclear Information System (INIS)

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  9. Neutron spectrometry and dosimetry with ANNs

    International Nuclear Information System (INIS)

    Artificial neural networks technology has been applied to unfold the neutron spectra and to calculate the effective dose, the ambient equivalent dose, and the personal dose equivalent for 252Cf and 241AmBe neutron sources. A Bonner sphere spectrometry with a 6LiI(Eu) scintillator was utilized to measure the count rates of the spheres that were utilized as input in two artificial neural networks, one for spectrometry and another for dosimetry. Spectra and the ambient dose equivalent were also obtained with BUNKIUT code and the UTA4 response matrix. With both procedures spectra and ambient dose equivalent agrees in less than 10%. (author)

  10. Neutron spectrometry using artificial neural networks

    International Nuclear Information System (INIS)

    An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab(R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem

  11. Neutron spectrometry with artificial neural networks

    International Nuclear Information System (INIS)

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ2-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  12. Neutron spectrometry and dosimetry using NSDAAN

    International Nuclear Information System (INIS)

    The reconstruction of neutron spectra from count rates of a Bonner spheres spectrometric system is performed using various methods such as Monte Carlo methods, the parameterization and iterative methods. The weight of the Bonner spheres spectrometric system, the procedure for the reconstruction of the spectra, the need of an experienced user, the high consumer of time, the need of use a reconstruction code as the BUNKI, SAND, among others, and the resolution of the spectrum are some problems that this system presents. This has motivated the development of complementary procedures such as maximum entropy, genetic algorithms and artificial neural networks. In previous work, has reported a new method called robust design methodology of artificial neural networks, to construct various network topologies capable of solving the problems of neutron spectrometry and dosimetry, however, due to the newness of this technology, be noted that there are not tools to end-user that allow test and validate the designed networks. This paper presents a software for the neutron spectrometry and dosimetry, designed from the information extracted of an artificial neural network designed by robust design methodology of artificial neural networks. This tool has the following characteristics: was designed in a user graphical interface easy to use, requires not knowledge of neural networks or neutron spectrometry by the user; execution speed of the application; unlike the deconvolution codes are not required to select an initial spectrum for the spectrum reconstruction; as an additional element to this tool, besides the spectrum, the calculation is performed simultaneous to H(10), E, Hp,s(10,θ) from just counting rates from a Bonner spheres spectrometric system. (author)

  13. Study of reproducibility of measurements with the spectrometer of Bonner multispheres

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, G.A.; Pereira, W.W.; Patrao, K.C.S.; Fonseca, E.S., E-mail: geisadeazevedo@gmail.com, E-mail: walsan@ird.gov.br, E-mail: karla@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radionprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work aims to study the metrological behavior of the Bonner Multisphere Spectrometer (BMS) of the LN / LNMRI / IRD - Laboratorio Metrologia de Neutrons / Laboratorio Nacional de Metrologia e Radiacao Ionizante / Instituto de Radioprotecao e Dosimetria, for measurements in repeatability and reproducibility conditions. Initially, a simulation was done by applying the Monte Carlo method, using the MCNP code and respecting the ISO 8529-1 (2001), using the sources of Californium ({sup 252} Cf), Americium-Beryllium ({sup 241} AmBe) and californium in heavy water (Cf + D{sub 2}O), all located at a distance of 100 cm from the neutron detector ({sup 6}Li (Eu) - crystal scintillator). In this program, the counting of neutrons that are captured by the detector was made. The source is located in the center of a sphere of radius 300 cm. Analyzes the impact of these neutrons in a point of the sphere wall, which in this case acted as a neutron detector and from there, it is estimated the number of neutrons that collide in the whole sphere. The purpose is to obtain the neutron count for different energy bands in a solid field of neutrons, since they have a spectrum ranging from a low to a high energy that can also vary within a particular environment. Wishes to obtain new fields with different sources and moderators materials to be used as new reference fields. Measurements are being conducted for these fields, with the aim of analyzing the variability conditions of the measurement (repeatability and reproducibility) in LEN - Laboratorio de Espectrometria de Neutrons of the LN/LMNRI/IRD. Thus, the spectrometer will be used to improve both the knowledge of the spectrum as the standard of neutrons of the lab, proving that a spectrometry is essential for correct measurement.

  14. Artificial neural networks technology for neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    Artificial Neural Network Technology has been applied to unfold neutron spectra and to calculate 13 dosimetric quantities using seven count rates from a Bonner Sphere Spectrometer with a 6LiI(Eu). Two different networks, one for spectrometry and another for dosimetry, were designed. To train and test both networks, 177 neutron spectra from the IAEA compilation were utilised. Spectra were re-binned into 31 energy groups, and the dosimetric quantities were calculated using the MCNP code and the fluence-to-dose conversion coefficients from ICRP 74. Neutron spectra and UTA4 response matrix were used to calculate the expected count rates in the Bonner spectrometer. Spectra and H*(10) of 239PuBe and 241AmBe were experimentally obtained and compared with those determined with the artificial neural networks. (authors)

  15. Using the MCNPX code for the calculation of matrix response in a system of shperes bonner; Uso del codigo MCNPX para el calculo de matrices respuesta en un sistema de esferas bonner

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Araque, J. E.; Mendez Villafane, R.

    2013-07-01

    This work intends to heavily describe simulation steps used in code MCNPX for calculation for Neutron response of a BSS with passive or active detector. Has it been calculated with MCNPX the matrix response of a system of Bonner spheres, with passive or active detector, which described in detail the steps to be followed by the code are part of the solution. (Author)

  16. A new computation tool for neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    By using the integrated accounts of spectrometric system of Bonner spheres is possible to reconstruct the neutron spectrum using various methods such as: Monte Carlo, the parameterization and iterative methods. The response matrix, counting rates and neutron spectrum are intimately related through the integral-differential of Fredholm of first type. however, the weight of Bonner spheres system, the procedure of spectra reconstruction, the need of a expert user, the high time consumption, the need to use a reconstruction code (BUNKI, SAND, among others) and the spectrum resolution, are some of problems that this system presents. The above difficulties have motivated the development of complementary procedures such as maximum entropy, genetic algorithms and artificial neural networks. In recent years, using neural network technology has become an alternative procedure in the nuclear science research area, considering a replacement for classical techniques used for years. In previous works, was used a new method called robust design methodology of artificial neural networks, to construct various network topologies capable of solving the problems of neutron spectrometry and dosimetry, however noted that not exist tools for end-user that allow test and validate the designed networks. This paper presents the development of a software for neutronic spectrometry and dosimetry, based on information extracted from an artificial neural network designed in previous work, through the robust design methodology of artificial neural networks with the following characteristics: was designed in a user graphical interface easy to use, speed on the application execution, unlike other deconvolution codes, not is necessary to select and initial spectrum for spectrum reconstruction, as an additional element to this tool, besides spectrum, the calculation is performed simultaneous of 13 equivalent dose from just counting rates from a spectrometric system of Bonner spheres. (Author)

  17. Comparison of measurements with active and passive Bonner sphere spectrometers

    CERN Document Server

    Hajek, M; Schoner, W; Vana, N

    2000-01-01

    Because of its high biological efficiency, neutron radiation can be a serious source-and not only around accelerators and nuclear fusion reactors. Roughly half of the radiation exposure of aircrew members is caused by cosmic ray-induced neutrons in a wide energy range. Therefore, following the International Commission on Radiological Protection's recommendations, aircrew are treated as occupationally exposed workers by a recent directive of the European Council, which implies various safety precautions including the dosimetric surveillance. The accurate assessment of operational and limiting quantities such as ambient dose equivalent H*(10) and effective dose E requires the knowledge of the neutron energy spectrum. The CERN-CEC neutron reference field has been designed to resemble the neutron spectrum at an average subsonic aviation altitude. Therefore, it provides an excellent calibration facility for all instruments with intended applications in this field. The stray radiation field is created by a mixed be...

  18. Neutron spectrometry and dosimetry using NSDAAN; Espectrometria y dosimetria de neutrones usando NSDAAN

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M. R.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ortiz R, J. M. [Departamento de Electrotecnia y Electronica, Escuela Politecnica Superior, Av. Menendez Pidal s/n, 14004 Cordoba (Spain)], e-mail: mrosariomb@yahoo.com.mx

    2009-10-15

    The reconstruction of neutron spectra from count rates of a Bonner spheres spectrometric system is performed using various methods such as Monte Carlo methods, the parameterization and iterative methods. The weight of the Bonner spheres spectrometric system, the procedure for the reconstruction of the spectra, the need of an experienced user, the high consumer of time, the need of use a reconstruction code as the BUNKI, SAND, among others, and the resolution of the spectrum are some problems that this system presents. This has motivated the development of complementary procedures such as maximum entropy, genetic algorithms and artificial neural networks. In previous work, has reported a new method called robust design methodology of artificial neural networks, to construct various network topologies capable of solving the problems of neutron spectrometry and dosimetry, however, due to the newness of this technology, be noted that there are not tools to end-user that allow test and validate the designed networks. This paper presents a software for the neutron spectrometry and dosimetry, designed from the information extracted of an artificial neural network designed by robust design methodology of artificial neural networks. This tool has the following characteristics: was designed in a user graphical interface easy to use, requires not knowledge of neural networks or neutron spectrometry by the user; execution speed of the application; unlike the deconvolution codes are not required to select an initial spectrum for the spectrum reconstruction; as an additional element to this tool, besides the spectrum, the calculation is performed simultaneous to H(10), E, H{sub p},{sub s}(10,{theta}) from just counting rates from a Bonner spheres spectrometric system. (author)

  19. Neutron fluence spectrometry using disk activation

    International Nuclear Information System (INIS)

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm-2 s-1, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm-2 s-1, again, a good agreement with the assumed spectrum was achieved

  20. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  1. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the Robust Design of Artificial Neural Networks Methodology. The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  2. Development of a system for passive spectrometry characterization neutron of a cyclotron

    International Nuclear Information System (INIS)

    The most widely used for Neutron spectrometry system is formed by the Bonner spheres with an active sensor sensitive to thermal neutrons in its Center. But, the presence of strong electromagnetic fields and the hold character around a cyclotron radiation detectors active employment make unviable so it is necessary to replace it with other liabilities. In this case it has resorted to the use of Au foils such as thermal neutron detectors, found the matrix the new spectrometer response and has been validated with a source of 252Cf for later measurements in the interior of the bunker of a cyclotron production of radioisotopes for PET. (Author)

  3. Neutron spectrometry and dosimetry in the environment and at workplaces

    International Nuclear Information System (INIS)

    Results obtained in diverse environments (including workplaces) using both spectrometric and dosimetric instrumentation were compared. The following topics are included: PTB Bonner sphere spectrometers; natural cosmic ray-induced neutron background; neutron fields at the Dukovany nuclear power plant (Czech Republic); neutron fields at the isochronous cyclotron of the German Cancer Research center in Heidelberg; and accuracy of the integral results obtained with Bonner spheres. (P.A.)

  4. Development of a system for passive spectrometry characterization neutron of a cyclotron; Desarrollo de un sistema de espectrometria pasivo para la caracterizacion neutronica de un ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R.; Guerrero, J. E.; Lagares, J. I.; Sansaloni, F.; Perez, J. M.; Llop, J.; Kralik, M.

    2013-07-01

    The most widely used for Neutron spectrometry system is formed by the Bonner spheres with an active sensor sensitive to thermal neutrons in its Center. But, the presence of strong electromagnetic fields and the hold character around a cyclotron radiation detectors active employment make unviable so it is necessary to replace it with other liabilities. In this case it has resorted to the use of Au foils such as thermal neutron detectors, found the matrix the new spectrometer response and has been validated with a source of {sup 2}52Cf for later measurements in the interior of the bunker of a cyclotron production of radioisotopes for PET. (Author)

  5. The response functions of a 3He Bonner Spectrometer and their experimental verification in high energy neutron fields

    International Nuclear Information System (INIS)

    The neutron response functions for a Bonner Sphere Spectrometer (BSS) with 3He proportional counter were calculated employing the MCNP and LAHET Monte Carlo codes for the neutron energy range from 10 MeV to 1 GeV. The MCNP calculations were extended up to 100 MeV using the neutron cross-sections from the transport data libraries LA-100 of LANL. The effect of the different physics models implemented in the LAHET code on the response of the Bonner spectrometer are documented and the possible reasons are discussed. The MCNP and LAHET results are also compared with calculations using the Monte Carlo high energy transport code HADRON. Verification experiments were conducted at the CERN high energy calibration facility which gave some insight to the question how appropriate the physical models are which are used for the calculation of the BSS responses. (author)

  6. A new computation tool for neutron spectrometry and dosimetry; Una nueva herramiento de computo para la espectrometria y dosimetria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M. R.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico)], e-mail: mrosariomb@yahoo.com.mx

    2009-10-15

    By using the integrated accounts of spectrometric system of Bonner spheres is possible to reconstruct the neutron spectrum using various methods such as: Monte Carlo, the parameterization and iterative methods. The response matrix, counting rates and neutron spectrum are intimately related through the integral-differential of Fredholm of first type. however, the weight of Bonner spheres system, the procedure of spectra reconstruction, the need of a expert user, the high time consumption, the need to use a reconstruction code (BUNKI, SAND, among others) and the spectrum resolution, are some of problems that this system presents. The above difficulties have motivated the development of complementary procedures such as maximum entropy, genetic algorithms and artificial neural networks. In recent years, using neural network technology has become an alternative procedure in the nuclear science research area, considering a replacement for classical techniques used for years. In previous works, was used a new method called robust design methodology of artificial neural networks, to construct various network topologies capable of solving the problems of neutron spectrometry and dosimetry, however noted that not exist tools for end-user that allow test and validate the designed networks. This paper presents the development of a software for neutronic spectrometry and dosimetry, based on information extracted from an artificial neural network designed in previous work, through the robust design methodology of artificial neural networks with the following characteristics: was designed in a user graphical interface easy to use, speed on the application execution, unlike other deconvolution codes, not is necessary to select and initial spectrum for spectrum reconstruction, as an additional element to this tool, besides spectrum, the calculation is performed simultaneous of 13 equivalent dose from just counting rates from a spectrometric system of Bonner spheres. (Author)

  7. Artificial neural networks applied in the spectrometry of a 239Pu-Be source

    International Nuclear Information System (INIS)

    To explore the potential use of a neutron source and to define the procedure to handle it under safety conditions, features like neutron spectrum and the ambient dose equivalent of the source must be known. The aim of this work was to determine the spectrum, the total fluence rate and the ambient dose equivalent of a 185 GBq 239Pu-Be neutron source. Using Monte Carlo methods the spectrum, the total fluence rate, and the ambient dose equivalent of a 239Pu-Be were calculated. The spectrum was calculated at 50, 100, 200 and 300 cm from the source in air using MCNP X and MCNP 4C codes. The neutron spectrum was also obtained, at 100 cm, using a Bonner sphere spectrometer whose count rates were used to unfold the neutron spectrum, the unfolding was carried out using an Artificial Neural Network for neutron spectrometry. With the spectrum, the total neutron fluence and the ambient dose equivalent were determined. Calculated results were compared with measured values where Monte Carlo results were smaller than those measured. These differences were attributed to the presence of 241Pu during the source manufacturing. In order to match calculated and measured quantities a 0.102 w/o of 241Pu was estimated. After corrections the differences between calculated and experimental results were 1%. This result shows the advantages of using Artificial Neural Networks technology in the unfolding of neutron spectrum using as a single piece of information the count rates of a Bonner sphere spectrometer. (author)

  8. Thomas N Bonner (1923-2003), medical historian.

    Science.gov (United States)

    Bickel, Marcel H

    2016-05-01

    Thomas Bonner made a long academic career, teaching medical history and higher education at several American universities and presiding over three of these. He engaged in politics for 2 years. As a historian of medicine, he published important books on topics including Midwestern medicine, medical education in the United States and in European countries, the entry of women into medicine in the 19th century and on the educator Abraham Flexner. His works were based on exhaustive research, penetrating analysis, language skills and the ability to explain complex information in understandable terms. Bonner lived a passionate life of commitment and devotion to various worthwhile causes. PMID:24986396

  9. Project 252Cf-D2O. The multisphere system of neutron dosimetry and spectrometry (M.S.-N.D.S.). Studies of applications to health physics

    International Nuclear Information System (INIS)

    The project 252Cf-D2O is articulated upon the utilization of a 200μg nominal 252Cf spontaneous neutron fission source, used bare and under D2O spherical moderators, giving leakage neutron spectra experimentally known and/or calculated. This project has for objective the applications of those sources to Health Physics, in dosimetry (calibration of ''rad'' and ''rem-meters'') and in spectrometry, associated with the experimental system of measurements made by the generalization of the BONNER Spheres, known as ''the Multisphere System''. This communication describes the normalization method used and the results obtained leading to the adoption of a reference matrix called ''the Log-Normal Multisphere Matrix'' (LN-MM) giving the energies response functions of the generalized system for all the spheres diameters between 40 and 400 millimeters and for all the energies between 0.4eV and 15MeV

  10. Neutron spectrometry and dosimetry measurement at workplaces for calibration of individual PGP-DIN dosemeters

    International Nuclear Information System (INIS)

    Measurements to determine new coefficients for individual neutron dosimeters PGP-DIN complying with the ICRP 60 recommendations were performed at two workplaces at the CEA of Valduc: a storage room and a plutonium reprocessing plant. Two spectrometry campaigns were performed allowing a better assessment of doses received by operators working at these workplaces. Neutron energy fluence and ambient dose equivalent rate H*(10) distributions were measured as function of neutron energy by using the ROSPEC device and BONNER spheres spectrometer. The radiation field being mixed neutron and gamma, the gamma component was also evaluated: neutron and photon dose-rate meters were used to evaluate the ambient dose rate equivalent. Individual dosemeters were positioned on an ISO water slab phantom. In addition, calculations were performed using the MCNP simulation code for different configurations. (authors)

  11. Neutron spectrometry and dosimetry based on a new approach called Genetic Artificial Neural Networks

    International Nuclear Information System (INIS)

    Artificial Neural Networks and Genetic Algorithms are two relatively young research areas that were subject to a steadily growing interest during the past years. The structure of a neural network is a significant contributing factor to its performance and the structure is generally heuristically chosen. The use of evolutionary algorithms as search techniques has allowed different properties of neural networks to be evolved. This paper focuses on the intersection on neural networks and evolutionary computation, namely on how evolutionary algorithms can be used to assist neural network design and training, as a novel approach. In this research, a new evolvable artificial neural network modelling approach is presented, which utilizes an optimization process based on the combination of genetic algorithms and artificial neural networks, and is applied in the design of a neural network, oriented to solve the neutron spectrometry and simultaneous dosimetry problems, using only the count rates measured with a Bonner spheres spectrometer system as entrance data. (author)

  12. Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    International Nuclear Information System (INIS)

    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed. (authors)

  13. Neutron spectrometry for radiation protection: Three examples

    International Nuclear Information System (INIS)

    Workers and the general public are exposed to neutron radiation from a variety of sources, including fission and fusion reactors, accelerators, the nuclear fuel and nuclear weapons cycles, and cosmic rays in space, in aircraft and on the earth. Because the health effects of neutrons depend strongly on their energy, neutron spectrometry is essential for accurate risk-related neutron dosimetry. In addition, the penetration of neutrons through protective shielding changes their energy and can be difficult to calculate reliably, so the measurement of energy spectra is often needed to verify neutron transport calculations. The Environmental Measurements Laboratory has been measuring neutron energy spectra for over 20 years, primarily with multisphere (or Bonner sphere) spectrometers. Because of this experience, the Laboratory has responded to a number of requests to provide reference neutron energy spectra at critical locations in or near nuclear facilities and radiation fields. This talk will describe the author's instruments and three recent examples of their use: outside the Princeton Tokamak Fusion Test Reactor (TFTR), up to two kilometers from the Army Pulse Radiation Facility (APRF) bare reactor, and in a Canadian Forces jet aircraft at commercial aviation altitudes. All of these studies have implications beyond routine occupational radiation protection. For example, the APRF measurements are part of the broad effort to resolve the discrepancy between measured and calculated thermal neutron activation at Hiroshima, one of the most important unsolved problems in radiation dosimetry

  14. Test and validation of the iterative code for the neutrons spectrometry and dosimetry: NSDUAZ

    International Nuclear Information System (INIS)

    In this work was realized the test and validation of an iterative code for neutronic spectrometry known as Neutron Spectrometry and Dosimetry of the Universidad Autonoma de Zacatecas (NSDUAZ). This code was designed in a user graph interface, friendly and intuitive in the environment programming of LabVIEW using the iterative algorithm known as SPUNIT. The main characteristics of the program are: the automatic selection of the initial spectrum starting from the neutrons spectra catalog compiled by the International Atomic Energy Agency, the possibility to generate a report in HTML format that shows in graph and numeric way the neutrons flowing and calculates the ambient dose equivalent with base to this. To prove the designed code, the count rates of a spectrometer system of Bonner spheres were used with a detector of 6LiI(Eu) with 7 polyethylene spheres with diameter of 0, 2, 3, 5, 8, 10 and 12. The count rates measured with two neutron sources: 252Cf and 239PuBe were used to validate the code, the obtained results were compared against those obtained using the BUNKIUT code. We find that the reconstructed spectra present an error that is inside the limit reported in the literature that oscillates around 15%. Therefore, it was concluded that the designed code presents similar results to those techniques used at the present time. (Author)

  15. A neutron spectrometry and dosimetry computer tool based on ANN

    International Nuclear Information System (INIS)

    In the neutron spectrometry and dosimetry research areas by means of the Bonner spheres spectrometric system utilizing classical approaches, such as Monte Carlo, parametrization and iterative procedures, the weight, time consuming procedure, the need to use an unfolding procedure, the low resolution spectrum, and the need to use the neutron fluence-to-dose conversion coefficients for calculating the equivalent doses are some drawbacks which these approaches offer. Each of the mentioned difficulties has motivated the development of complementary procedures such as maximum entropy, genetic algorithms and artificial neural networks. The use of neural networks to unfold neutron spectra and to calculate equivalent doses from the count rates measured with BSS system has become in an alternative procedure, which has been applied with success, however, it is observed that doesn't exist computer tools based on ANN technology to unfold neutron spectra and to calculate equivalent doses. In this work a customized front end user interface software application, called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks (NSDANN) based on ANN technology, is presented, which is capable to unfold neutron spectra and to simultaneously calculate 13 equivalent doses, by using only the count rates of a BBS system as input, in just a few seconds. (author)

  16. Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, T.; Hagiwara, M.; Iwase, H.; /KEK, Tsukuba; Iwamoto, Y.; Sakamoto, Y.; Nakashima, H.; /JAEA, Ibaraki; Arakawa, H.; Shigyo, N.; /Kyushu U.; Leveling, A.F.; Boehnlein, D.J.; Vaziri, K.; /Fermilab

    2008-02-01

    The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energy range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target

  17. Public Sphere

    DEFF Research Database (Denmark)

    Trenz, Hans-Jörg

    2015-01-01

    In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically...

  18. Test and validation of the iterative code for the neutrons spectrometry and dosimetry: NSDUAZ; Prueba y validacion del codigo iterativo para la espectrometria y dosimetria de neutrones: NSDUAZ

    Energy Technology Data Exchange (ETDEWEB)

    Reyes H, A.; Ortiz R, J. M.; Reyes A, A.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R., E-mail: alfredo_reyesh@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Lopez Velarde 801, Col. Centro, 98000 Zacatecas (Mexico)

    2014-08-15

    In this work was realized the test and validation of an iterative code for neutronic spectrometry known as Neutron Spectrometry and Dosimetry of the Universidad Autonoma de Zacatecas (NSDUAZ). This code was designed in a user graph interface, friendly and intuitive in the environment programming of LabVIEW using the iterative algorithm known as SPUNIT. The main characteristics of the program are: the automatic selection of the initial spectrum starting from the neutrons spectra catalog compiled by the International Atomic Energy Agency, the possibility to generate a report in HTML format that shows in graph and numeric way the neutrons flowing and calculates the ambient dose equivalent with base to this. To prove the designed code, the count rates of a spectrometer system of Bonner spheres were used with a detector of {sup 6}LiI(Eu) with 7 polyethylene spheres with diameter of 0, 2, 3, 5, 8, 10 and 12. The count rates measured with two neutron sources: {sup 252}Cf and {sup 239}PuBe were used to validate the code, the obtained results were compared against those obtained using the BUNKIUT code. We find that the reconstructed spectra present an error that is inside the limit reported in the literature that oscillates around 15%. Therefore, it was concluded that the designed code presents similar results to those techniques used at the present time. (Author)

  19. Artificial Neural Networks in Spectrometry and Neutron Dosimetry

    International Nuclear Information System (INIS)

    The ANN technology has been applied to unfold the neutron spectra of three neutron sources and to estimate their dosimetric features. To compare these results, neutron spectra were also unfolded with the BUNKIUT code. Both unfolding procedures were carried out using the count rates of a Bonner sphere spectrometer. The spectra unfolded with ANN result similar to those unfolded with the BUNKIUT code. The H*(10) values obtained with ANN agrees well with H*(10) values calculated with the BUNKIUT code.

  20. A new method of researching fermion tunneling from the Vaidya-Bonner de Sitter black hole

    Institute of Scientific and Technical Information of China (English)

    Lin Kai; Yang Shu-Zheng

    2009-01-01

    Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.

  1. A new method of researching fermion tunneling from the Vaidya–Bonner de Sitter black hole

    International Nuclear Information System (INIS)

    Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya–Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon

  2. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, C., E-mail: carles.domingo@uab.ca [Grup de Fisica de les Radiacions, Departament de Fisica. Edifici C, Campus UAB, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Garcia-Fuste, M.J.; Morales, E.; Amgarou, K. [Grup de Fisica de les Radiacions, Departament de Fisica. Edifici C, Campus UAB, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Terron, J.A. [Servicio de Radiofisica, Hospital Universitario Virgen Macarena. E- 41009 Sevilla. Spain (Spain); Rosello, J.; Brualla, L. [ERESA, Avda. Tres Cruces s/n. E-46014 Valencia (Spain); Nunez, L. [Servicio de Radiofisica, Hospital. Puerta de Hierro. E-28222 Majadahonda (Spain); Colmenares, R. [Serv. de Oncologia Radioterapica, Hosp. Ramon y Cajal, E-28049 Madrid (Spain); Gomez, F. [Dpto. de Particulas. Univ. de Santiago. E-15782 Santiago de Compostela. Spain (Spain); Hartmann, G.H. [DKFZ E0400 Im Neuenheimer Feld 280. D-69120 Heidelberg (Germany) (Germany); Sanchez-Doblado, F. [Servicio de Radiofisica, Hospital Universitario Virgen Macarena. E- 41009 Sevilla. Spain (Spain); Dpto. de Fisiologia Medica y Biofisica. Universidad de Sevilla. E-41009 Sevilla. Spain (Spain); Fernandez, F. [Grup de Fisica de les Radiacions, Departament de Fisica. Edifici C, Campus UAB, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Consejo de Seguridad Nuclear, Justo Dorado 11 E-28040 Madrid (Spain)

    2010-12-15

    A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above {approx}8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

  3. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation

    International Nuclear Information System (INIS)

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an 241Am–Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. - Highlights: ► Low intensity neutron fields' characterization using thick threshold detectors. ► Low activity 241Am–Be neutron source spectrum measurement. ► Integral quantities required for radiological protection have been derived. ► The results are in good agreement with those deduced using Bonner spheres. ► The results are not very sensitive to the chosen deconvolution procedure.

  4. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    International Nuclear Information System (INIS)

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  5. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  6. Spectrometry using the PTB neutron multisphere spectrometer (NEMUS) at flight altitudes and at ground level

    International Nuclear Information System (INIS)

    Bonner sphere measurements are presented for flights at altitudes of up to 12 km and geomagnetic latitudes between 26 deg.N and 86 deg.N and compared with results obtained by several survey meters. As an example of the natural neutron background near sea level, results from a recent longterm measurement campaign performed at the PTB site using an extended spectrometer are presented. The dependence of neutron fluence and ambient dose equivalent on the atmospheric pressure is demonstrated

  7. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    Science.gov (United States)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H (*)(10), values of both systems were in good agreement (mapping within the gantry room showed that H (*)(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy(-1) at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal, epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety

  8. Hawking radiation of the Vaidya-Bonner-de Sitter black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chen Deyou; Yang Shuzheng [Institute of Theoretical Physics, China West Normal University, Nanchong, Sichuan 637002 (China)

    2007-08-15

    Considering the unfixed background space-time and the self-gravitational interaction, we view the Hawking radiation of the Vaidya-Bonner- de Sitter black hole by the Hamilton-Jacobi method and the radial geodesic method. The result shows the tunneling rate is related not only to the change of Bekenstein-Hawking entropy but also to the integral of the black hole mass and charge, which does not satisfy the unitary theory and is not in accordance with the known result.

  9. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  10. On Thermal Radiation of Klein-Gordon by Vaidya-Bonner-de Sitter Black Hole%Vaidya-Bonner-de Sitter黑洞对Klein-Gordon粒子的热辐射

    Institute of Scientific and Technical Information of China (English)

    杨波

    2007-01-01

    采用新的Tortoise坐标变换,将Vaidya-Bonner-de Sitter黑洞中的Klein-Gordon方程,在黑洞视界面附近化成典型的波动方程,得到在视界面附近Hawking辐射温度,导出了Hawking热辐射谱.

  11. 一种新Tortoise坐标变换下的Vaidya-Bonner-de Sitter黑洞的熵%Entropy of Vaidya-Bonner-de sitter black hole with a new general tortoise coordinates

    Institute of Scientific and Technical Information of China (English)

    邓娟; 蒋青权; 冯中文; 李国平

    2012-01-01

    采用一种新的广义乌龟坐标变换对Vaidya-Bonner-de Sitter黑洞的熵进行研究,同时对其在旧乌龟坐标变换下的情况也做了对比分析.其结果表明两种情况下熵的形式相近,但是,新的广义乌龟坐标的结果对Vaidya-Bonner-de Sitter黑洞的熵做了相应的修正,新的乌龟坐标变换显得更加合理.%The principal focus of this paper is to study the entropy of Vaidya-Bonner-de Sitter black hole under a new general tortoise coordinate transformation, and then, to make the contrast and analysis of it with the old tortoise coordinates. It is found that the entropies obtained from both the new and old tortoise coordinate transformations are close to each other. The new general tortoise coordinate transformation makes the corresponding modification for the entropy of Vaidya-Bonner-de Sitter black hole and appears to be more reasonable.

  12. Quantum Entropy of the Electromagnetic Field in Vaidya-Bonner-de Sitter Black Hole%Vaidya-Bonner-de Sitter黑洞背景下电磁场的量子熵

    Institute of Scientific and Technical Information of China (English)

    孙鸣超

    2005-01-01

    在Tortoise坐标系中,利用brick-wall模型研究了电磁场对Vaidya-Bonner-de Sitter黑洞熵的量子修正. 当黑洞事件视界不随超前时间变化时,结果与Reissner-Nordstrm-de Sitter黑洞的量子熵完全相同.

  13. Measurements of thermal neutron fluence in the bunker of a cyclotron for PET isotope production; Medidas de fluencia de neutrones termicos en el bunker de un ciclotron de produccion de isotopos para PET

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Villafane, R.; Sansoloni florit, F.; Lagares gonzalez, J. L.; Llop Roig, J.; Guerrero Araque, J. E.; Muniz Gutierrez, J. L.; Perez Morales, J. M.

    2011-07-01

    To measure the neutron spectrum has been used spectrometry system based on Bonner spheres with Au flakes as thermal neutron detector at its center while the results are still pending and will be analyzing another job.

  14. Lorentzian fuzzy spheres

    Science.gov (United States)

    Chaney, A.; Lu, Lei; Stern, A.

    2015-09-01

    We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch singularities appear only after taking the commutative limit. The commutative limit of these solutions corresponds to a sphere embedded in Minkowski space. This "sphere" has several novel features. The induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become tachyonic for a range of the parameters of the theory.

  15. Microseismic source mechanism determination using full waveforms in hydrofracturing: Examples from Barnett shale and Bonner sand

    Science.gov (United States)

    Song, F.; Toksoz, M. N.

    2012-12-01

    Over the last decade, hydraulic fracturing has become one important key enabling technique in the development of unconventional oil and gas reservoirs. Microseismic monitoring has proved to be an effective diagnostic tool to image complex fracturing and to understand fracture growth. The initial uptake of this geophysical technology has been focused on fast and accurate microearthquake locations. In addition to locations, microearthquake source mechanisms, represented by the complete moment tensors, reveal important information on geomechanical understanding of hydrofrac growth and have profound implications on fracturing design. The retrieval of complete moment tensors has been hindered by several factors including limited geophone azimuthal coverage, relatively poor data quality (due to small event magnitudes and high borehole noise) and velocity model uncertainty. In this paper, the complete microseismic moment tensors have been inverted using full waveforms. We use the waveforms to obtain an accurate velocity structure. The unconstrained inversion using two-well data and constrained inversion with one-well data have been conducted on Barnett shale and Bonner sand, respectively. Different fracture growth patterns are seen in these two datasets. The source mechanisms show mixed failure modes in the complex fracture network from the Barnett shale. In the Bonner sands, a planar fracture grows mostly by shear failure at tip characterized by a double couple mechanism. The results may be explained by different reservoir conditions, including the geomechanical properties of the formations. Correctly inverted microearthquake source mechanisms help better understand both the hydraulic fracturing and the underlying reservoir, and aid the development of sophisticated horizontal well completions.

  16. Experiment SPHERE status 2008

    International Nuclear Information System (INIS)

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 1016-1018 eV.

  17. Design of a computation tool for neutron spectrometry and dosimetry through evolutionary neural networks

    International Nuclear Information System (INIS)

    The neutron dosimetry is one of the most complicated tasks of radiation protection, due to it is a complex technique and highly dependent of neutron energy. One of the first devices used to perform neutron spectrometry is the system known as spectrometric system of Bonner spheres, that continuous being one of spectrometers most commonly used. This system has disadvantages such as: the components weight, the low resolution of spectrum, long and drawn out procedure for the spectra reconstruction, which require an expert user in system management, the need of use a reconstruction code as BUNKIE, SAND, etc., which are based on an iterative reconstruction algorithm and whose greatest inconvenience is that for the spectrum reconstruction, are needed to provide to system and initial spectrum as close as possible to the desired spectrum get. Consequently, researchers have mentioned the need to developed alternative measurement techniques to improve existing monitoring systems for workers. Among these alternative techniques have been reported several reconstruction procedures based on artificial intelligence techniques such as genetic algorithms, artificial neural networks and hybrid systems of evolutionary artificial neural networks using genetic algorithms. However, the use of these techniques in the nuclear science area is not free of problems, so it has been suggested that more research is conducted in such a way as to solve these disadvantages. Because they are emerging technologies, there are no tools for the results analysis, so in this paper we present first the design of a computation tool that allow to analyze the neutron spectra and equivalent doses, obtained through the hybrid technology of neural networks and genetic algorithms. This tool provides an user graphical environment, friendly, intuitive and easy of operate. The speed of program operation is high, executing the analysis in a few seconds, so it may storage and or print the obtained information for

  18. Vaidya-Bonner-de Sitter黑洞背景下中微子场和标量场的量子熵%Quantum entropy of the neutrino and scalar fields in Vaidya-Bonner-de Sitter black hole

    Institute of Scientific and Technical Information of China (English)

    孙鸣超

    2003-01-01

    在Tortoise坐标系中,利用Brick-Wall模型研究中微子场和标量场对Vaidya-Bonner-de Sitter黑洞熵的量子修正.当黑洞事件视界不随超前时间变化时,结果与Reissner-Nordstrom-de Sitter黑洞的量子熵完全相同.

  19. Can two spheres swim?

    CERN Document Server

    Klotsa, Daphne; Hill, Richard J A; Bowley, Roger M; Swift, Michael R

    2015-01-01

    We describe experiments and simulations demonstrating the propulsion of a neutrally-buoyant swimmer that consists of a pair of spheres attached by a spring, placed in a vibrating fluid. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. The mechanism for swimming is traced to a jet of fluid generated by the relative motion of the spheres.

  20. Spectrometry and dosimetry of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Ramirez G, J.; Hernandez V, R.; Chacon R, A. [Universidad Autonoma de Zacatecas, 98068 Zacatecas (Mexico)]. e-mail: fermineutron@yahoo.com

    2007-07-01

    Using Monte Carlo methods the spectrum, dose equivalent and ambient dose equivalent of a {sup 239}PuBe at several distances has been determined. Spectrum and both doses, at 100 cm, were determined-experimentally using a Bonner sphere spectrometer. These quantities were obtained by unfolding the spectrometer count rates using artificial neural networks. The dose equivalent, based in the ICRP 21 criteria, was measured with the area neutron dosemeter Eberline model NRI), at 100, 200 and 300 cm. All measurements were carried out in an open space to avoid the room return. With these results it was found that this source has a yield of 8.41E(6) n/s. (Author)

  1. Scattering by a nihility sphere

    CERN Document Server

    Lakhtakia, A

    2006-01-01

    On interrogation by a plane wave, the back-scattering efficiency of a nihility sphere is identically zero, and its extinction and forward-scattering efficiencies are higher than those of a perfectly conducting sphere.

  2. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    Directory of Open Access Journals (Sweden)

    Rosemarie HAINES

    2013-12-01

    Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.

  3. Algebraic properties of Bier spheres

    Directory of Open Access Journals (Sweden)

    Inga Heudtlass

    2012-05-01

    Full Text Available We give a classification of flag Bier spheres, as well as descriptions of the first and second Betti numbers of general Bier spheres. Additionally, we compute the Betti numbers for a specific class of Bier spheres, constructed from skeletons of a full simplex.

  4. Entanglement entropy for odd spheres

    CERN Document Server

    Dowker, J S

    2010-01-01

    It is shown, non--rigorously, that the effective action on a Z_q factored odd spheres (lune) has a vanishing derivative at q=1. This leaves the effective action on the ordinary odd d-sphere as (minus) the value of the entanglement entropy associated with a (d-2)-sphere. Some numbers are given.

  5. Measuring Neutron Spectrum at MIT Research Reactor Utilizing He-3 Bonner Cylinder Approach with an Unfolding Analysis

    Science.gov (United States)

    Leder, Alexander; Ricochet Collaboration

    2016-03-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CENNS) using dark matter style detectors placed near a neutrino source, possibly the MIT research reactor (MITR), which offers a high continuous neutrino flux at high energies. Currently, Ricochet is characterizing the backgrounds at MITR. The main background is the neutrons emitted simultaneously from the core. To characterize this background, we wrapped a Bonner cylinder around a 3He thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum as well its implications for deploying Ricochet in the future.

  6. Conchoid surfaces of spheres

    CERN Document Server

    Peternell, Martin; Sendra, Juana

    2011-01-01

    The conchoid of a surface $F$ with respect to given fixed point $O$ is roughly speaking the surface obtained by increasing the radius function with respect to $O$ by a constant. This paper studies {\\it conchoid surfaces of spheres} and shows that these surfaces admit rational parameterizations. Explicit parameterizations of these surfaces are constructed using the relations to pencils of quadrics in $\\R^3$ and $\\R^4$. Moreover we point to remarkable geometric properties of these surfaces and their construction.

  7. Colouring the Sphere

    OpenAIRE

    Godsil, C. D.; Zaks, J.

    2012-01-01

    Let $G$ be the graph with the points of the unit sphere in $\\mathbb{R}^3$ as its vertices, by defining two unit vectors to be adjacent if they are orthogonal as vectors. We present a proof, based on work of Hales and Straus chromatic number of this graph is four. We also prove that the subgraph of G induced by the unit vectors with rational coordinates is 3-colourable.

  8. Spinning the Fuzzy Sphere

    CERN Document Server

    Berenstein, David; Lashof-Regas, Robin

    2015-01-01

    We construct various exact analytical solutions of the $SO(3)$ BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori.These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the $\\mathcal{N} = 1^*$ field theory with a non-trivial charge density. The solutions we construct have a $\\mathbb{Z}_N$ symmetry, where $N$ is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in $2N$ real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of $N$. Also the continuum limit where $N\\to \\infty$, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.

  9. VMware vSphere Design

    CERN Document Server

    Guthrie, Forbes; Saidel-Keesing, Maish

    2011-01-01

    The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late

  10. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    Science.gov (United States)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy‑1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal, epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while

  11. Falling-sphere radioactive viscometry

    International Nuclear Information System (INIS)

    In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author)

  12. Plaquettes, Spheres, and Entanglement

    CERN Document Server

    Grimmett, Geoffrey R

    2010-01-01

    The high-density plaquette percolation model in d dimensions contains a surface that is homeomorphic to the (d-1)-sphere and encloses the origin. This is proved by a path-counting argument in a dual model. When d=3, this permits an improved lower bound on the critical point p_e of entanglement percolation, namely p_e >= \\mu^-2 where \\mu is the connective constant for self-avoiding walks on Z^3. Furthermore, when the edge density p is below this bound, the radius of the entanglement cluster containing the origin has an exponentially decaying tail.

  13. Generalized Sphere Packing Bound

    OpenAIRE

    Fazeli, Arman; Vardy, Alexander; Yaakobi, Eitan

    2014-01-01

    Kulkarni and Kiyavash recently introduced a new method to establish upper bounds on the size of deletion-correcting codes. This method is based upon tools from hypergraph theory. The deletion channel is represented by a hypergraph whose edges are the deletion balls (or spheres), so that a deletion-correcting code becomes a matching in this hypergraph. Consequently, a bound on the size of such a code can be obtained from bounds on the matching number of a hypergraph. Classical results in hyper...

  14. Sphere Renyi entropies

    CERN Document Server

    Dowker, J S

    2012-01-01

    I give some scalar field theory calculations on a d-dimensional lune of arbitrary angle, evaluating, numerically, the effective action which is expressed as a simple quadrature, for conformal coupling. Using this, the entanglement and Renyi entropies are computed. Massive fields are also considered and a renormalisation to make the (one-loop) effective action vanish for infinite mass is suggested and used, not entirely successfully. However a universal coefficient is derived from the large mass expansion. For the round sphere, I show how to convert the quadrature form of the conformal Laplacian determinant into the more usual sum of Riemann zeta functions (and log2).

  15. Neutron spectrometry and dosimetry by means of evolutive neural networks; Espectrometria y dosimetria de neutrones por medio de redes neuronales evolutivas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde Num. 801, 98000 Zacatecas (Mexico)

    2008-07-01

    The artificial neural networks and the genetic algorithms are two relatively new areas of research, which have been subject to a growing interest during the last years. Both models are inspired by the nature, however, the neural networks are interested in the learning of a single individual, which is defined as fenotypic learning, while the evolutionary algorithms are interested in the adaptation of a population to a changing environment, that which is defined as genotypic learning. Recently, the use of the technology of neural networks has been applied with success in the area of the nuclear sciences, mainly in the areas of neutron spectrometry and dosimetry. The structure (network topology), as well as the learning parameters of a neural network, are factors that contribute in a significant way with the acting of the same one, however, it has been observed that the investigators in this area, carry out the selection of the network parameters through the essay and error technique, that which produces neural networks of poor performance and low generalization capacity. From the revised sources, it has been observed that the use of the evolutionary algorithms, seen as search techniques, it has allowed him to be possible to evolve and to optimize different properties of the neural networks, just as the initialization of the synaptic weights, the network architecture or the training algorithms without the human intervention. The objective of the present work is focused in analyzing the intersection of the neural networks and the evolutionary algorithms, analyzing like it is that the same ones can be used to help in the design processes and training of a neural network, this is, in the good selection of the structural parameters and of network learning, improving its generalization capacity, in such way that the same one is able to reconstruct in an efficient way neutron spectra and to calculate equivalent doses starting from the counting rates of a Bonner sphere

  16. Regular Totally Separable Sphere Packings

    OpenAIRE

    Reid, Samuel

    2015-01-01

    The topic of totally separable sphere packings is surveyed with a focus on regular constructions, uniform tilings, and contact number problems. An enumeration of all regular totally separable sphere packings in $\\mathbb{R}^2$, $\\mathbb{R}^3$, and $\\mathbb{R}^4$ which are based on convex uniform tessellations, honeycombs, and tetracombs, respectively, is presented, as well as a construction of a family of regular totally separable sphere packings in $\\mathbb{R}^d$ that is not based on a convex...

  17. Properties of lithium orthosilicate spheres

    International Nuclear Information System (INIS)

    Lithium ceramic spheres have been proposed as a tritium breeding material for a fusion reactor blanket. Spheres fabricated by Schott, Mainz show a glass-like structure in light and scanning electron microscopy. A crystalline structure, however, was detected by X-ray diffraction. Part of the spheres were annealed at 10000C for 2 h to heal microcracks and to relieve internal stress. After annealing a grain structure was found by microscopy with grains of 10-30 μm grain size. When stored in air the spheres took up moisture. After some days the water content yielded 2-3 mol%. A thermo-mechanical test was conducted with the spheres by cycling between 60 and 6000C in a stainless steel capsule which simulated the pressure load during thermal cycling of the fusion reactor blanket. Examination of the spheres after 10 cycles showed that 11% of as-fabricated spheres were broken. The amount of broken spheres which had been annealed was only 2%. It is assumed that healing of microcracks and relieve of internal stress improves the behavior of the spheres. (orig.)

  18. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Medkour Ishak-Boushaki, Ghania, E-mail: gmedkour@yahoo.com [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Boukeffoussa, Khelifa [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Idiri, Zahir [Centre de Recherche Nucleaire d' Alger, 02 Boulevard Frantz-Fanon, BP 399, Algiers (Algeria); Allab, Malika [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria)

    2012-03-15

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an {sup 241}Am-Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. - Highlights: Black-Right-Pointing-Pointer Low intensity neutron fields' characterization using thick threshold detectors. Black-Right-Pointing-Pointer Low activity {sup 241}Am-Be neutron source spectrum measurement. Black-Right-Pointing-Pointer Integral quantities required for radiological protection have been derived. Black-Right-Pointing-Pointer The results are in good agreement with those deduced using Bonner spheres. Black-Right-Pointing-Pointer The results are not very sensitive to the chosen deconvolution procedure.

  19. Characterization of the CRNA Bonner sphere spectrometer based on {sup 6}LiI scintillator exposed to an {sup 241}Am-Be neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mazrou, Hakim [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@comena-dz.org; Sidahmed, Tassadit; Idiri, Zahir; Lounis-Mokrani, Zohra; Bedek, Said [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon, B.P. 399, 16000 Alger (Algeria); Allab, Malika [Faculte de Physique, Universite des Sciences et de la Technologie Houari-Boumediene (USTHB), Alger (Algeria)

    2008-02-15

    In the present work, measurements have been performed using an available multisphere neutron spectrometer based on a calibrated {sup 6}LiI scintillation detector (10mmox2mm) exposed to an {sup 241}Am-Be neutron source. Sensitive analysis has been performed to assess influence of angle and source-detector distances dependence on the detector responses. Our experimental responses were compared with the published experimental and calculated data for two {sup 241}Am-Be (ISO, PTB) neutron spectra with (4mmox4mm) {sup 6}LiI detector. A discrepancy by a factor of about two was achieved and it is chiefly due to the difference shown in active surface of both detectors.

  20. Panoramic stereo sphere vision

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  1. Sphere Recognition: Heuristics and Examples

    OpenAIRE

    Joswig, Michael; Lutz, Frank H.; Tsuruga, Mimi

    2014-01-01

    Heuristic techniques for recognizing PL spheres using the topological software polymake are presented. These methods have been successful very often despite sphere recognition being known to be hard (for dimensions $d \\ge 3$) or even undecidable (for $d \\ge 5$). A deeper look into the simplicial complexes for which the heuristics failed uncovered a trove of examples having interesting topological and combinatorial properties.

  2. Isentropic Spheres in General Relativity

    CERN Document Server

    Humi, Mayer

    2016-01-01

    Astrophysical gas clouds undergo thermodynamically irreversible processes and emit heat to their surroundings. Due the emission of this heat one can envision an idealized situation in which gas entropy remains (almost) constant. With this motivation in mind we derive in this paper interior solutions to the Einstein equations of General Relativity for spheres which consist of isentropic gas. In particular we investigate solutions in which the mass distribution inside the sphere has several shells. Such spheres might be considered an early stage for the formation of a "solar system".

  3. Public Sphere as Digital Assemblage

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...

  4. Design of a computation tool for neutron spectrometry and dosimetry through evolutionary neural networks; Diseno de una herramienta de computo para la espectrometria y dosimetria de neutrones por medio de redes neuronales evolutivas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico); Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, E-28006 Madrid (Spain)], e-mail: morvymmyahoo@com.mx

    2009-10-15

    The neutron dosimetry is one of the most complicated tasks of radiation protection, due to it is a complex technique and highly dependent of neutron energy. One of the first devices used to perform neutron spectrometry is the system known as spectrometric system of Bonner spheres, that continuous being one of spectrometers most commonly used. This system has disadvantages such as: the components weight, the low resolution of spectrum, long and drawn out procedure for the spectra reconstruction, which require an expert user in system management, the need of use a reconstruction code as BUNKIE, SAND, etc., which are based on an iterative reconstruction algorithm and whose greatest inconvenience is that for the spectrum reconstruction, are needed to provide to system and initial spectrum as close as possible to the desired spectrum get. Consequently, researchers have mentioned the need to developed alternative measurement techniques to improve existing monitoring systems for workers. Among these alternative techniques have been reported several reconstruction procedures based on artificial intelligence techniques such as genetic algorithms, artificial neural networks and hybrid systems of evolutionary artificial neural networks using genetic algorithms. However, the use of these techniques in the nuclear science area is not free of problems, so it has been suggested that more research is conducted in such a way as to solve these disadvantages. Because they are emerging technologies, there are no tools for the results analysis, so in this paper we present first the design of a computation tool that allow to analyze the neutron spectra and equivalent doses, obtained through the hybrid technology of neural networks and genetic algorithms. This tool provides an user graphical environment, friendly, intuitive and easy of operate. The speed of program operation is high, executing the analysis in a few seconds, so it may storage and or print the obtained information for

  5. Simple manipulator for rotating spheres

    International Nuclear Information System (INIS)

    We describe a simple device for rapidly rotating a small sphere to any orientation for inspection of the surface. The ball is held between two small, flat surfaces and rolls as the surfaces are moved differentially parallel to one another

  6. Data compression on the sphere

    CERN Document Server

    McEwen, J D; Eyers, D M; 10.1051/0004-6361/201015728

    2011-01-01

    Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively. The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and il...

  7. Dyson Spheres around White Dwarfs

    CERN Document Server

    Semiz, İbrahim

    2015-01-01

    A Dyson Sphere is a hypothetical structure that an advanced civilization might build around a star to intercept all of the star's light for its energy needs. One usually thinks of it as a spherical shell about one astronomical unit (AU) in radius, and surrounding a more or less Sun-like star; and might be detectable as an infrared point source. We point out that Dyson Spheres could also be built around white dwarfs. This type would avoid the need for artificial gravity technology, in contrast to the AU-scale Dyson Spheres. In fact, we show that parameters can be found to build Dyson Spheres suitable --temperature- and gravity-wise-- for human habitation. This type would be much harder to detect.

  8. Economics and the Public Sphere

    OpenAIRE

    Reinert, Erik S.

    2012-01-01

    This paper identifies four different periods (1848, 1890s - partly also 1930s - and neoliberalism today) where the same tendencies recur: a Rise of Academic Monoculture (of esoteric knowledge), Refeudalization (tendencies towards a plutocracy), Crisis and Renewal. These sequences and their recurrence define the changing relationship between economics and the public sphere, and it is only through activities in the public sphere that any renewal will take place.

  9. Isentropic Spheres in General Relativity

    OpenAIRE

    Humi, Mayer; Roumas, John

    2016-01-01

    Astrophysical gas clouds undergo thermodynamically irreversible processes and emit heat to their surroundings. Due the emission of this heat one can envision an idealized situation in which gas entropy remains (almost) constant. With this motivation in mind we derive in this paper interior solutions to the Einstein equations of General Relativity for spheres which consist of isentropic gas. In particular we investigate solutions in which the mass distribution inside the sphere has several she...

  10. Optimal filters on the sphere

    CERN Document Server

    McEwen, J D; Lasenby, A N

    2006-01-01

    We derive optimal filters on the sphere in the context of detecting compact objects embedded in a stochastic background process. The matched filter and the scale adaptive filter are derived on the sphere in the most general setting, allowing for directional template profiles and filters. The performance and relative merits of the two optimal filters are discussed. The application of optimal filter theory on the sphere to the detection of compact objects is demonstrated on simulated mock data. A naive detection strategy is adopted, with an initial aim of illustrating the application of the new optimal filters derived on the sphere. Nevertheless, this simple object detection strategy is demonstrated to perform well, even a low signal-to-noise ratio. Code written to compute optimal filters on the sphere (S2FIL), to perform fast directional filtering on the sphere (FastCSWT) and to construct the simulated mock data (COMB) are all made publicly available. (Accompanying code will be made publicly available on publi...

  11. Non-equilibrium Casimir forces: Spheres and sphere-plate

    CERN Document Server

    Krüger, Matthias; Bimonte, Giuseppe; Kardar, Mehran

    2011-01-01

    We discuss non-equilibrium extensions of the Casimir force (due to electromagnetic fluctuations), where the objects as well as the environment are held at different temperatures. While the formalism we develop is quite general, we focus on a sphere in front of a plate, as well as two spheres, when the radius is small compared to separation and thermal wavelengths. In this limit the forces can be expressed analytically in terms of the lowest order multipoles, and corroborated with results obtained by diluting parallel plates of vanishing thickness. Non-equilibrium forces are generally stronger than their equilibrium counterpart, and may oscillate with separation (at a scale set by material resonances). For both geometries we obtain stable points of zero net force, while two spheres may have equal forces in magnitude and direction resulting in a self-propelling state.

  12. Unveiling small sphere's scattering behavior

    CERN Document Server

    Tzarouchis, Dimitrios C; Sihvola, Ari

    2016-01-01

    A classical way for exploring the scattering behavior of a small sphere is to approximate Mie coefficients with a Taylor series expansion. This ansatz delivered a plethora of insightful results, mostly for small spheres supporting electric localized plasmonic resonances. However, many scattering aspects are still uncharted, especially for the case of magnetic resonances. Here, an alternative system ansatz is proposed based on the Pad\\'e approximants for the Mie coefficients. The extracted results reveal new aspects, such as the existence of a self-regulating radiative damping mechanism for the first magnetic resonance. Hence, a systematic way of exploring the scattering behavior is introduced, sharpening our understanding about sphere's scattering behavior and its emergent functionalities.

  13. Troubleshooting vSphere storage

    CERN Document Server

    Preston, Mike

    2013-01-01

    This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge

  14. Mass spectrometry.

    Science.gov (United States)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  15. LAGO on the unit sphere.

    Science.gov (United States)

    Laflamme-Sanders, Alexandra; Zhu, Mu

    2008-11-01

    LAGO is an efficient kernel algorithm designed specifically for the rare target detection problem. However, unlike other kernel algorithms, LAGO cannot be easily used with many domain-specific kernels. We solve this problem by first providing a unified framework for LAGO and clarifying its basic principle, and then applying that principle on the unit sphere instead of in the Euclidean space. PMID:18775643

  16. Wilson loop on a sphere

    OpenAIRE

    Boulatov, D. V.

    1993-01-01

    We give the formula for a simple Wilson loop on a sphere which is valid for an arbitrary QCD$_2$ saddle-point $\\rho(x)$: \\mbox{$W(A_1,A_2)=\\oint \\frac{dx}{2\\pi i} \\exp(\\int dy \\frac{\\rho(y)}{y-x}+A_2x)$}. The strong-coupling-phase solution is investigated.

  17. Sphere recognition lies in NP

    OpenAIRE

    Schleimer, Saul

    2004-01-01

    We prove that the three-sphere recognition problem lies in the complexity class NP. Our work relies on Thompson's original proof that the problem is decidable [Math. Res. Let., 1994], Casson's version of her algorithm, and recent results of Agol, Hass, and Thurston [ArXiv, 2002].

  18. Kinetic theory of hard spheres

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1979-01-01

    Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonloca

  19. Facility Management journal special feature on energy. Intelligent energy supply and air conditioning concept for the ''Bonner Bogen'' buildings; Facility Management-Special ''Energie''. Intelligentes Energie- und Klimakonzept fuer den ''Bonner Bogen''

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    In the ''Bonner Bogen'' construction project, the focus was on resources-saving technology and maximum user comfort, resulting in an integrated planning and implementation process. According to the investor, BonnVisio, the technical infrastructure and energy center of the building - based on groundwater geothermal energy with aquifer storage - is unique in Germany and Europe in terms of size, mode of operation, and efficiency. (orig.)

  20. Eddy currents in a conducting sphere

    Science.gov (United States)

    Bergman, John; Hestenes, David

    1986-01-01

    This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.

  1. Minimality of Symplectic Fiber Sums along Spheres

    CERN Document Server

    Dorfmeister, Josef G

    2010-01-01

    In this note we complete the discussion of minimality of symplectic fiber sums. We find, that for fiber sums along spheres the minimality of the sum is determined by the cases discussed by M. Usher and one additional case: If the sum is the result of the rational blow-down of a symplectic -4-sphere in X, then it is non-minimal if X contains a certain configuration of exceptional spheres in relation to this -4-sphere.

  2. Spectrometry and dosimetry of isotopic sources of neutrons by means of artificial neural networks

    International Nuclear Information System (INIS)

    The artificial neural networks technology has been applied to reconstruct the neutrons spectra of two isotopic sources: 252Cf, and 241Am-Be. Also, this technology has been applied to obtain the effective dose, E, and the personal dose equivalents, Hp(10) and environmental, H *(10). To obtain the spectra and the doses only were used the count rates produced in a Bonner Spheres spectrometer with a scintillator of 6LiI(Eu) of 0.4 φ x 0.4 cm2. The equivalent environmental dose and the spectra of the sources were also obtained by means of the reconstruction code BUNKIUT. When comparing the results obtained by means of both procedures it was found that they are consistent. (Author)

  3. Coating a Sphere With Evaporated Metal

    Science.gov (United States)

    Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.

    1986-01-01

    In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.

  4. Spheres of Justice within Schools

    DEFF Research Database (Denmark)

    Sabbagh, Clara; Resh, Nura; Mor, Michal;

    2006-01-01

    This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education......, the allocation of (or selection into) learning places, teaching–learning practices, teachers’ treatment of students, and student evaluations of grade distribution. We discuss the literature on the beliefs by students and teachers about the just distribution of educational goods in these five domains......, and on the practices used in the actual allocation of these goods. In line with normative ‘spheres of justice’ arguments in social theory, we conclude that the ideals of social justice within schools vary strongly according to the particular resource to be distributed. Moreover, these ideals often do...

  5. Active swarms on a sphere

    Science.gov (United States)

    Sknepnek, Rastko; Henkes, Silke

    2015-02-01

    We show that coupling to curvature nontrivially affects collective motion in active systems, leading to motion patterns not observed in flat space. Using numerical simulations, we study a model of self-propelled particles with polar alignment and soft repulsion confined to move on the surface of a sphere. We observe a variety of motion patterns with the main hallmarks being polar vortex and circulating band states arising due to the incompatibility between spherical topology and uniform motion—a consequence of the "hairy ball" theorem. We provide a detailed analysis of density, velocity, pressure, and stress profiles in the circulating band state. In addition, we present analytical results for a simplified model of collective motion on the sphere showing that frustration due to curvature leads to stable elastic distortions storing energy in the band.

  6. On sphere-filling ropes

    CERN Document Server

    Gerlach, Henryk

    2010-01-01

    What is the longest rope on the unit sphere? Intuition tells us that the answer to this packing problem depends on the rope's thickness. For a countably infinite number of prescribed thickness values we construct and classify all solution curves. The simplest ones are similar to the seamlines of a tennis ball, others exhibit a striking resemblance to Turing patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.

  7. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-02-23

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle. PMID:26843132

  8. Mastering VMware vSphere 5

    CERN Document Server

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  9. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  10. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  11. VMware vSphere design

    CERN Document Server

    Guthrie, Forbes

    2013-01-01

    Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v

  12. Sphere Drag and Heat Transfer

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  13. Second-sphere complexes in analytical chemistry

    International Nuclear Information System (INIS)

    Literary data on the application in the modern analytical chemistry of outer-sphere complexes, forming from coordination-saturated inner-sphere complexes and ligands, cation particles or organic solvent molecules in the second sphere are summarised. It is shown, that the outer-sphere complexes peculiarities, involving in their relatively low stability and activation energy for the processes in the second sphere, together with their variety allows one to effectively use these complexes for separation, extraction and, especially, determination of inorganic and organic substances. Outer-sphere complexes are used to determine some transition metals, lanthanides, berillium, boron and some other elements. The improvement of sensitivity, selectivity and expressiveness of analytical determination, achieved here, is discussed

  14. Sphere-Pac Evaluation for Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2005-05-19

    The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at Oak Ridge National Laboratory with the objective of conducting the research and development necessary to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-type fuels. This report provides a review of development efforts related to the preparation of sphere-pac fuels and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are also outlined.

  15. Synthesis and characterization of hydrocarbon sphere

    International Nuclear Information System (INIS)

    With glucose as starting material, hydrocarbon sphere which was rich in oxygen containing functional groups was synthesized by hydrothermal carbonization process, and characterized by SEM and FTIR techniques. The results show that the size and dispersion of carbon spheres depend on many factors, including the concentration of glucose, the reaction temperature and the adulterated organic monomer. The obtained hydrocarbon spheres contain rich functional groups which can greatly improve the hydrophilicity and chemical reactivity. (authors)

  16. Counter public spheres and global modernity

    OpenAIRE

    Fenton, Natalie; Downey, John

    2015-01-01

    This article explores the concept of counter public spheres and their relationship to the dominant public sphere. We argue that counter public spheres are increasingly relevant due to particular social and political configurations that mark out a distinct stage of modernity. We suggest that this stage is characterised in particular by the intensification of globalisation, the rise of neo-liberalism and a decline of trust and social democracy resulting in instability in the dominant public sph...

  17. Counter public spheres and global modernity:

    OpenAIRE

    Downey, John; Fenton, Natalie

    2003-01-01

    This article explores the concept of counter public spheres and their relationship to the dominant public sphere. We argue that counter public spheres are increasingly relevant due to particular social and political configurations that mark out a distinct stage of modernity. We suggest that this stage is characterised in particular by the intensification of globalisation, the rise of neo-liberalism and a decline of trust and social democracy resulting in instability in the dominant public sph...

  18. The fuzzy sphere *-product and spin networks

    International Nuclear Information System (INIS)

    We analyze the expansion of the fuzzy sphere noncommutative product in powers of the noncommutativity parameter. To analyze this expansion we develop a graphical technique that uses spin networks. This technique is potentially interesting in its own right as introducing spin networks of Penrose into noncommutative geometry. Our analysis leads to a clarification of the link between the fuzzy sphere noncommutative product and the usual deformation quantization of the sphere in terms of the *-product

  19. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 6000C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 103μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  20. Hollow Spheres in Composite Materials and Metallic Hollow Sphere Composites (MHSC)

    Science.gov (United States)

    Baumeister, Erika; Molitor, Martin

    The newly developed metallic hollow spheres are used in combination with a polymeric matrix for producing metallic hollow-sphere-composites (MSHC), which have been developed for mechanical engineering applications in the “InnoZellMet” project.

  1. The periodically oscillating plasma sphere

    International Nuclear Information System (INIS)

    A new method of operating an inertial electrostatic confinement (IEC) device is proposed, and its performance is evaluated. The scheme involved an oscillating thermal cloud of ions immersed in a bath of electrons that form a harmonic oscillator potential. The scheme is called the periodically oscillating plasma sphere, and it appears to solve many of the problems that may limit other IEC systems to low gain. A set of self-similar solutions to the ion fluid equations is presented, and plasma performance is evaluated. Results indicate that performance enhancement of gridded IEC systems such as the Los Alamos intense neutron source device is possible as well as high-performance operation for low-loss systems such as the Penning trap experiment. Finally, a conceptual idea for a massively modular Penning trap reactor is also presented

  2. Measurement of the neutron spectrum in a room with an accelerator Varian 2300C/D Linac using the Bonner multisphere spectrometer

    International Nuclear Information System (INIS)

    The generated neutron field varies considerably and depends on the beam energy, on the shielding of the accelerator, on the filters for beam homogeneity, and also on the mobile collimators and geometry of irradiation. The estimation of the component relative to the photoneutrons has practical interest for evaluation of the radiological risks for the workers and for the patient as well. Due to the high frequency magnetic field, and to the photon abundance resulting of the escape and scattering at treatment room, those measurements present some difficulties. Measurements of the neutron fields can be made with a Bonner spectrometer. Those system was calibrated with referred neutron standard sources and used for make measurements on a spot of the room where a Variant 2300C/D Linac is installed. The unfolding process used the BUNKI computer code for determination of the neutron spectra at the measurement spot

  3. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel;

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  4. Habitable sphere and fine structure constant

    CERN Document Server

    Kozlovskii, Miroslaw P; Kozlowski, Miroslaw; Marciak-Kozlowska, Janina

    2005-01-01

    Future space missions, TPF and Darwin will focus on searches of signatures of life on extrasolar planets. In this paper we look for model independ definition of the habitable zone. It will be shown that the radius of the habitable sphere depends only on the constants of the Nature. Key words: Habitable sphere, fine structure constant.

  5. Electric dipoles on the Bloch sphere

    CERN Document Server

    Vutha, Amar C

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  6. Electric dipoles on the Bloch sphere

    Science.gov (United States)

    Vutha, Amar C.

    2015-03-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics.

  7. Reversible thermal gelation in soft spheres

    DEFF Research Database (Denmark)

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.;

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at high...... temperatures. A phase diagram analogous to that of sterically stabilized colloids is proposed....

  8. Marketing approach to management of service sphere

    OpenAIRE

    Остафійчук, Ярослав Васильович

    2015-01-01

    Approaches to management service sphere at different hierarchical levels with the use of marketing methodology have been considered. Functions of regional marketing in service sphere and its structure, possibilities of integration into marketing of components from other administrative conceptshave been analyzed.

  9. Evolutionary neural networks: a new alternative for neutron spectrometry

    International Nuclear Information System (INIS)

    A device used to perform neutron spectroscopy is the system known as a system of Bonner spheres spectrometer, this system has some disadvantages, one of these is the need for reconstruction using a code that is based on an iterative reconstruction algorithm, whose greater inconvenience is the need for a initial spectrum, as close as possible to the spectrum that is desired to avoid this inconvenience has been reported several procedures in reconstruction, combined with various types of experimental methods, based on artificial intelligence technology how genetic algorithms, artificial neural networks and hybrid systems evolved artificial neural networks using genetic algorithms. This paper analyzes the intersection of neural networks and evolutionary algorithms applied in the neutron spectroscopy and dosimetry. Due to this is an emerging technology, there are not tools for doing analysis of the obtained results, by what this paper presents a computing tool to analyze the neutron spectra and the equivalent doses obtained through the hybrid technology of neural networks and genetic algorithms. The toolmaker offers a user graphical environment, friendly and easy to operate. (author)

  10. Cosmic-ray neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    When primary cosmic rays consisting of galactic cosmic rays and solar particles come into the earth's atmosphere, secondary neutrons generated through nuclear reactions with atmospheric atoms reach the ground. Over the past 10 years, there has been increasing concern about the exposure of air crews to atmospheric cosmic radiation. At aviation altitudes, the neutron component of the secondary cosmic radiation contributes about half of the dose equivalent. Recently, an accumulation of the semiconductor device greatly increases and the soft-errors of SRAM and DRAM on the ground level caused by high-energy cosmic-ray neutrons become a serious problem in the world. Under these circumstances, cosmic-ray neutron spectrometry and dosimetry are presented here in the terrestrial and space environments where neutrons and protons coexist. The neutron detection methods for use in this mixed field are described; 1) multi-moderator spectrometer (Bonner Ball), 2) organic liquid scintillation spectrometer, 3) dose-equivalent counter (rem counter) and 4) Phoswich-type detector. Using these detectors, neutron energy spectra and dose-equivalent rates have been measured on the ground at sea level and at mountain level, aboard an airplane and in space. The space experiments were done using a balloon, space shuttle and space station. The neutron spectrum on the ground has three major peaks, thermal energy peak, evaporation peak around 1 MeV and cascade peak around 100 MeV. While on the other hand, the neutron spectrum apart from the ground has no thermal neutron peak that comes from the albedo neutron effect backscattered from the terrestrial surface. The time-sequential experimental results in Japan, Europe and U.S.A. are described with the experimental procedures by paying attention to variation with latitude, altitude and solar activity. (author)

  11. The proximity force approximation for the Casimir energy of plate-sphere and sphere-sphere systems in the presence of one extra compactified universal dimension

    CERN Document Server

    Cheng, Hongbo

    2013-01-01

    The Casimir energies for plate-sphere system and sphere-sphere system under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.

  12. The Proximity Force Approximation for the Casimir Energy of Plate-Sphere and Sphere-Sphere Systems in the Presence of One Extra Compactified Universal Dimension

    Science.gov (United States)

    Cheng, Hongbo

    2015-08-01

    The Casimir energies for plate-sphere system and sphere-sphere systems under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.

  13. Superelastic carbon spheres under high pressure

    Science.gov (United States)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  14. Two-sphere low Reynold's propeller

    OpenAIRE

    Najafi, Ali; Zargar, Rojman

    2010-01-01

    A three-dimensional model of a low-Reynold's swimmer is introduced and analyzed in this paper. This model consists of two large and small spheres connected by two perpendicular thin rods. The geometry of this system is motivated by the microorganisms that use a single tail to swim, the large sphere represents the head of microorganism and the small sphere resembles its tail. Each rod changes its length and orientation in a non-reciprocal manner that effectively propel the system. Translationa...

  15. Directional spin wavelets on the sphere

    CERN Document Server

    McEwen, Jason D; Büttner, Martin; Peiris, Hiranya V; Wiaux, Yves

    2015-01-01

    We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is able to probe the directional intensity of spin signals. Furthermore, directional spin scale-discretised wavelets support the exact synthesis of a signal on the sphere from its wavelet coefficients and satisfy excellent localisation and uncorrelation properties. Consequently, directional spin scale-discretised wavelets are likely to be of use in a wide range of applications and in particular for the analysis of the polarisation of the cosmic microwave background (CMB). We develop new algorithms to compute (scalar and spin) forward and inverse wavelet transforms exactly and efficiently for very large data-sets containing tens of millions of samples on the sphere. By leveraging a novel sampling theorem on the rotation group developed in a companion article, only hal...

  16. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  17. Entanglement entropy across a deformed sphere

    CERN Document Server

    Mezei, Márk

    2014-01-01

    I study the entanglement entropy (EE) across a deformed sphere in conformal field theories (CFTs). I show that the sphere (locally) minimizes the universal term in EE among all shapes. In arXiv:1407.7249 it was derived that the sphere is a local extremum, by showing that the contribution linear in the deformation parameter is absent. In this paper I demonstrate that the quadratic contribution is positive and is controlled by the coefficient of the stress tensor two point function, $C_T$. Such a minimization result contextualizes the fruitful relation between the EE of a sphere and the number of degrees of freedom in field theory. I work with CFTs with gravitational duals, where all higher curvature couplings are turned on. These couplings parametrize conformal structures in stress tensor $n$-point functions, hence I show the result for infinitely many CFT examples.

  18. Exceptional cosmetic surgeries on homology spheres

    OpenAIRE

    Ravelomanana, Huygens C.

    2016-01-01

    We investigate the cosmetic surgery conjecture for hyperbolic knots in integer homology spheres, focusing on exceptional surgeries. We give some restrictions on the slopes of exceptional truly cosmetic surgeries according to the type of surgery.

  19. Gender, Diversity and the European Public Sphere

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2009-01-01

    This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....

  20. Scintillation forward spectrometer of the SPHERE setup

    International Nuclear Information System (INIS)

    The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab

  1. Elastic spheres can walk on water

    Science.gov (United States)

    Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.

    2016-02-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  2. ANALYSIS OF MECHANISMS FINANCING OF CULTURAL SPHERE

    Directory of Open Access Journals (Sweden)

    Costandachi Gheorghe

    2008-01-01

    Full Text Available In this work is made analysis concern basically state structures of culture and arts activities, is describes the problems are met during the reforming process the financial mechanisms in cultural sphere. Author disclosed the ways evolve private and estate financing cultural sphere, also is disclosed why is need estate financial support. The work contains something detailed measures actions to improve financial and mechanisms financing of cultural sphere. Analyzing questions of modernization of budgetary financing of branch the author have formulated effectiveness of use of budgetary funds at all levels in cultural structures and proposed the ways of finishing of market reforms in cinematography. In the final of work is presented scheme system of financing, formation and distribution of financial resources in cinematography and is making conclusions and is offered wais of the solutions created present situation in this sphere in Moldova.

  3. A sphere moving down the surface of a static sphere and a simple phase diagram

    CERN Document Server

    Jayanth, V; Biswas, Anindya Kumar

    2008-01-01

    A small sphere placed on the top of a big static frictionless sphere, slips until it leaves the surface at an angle $\\theta_{l}=\\cos^{-1}{2/3}$. On the other extreme, if the surface of the big sphere has coefficient of static friction, $\\mu_s\\to\\infty$, the small sphere starts rolling and continues to do so until it leaves the surface at an angle $\\theta_{l} =\\cos^{-1}{10/17}$. In the case where, $0\\leq\\mu_s<\\infty$, we get a simple phase diagram. The three phases are pure rolling, rolling with slipping and detached state. One phase line separates pure rolling from rolling with slipping. This diagram is obtained when stopping angles for pure rolling are plotted against static friction coefficients $\\mu_s$. Study in this article is restricted to the case when the mobile sphere starts at the top of the static sphere with infinitesimal kinetic energy.

  4. Please comply: the water entry of soft spheres

    Science.gov (United States)

    Belden, Jesse; Hurd, Randy; Fanning, Tate; Jandron, Michael; Rekos, John; Bower, Allan; Truscott, Tadd

    2015-11-01

    The typical phenomena associated with sphere water impact are significantly altered when the sphere material is highly compliant rather than rigid. We describe the water impact physics of homogenous and hollow elastic spheres. The homogeneous spheres undergo large oscillatory deformations throughout entry that carve nested disturbances into the normally smooth air cavity, altering cavity shape and pinch off. Using an analytical model, we relate the maximum sphere deformation to the material properties and impact velocity. This characteristic deformation is used to reconcile the differences between cavities formed by compliant and rigid spheres. In addition to the nested disturbances seen with the homogeneous spheres, we observe azimuthal irregularities on the cavity during water entry of hollow elastic spheres. Based on experiments and finite-element modeling, we suggest that these disturbances are initiated by vibration mode shapes excited in the hollow spheres upon impact. For all sphere types, we compare the forces throughout water entry to the rigid sphere case.

  5. Hollow sphere ceramic particles for abradable coatings

    International Nuclear Information System (INIS)

    A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate

  6. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  7. Liouville Quantum Gravity on the Riemann Sphere

    Science.gov (United States)

    David, François; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent

    2016-03-01

    In this paper, we rigorously construct Liouville Quantum Field Theory on the Riemann sphere introduced in the 1981 seminal work by Polyakov. We establish some of its fundamental properties like conformal covariance under PSL{_2({C})}-action, Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly formula. We also make precise conjectures about the relationship of the theory to scaling limits of random planar maps conformally embedded onto the sphere.

  8. Surface polaritons on left-handed spheres

    OpenAIRE

    Ancey, Stéphane; Décanini, Yves; Folacci, Antoine; Gabrielli, Paul

    2007-01-01

    We consider the interaction of an electromagnetic field with a left-handed sphere, i.e., with a sphere fabricated from a left-handed material, in the framework of complex angular momentum techniques. We emphasize more particularly, from a semiclassical point of view, the resonant aspects of the problem linked to the existence of surface polaritons. We prove that the long-lived resonant modes can be classified into distinct families, each family being generated by one surface polariton propaga...

  9. Geometrical Dynamics in a Transitioning Superconducting Sphere

    Directory of Open Access Journals (Sweden)

    Claycomb J. R.

    2006-10-01

    Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  10. vSphere virtual machine management

    CERN Document Server

    Fitzhugh, Rebecca

    2014-01-01

    This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.

  11. Volume bounds of conic 2-spheres

    OpenAIRE

    Fang, Hao; Lai, Mijia

    2016-01-01

    We obtain sharp volume bound for a conic 2-sphere in terms of its Gaussian curvature bound. We also give the geometric models realizing the extremal volume. In particular, when the curvature is bounded in absolute value by $1$, we compute the minimal volume of a conic sphere in the sense of Gromov. In order to apply the level set analysis and iso-perimetric inequality as in our previous works, we develop some new analytical tools to treat regions with vanishing curvature.

  12. Anisotropic fluid spheres in general relativity

    International Nuclear Information System (INIS)

    A procedure is developed to find static solutions for anisotropic fluid spheres from known static solutions for perfect fluid spheres. The method is used to obtain four exact analytical solutions of Einstein's equations for spherically symmetric self-gravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. The physical features of one of the solutions are briefly discussed. Many previously known perfect fluid solutions are derived as particular cases. (author)

  13. A novel sampling theorem on the sphere

    CERN Document Server

    McEwen, J D

    2011-01-01

    We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational comple...

  14. Spectrometry behind concrete shielding for neutrons produced by 400MeV/u$^{12}C$ ions impinging on a thick graphite target

    CERN Document Server

    Fehrenbacher, G; Iwase, H; Radon, T; Schardt, D; Schuhmacher, H; Wittstock, J; Radon, T; Schardt, D; Schumacher, H; Wittstock, J

    2004-01-01

    Neutron spectra were measured at the GSI heavy ion accelerator using the Bonner sphere spectrometer NEMUS. The irradiation experiments were carried out at Cave A, an experimental area at the GSI heavy ion synchrotron SIS. A 400 MeV/u carbon ion beam impinging on a thick graphite target was used as neutron source. Spectral distributions were determined by unfolding the measured readings using the unfolding code MAXED for four positions outside the shielding and for four positions in the entry maze of Cave A. First results are presented for two positions from Monte Carlo simulations carried out with a newer version of FLUKA con-sidering both the particle production in nucleus-nucleus collisions and the transportation of particles through the shielding. Measured and calculated neutron spectra are compared for these positions.

  15. Spectrometry and dosimetry of isotopic sources of neutrons by means of artificial neural networks; Espectrometria y dosimetria de fuentes isotopicas de neutrones mediante redes neuronales artificiales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C/Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain); Barquero, R., E-mail: fermineutron@yahoo.co [Hospital del Rio Hortega, C/Dulzaina No. 2, 47012 Valladolid (Spain)

    2010-09-15

    The artificial neural networks technology has been applied to reconstruct the neutrons spectra of two isotopic sources: {sup 252}Cf, and {sup 241}Am-Be. Also, this technology has been applied to obtain the effective dose, E, and the personal dose equivalents, Hp(10) and environmental, H *(10). To obtain the spectra and the doses only were used the count rates produced in a Bonner Spheres spectrometer with a scintillator of {sup 6}LiI(Eu) of 0.4 {phi} x 0.4 cm{sup 2}. The equivalent environmental dose and the spectra of the sources were also obtained by means of the reconstruction code BUNKIUT. When comparing the results obtained by means of both procedures it was found that they are consistent. (Author)

  16. Spectrometry behind concrete shielding for neutrons produced by 400 MeV/u 12C ions impinging on a thick graphite target

    International Nuclear Information System (INIS)

    Neutron spectra were measured at the GSI heavy ion accelerator using the Bonner sphere spectrometer NEMUS. The irradiation experiments were carried out at Cave A, an experimental area at the GSI heavy ion synchrotron SIS. A 400 MeV/u carbon ion beam impinging on a thick graphite target was used as neutron source. Spectral distributions were determined by unfolding the measured readings using the unfolding code MAXED for four positions outside the shielding and for four positions in the entry maze of Cave A. First results are presented for two positions from Monte Carlo simulations carried out with a newer version of FLUKA considering both the particle production in nucleus-nucleus collisions and the transportation of particles through the shielding. Measured and calculated neutron spectra are compared for these positions. (orig.)

  17. Innovation embedded in entrepreneurs’ networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak; Vang, Jan

    Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...... societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation is...... negatively affected by private sphere networking and positively affected by public sphere networking, but innovation is less promoted by public sphere networking in China than in Denmark....

  18. Collinear swimmer propelling a cargo sphere at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2014-01-01

    The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes' equations in the presence of a sphere with no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.

  19. Terminal energy distribution of blast waves from bursting spheres

    Science.gov (United States)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  20. The Separate Spheres Model of Gendered Inequality.

    Directory of Open Access Journals (Sweden)

    Andrea L Miller

    Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  1. The Separate Spheres Model of Gendered Inequality.

    Science.gov (United States)

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454

  2. Robotics Programming Competition Spheres, Russian Part

    Science.gov (United States)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  3. The thermal conductivity of beds of spheres

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.

    1987-01-01

    The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 ..mu..m dia solid Al/sub 2/O/sub 3/, the same Al/sub 2/O/sub 3/ spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al/sub 2/O/sub 3/, Al/sub 2/O/sub 3//center dot/7 w/o Cr/sub 2/O/sub 3/, and partially stabilized ZrO/sub 2/. The hollow microspheres had diameters from 2100 to 3500 ..mu..m and wall thicknesses from 80 to 160 ..mu..m. 12 refs., 7 figs., 4 tabs.

  4. Java meshing tool for sphere arrangements

    International Nuclear Information System (INIS)

    A tool for meshing sphere arrangements was programmed in order to perform finite element calculations. Sphere arrangements are investigated in frame of the feasibility study of the sphere-pac nuclear fuel. One major concern of this study is the thermal conductivity of the arrangement. Further concerns are the mechanical behavior and sintering of the fuel. The thermal conductivity of the fuel was addressed with the computer code SPACON based on a unit cell approach and a radial heat flow experiment. However, a further approach using the finite element method is desirable, in order to better understanding the thermal flow through the package and to cross check with SPACON data and with experimental data. Also the mechanical behavior of the fuel could be addressed using the finite element technique. (author)

  5. Two-sphere low Reynold's propeller

    CERN Document Server

    Najafi, Ali

    2010-01-01

    A three-dimensional model of a low-Reynold's swimmer is introduced and analyzed in this paper. This model consists of two large and small spheres connected by two perpendicular thin rods. The geometry of this system is motivated by the microorganisms that use a single tail to swim, the large sphere represents the head of microorganism and the small sphere resembles its tail. Each rod changes its length and orientation in a non-reciprocal manner that effectively propel the system. Translational and rotational velocities of the swimmer are studied for different values of parameters. Our findings show that by changing the parameters we can adjust both the velocity and the direction of motion of the swimmer.

  6. Scalar Solitons on the Fuzzy Sphere

    CERN Document Server

    Austing, P; Thorlacius, L; Austing, Peter; Jonsson, Thordur; Thorlacius, Larus

    2002-01-01

    We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.

  7. Path integral representations on the complex sphere

    International Nuclear Information System (INIS)

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S3C. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  8. vSphere design best practices

    CERN Document Server

    Bolander, Brian

    2014-01-01

    An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.

  9. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including the......Extensive studies of scattering of acoustical signals by targets of different regular shapes have formed a useful background for attempts to develop procedures for remote monitoring of suspended materials in marine environments as, for instance, measurements of characteristic parameters of...

  10. Bridging conflicting innovation spheres of tourism innovation

    DEFF Research Database (Denmark)

    Fuglsang, Lars; Sørensen, Flemming; Nordli, Anne Jørgensen

    2016-01-01

    competition which may inhibit networked and open innovation. Tourist destinations are examples of such localized systems. In this paper we present two extreme cases of tourist destinations in which collaborative innovation processes were established in spite of fierce disagreements between actors. We argue...... that in tourist destinations actors belong to conflicting innovation spheres but can be brought together in innovation processes when a diplomat enable compromises and when innovation spheres change from personalized to more generalized forms of activity during interaction. The findings are relevant...

  11. Packing Effect of Excluded Volume on Hard-Sphere Colloids

    Institute of Scientific and Technical Information of China (English)

    肖长明; 金国钧; 马余强

    2001-01-01

    We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.

  12. Steel Spheres and Skydiver--Terminal Velocity

    Science.gov (United States)

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  13. Transnational public spheres : A spatial perspective

    NARCIS (Netherlands)

    Forough, Mohammadbagher

    2015-01-01

    Whereas more and more transnational challenges (such as global financial crises, climate change, terrorism, migration, and so forth) are affecting people’s lives, democratic systems and their public spheres (i.e. spaces in which citizens can express their collective concerns) are national. To give a

  14. Pious Entertainment: Hizbullah's Islamic Cultural Sphere

    NARCIS (Netherlands)

    Alagha, J.E.

    2011-01-01

    Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and unders

  15. Einstein Metrics on Rational Homology Spheres

    OpenAIRE

    Boyer, Charles P.; Galicki, Krzysztof

    2003-01-01

    We prove the existence of Sasakian-Einstein metrics on infinitely many rational homology spheres in all odd dimensions greater than 3. In dimension 5 we obain somewhat sharper results. There are examples where the number of effective parameters in the Einstein metric grows exponentially with dimension.

  16. Casimir stress on lossy magnetodielectric spheres

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Knoell, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    An expression for the Casimir stress on arbitrary dispersive and lossy linear magnetodielectric matter at finite temperature, including left-handed material, is derived and applied to spherical systems. To cast the relevant part of the scattering Green tensor for a general magnetodielectric sphere in a convenient form, classical Mie scattering is reformulated.

  17. String Field Theory and the Fuzzy Sphere

    OpenAIRE

    Ita, Harald; Oz, Yaron

    2001-01-01

    We use boundary string field theory to study open string tachyon condensation on a three-sphere closed string background. We consider the closed string background described by $SU(2)_k$ WZW model in the limit of large $k$. We compute the exact tachyon potential and analyse the decay modes.

  18. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  19. On configuration spaces of hard spheres

    CERN Document Server

    Baryshnikov, Yuliy; Kahle, Matthew

    2011-01-01

    We study configuration spaces of hard spheres in a bounded region. We develop a general Morse-theoretic framework, and show that mechanically balanced configurations play the role of critical points. As an application, we find the precise threshold radius for a configuration space to be homotopy equivalent to the configuration space of points.

  20. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  1. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  2. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2007-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... contexts such as search-and-rescue missions and medical or biological studies....

  3. Second virial coefficients of dipolar hard spheres

    NARCIS (Netherlands)

    Philipse, A.P.; Kuipers, B.W.M.

    2010-01-01

    An asymptotic formula is reported for the second virial coefficient B2 of a dipolar hard-sphere (DHS) fluid, in zero external field, for strongly coupled dipolar interactions. This simple formula, together with the one for the weak-coupling B2, provides an accurate prediction of the second virial co

  4. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  5. DNS of Swirling Flow Past a Sphere

    Science.gov (United States)

    Higgins, Keith; Ooi, Andrew; Chong, Min; Balachandar, S.

    2001-11-01

    Experimental investigations into the swirling flow past a sphere have revealed a range of surprising and complex flow phenomena. These results have advanced our understanding in applications such as particle entrainment and the combustion of fuel droplets. Renewed interest in this problem has been kindled by recent experimental observations. (Mattner et al. 2001, submitted for review to J. Fluid Mech.) This has motivated the development of a fully spectral direct numerical simulation of the three-dimensional time-dependent swirling flow past a sphere. The effect of swirl on the various transitions in the wake structure behind a sphere is unknown. The main objective of our study is to identify transitions that occur with increasing Reynolds number and swirl strength. Firstly, we show the effect of swirl strength on the axisymmetric sphere wake and drag. Then, using a three-dimensional simulation, we examine the effect of swirl on the time histories of the lift, drag and velocities. We hope to show some visualisations of the topology of the 3D wake flow using the invariants of the velocity gradient tensor.

  6. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  7. Turbulent drag reduction using fluid spheres

    NARCIS (Netherlands)

    Gillissen, J.J.J.

    2013-01-01

    Using direct numerical simulations of turbulent Couette flow, we predict drag reduction in suspensions of neutrally buoyant fluid spheres, of diameter larger than the Kolmogorov length scale. The velocity fluctuations are enhanced in the streamwise direction, and reduced in the cross-stream directio

  8. Preparation of SiO2-Protecting Metallic Fe Nanoparticle/SiO2 Composite Spheres for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Pin-Wei Hsieh

    2015-11-01

    Full Text Available Functionalized Fe nanoparticles (NPs have played an important role in biomedical applications. In this study, metallic Fe NPs were deposited on SiO2 spheres to form a Fe/SiO2 composite. To protect the Fe from oxidation, a thin SiO2 layer was coated on the Fe/SiO2 spheres thereafter. The size and morphology of the SiO2@Fe/SiO2 composite spheres were examined by transmission electron microscopy (TEM. The iron form and its content and magnetic properties were examined by X-ray diffraction (XRD, inductively-coupled plasma mass spectrometry (ICP-MS and a superconducting quantum interference device (SQUID. The biocompatibility of the SiO2@Fe/SiO2 composite spheres was examined by Cell Counting Kit-8 (CCK-8 and lactate dehydrogenase (LDH tests. The intracellular distribution of the SiO2@Fe/SiO2 composite spheres was observed using TEM. XRD analysis revealed the formation of metallic iron on the surface of the SiO2 spheres. According to the ICP-MS and SQUID results, using 0.375 M FeCl3·6H2O for Fe NPs synthesis resulted in the highest iron content and magnetization of the SiO2@Fe/SiO2 spheres. Using a dye loading experiment, a slow release of a fluorescence dye from SiO2@Fe/SiO2 composite spheres was confirmed. The SiO2@Fe/SiO2 composite spheres co-cultured with L929 cells exhibit biocompatibility at concentrations <16.25 µg/mL. The TEM images show that the SiO2@Fe/SiO2 composite spheres were uptaken into the cytoplasm and retained in the endosome. The above results demonstrate that the SiO2@Fe/SiO2 composite spheres could be used as a multi-functional agent, such as a magnetic resonance imaging (MRI contrast agent or drug carriers in biomedical applications.

  9. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  10. Revitalization of the Public Sphere: A Comparison between Habermasian and the New Public Sphere

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-06-01

    Full Text Available “Public sphere” is an important component of modern polity. Civil society brings the state in touch with the needs of the citizens through the medium of public sphere. However, Habermas argues that “public sphere” experienced refeudalization owing to various factors i.e. propaganda, cultural industry, market and state intervention. The “public” was condemned to be mere spectator again. This article argues that modern technologies enabled new public sphere (NPS can help restore public status as participant in the democratic process. By employing interpretivist approach the article compares the Habermasian ideal of public sphere with NPS and constructs a matrix, depicting the various related aspects between the two models for highlighting the revival of the public sphere.

  11. VMware vSphere PowerCLI Reference Automating vSphere Administration

    CERN Document Server

    Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan

    2011-01-01

    Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and

  12. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  13. Carbon spheres surface modification and dispersion in polymer matrix

    International Nuclear Information System (INIS)

    Highlights: ► Vinyl groups were grafted onto the surface of CSs by acryloyl chloride. ► Vinyl-functionalized CSs were dispersed well in organic solvent. ► Non-covalent functionalization was used to functionalize the surface of CSs. ► Functionalized CSs dispersed uniformly in the PMMA matrix with good compatibility. - Abstract: Polymer/carbon spheres (CSs) composite materials, in which polymer was used as continuous phase and CSs as dispersed phase, were synthesized by in situ bulk polymerization. In order to improve CSs dispersibility in polymer matrix and compatibility with polymer matrix, the functional double bonds were introduced onto the surface of CSs by covalent and non-covalent method. Covalent functionalization was accompolished through mixed acid oxidation and subsequent reaction with acryloyl chloride. Field-emission scanning electron microscopy, Fourier-transform Infrared spectrometry and thermogravimetry were used to characterize the morphology, structure and effect of functionalization of CSs. Vinyl-functionalized CSs by acryloyl chloride were well dispersed in organic solvents, such as DMF, acetone and chloroform. Non-covalent functionalization by surfactant was accompolished by electrostatic interaction. Covalent and non-covalent functionalization enabled CSs to be homogeneously dispersed in poly(methyl methacrylate) (PMMA) matrix with good compatibility. These studies lay the foundation of preparing the non-close packed three-dimensional carbon-based photonic crystals.

  14. Global Calibration of Multiple Cameras Based on Sphere Targets

    OpenAIRE

    Junhua Sun; Huabin He; Debing Zeng

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphe...

  15. Complex data processing: fast wavelet analysis on the sphere

    CERN Document Server

    Wiaux, Y; Vielva, P

    2007-01-01

    In the general context of complex data processing, this paper reviews a recent practical approach to the continuous wavelet formalism on the sphere. This formalism notably yields a correspondence principle which relates wavelets on the plane and on the sphere. Two fast algorithms are also presented for the analysis of signals on the sphere with steerable wavelets.

  16. 21 CFR 886.3320 - Eye sphere implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...

  17. Theory of tectonics in the sphere

    CERN Document Server

    Ribeiro, A; Taborda, R; Ribeiro, Antonio; Matias, Luis; Taborda, Rui

    2005-01-01

    Soft or Deformable Plate Tectonics in the sphere must follow geometric rules inferred from the orthographic projection. An analytic equivalent of this geometry can be derived by the application of Potential Field Methods in the case of Atlantic type oceans. Laplace equation must be obeyed by the velocity field between the ridge and the passive margin if we neglect the very slight compressibility of ocean lithosphere. A strain wave propagates in the sphere analogous to the behaviour of a free harmonic oscillator. Combining zonal harmonics of order one and sectorial harmonics of degree one we obtain a tesseral harmonic equivalent to the orthographic solution. This potential field approach is valid for homogeneous deformation regime in oceanic lithosphere. Above a compression threshold of 5 to 10% buckling and simultaneous faulting occurs. In Pacific type oceans a dynamic approach, similar to a forced oscillation, must be applied because there are sinks in subduction zones.

  18. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  19. Second-Generation Curvelets on the Sphere

    CERN Document Server

    Chan, Jennifer Y H; Kitching, Thomas D; McEwen, Jason D

    2015-01-01

    Curvelets are efficient to represent highly anisotropic signal content, such as local linear and curvilinear structure. First-generation curvelets on the sphere, however, suffered from blocking artefacts. We present a new second- generation curvelet transform, where scale-discretised curvelets are constructed directly on the sphere. Scale-discretised curvelets exhibit a parabolic scaling relation, are well-localised in both spatial and harmonic domains, support the exact analysis and synthesis of both scalar and spin signals, and are free of blocking artefacts. We present fast algorithms to compute the exact curvelet transform, reducing computational complexity from $\\mathcal{O}(L^5)$ to $\\mathcal{O}(L^3\\log_{2}{L})$ for signals band-limited at $L$. The implementation of these algorithms is made publicly available. Finally, we present an illustrative application demonstrating the effectiveness of curvelets for representing directional curve-like features in natural spherical images.

  20. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  1. Neutron monitoring using moderating sphere detectors

    International Nuclear Information System (INIS)

    Three moderating sphere-detector systems are examined as a neutron area monitoring instruments. The thermal neutron detectors used are the (bare-Cd covered) Li6 (Eu) crystal scintillating detector, the U235-mica track detector and the partially Cd-covered R.M. film. The response of the 12 s sphere-detector systems to Pu-Be neutrons are found to be 0.22 counts/neutrons for the Li6I-system. 8x10-4 tracks per neutron for the track-detector system and 10 mR equivalent γ-ray exposure per 2x10-neutrons per cm- for the Cd-covered R.M. film system

  2. Event Driven Langevin simulations of Hard Spheres

    CERN Document Server

    Scala, Antonio

    2011-01-01

    The blossoming of interest in colloids and nano-particles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during an integration timestep. This in not the case for hard-body systems, where there is no clearcut between the correlation time of the noise and the timescale of the interactions. Starting first from a splitting of the Fokker-Plank operator associated with the Langevin dynamics, and then from an approximation of the two-body Green's function, we introduce and test two new algorithms for the simulation of the Langevin dynamics of hard-spheres.

  3. Wavelets, ridgelets and curvelets on the sphere

    CERN Document Server

    Starck, J L; Abrial, P; Nguyen, M; Starck, Jean-Luc; Moudden, Yassir; Abrial, Pierrick; Nguyen, Mai

    2005-01-01

    We present in this paper new multiscale transforms on the sphere, namely the isotropic undecimated wavelet transform, the pyramidal wavelet transform, the ridgelet transform and the curvelet transform. All of these transforms can be inverted i.e. we can exactly reconstruct the original data from its coefficients in either representation. Several applications are described. We show how these transforms can be used in denoising and especially in a Combined Filtering Method, which uses both the wavelet and the curvelet transforms, thus benefiting from the advantages of both transforms. An application to component separation from multichannel data mapped to the sphere is also described in which we take advantage of moving to a wavelet representation.

  4. Bidirectional reflection effects in practical integrating spheres.

    Science.gov (United States)

    Mahan, J R; Walker, J A; Stancil, M M

    2015-10-20

    Integrating spheres play a central role in radiometric instrument calibration, surface optical property measurement, and radiant source characterization. Our work involves a simulation, based on the Monte Carlo ray-trace (MCRT) of bidirectional reflections within a practical integrating sphere pierced with two viewing ports. We used data from the literature to create an empirical model for the bidirectional reflection distribution function (BRF) of Spectralon suitable for use in the MCRT environment. The ratio of power escaping through the two openings is shown to vary linearly with wall absorptivity for both diffuse and bidirectional reflections. The sensitivity of this ratio to absorptivity is shown to be less when reflections are weakly bidirectional. PMID:26560384

  5. Ceramica sphere production by a gel casting

    International Nuclear Information System (INIS)

    The technology of (Th,U)O2 microspheres production by gel casting and subsequente thermal treatment has been transferred from NUKEM GmbH assisted by Kraftwerk Union A.G., both West Germany, to NUCLEBRAS, where it was jointly adapted to produce microspheres suitable for pressing. As a result, there are now available various possibilities to produce ceramic spheres with different characteristics that can be used in different applications. Examples of these characteristics are the range of gel sphere diameters (200 to 5000 μmm) and the value of the specific surface (about 50m2/g for calcined (Th, U)O2 and potentially higher than m2/g for other ceramic materials) (Author)

  6. Statistical inference for disordered sphere packings

    Directory of Open Access Journals (Sweden)

    Jeffrey Picka

    2012-01-01

    Full Text Available This paper gives an overview of statistical inference for disordered sphere packing processes. These processes are used extensively in physics and engineering in order to represent the internal structure of composite materials, packed bed reactors, and powders at rest, and are used as initial arrangements of grains in the study of avalanches and other problems involving powders in motion. Packing processes are spatial processes which are neither stationary nor ergodic. Classical spatial statistical models and procedures cannot be applied to these processes, but alternative models and procedures can be developed based on ideas from statistical physics.Most of the development of models and statistics for sphere packings has been undertaken by scientists and engineers. This review summarizes their results from an inferential perspective.

  7. Quantum Isometry groups of the Podles Spheres

    OpenAIRE

    Bhowmick, Jyotishman; Goswami, Debashish

    2008-01-01

    For $\\mu \\in (0,1), c> 0,$ we identify the quantum group $SO_\\mu(3)$ as the universal object in the category of compact quantum groups acting by `orientation and volume preserving isometries' in the sense of \\cite{goswami2} on the natural spectral triple on the Podles sphere $S^2_{\\mu, c}$ constructed by Dabrowski, D'Andrea, Landi and Wagner in \\cite{{Dabrowski_et_al}}.

  8. Poincar\\'e Sphere and Decoherence Problems

    CERN Document Server

    Kim, Y S

    2012-01-01

    Henri Poincar\\'e formulated the mathematics of the Lorentz transformations, known as the Poincar\\'e group. He also formulated the Poincar\\'e sphere for polarization optics. It is shown that these two mathematical instruments can be combined into one mathematical device which can address the internal space-time symmetries of elementary particles, decoherence problems in polarization optics, entropy problems, and Feynman's rest of the universe.

  9. Semiclassical collapse of a sphere of dust

    OpenAIRE

    Roberto CasadioDepartment of Physics University of Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna; Giovanni Venturi(Department of Physics, University of Bologna, and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy)

    2015-01-01

    The semiclassical collapse of a homogeneous sphere of dust is studied. After identifying the independent dynamical variables, the system is canonically quantised and coupled equations describing matter (dust) and gravitation are obtained. The conditions for the validity of the adiabatic (Born--Oppenheimer) and semiclassical approximations are derived. Further on neglecting back--reaction effects, it is shown that in the vicinity of the horizon and inside the dust the Wightman function for a c...

  10. From Noncommutative Sphere to Nonrelativistic Spin

    OpenAIRE

    Deriglazov, Alexei A.(Dept. de Matematica, ICE, Universidade Federal de Juiz de Fora, MG, Brazil)

    2009-01-01

    Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit o...

  11. From Noncommutative Sphere to Nonrelativistic Spin

    Science.gov (United States)

    Deriglazov, Alexei A.

    2010-02-01

    Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.

  12. From Noncommutative Sphere to Nonrelativistic Spin

    Directory of Open Access Journals (Sweden)

    Alexei A. Deriglazov

    2010-02-01

    Full Text Available Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.

  13. On the revolution of heavenly spheres

    CERN Document Server

    Copernicus, Nicolaus

    1995-01-01

    The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.

  14. Soft-sphere model for liquid metals

    International Nuclear Information System (INIS)

    A semi-empirical soft-sphere model of fluids is modified for application to the thermodynamic properties of liquid metals. Enthalpy, volume, and sound speed are computed as functions of temperature for 13 metals and compared with experimental data. Critical points and coexistence curves are also computed and compared with experimental data, where these have been measured. Strengths and weaknesses of the model are discussed

  15. The sea - landfill or sphere of life

    International Nuclear Information System (INIS)

    The Environmental Information Agency held its third seminar for journalists, entitled 'The sea - landfill or sphere of life' in Hamburg on July 18, 1989. Some 40 journalists - radio journalists and journalists from the staff of dailies and the technical press - took the opportunity to listen for a day to short lectures on selected subjects and submit their questions concerning sea pollution to scientists of diverse disciplines. (orig.)

  16. Spheres of diversities: from concept to policy

    OpenAIRE

    Zapata Barrero, Ricard; Ewijk, Anne R. van

    2011-01-01

    This book is concerned with the diversity debate in the context of Europe. It is about diversity both as a concept and as a policy. Indeed, the epicentre of the analysis is the link between the spheres of diversity-concepts and diversity-policies. The book explores how the concept of diversity orientates policies and management, and also how public/private management facilitates new policy orientations. As such, the book enhances conceptual thinking on diversity, but also fa...

  17. Supersymmetric theories on squashed five-sphere

    CERN Document Server

    Imamura, Yosuke

    2012-01-01

    We construct supersymmetric theories on the SU(3)xU(1) symmetric squashed five-sphere with 2, 4, 6, and 12 supercharges. We first determine the Killing equation by dimensional reduction from 6d, and use Noether procedure to construct actions. The supersymmetric Yang-Mills action is straightforwardly obtained from the supersymmetric Chern-Simons action by using a supersymmetry preserving constant vector multiplet.

  18. Turbulator Diameter and Drag on a Sphere

    Directory of Open Access Journals (Sweden)

    Nicholas Robson

    2009-01-01

    Full Text Available A sphere with turbulators of varying diameter was pulled through water with constant force. The relationship between the diameter of the turbulators and the ball’s total coefficient of drag was determined. The maximum drag reduction was found with turbulators of 0.002 m. The drag reduction was less for turbulators of sizes 0.004 m and 0.005 m.

  19. The Separate Spheres Model of Gendered Inequality

    OpenAIRE

    Miller, Andrea L.; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychologic...

  20. Event Driven Langevin simulations of Hard Spheres

    OpenAIRE

    Scala, Antonio

    2011-01-01

    The blossoming of interest in colloids and nano-particles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that int...

  1. Captures of Rhagoletis indifferens (Diptera:Tephritidae) and non-target insects on red spheres versus yellow spheres and panels

    Science.gov (United States)

    Sticky red spheres can be used to capture western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), but whether they capture more flies than yellow spheres and panels is poorly known. The objective of this study was to compare fly captures on red spheres versus yellow traps so...

  2. Agglomeration techniques for the production of spheres for packed beds

    International Nuclear Information System (INIS)

    One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling

  3. Confined disordered strictly jammed binary sphere packings

    Science.gov (United States)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  4. Hopf Maps, Lowest Landau Level, and Fuzzy Spheres

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2010-09-01

    Full Text Available This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.

  5. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  6. Application of duality to an unstable problem in neutron spectrometry and dosimetry

    International Nuclear Information System (INIS)

    A general account is given of unstable linear equations, showing the importance of the dualiy theory for convex optimization problems. The theoretical study is applied to the numerical solution of neutron spectrometry and dosimetry problems with a multidetector system. From the numerical viewpoint the data of the multisphere system, made up of polyethylene spheres and a helium 3 counter, are used exclusively

  7. Interferometric determination of the topographies of absolute sphere radii using the sphere interferometer of PTB

    International Nuclear Information System (INIS)

    This paper presents a method to reconstruct the absolute shape of a sphere—i.e. a topography of radii—using the sphere interferometer of PTB in combination with a stitching approach. The method allows for the reconstruction of absolute radii instead of the relative shape deviations which result from conventional sphericity measurements. The sphere interferometer was developed for the volume determination of spherical material measures—in particular the spheres of the Avogadro project—by precise diameter measurements with an uncertainty of 1 nm or less. In the scope of the present work a procedure has been implemented that extends the applicability of the interferometer to fields where not the volume or diameter but the direction-dependent radii are of interest. The results of the reconstruction were compared quantitatively to the independent results of sphericity measurements from CSIRO

  8. Fermions, Skyrmions and the 3-sphere

    Energy Technology Data Exchange (ETDEWEB)

    Goatham, Stephen W; Krusch, Steffen [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF (United Kingdom)], E-mail: swg3@kent.ac.uk, E-mail: S.Krusch@kent.ac.uk

    2010-01-22

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.

  9. Fermions, Skyrmions and the 3-Sphere

    CERN Document Server

    Goatham, Stephen W

    2009-01-01

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalised angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterised by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta function regularization.

  10. Embeddability in the 3-sphere is decidable

    OpenAIRE

    Matoušek, Jiří; Sedgwick, Eric; Tancer, Martin; Wagner, Uli

    2014-01-01

    We show that the following algorithmic problem is decidable: given a $2$-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in $\\mathbf{R}^3$? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold $X$ into the 3-sphere $S^3$. The main step, which allows us to simplify $X$ and recurse, is in proving that if $X$ can be embedded in $S^3$, then there is also an embedding in which $X$ has a short meridi...

  11. Conformally flat anisotropic spheres in general relativity

    CERN Document Server

    Herrera, L; Ospina, J F; Fuenmayor, E

    2001-01-01

    The condition for the vanishing of the Weyl tensor is integrated in the spherically symmetric case. Then, the resulting expression is used to find new, conformally flat, interior solutions to Einstein equations for locally anisotropic fluids. The slow evolution of these models is contrasted with the evolution of models with similar energy density or radial pressure distribution but non-vanishing Weyl tensor, thereby bringing out the different role played by the Weyl tensor, the local anisotropy of pressure and the inhomogeneity of the energy density in the collapse of relativistic spheres.

  12. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  13. The rheology of adhesive hard sphere dispersions

    Science.gov (United States)

    Woutersen, A. T. J. M.; de Kruif, C. G.

    1991-04-01

    The influence of an attractive interparticle potential on the rheology of a sterically stabilized silica dispersion was investigated. Using a marginal solvent, there was an effective attraction between the particles which depended on the temperature. Three experiments in which different properties of the dispersion were probed showed that a square well model can be used to describe the temperature dependence of the pair potential. The turbidity of a dilute dispersion was measured as a function of the volume fraction and the temperature. Using dynamic light scattering techniques, the effect of the strength of the interparticle attraction on the diffusion coefficient was investigated. Furthermore, the steady shear viscosity was measured as a function of the volume fraction and the temperature. A microscopic theory for the low shear viscosity of a semidilute dispersion of adhesive hard spheres was successfully used to determine the interaction parameters. Viscosity measurement on dense suspensions showed that while the system is still in the one-phase state, temporal aggregates are formed by the interparticle forces which are disrupted by both shear and Brownian motion of the particles. The shear thinning behavior of a concentrated dispersion of adhesive hard spheres scales in a dimensionless shear stress. This group is the ratio of the forces, arising from the shear and the interparticle potential.

  14. Characterizing HR3549B using SPHERE

    CERN Document Server

    Mesa, D; D'Orazi, V; Ginski, C; Desidera, S; Bonnefoy, M; Gratton, R; Langlois, M; Marzari, F; Messina, S; Antichi, J; Biller, B; Bonavita, M; Cascone, E; Chauvin, G; Claudi, R U; Curtis, I; Fantinel, D; Feldt, M; Garufi, A; Galicher, R; Henning, Th; Incorvaia, S; Lagrange, A M; Millward, M; Perrot, C; Salasnich, B; Scuderi, S; Sissa, E; Wahhaj, Z; Zurlo, A

    2016-01-01

    Aims. In this work, we characterize the low mass companion of the A0 field star HR3549. Methods. We observed HR3549AB in imaging mode with the the NIR branch (IFS and IRDIS) of SPHERE@VLT, with IFS in YJ mode and IRDIS in the H band. We also acquired a medium resolution spectrum with the IRDIS long slit spectroscopy mode. The data were reduced using the dedicated SPHERE GTO pipeline, purposely designed for this instrument. We employed algorithms such as PCA and TLOCI to reduce the speckle noise. Results. The companion was clearly visible both with IRDIS and IFS.We obtained photometry in four different bands as well as the astrometric position for the companion. Based on our astrometry, we confirm that it is a bound object and put constraints on its orbit. Although several uncertainties are still present, we estimate an age of ~100-150 Myr for this system, yielding a most probable mass for the companion of 40-50MJup and T_eff ~300-2400 K. Comparing with template spectra points to a spectral type between M9 and...

  15. The quantum Talbot effect on a sphere

    Energy Technology Data Exchange (ETDEWEB)

    Hannay, J H; Lockwood, Amy [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2008-10-03

    Any quantum (Schroedinger) wavefunction on a sphere is necessarily periodic in time. The corresponding statement down one dimension, for a circular line instead, is the quantum version of the 'Talbot effect' for a diffraction grating in paraxial optics (which is fully analogous to quantum mechanics). In the circle case the 'revival' of any initial wavefunction at the period, or 'Talbot time', is accompanied by a kind of partial revival at any rational fraction of the period, increasing in complexity for less simple fractions. In particular, any piecewise constant initial wavefunction is again piecewise constant at such times. By contrast, in the sphere case, the simplest piecewise constant wave, constant on hemispheres is shown not to retain its piecewise constancy at rational fractions of the period, but instead, rather strikingly, to develop infinities at calculable locations. The calculation requires the uniform asymptotic form of the Legendre polynomials together with the Poisson sum formula leading to Gauss sums.

  16. Torsional oscillations of a sphere in a Stokes flow

    CERN Document Server

    Box, F; Mullin, T

    2014-01-01

    The results of an experimental investigation of a sphere performing torsional oscillations in a Stokes flow are presented. A novel experimental set up was developed which enabled the motion of the sphere to be remotely controlled through application of an oscillatory magnetic field. The response of the sphere to the applied field was characterised in terms of the viscous, magnetic and gravitational torques acting on the sphere. A mathematical model of the system was developed and good agreement was found between experimental and theoretical results. The flow resulting from the motion of the sphere was measured and the fluid velocity was found to have an inverse square dependence on radial distance from the sphere. Agreement between measurements and the analytical solution for the fluid velocity indicates that the flow may be considered Stokesian.

  17. Analysis of rainbow scattering by a chiral sphere.

    Science.gov (United States)

    Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu; Gong, Lei

    2013-09-23

    Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality. PMID:24104080

  18. Negotiating Islam in Emerging Public Spheres in Contemporary Tajikistan

    OpenAIRE

    Nozimova, Shahnoza; Epkenhans, Tim

    2013-01-01

    Over the past decade, the Internet has emerged as a new public sphere in the Central Asian republic of Tajikistan in particular for negotiating ‘Islam’ – religious belief, practice and morality. Whilst the authoritarian regime severely restricts the ‘traditional’ public spheres, the Internet has proven to be more resilient and elusive to government control. Blocked web pages move to other domains, and, in particular, labour migration has ‘denationalized’ public spheres. Additionally, the Inte...

  19. Random close packing fractions of lognormal distributions of hard spheres

    OpenAIRE

    Farr, Robert S.

    2013-01-01

    We apply a recent one-dimensional algorithm for predicting random close packing fractions of polydisperse hard spheres [Farr and Groot, J. Chem. Phys. 133, 244104 (2009)] to the case of lognormal distributions of sphere sizes and mixtures of such populations. We show that the results compare well to two much slower algorithms for directly simulating spheres in three dimensions, and show that the algorithm is fast enough to tackle inverse problems in particle packing: designing size distributi...

  20. Optimized recentered confidence spheres for the multivariate normal mean

    OpenAIRE

    Abeysekera, Waruni; Kabaila, Paul

    2014-01-01

    Casella and Hwang, 1983, JASA, introduced a broad class of recentered confidence spheres for the mean theta of a multivariate normal distribution with covariance matrix sigma^2 I, for sigma^2 known. Both the center and radius functions of these confidence spheres are flexible functions of the data. For the particular case of confidence spheres centered on the positive-part James-Stein estimator and with radius determined by empirical Bayes considerations, they show numerically that these conf...

  1. Hollow sphere, a flexible multimode Gravitational Wave antenna

    OpenAIRE

    Lobo, J. Alberto

    2001-01-01

    Hollow spheres have the same theoretical capabilities as the usual solid ones, since they share identical symmetries. The hollow sphere is however more flexible, as thickness is an additional parameter one can vary to approach given specifications. I will briefly discuss the more relevant properties of the hollow sphere as a GW detector (frequencies, cross sections), and suggest some scenarios where it can generate significant astrophysical information.

  2. Oil capture from a water surface by a falling sphere

    Science.gov (United States)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  3. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  4. CER-MET SPHERE-PAC fuel potential

    International Nuclear Information System (INIS)

    During operation of the fuel rods in an LWR core the low thermal conductivity of oxide fuel causes high temperatures in the fuel column. This imposes restrictions on the permissible power increases of the fuel rods during in-reactor operation. In a joint KEMA-ECN-GKN programme the applicability of a 3-fraction mixture of large MOX spheres with medium and small natural UO2 spheres in an 88 percent smear density sphere-pac columns of LWR fuel rods has been shown. A 3-fraction CER-MET sphere-pac fuel column of large UO2 or MOX spheres with medium and small spheres of a metal alloy, has a much higher thermal conductivity than pure oxide fuel. Sooner or later uranium becomes scarcer and plutonium from reprocessing plants has to be used in LWR fuel. Then, for CER-MET sphere-pac fuel only 1 fraction has to be fabricated from the plutonium of the reprocessing plants. Moreover, thanks to the low operation temperatures in the CER-MET sphere-pac fuel column the restrictions on power increases become less stringent and the stored heat in the core is lower than in pure oxide cores. The major material aspects of this new CER-MET sphere-pac fuel are presented here. (author). 19 refs.; 7 tabs

  5. Synthesis and Characterization of Oil-Chitosan Composite Spheres

    OpenAIRE

    Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting

    2013-01-01

    Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (ir...

  6. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 6000C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 103 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  7. Human postprandial gastric emptying of 1-3-millimeter spheres

    International Nuclear Information System (INIS)

    Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food

  8. IBM WebSphere Application Server 80 Administration Guide

    CERN Document Server

    Robinson, Steve

    2011-01-01

    IBM WebSphere Application Server 8.0 Administration Guide is a highly practical, example-driven tutorial. You will be introduced to WebSphere Application Server 8.0, and guided through configuration, deployment, and tuning for optimum performance. If you are an administrator who wants to get up and running with IBM WebSphere Application Server 8.0, then this book is not to be missed. Experience with WebSphere and Java would be an advantage, but is not essential.

  9. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    Energy Technology Data Exchange (ETDEWEB)

    Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C. [Illie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Birjega, Ruxandra [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box Mg—27, Magurele, Bucharest (Romania); Ene, Ramona [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Carp, Oana, E-mail: ocarp@icf.ro [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-06-15

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: • ZnO solid spheres are obtained via a template route using carbonaceous spheres. • Two-step coatings of interchangeable order are used as deposition procedure. • The coating procedure influences the porosity and surface area. • ZnO spheres exhibited interesting visible photoluminescence properties. • Solid spheres showed photocatalytical activity in degradation of phenol.

  10. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids

    OpenAIRE

    Oyarzun, B.A.; Van Westen, T.; Vlugt, T.J.H.

    2013-01-01

    he liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10, 11, 12, 13, 14, 15, and 20 beads is carried out. The phase behavior of partially flexible fluids with a total length of 8, 10, 14, and 15 beads and with different lengths for the linear part is als...

  11. Vaidya-Bonner黑洞的隧穿效应及出射修正谱%Tunnelling effect from a Vaidya-Bonner black hole and corresponding emission spectrum correction

    Institute of Scientific and Technical Information of China (English)

    兰明建; 程发银

    2009-01-01

    将Parikh-Wilczek的半经典隧穿方法推广到动态Vaidya-Bonner黑洞.注意到Hawking辐射是黑洞事件视界附近由于真空涨落而引发的一种量子隧穿,在考虑辐射粒子自引力作用的情况下,计算了粒子的隧穿率及其相应的出射修正谱,结果满足量子理论的幺正性定理.%We extend Parikh and Wilczek's work to the Vaidya-Bonner black hole. We regard Hawking radiation as a tunneling process across the event horizon and calculate the tunneling probability when self-gravi-tation is taken into account. We also obtain the corresponding emission spectrum correction, the result is consist-ent with an underlying unitary theory.

  12. Inner Sphere and Outer Sphere Electron Transfer to Methyl Iodide. Deuterium and 13C Kinetic Isotope Effects

    DEFF Research Database (Denmark)

    Holm, Torkil; Crossland, Ingolf

    1996-01-01

    Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in......Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in...

  13. Modelling Priorities of Financial Provision of the Social Sphere

    Directory of Open Access Journals (Sweden)

    Mamonova Hanna V.

    2014-01-01

    Full Text Available The article studies the modern state of the social sphere and conducts modelling of priorities of financial provision of the social sphere at the state level. Social sphere should be considered as the basis of development of the national economy. The goal of this article is the study of the modern state and modelling priorities of financial provision of the social sphere at the state level. The subject of the study is modelling priority directions of financial provision of components of the social sphere. Taking into account fast changes in the social sphere of the country and regular increase of social standards, the article identifies a necessity of changing priorities of the social policy, first of all, problems of financing the social sphere and formation of priority directions on improvement of this system. The article shows that the main problems of financial provision of the social sphere are: insufficient volumes of budget funds for financing the social sphere, financing practically all items of social expenditures in a smaller volume than it is required for the existing social support of the population and absence of mechanisms of ensuring quality of social services. The article offers to use the hierarchy analysis method for identifying immediate and priority directions of financing components of the social sphere. On the basis of the built directed communication graph the article presents a binary matrix of dependence of components of the social sphere and builds a hierarchy model of these components. As a result it is seen that the highest level of hierarchy is taken by science, then healthcare and social sphere are at the same level, then education, sports and at the lowest level are culture and art. The obtained results could be used when improving financing of the social sphere. In order to ensure efficiency of functioning of the social sphere it is necessary to improve the system of financing of its components on the basis of use

  14. Unit quaternions and the Bloch sphere

    International Nuclear Information System (INIS)

    The spinor representation of spin-1/2 states can equally well be mapped to a single unit quaternion, yielding a new perspective despite the equivalent mathematics. This paper first demonstrates a useable map that allows Bloch-sphere rotations to be represented as quaternionic multiplications, simplifying the form of the dynamical equations. Left-multiplications generally correspond to non-unitary transformations, providing a simpler (essentially classical) analysis of time-reversal. But the quaternion viewpoint also reveals a surprisingly large broken symmetry, as well as a potential way to restore it, via a natural expansion of the state space that has parallels to second order fermions. This expansion to ‘second order qubits’ would imply either a larger gauge freedom or a natural space of hidden variables. (paper)

  15. On the Torus Cobordant Cohomology Spheres

    Indian Academy of Sciences (India)

    Ali Özkurt; Doğan Dönmez

    2009-02-01

    Let be a compact Lie group. In 1960, P A Smith asked the following question: ``Is it true that for any smooth action of on a homotopy sphere with exactly two fixed points, the tangent -modules at these two points are isomorphic?" A result due to Atiyah and Bott proves that the answer is `yes’ for $\\mathbb{Z}_p$ and it is also known to be the same for connected Lie groups. In this work, we prove that two linear torus actions on $S^n$ which are -cobordant (cobordism in which inclusion of each boundary component induces isomorphisms in $\\mathbb{Z}$-cohomology) must be linearly equivalent. As a corollary, for connected case, we prove a variant of Smith’s question.

  16. Particle tracks fitted on the Riemann sphere

    CERN Document Server

    Strandlie, A; Frühwirth, R; Lillekjendlie, B

    2000-01-01

    We present a novel method of fitting trajectories of charged particles in high-energy physics particle detectors. The method fits a circular arc to two-dimensional measurements by mapping the measurements onto the Riemann sphere and fitting a plane to the transformed coordinates of the measurements. In this way, the non- linear task of circle fitting, which in general requires the application of some iterative procedure, is turned into a linear problem which can be solved in a fast, direct and non-iterative manner. We illustrate the usefulness of our approach by stating results from two simulation experiments of tracks from the ATLAS Inner Detector Transition Radiation Tracker (TRT). The first experiment shows that with a significantly lower execution time, the accuracy of the estimated track parameters is virtually as good as the accuracy obtained by applying an optimal, non-linear least- squares procedure. The second experiment focuses on track parameter estimation in the presence of ambiguous measurements....

  17. Algorithmic construction of static perfect fluid spheres

    International Nuclear Information System (INIS)

    Perfect fluid spheres, either Newtonian or relativistic, are the first step in developing realistic stellar models (or models for fluid planets). Despite the importance of these models, explicit and fully general solutions of the perfect fluid constraint in general relativity have only very recently been developed. In this paper we present a variant of Lake's algorithm wherein (1) we recast the algorithm in terms of variables with a clear physical meaning--the average density and the locally measured acceleration due to gravity, (2) we present explicit and fully general formulas for the mass profile and pressure profile, and (3) we present an explicit closed-form expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern of interrelationships among many of the previously known exact solutions, and generate several new exact solutions

  18. Perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Spherically symmetric perfect fluid distributions in general relativity have been investigated under the assumptions of (i) uniform expansion or contraction and (ii) the validity of an equation of state of the form p=p(rho) with nonuniform density. An exact solution which is equivalent to a solution found earlier by Wyman is obtained and it is shown that the solution is unique. The boundary conditions at the interface of fluid distribution and the exterior vacuum are discussed and as a consequence the following theorem is established: Uniform expansion or contraction of a perfect fluid sphere obeying an equation of state with nonuniform density is not admitted by the field equations. It is further shown that the Wyman metric is not suitable on physical grounds to represent a cosmological solution. (author)

  19. Unit quaternions and the Bloch sphere

    Science.gov (United States)

    Wharton, K. B.; Koch, D.

    2015-06-01

    The spinor representation of spin-1/2 states can equally well be mapped to a single unit quaternion, yielding a new perspective despite the equivalent mathematics. This paper first demonstrates a useable map that allows Bloch-sphere rotations to be represented as quaternionic multiplications, simplifying the form of the dynamical equations. Left-multiplications generally correspond to non-unitary transformations, providing a simpler (essentially classical) analysis of time-reversal. But the quaternion viewpoint also reveals a surprisingly large broken symmetry, as well as a potential way to restore it, via a natural expansion of the state space that has parallels to second order fermions. This expansion to ‘second order qubits’ would imply either a larger gauge freedom or a natural space of hidden variables.

  20. Social Justice and Education in the Public and Private Spheres

    Science.gov (United States)

    Power, Sally; Taylor, Chris

    2013-01-01

    This paper explores the complex relationship between social justice and education in the public and private spheres. The politics of education is often presented as a battle between left and right, the state and the market. In this representation, the public and the private spheres are neatly aligned on either side of the line of battle, and…

  1. VMware vSphere 5.5 cookbook

    CERN Document Server

    G B, Abhilash

    2015-01-01

    This is an excellent handbook for system administrators, support professionals, or for anyone intending to give themselves a headstart in learning how to install, configure, and manage a vSphere environment. It is also a good task-oriented reference guide for consultants or infrastructure architects who design and deploy vSphere environments.

  2. Administrative Methods of State Management in the Sphere of Customs

    OpenAIRE

    Мартюшевская, Елена Николаевна

    2015-01-01

    The article dedicates administrative methods of public administration in sphere of customs matters. The author pays attention on the definition of non-tariff measures with regard to non-tariff methods, also how to improve in existing science of classification of administrative methods of public administration in sphere of customs matters.

  3. Computational Analysis of Wake Field Flow between Multiple Identical Spheres

    Science.gov (United States)

    Brand, Wesley; Greenslit, Morton; Klassen, Zach; Hastings, Jay; Matson, William

    2014-11-01

    It is well understood both that objects moving through a fluid perturb the motion of nearby objects in the same fluid and that some configurations of objects moving through a fluid have little inter-object perturbation, such as a flock of birds flying in a V-formation. However, there is presently no known method for predicting what configurations of objects will be stable while moving through a fluid. Previous work has failed to find such stable configurations because of the computational complexity of finding individual solutions. In this research, the motions of two spheres in water were simulated and combinations of those simulations were used to extrapolate the motions of multiple spheres and to find configurations where the lateral forces on each sphere were negligible and the vertical forces on each sphere were equivalent. Two and three sphere arrangements were simulated in COMSOL Multiphysics and Mathematica was used both to demonstrate that combinations of two sphere cases are identical to three sphere cases and to identify stable configurations of three or more spheres. This new approach is expected to simplify optimization of aerodynamic configurations and applications such as naval and aerospace architecture and racecar driving. Advisor.

  4. Thermodynamic signature of the dynamic glass transition in hard spheres

    NARCIS (Netherlands)

    Hermes, M; Dijkstra, M.

    2010-01-01

    We use extensive event-driven molecular dynamics simulations to study the thermodynamic, structural and dynamic properties of hard-sphere glasses. We determine the equation of state of the metastable fluid branch for hard spheres with a size polydispersity of 10%. Our results show a clear jump in th

  5. Radioactive spheres without inactive wall for lesion simulation in PET

    Energy Technology Data Exchange (ETDEWEB)

    Bazanez-Borgert, M.; Bundschuh, R.A.; Herz, M.; Martinez, M.J.; Schwaiger, M.; Ziegler, S.I. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany)

    2008-07-01

    With the growing importance of PET and PET/CT in diagnosis, staging, therapy monitoring and radiotherapy planning, appropriate tools to simulate lesions in phantoms are important. Normally hollow spheres, made of plastic or glass, which can be filled with radioactive solutions, are used. As these spheres have an inactive wall they do not reflect the real situation in the patient and lead to quantification errors in the presence of background activity. We propose spheres made of radioactive wax, which are easy to produce, give a high flexibility to the user and a more accurate quantification. These wax spheres were evaluated for their applicability in PET phantoms and it was found that the activity is not diffusing into the surrounding water in relevant quantities, that they show a sufficient homogeneity, and that their attenuation properties are equivalent to water for photons of PET energies. Recovery coefficients for the wax spheres were measured and compared with those obtained for fillable plastic spheres for diameters of 28, 16, 10, and 6 mm in the presence of background activity. Recovery coefficients of the wax spheres were found to be up to 21% higher than for the fillable spheres. (orig.)

  6. Squeeze flow between a sphere and a textured wall

    Energy Technology Data Exchange (ETDEWEB)

    Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)

    2016-02-15

    The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.

  7. Regions of attraction between like-charged conducting spheres

    Science.gov (United States)

    Lekner, John

    2016-06-01

    Two positively charged conducting spheres have been shown to attract at close enough range, unless they have a charge ratio that would result from contact. We give analytical results for the charge ratio at which the cross-over between electrostatic attraction and repulsion occurs, as a function of the sphere separation.

  8. Maximum absorption by homogeneous magneto-dielectric sphere

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Breinbjerg, Olav; Willatzen, Morten

    2014-01-01

    n order to obtain a benchmark for electromagnetic energy harvesting, we investigate the maximum absorption efficiency by a magneto-dielectric homogeneous sphere illuminated by a plane wave, and we arrive at several novel results. For electrically small spheres we show that the optimal relative......–Mie theory combined with the optical theorem....

  9. Meteor ablation spheres from deep-sea sediments

    Science.gov (United States)

    Blanchard, M. B.; Brownlee, D. E.; Bunch, T. E.; Hodge, P. W.; Kyte, F. T.

    1978-01-01

    Spheres from mid-Pacific abyssal clays (0 to 500,000 yrs old), formed from particles that completely melted and subsequently recrystallized as they separated from their meteoroid bodies, or containing relict grains of parent meteoroids that did not experience any melting were analyzed. The spheres were readily divided into three groups using their dominant mineralogy. The Fe-rich spheres were produced during ablation of Fe and metal-rich silicate meteoroids. The glassy spheres are considerably more Fe-rich than the silicate spheres. They consist of magnetite and an Fe glass which is relatively low in Si. Bulk compositions and relict grains are useful for determining the parent meteoroid types for the silicate spheres. Bulk analyses of recrystallized spheres show that nonvolatile elemental abundances are similar to chondrite abundances. Analysis of relict grains identified high temperature minerals associated with a fine-grained, low temperature, volatile-rich matrix. The obvious candidates for parent meteoroids of this type of silicate sphere is a carbonaceous chondrite.

  10. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....

  11. Mesoscale assembly of NiO nanosheets into spheres

    International Nuclear Information System (INIS)

    NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 deg. C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products' morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from ∼70 to ∼200 m2 g-1. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g-1. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity. - Graphical abstract: The mesoscale assembly of NiO nanosheets into spheres have been achieved by a solvothermal method. N2 adsorption/desorption isotherms show the SBET of NiO is tunable. NiO spheres show large discharge capacity and slow capacity-fading rate.

  12. Free motion on the Poisson plane and sphere

    OpenAIRE

    Zakrzewski, S.

    1996-01-01

    Poisson plane and sphere --- homogeneous spaces of Poisson groups E(2) and SU(2) (resp.) --- have phase spaces (corresponding symplectic groupoids), in which a free Hamiltonian is naturally defined. We solve the equations of motion and point out some unexpected features: free motion on the plane is bounded (periodic) and free trajectories on the sphere are all circles except the big ones.

  13. Actions of SL(n,Z) on homology spheres

    OpenAIRE

    Parwani, Kamlesh

    2005-01-01

    Any continuous action of SL(n,Z), where n > 2, on a r-dimensional mod 2 homology sphere factors through a finite group action if r < n - 1. In particular, any continuous action of SL(n+2,Z) on the n-dimensional sphere factors through a finite group action.

  14. Seeded Synthesis of Monodisperse Core-Shell and Hollow Carbon Spheres.

    Science.gov (United States)

    Gil-Herrera, Luz Karime; Blanco, Álvaro; Juárez, Beatriz H; López, Cefe

    2016-08-01

    Monodisperse carbon spheres between 500 and 900 nm are hydrothermally synthesized from glucose on polystyrene seeds. Control over temperature, time, glucose concentration, and seed size yields hybrid spheres without aggregation and no additional spheres population. Pyrolysis transforms the hybrid into hollow carbon spheres preserving monodispersity. This approach provides a basis for functional carbon spheres applicable in photonics and energy storage. PMID:27337299

  15. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids

    Science.gov (United States)

    Oyarzún, Bernardo; van Westen, Thijs; Vlugt, Thijs J. H.

    2013-05-01

    The liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10, 11, 12, 13, 14, 15, and 20 beads is carried out. The phase behavior of partially flexible fluids with a total length of 8, 10, 14, and 15 beads and with different lengths for the linear part is also determined. A precise description of the reduced pressure and of the packing fraction change at the isotropic-nematic coexistence was achieved by performing long simulation runs. For linear fluids, a maximum in the isotropic to nematic packing fraction change is observed for a chain length of 15 beads. The infinite dilution solubility of hard spheres in linear and partially flexible hard-sphere chain fluids is calculated by the Widom test-particle insertion method. To identify the effect of chain connectivity and molecular anisotropy on free volume, solubility is expressed relative to that of hard spheres in a hard sphere fluid at same packing fraction as relative Henry's law constants. A linear relationship between relative Henry's law constants and packing fraction is observed for all linear fluids. Furthermore, this linearity is independent of liquid crystal ordering and seems to be independent of chain length for linear chains of 10 beads and longer. The same linear relationship was observed for the solubility of hard spheres in nematic forming partially flexible fluids for packing fractions up to a value slightly higher than the nematic packing fraction at the isotropic-nematic coexistence. At higher packing fractions, the small flexibility of these fluids seems to improve solubility in comparison with the linear fluids.

  16. Sampling theorems and compressive sensing on the sphere

    CERN Document Server

    McEwen, J D; Thiran, J -Ph; Vandergheynst, P; Van De Ville, D; Wiaux, Y

    2011-01-01

    We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.

  17. Quantum states of two particles on concentric spheres

    Science.gov (United States)

    Ezra, Gregory S.; Berry, R. Stephen

    1983-10-01

    The model of two particles on a sphere is extended to two particles on concentric spheres (POCS). The quantum states are found for two electrons, one on a sphere of radius 10 a.u. (simulating the shell n=3 in He) and the other, on spheres of 10, 15, 25, 50, and 100 a.u. The eigenvalues and densities ρ(θ12) exhibit a transition from collective, moleculelike behavior to independent-particle-like behavior with Russell-Saunders coupling. The parallel problem of two particles with electron masses interacting via a repulsive Gaussian potential is also treated and a similar transition from collective to independent-particle behavior found. The principal difference between the two cases is only the region of radius of the larger sphere where the transition occurs.

  18. Priority Guidelines Of The Service Sphere Development In Uzbekistan

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Safarov

    2011-04-01

    Full Text Available The present research article is devoted to study the priorities of service sphere development in Uzbekistan. The comparative analysis of service sphere development during 1996-2009 were presented, survey of disperse territories, analysis and generalization methods used to identify trends in services sphere. Disperse markets were grouped into markets with high, medium and low development level.  Retail trade is identified one of the most important components of service sphere in Uzbekistan. Retail turnover figures were predicted until 2013 used retrospective data for forecasting. Linear trend - trends of increase or decrease of index, visual analysis of time series dynamics(graphic presentation were used to solve the studied problem. Main priorities and targets in service sphere in Uzbekistan and it’s role in economy were determined.

  19. An integrating sphere to measure CD from difficult samples

    Science.gov (United States)

    Castiglioni; Albertini

    2000-05-01

    Integrating spheres are widely used with UV-Vis and occasionally with infrared spectrophotometers to measure different types of samples, either in transmission mode (scattered transmission accessories) or in total/diffuse reflectance mode. We built a prototype sphere of the demountable type, which fits easily the sample compartment of a commercial CD spectropolarimeter, requiring neither any alignment nor the use of a dedicated photomultiplier. Samples can be inserted either at the sphere entrance (for scattered transmission mode) or in the center of the sphere (for total reflectance experiments). Selected experimental data are presented to evaluate sphere efficiency, its wavelength range and results with a single sample in different forms. Copyright 2000 Wiley-Liss, Inc. PMID:10790200

  20. Holomorphic Two-Spheres in Complex Grassmann Manifold (2, 4)

    Indian Academy of Sciences (India)

    Xiaowei Xu; Xiaoxiang Jiao

    2008-08-01

    In this paper, we use the harmonic sequence to study the linearly full holomorphic two-spheres in complex Grassmann manifold (2,4). We show that if the Gaussian curvature (with respect to the induced metric) of a non-degenerate holomorphic two-sphere satisfies ≤ 2 (or ≥ 2), then must be equal to 2. Simultaneously, we show that one class of the holomorphic two-spheres with constant curvature 2 is totally geodesic. Concerning the degenerate holomorphic two-spheres, if its Gaussian curvature ≤ 1 (or ≥ 1), then =1. Moreover, we prove that all holomorphic two-spheres with constant curvature 1 in (2,4) must be (4)-equivalent.

  1. SPHERE: a scalable multicast framework in overlay networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents Sphere, a scalable multicast framework in overlay network. Sphere is a highly efficient, self-organizing and robust multicast protocol overlayed on the Internet. The main contributions of this paper are twofold. First, Sphere organizes the control topology of overlay network in two directions: horizontal and vertical. The horizontal meshes are used to locate and organize hosts in tracks, and the vertical meshes are used to manage the data paths between tracks. Second, Sphere balances stress and stretch of the overlay network by assigning hosts into different tracks and clusters. This structure distributes stress on the multicast trees uniformly, and meantime makes path stretch as small as possible.Simulations results show that Sphere can support multicast with large group size and has good performance on organizing meshes and building data delivery trees.

  2. Fabrication of beryllium spheres and its validation tests

    International Nuclear Information System (INIS)

    A sphere-pack blanket concept using small size spheres of beryllium is one of the promising design concept of the ITER blanket, because the sphere-pack can accommodate the size deformation due to neutron irradiation damage, helium swelling and cyclic temperature changes. Preliminary R and D for an industrial fabrication technology of beryllium spheres (1.0 ± 0.3 mm in diameter) has been started as part of feasibility study of Japanese blanket concept of layered sphere-pack configuration. The following tests were performed in the several demo-fabrications; feasibility of size distribution control, material characterization such as macroscopic and microscopic structure analysis, impurity analysis, and attainable packing density, mechanical integrity under various thermal cycling conditions. (author)

  3. Evolutionary neural networks: a new alternative for neutron spectrometry; Redes neuronales evolutivas: una nueva alternativa para la espectrometria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Departamento de Electrotecnia y Electronica, Escuela Politecnica Superior, Av. Menendez Pidal s/n, 14004 Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Galleo, E. [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], e-mail: morvymm@yahoo.com.mx

    2009-10-15

    A device used to perform neutron spectroscopy is the system known as a system of Bonner spheres spectrometer, this system has some disadvantages, one of these is the need for reconstruction using a code that is based on an iterative reconstruction algorithm, whose greater inconvenience is the need for a initial spectrum, as close as possible to the spectrum that is desired to avoid this inconvenience has been reported several procedures in reconstruction, combined with various types of experimental methods, based on artificial intelligence technology how genetic algorithms, artificial neural networks and hybrid systems evolved artificial neural networks using genetic algorithms. This paper analyzes the intersection of neural networks and evolutionary algorithms applied in the neutron spectroscopy and dosimetry. Due to this is an emerging technology, there are not tools for doing analysis of the obtained results, by what this paper presents a computing tool to analyze the neutron spectra and the equivalent doses obtained through the hybrid technology of neural networks and genetic algorithms. The toolmaker offers a user graphical environment, friendly and easy to operate. (author)

  4. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media

    International Nuclear Information System (INIS)

    Highlights: • A porous lignin-based sphere was prepared from lignosulfonate by a gelation method. • The porous lignin-based sphere (PLS) had a high porosity and pore volume. • The PLS showed high adsorption efficiency for lead ions from aqueous media. • Bed column test proved the potential of PLS for continuous treatment of effluent. - Abstract: A green porous lignin-based sphere (PLS) had been fabricated by a feasible gelation-solidification method from lignosulfonate cross-linked with sodium alginate and epichlorohydrin. The prepared sphere was characterized by Fourier transform infrared spectrometry, scanning electron microscopy, mercury intrusion porosimetry, and thermo gravimetric analysis. The results demonstrated the PLS had a large amount of mesopores (d = 20.7 nm) with a high porosity of 87.66% and a total pore volume of 0.416 cm3/g. Batchwise adsorption experiments indicated the PLS possessed excellent adsorption efficiency (95.6 ± 3.5%) for lead ions at an initial concentration of 25.0 mg/L. The adsorption process could be well fitted by intra-particle diffusion model and Langmuir isotherm model. Application of the PLS in bed column mode for the continuous treatment of lead solution exhibited prolonged breakthrough time from 75 min to 100 min as the bed column heights increased from 0.5 cm to 2.5 cm which was much better than the alkaline lignin column (2.5 cm height, breakthrough time = 60 min). The results strongly suggested the high possibility of the porous sphere being applied for the continuous treatment of heavy metals rich wastewater in industry

  5. Recovering functions defined on the unit sphere by integration on a special family of sub-spheres

    Science.gov (United States)

    Salman, Yehonatan

    2016-05-01

    The aim of this article is to derive a reconstruction formula for the recovery of C1 functions, defined on the unit sphere {{{S}}}^{n - 1} , given their integrals on a special family of n - 2 dimensional sub-spheres. For a fixed point overline{a} strictly inside {{{S}}}^{n - 1} , each sub-sphere in this special family is obtained by intersection of {{{S}}}^{n - 1} with a hyperplane passing through overline{a} . The case overline{a} = 0 results in an inversion formula for the special case of integration on great spheres (i.e., Funk transform). The limiting case where pin {{{S}}}^{n - 1} and overline{a}→ p results in an inversion formula for the special case of integration on spheres passing through a common point in {{{S}}}^{n - 1}.

  6. Integrated marketing communications in educational sphere

    OpenAIRE

    Baranova, A. S.; Баранова, А. С.

    2013-01-01

    The article investigates the paradigm of Integrated Marketing Communication and their main features. The author explains concept of Integrated Marketing Communication on the practical example in educational sphere. В статье рассказывается о понятии и основных чертах интегрированных маркетинговых коммуникаций. Автор поясняет положения концепции интегрированных маркетинговых коммуниакций на конкретном примере в образовательной сфере....

  7. Measurement of Neutron Transmission Through Iron Spheres

    International Nuclear Information System (INIS)

    We have measured the transmission of neutrons through iron spheres with several different neutron sources. The D(d,n) reaction and the 15N(n,p) reaction were found to be the best candidates for nearly monoenergetic sources at energies below 11 MeV. We have used a quasi monoenergetic source with 3.0-, 5.0-, and 7.0-MeV deuterons incident on a deuteron gas cell and 5.1-MeV protons incident on a 15N gas cell. The Ohio University Beam Swinger Facility was used in these measurements. This allowed a single fixed detector in a well-shielded time-of-flight (TOF) tunnel to be used for measurements at all angles. This allows a great reduction in the background from room scattered neutrons. The detector, either NE-213 or lithium glass, was calibrated relative to the neutron spectrum from the B(d,n) or the Al(d,n) source reaction. These spectra have been measured relative to the primary neutron standard, 235U(n, f). The transmitted neutrons have been measured for all source reactions at several angles. The data will be reported as the number of neutrons versus time-of-flight since multiple scattering does not allow the energy to be determined accurately by time-of-flight. We have also measured the source reaction at several angles to enhance the modeling of the source spectrum

  8. Electrophoretic mobility of electrostatically interacting colloidal spheres

    International Nuclear Information System (INIS)

    We have measured the electrophoretic mobility μ = vE/E (where E is the electric field strength and vE the electrophoretic velocity) of highly charged colloidal spheres in deionized aqueous suspension at particle number densities n between 0.15 and 150 μm-3. Under these conditions the system exhibits fluid or crystalline order. We used laser Doppler velocimetry to determine the electrophoretic velocities vE as spatially averaged particle velocities from both integral and spatially resolved measurements. With this approach we were for the first time able to extend measurements far into the crystalline region of the phase diagram. We found μ to be constant at low n while at large n we observe an approximately logarithmic decrease in n. However, the descent of μ is not affected by the phase transition. This indicates that this transport coefficient rather depends on the local structure of the ionic clouds surrounding the particles than on the long range order of the suspension

  9. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    KAUST Repository

    Marston, Jeremy

    2011-06-20

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.

  10. Radar Imaging of Spheres in 3D using MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Berryman, J G

    2003-01-21

    We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.

  11. Extrinsic Calibration of Camera Networks Using a Sphere

    Directory of Open Access Journals (Sweden)

    Junzhi Guan

    2015-08-01

    Full Text Available In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use.

  12. Forming MOFs into spheres by use of molecular gastronomy methods.

    Science.gov (United States)

    Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard

    2014-07-14

    A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. PMID:24964774

  13. Synthesis and Characterization of Oil-Chitosan Composite Spheres

    Directory of Open Access Journals (Sweden)

    Wei-Ting Wang

    2013-05-01

    Full Text Available Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles and lipophilic materials (i.e., rhodamine B or epirubicin could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres, 2.31 ± 0.08 mm (oil-chitosan composites, 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites, and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites, respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.

  14. Synthesis and characterization of oil-chitosan composite spheres.

    Science.gov (United States)

    Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru Mihai; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting

    2013-01-01

    Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites), and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites), respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin) could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers. PMID:23681059

  15. Software for nuclear spectrometry

    International Nuclear Information System (INIS)

    The Advisory Group Meeting (AGM) on Software for Nuclear Spectrometry was dedicated to review the present status of software for nuclear spectrometry and to advise on future activities in this field. Because similar AGM and consultant's meetings had been held in the past; together with an attempt to get more streamlined, this AGM was devoted to the specific field of software for gamma ray spectrometry. Nevertheless, many of the issues discussed and the recommendations made are of general concern for any software on nuclear spectrometry. The report is organized by sections. The 'Summary' gives conclusions and recommendations adopted at the AGM. These conclusions and recommendations resulted from the discussions held during and after presentations of the scientific and technical papers. These papers are reported here in their integral form in the following Sections

  16. Compression cracking of plastic spheres: a high speed photography study

    International Nuclear Information System (INIS)

    Failure of brittle spheres under compressive loading, both quasi static and dynamic, is a technologically important problem. However, so far, neither the stress state in a loaded nor the failure process in understood clearly. In fact, because the process of the failure of a loaded sphere is very rapid, it has not been possible to follow it when making static observations. We have, therefore, carried out a high-speed photographic study using framing rates of up to 200,000 frames per second to follow the sequence of events when polished 12.7 mm diameter spheres of acrylic resin are fragmented using a low-velocity impact apparatus. The latter consist of a 5.7 kg hammer, which is allowed to drop on to the test sphere from a height of 1.3 m and the entire event of impact and ensuing fracture is photographed with a rotating mirror camera (C-4). Form numerous impact experiments it has been found that as the impact load increases gradually, plastic flow and flattering of the sphere occurs at the contact region. The size of the flattened region continuous to grow with increasing impact load and when this region becomes sufficiently large, usually one or two cracks initiate at the periphery of the contact rather than in the bulk of the sphere. The surface cracks then grow into the bulk of the sphere at velocities in the range of 600-800 m s/sup -1/. It is interesting to note these crack velocities are the maximum observed velocities in this material, but these are only approx. 0.8 of the Rayleigh wave velocity, which is the theoretically predicted maximum crack velocity in brittle materials. It is argued that in order to cause the catastrophic failure of a solid sphere, it is necessary to cause plasticity in it which then leads to the generation of tensile hoop stresses at the circle of contact between the sphere and platen. (author)

  17. Investigating effects of sphere blockage ratio on the characteristics of flow and heat transfer in a sphere array

    International Nuclear Information System (INIS)

    Highlights: • This paper is to study the heat transfer coefficient on spheres in a 3-D array. • Transient liquid crystal technique is used to measure temperature distributions. • A 3-D transient CFD model with different turbulence models is also developed. • v2‾-f Turbulence model is shown to be more suitable for simulating pebble arrangement. • Beneficial effect of Rein on heat transfer for pebbles is shown in test and model. - Abstract: With advantage of higher heat transfer area per unit mass, a pebble bed is usually adopted as an essential component for design of energy production systems and thermal energy storage (TES) systems. The majority of this paper investigates the sphere blockage ratio (β) on the thermal–hydraulic characteristics of a pebble with 14 spheres using a three-dimensional (3-D) computational fluid dynamics (CFD) model with the v2‾-f turbulence model. In a previous work, this model has been validated against measured distributions of the heat transfer coefficient on the selected spheres. The measured data are obtained using the transient liquid–crystal technique. According to the simulation results, the thermal–hydraulic characteristics in the sphere array can be captured reasonably with the present CFD model, including flow stagnation, flow separation, vortex formation and anisotropic characteristics of the heat transfer on the sphere surface. Comparisons of the simulation results for the sphere arrays with different blockage ratios show that the flow and turbulent intensity distributions are similar in most regions of a sphere array, except the portions between the pebbles. The heat transfer coefficient for the upstream spheres increases slightly as the blockage ratio decreases. However, a lower heat transfer coefficient is predicted for the downstream sphere if β is less than 0.75. In addition, the heat transfer coefficient around the front of a downstream sphere would not be influenced by the upstream spheres until

  18. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  19. Mastering VMware vSphere 5.5

    CERN Document Server

    Lowe, Scott; Guthrie, Forbes; Liebowitz, Matt; Atwell, Josh

    2013-01-01

    The 2013 edition of the bestselling vSphere book on the market Virtualization remains the hottest trend in the IT world, and VMware vSphere is the industry's most widely deployed virtualization solution. The demand for IT professionals skilled in virtualization and cloud-related technologies is great and expected to keep growing. This comprehensive Sybex guide covers all the features and capabilities of VMware vSphere, showing administrators step by step how to install, configure, operate, manage, and secure it. This perfect blend of hands-on instruction, conceptual explanation, and practic

  20. Dense packing of spheres around rods in supramolecular aggregates

    International Nuclear Information System (INIS)

    We consider a system of identically-sized spheres that coat a rod in a dense monolayer. We derive relationships that show how the number of spheres needed to cover a unit length of rod depends on the sphere and rod radii. The analysis could provide a stimulating exercise for students who have been introduced to the conventional examples of dense packing that are taught in many introductory physical science courses. The new class of liquid crystalline system which prompted this analysis may have applications in displays that can maintain stable liquid crystalline order over a broad range of temperatures. (author)

  1. Simulations of a supersymmetry inspired model on a fuzzy sphere

    International Nuclear Information System (INIS)

    We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a variant of this model on a fuzzy sphere. The prospect to restore exact supersymmetry in certain limits is under investigation. (orig.)

  2. Simulations of a supersymmetry inspired model on a fuzzy sphere

    CERN Document Server

    Bietenholz, Wolfgang

    2008-01-01

    We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a variant of this model on a fuzzy sphere. The prospect to restore exact supersymmetry in certain limits is under investigation.

  3. Simulations of a supersymmetry inspired model on a fuzzy sphere

    Energy Technology Data Exchange (ETDEWEB)

    Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-11-15

    We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a variant of this model on a fuzzy sphere. The prospect to restore exact supersymmetry in certain limits is under investigation. (orig.)

  4. Echoes of the glass transition in athermal soft spheres

    Science.gov (United States)

    Morse, Peter; Corwin, Eric

    The glass transition and the athermal jamming transition are both transitions from one disordered state to another marked by a sudden increase in rigidity. Before the onset of rigidity, thermal hard spheres and athermal soft spheres both share the same configuration space. Is there a signature of the glass transition in the topology of the allowed configuration space, and is this same signature present for athermal spheres? I will answer these questions by introducing the concept of local rigidity, and in doing so, I will demonstrate the existence of a pre-jamming phase transition precisely at the glass transition density.

  5. VMware vSphere 4 Administration Instant Reference

    CERN Document Server

    Lowe, Scott; Johnson, Matthew K

    2009-01-01

    The only quick reference guide to the number one virtualization product!. Get all your solutions about VMware's newest virtualization infrastructure software on the spot with this handy reference guide. Designed for quick access with special headings, thumb tabs, easy-to-read lists, and more, this book is the perfect companion to any comprehensive VMware guide, such as Mastering VMware vSphere 4 .: Covers the market-leading virtualization product, VMware's new vSphere 4; Offers a quick-access reference for your day-to-day administration of vSphere 4; Includes thumb tabs, secondary and tertiary

  6. Diversity and the European Public Sphere. The Case of Denmark

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene; Siim, Birte; Agustin, Lise Rolandsen

    2010-01-01

    This report contains empirical findings from the Danish case within the Eurosphere project. It is based on 55 interviews with Danish opinion makers on the topics of diversity, EU polity and the European public sphere The empirical research programme of EUROSPHERE aims to explore whether it is...... possible to develop an inclusive public sphere in the European Union. Based on different scenarios and alternative combinations of different approaches to diversity, polity, and the public sphere, EUROSPHERE aims to identify the notions, discourses, and objectives that are in the process of becoming...

  7. Superposition of nonlinear coherent states on a sphere

    Directory of Open Access Journals (Sweden)

    T Hosseinzadeh

    2013-09-01

    Full Text Available  In this paper, by using the nonlinear coherent states on a sphere, we introduce superposition of the aforementioned coherent states. Then, we consider quantum optical properties of these new superposed states and compare these properties with the corresponding properties of the nonlinear coherent states on the sphere. Specifically, we investigate their characteristics function, photon-number distribution, Mandel parameter, quadrature squeezing, anti-bunching effect and Wigner function, and obtain the curvature effect on the properties of the superposed states. Finally, by using the trapped atom system, we introduce a theoretical scheme to generate superposition of the coherent states on the sphere.

  8. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  9. Uniqueness of photon spheres via positive mass rigidity

    CERN Document Server

    Cederbaum, Carla

    2015-01-01

    In a recent paper the first author established the uniqueness of photon spheres, suitably defined, in static vacuum asymptotically flat spacetimes by adapting Israel's proof of static black hole uniqueness. In this note we establish uniqueness of photon spheres by adapting the argument of Bunting and Masood-ul-Alam, which then allows certain assumptions to be relaxed. In particular, multiple photon spheres are allowed a priori. As a consequence of our result, we can rule out the existence of static configurations involving multiple "very compact" bodies and black holes.

  10. Tidally Driven Dynamos in a Rotating Sphere

    Science.gov (United States)

    Cébron, D.; Hollerbach, R.

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker & Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  11. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D.; Hollerbach, R., E-mail: david.cebron@ujf-grenoble.fr, E-mail: r.hollerbach@leeds.ac.uk [Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich CH-8092 (Switzerland)

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  12. Calculation of bosonic matter fields on an N-sphere

    International Nuclear Information System (INIS)

    We solve the spectral problem and the Klein-Gordon equation for a massive and massless field theory on n-sphere, using a theory of hypergeometric equations developed by A. Nikiforov and V. Uvarov. (author)

  13. Collapse of radiating fluid spheres and cosmic censorship

    International Nuclear Information System (INIS)

    The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C1 extension to their model and thus it does not force a violation of strong cosmic censorship

  14. Scattering from a multilayered chiral sphere using an iterative method

    Science.gov (United States)

    Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu

    2016-04-01

    An iterative method for electromagnetic scattering from a multilayered chiral sphere is presented based on Lorenz-Mie regime. Electromagnetic fields in each region are expanded in terms of spherical vector wave functions. To calculate the scattering coefficients of the fields in outer space, an iterative form is constructed according to the coefficients equations obtained by the boundary condition on each layer. The iterative relations are expressed in forms of ratios and logarithmic derivatives of Riccati-Bessel functions, which can be calculated conveniently by their recurrence relations. The theory and codes are verified by comparing the scattered fields with those of a multilayered isotropic achiral sphere, and those of a single layered chiral sphere. Scattered fields of multilayered chiral spheres are presented and discussed, including a large sized case and a Gaussian beam incidence case.

  15. [The power of religion in the public sphere] / Alar Kilp

    Index Scriptorium Estoniae

    Kilp, Alar, 1969-

    2012-01-01

    Arvustus: Buthler, Judith, Habermas, Jürgen, Taylor, Charles, West, Cornel. The power of religion in the public sphere. (Eduardo Mendieta, Jonathan VanAntwerpen (eds.) Afterword by Craig Calhoun.) New York ; Chichester : Columbia University Press, 2011

  16. Gender and Diversity in the European Public Spheres

    DEFF Research Database (Denmark)

    Siim, Birte

    The increasing institutionalization of rights in EU has inspired a debate about the gap between the EU polity and citizens' abilities to influence multilevel governance and politics. The objective of the paper is to discuss diversity in the European public spheres from a gender perspective. It...... first gives an overview of different feminist approaches to diversity and intersectionality. It explores the arguments for and against creating a democratic European Public Sphere and discusses the tensions between universal principles of equality at the one hand and concerns for inequalities and...... state and to link feminist proposals for gender justice with frames for a multilayered trans-national citizenship. The paper aims to contribute to debates about theoretical approaches and models to study gender and diversity in the public sphere in general and in particular The European Public Sphere...

  17. Transport properties of highly asymmetric hard-sphere mixtures.

    Science.gov (United States)

    Bannerman, Marcus N; Lue, Leo

    2009-04-28

    The static and dynamic properties of binary mixtures of hard spheres with a diameter ratio of sigma(B)/sigma(A)=0.1 and a mass ratio of m(B)/m(A)=0.001 are investigated using event driven molecular dynamics. The contact values of the pair correlation functions are found to compare favorably with recently proposed theoretical expressions. The transport coefficients of the mixture, determined from simulation, are compared to the predictions of the revised Enskog theory using both a third-order Sonine expansion and direct simulation Monte Carlo. Overall, the Enskog theory provides a fairly good description of the simulation data, with the exception of systems at the smallest mole fraction of larger spheres (x(A)=0.01) examined. A "fines effect" was observed at higher packing fractions, where adding smaller spheres to a system of large spheres decreases the viscosity of the mixture; this effect is not captured by the Enskog theory. PMID:19405594

  18. Mechanism of drag reduction by dimples on a sphere

    Science.gov (United States)

    Choi, Jin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-04-01

    In this Letter we present a detailed mechanism of drag reduction by dimples on a sphere such as golf-ball dimples by measuring the streamwise velocity above the dimpled surface. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in the generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with a high momentum near the wall and overcomes a strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay the main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e., a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder.

  19. Chemical flowsheet conditions for preparing urania spheres by internal gelation

    International Nuclear Information System (INIS)

    Small, ceramic urania spheres can be prepared for use as nuclear fuel by internal chemical gelation of uranyl nitrate solution droplets. Acid-deficient uranyl nitrate solutions up to 3.4 M in uranium with NO3-U mole ratios of 1.5 to 1.7 are prepared by dissolution of U3O8 or UO3. Decomposition of hexamethylenetetramine dissolved in the uranyl nitrate solution releases ammonia to precipitate hydrated UO/sub 3/. Previously established flowsheet conditions have been improved and modified at ORNL and have been applied to prepare dense UO2 spheres with average diameters of 1200, 300, and 30 μm. The 1200- and 300-μm UO2 spheres were prepared by gelation in trichloroethylene at 50 to 650C; 2-ethyl-1-hexanol was used as the gelation medium to prepare 30-μm UO2 spheres. 8 refs

  20. Electromagnetic scattering by a partially charged multilayered sphere

    International Nuclear Information System (INIS)

    A new calculation procedure for the attenuation coefficients of electromagnetic wave by a partially charged multilayered sphere is proposed. The procedure is based on the utilization of a prescription which relates the expansion coefficients of the electromagnetic fields in the n-layered zone to those for the core zone through an iterative process, and then directly applies the coated-sphere model to calculate the expansion coefficients of the scattering field, and the extinction cross section. This method can be used to calculate the scattering properties of any multilayer charged sphere. - Highlights: • The scattering of electromagnetic (EM) wave by a charged multilayered sphere is discussed. • A new calculation procedure for the attenuation coefficient is proposed. • A semi-analytical expression for the attenuation coefficient is shown

  1. Jets generated by a sphere moving vertically in stratified fluids

    Science.gov (United States)

    Hanazaki, Hideshi; Okino, Shinya; Nakamura, Shota; Akiyama, Shinsaku

    2013-11-01

    Unsteady development of buoyant jets generated by a sphere moving vertically at constant speeds in stratified fluids is investigated. Initially, the sphere simply drags light upper fluids or isopycnal surfaces as it goes down, as long as the molecular diffusion of density is negligible. In the succeeding period, molecular diffusion of density in the boundary layer on the sphere surface becomes increasingly significant, especially in the lower hemisphere. Then, the density is no longer conserved and a vertical jet starts from the rear/upper stagnation point of the sphere, since the fluid particle of altered but small density tends to go back to its original height. Strength and radius of those jets depend significantly on stratification (Froude number), as well as the Reynolds number and the Schmidt number. These mechanisms are investigated by numerical simulations and measurements by laser induced fluorescence (LIF).

  2. A Reaction Sphere for High Performance Attitude Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our innovative reaction sphere (Doty pending patent application serial number 61/164,868) has the potential to provide much higher performance than a conventional...

  3. Prototype sphere-on-sphere silica particles for the separation of large biomolecules.

    Science.gov (United States)

    Fekete, Szabolcs; Rodriguez-Aller, Marta; Cusumano, Alessandra; Hayes, Richard; Zhang, Haifei; Edge, Tony; Veuthey, Jean-Luc; Guillarme, Davy

    2016-01-29

    The goal of this study was to evaluate the possibilities offered by a prototype HPLC column packed with ∼2.5μm narrow size distribution sphere-on-sphere (SOS) silica particles bonded with C4 alkyl chains, for the analytical characterization of large biomolecules. The kinetic performance of this material was evaluated in both isocratic and gradient modes using various model analytes. The data were compared to those obtained on other widepore state-of-the-art fully core-shell and fully porous materials commonly employed to separate proteins moreover to a reference 5μm wide pore material that is still often used in QC labs. In isocratic mode, minimum reduced plate height values of hmin=2.6, 3.3 and 3.3 were observed on butylparaben, decapeptide and glucagon, respectively. In gradient elution mode, the SOS column performs very high efficiency when working with fast gradients. This prototype column was also comparable (and sometimes superior) to other widepore stationary phases, whatever the gradient time and flow rate, when analyzing the largest model protein, namely BSA. These benefits may be attributed to the SOS particle morphology, minimizing the intra-particle mass transfer resistance. Finally, the SOS column was also applied for the analytical characterization of commercial monoclonal antibody (mAb) and antibody-drug conjugate (ADC) samples. With these classes of proteins, the performance of SOS column was similar to the best widepore stationary phases available on the market. PMID:26755414

  4. An affine sphere equation associated to Einstein toric surfaces

    OpenAIRE

    Mabuchi, Toshiki

    2007-01-01

    As seen in the works of Calabi, Cheng-Yau and Loftin, affine sphere equations have a close relationship with Kaehler-Einstein metrics. The main purpose of this note is to show that an equation analogous to those of hyperbolic affine spheres arises naturally from Kaehler-Einstein metrics on Einstein toric surfaces. The case for the remaining toric surfaces with Kaehler-Ricci solitons will also be discussed.

  5. Strictly and non-strictly positive definite functions on spheres

    OpenAIRE

    Gneiting, Tilmann

    2011-01-01

    Isotropic positive definite functions on spheres play important roles in spatial statistics, where they occur as the correlation functions of homogeneous random fields and star-shaped random particles. In approximation theory, strictly positive definite functions serve as radial basis functions for interpolating scattered data on spherical domains. We review characterizations of positive definite functions on spheres in terms of Gegenbauer expansions and apply them to dimension walks, where m...

  6. Extrinsic Calibration of Camera Networks Using a Sphere

    OpenAIRE

    Junzhi Guan; Francis Deboeverie; Maarten Slembrouck; Dirk Van Haerenborgh; Dimitri van Cauwelaert; Peter Veelaert; Wilfried Philips

    2015-01-01

    In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied t...

  7. Public Sphere in Totalitarian Period. The Romanian Case

    OpenAIRE

    Luminiţa ROŞCA

    2010-01-01

    This paper proposes an analysis pattern of the existence forms of the public sphere in the totalitarian pe riod from Romania. The analysis took into consideration essential reference in shaping the notion of public sphere: public communication and mass communication, public authority and the public exercise of reason. The scope of the research is to offer scientific significance to an array of testimonies from that period, regarding the situation of the individual and the society in the late ...

  8. Experimental Investigation of Mechanical Properties of Metallic Hollow Sphere Structures

    Science.gov (United States)

    Friedl, O.; Motz, C.; Peterlik, H.; Puchegger, S.; Reger, N.; Pippan, R.

    2008-02-01

    Metallic foam was fabricated from 316L stainless steel spheres, where the bonding of the spheres was achieved by a sintering process. The mechanical behavior of a low-density material (0.3 g/cm3) with 2- and 4-mm sphere diameter and a high-density material (0.6 g/cm3) with 4-mm sphere diameter was investigated in compression and tension. The cell wall material of this hollow sphere structure (HSS) had different morphologies: dense and porous sintered walls were investigated. The cell wall morphology affects the Young’s modulus (stiffness) and the ductility of the HSS material. Defects, such as the cell wall porosity, lower the ductility of the material. Besides the quasi-static measurements, the HSS material was tested with a resonance frequency method (dynamic measurement), to obtain detailed information on the stiffness at different temperatures up to 700 °C. In-situ compression and tension tests were carried out to understand the deformation mechanisms on the scale of the single hollow spheres. The failure mechanisms in the vicinity of the sintering neck of the spheres was investigated. A doubling of the density leads to an increase of the plateau stress and the ultimate tensile stress of the material, whereas the ductility (strain to fracture) depended mainly on the cell wall morphology. Due to the mainly tensile loading of the cell walls in the vicinity of the sinter neck, the ultimate tensile strength doubled for the high-density HSS, in good agreement with theoretical considerations. In compression, the gain in the plateau stress was not as distinctive compared with the theoretical considerations assuming a bending dominated deformation. The influence of structural parameters, such as cell wall morphology, cell wall thickness, and sphere diameter, on the mechanical behavior is discussed.

  9. Spheres of isolation: adaptation of isolation levels to transactional workflow

    OpenAIRE

    Guabtni, Adnene; Charoy, François; Godart, Claude

    2005-01-01

    In Workflow Management Systems (WFMSs), transaction isolation is managed most of the time by the underlying database system using ANSI SQL strategies. These strategies do not take sufficiently into account process aspects. Our work consists in studying with more depth the relation between isolation strategy and process dimension as well as the real isolation needs in workflow environments. To carry out these needs, we define `spheres of isolation' inspired from `spheres of control' proposed b...

  10. Hard Sphere Dynamics for Normal and Granular Fluids

    OpenAIRE

    Dufty, James W.; Baskaran, Aparna

    2005-01-01

    A fluid of N smooth, hard spheres is considered as a model for normal (elastic collisions) and granular (inelastic collisions) fluids. The potential energy is discontinuous for hard spheres so the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the...

  11. Hydrodynamic limit Of a binary mixture Of rigid spheres

    OpenAIRE

    CHOE, HI JUN; Zhou, Shulin

    2015-01-01

    In this paper, we study the hydrodynamic limit of a binary mixture of rigid spheres. When Knudsen numbers of two different species are equal and go to zero, we show formally that the hydrodynamic variables satisfy the compressible Euler and Navier-Stokes equations. Like single species gas, we develop Enskog-Chapman theory up to the second order. It turns out that the macro velocities corresponding to the different spheres are equal and the ratio of the temperatures is the...

  12. The Jerry Springer Show as an Emotional Public Sphere

    OpenAIRE

    Lunt, P.; Stenner, P.

    2005-01-01

    The public sphere debate in social theory has been a topic of considerable interest amongst scholars analysing the talk show genre. Habermas (1989) attached great importance to the potential of rational critical discussion to create consensus and thereby legitimation in democratic society. He was concerned that the media gave a false impression of engagement in a public sphere while managing rights of access and speech in a manner that was inimical to open public discussion. In contrast, cult...

  13. Rigidity theorem forWillmore surfaces in a sphere

    Indian Academy of Sciences (India)

    Hongwei Xu; Dengyun Yang

    2016-05-01

    Let 2 be a compact Willmore surface in the (2 + )-dimensional unit sphere 2+. Denote by and the mean curvature and the squared length of the second fundamental form of 2, respectively. Set $\\rho^2 = S − 2H^2$. In this note, we proved that there exists a universal positive constant , such that if $\\parallel \\rho^2\\parallel_2 \\lt C$, then $\\rho^2 = 0$ and 2 is a totally umbilical sphere.

  14. Generalized non-associative structures on the 7-sphere

    OpenAIRE

    da Rocha, Roldao; Traesel, M. A.

    2011-01-01

    In this paper we provide a more general class of non-associative products using the exterior and Clifford bundles on the 7-sphere. Some additional properties encompass previous formalisms in the Clifford algebra context, and wider classes of non-associative structures on the 7-sphere are investigated, evinced by the directional non-associative products and the mixed composition of generalized non-associative products between Clifford algebra multivectors. These non-associative products are fu...

  15. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  16. Formal Variability of Terms in the Sphere of Network Technologies

    OpenAIRE

    Roman Viktorovich Deniko; Olga Grigoryevna Shchitova

    2015-01-01

    The article addresses the problem of formal variability of terms in the sphere of network terminology in the Russian language. The research is based on data from the Internet communication in the sphere of network technologies. Such formal variability types as graphical, phonemic, word building and complex (graphic and phonetic, morphologic and accentual) are discussed in this article. The authors reveal the reasons for graphic variability of foreign origin terms making up the international t...

  17. Chemical flowsheet conditions for preparing urania spheres by internal gelation

    International Nuclear Information System (INIS)

    Small, ceramic urania spheres can be prepared for use as nuclear fuel by internal chemical gelation of uranyl nitrate solution droplets. Decomposition of hexamethylenetetramine (HMTA) dissolved in the uranyl nitrate solution releases ammonia to precipitate hydrated UO3. Previously established flowsheet conditions have been improved and modified at ORNL and have been applied to prepare dense UO2 spheres with average diameters of 1200, 300, and 30 μm

  18. Relaxation of Thick-Walled Cylinders and Spheres

    DEFF Research Database (Denmark)

    Saabye Ottosen, N.

    1982-01-01

    Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...

  19. Global Calibration of Multiple Cameras Based on Sphere Targets

    Directory of Open Access Journals (Sweden)

    Junhua Sun

    2016-01-01

    Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.

  20. Global Calibration of Multiple Cameras Based on Sphere Targets.

    Science.gov (United States)

    Sun, Junhua; He, Huabin; Zeng, Debing

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007

  1. Ellipsoids beat Spheres: Experiments with Candies, Colloids and Crystals

    Science.gov (United States)

    Chaikin, Paul

    2006-04-01

    How many gumballs fit in the glass sphere of a gumball machine? Scientists have been puzzling over problems like this since the Ancient Greeks. Yet it was only recently proven that the standard way of stacking oranges at a grocery store--with one orange on top of each set of three below--is the densist packing for spheres, with a packing fraction φ˜ 0.74. Random (amorphous) packings of spheres have a lower density, with φ ˜0.64. The density of crystalline and random packings of atoms is intimately related to the melting transition in matter. We have studied the crystal-liquid transition in spherical colloidal systems on earth and in microgravity. The simplest objects to study after spheres are squashed spheres -- ellipsoids. Surprisingly we find that ellipsoids can randomly pack more densely than spheres, up to φ˜0.68 - 0.71 for a shape close to that of M&M's^ Candies, and even approach φ˜0.75 for general ellipsoids. The higher density relates directly to the higher number of neighbors needed to prevent the more asymetric ellipsoid from rotating. We have also found the ellipsoids can be packed in a crystalline array to a density, φ˜.7707 which exceeds the highest previous packing. Our findings provide insights into granular materials, rigidity, crystals and glasses, and they may lead to higher quality ceramic materials.

  2. Multiple scattering of a spherical acoustic wave from fluid spheres

    Science.gov (United States)

    Wu, J. H.; Liu, A. Q.; Chen, H. L.; Chen, T. N.

    2006-02-01

    The multiple scattering of a spherical acoustic wave from an arbitrary number of fluid spheres is investigated theoretically. The tool to attack the multiple scattering problem is a kind of addition formulas for the spherical wave functions, which are presented in the paper, based on the bicentric expansion form of Green function in the spherical coordinates. For an arbitrary configuration of N fluid spheres, the kind of addition formulas permits the field expansions (all referred to the center of each sphere). With these the sound fields scattered by each sphere can be described by a set of N equations. The interactions between any two fluid spheres are taken into account in these equations exactly and their coefficients are coupled through double sums in the spherical wave functions. By truncating the infinite series in the equations depending on certain calculation accuracy and solving the coefficients matrix by using the Gauss-Seidel iteration method, we can obtain the scattered sound field by the configuration of the fluid spheres. Finally, the scattering calculations by using the kind of addition formulas are carried out.

  3. Global Calibration of Multiple Cameras Based on Sphere Targets

    Science.gov (United States)

    Sun, Junhua; He, Huabin; Zeng, Debing

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007

  4. Squeeze flow of a Carreau fluid during sphere impact

    KAUST Repository

    Uddin, J.

    2012-07-19

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  5. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  6. Construction of adhesion maps for contacts between a sphere and a half-space: Considering size effects of the sphere.

    Science.gov (United States)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Yang, Weixu

    2015-11-15

    Previous adhesion maps, such as the JG (Johnson-Greenwood) and YCG (Yao-Ciavarella-Gao) maps, are used to guide the selection of Bradley, DMT, M-D, JKR and Hertz models. However, when the size of the contact sphere decreases to the small scale, the applicability of JG and YCG maps is limited because the assumptions regarding the contact region profile, interaction between contact bodies and sphere shape in the classical models constituting these two maps are no longer valid. To avoid this limitation, in this paper, a new numerical model considering size effects of the sphere is established first and then introduced into the new adhesion maps together with the YGG (Yao-Guduru-Gao) model and Hertz model. Regimes of these models in the new map under a certain sphere radius are demarcated by the criteria related to the relative force differences and the ratio of contact radius to sphere radius. In addition, the approaches at pull-off, jump-in and jump-out for different Tabor parameters and sphere radii are provided in the new maps. Finally, to make the new maps more feasible, the numerical results of approaches, force and contact radius involved in the maps are formularized by using the piecewise fitting. PMID:26232732

  7. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Science.gov (United States)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-06-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron-steel hollow sphere (DI-SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder-binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI-SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI-SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

  8. Mössbauer Spectrometry

    OpenAIRE

    Fultz, Brent

    2012-01-01

    Mössbauer spectrometry gives electronic, magnetic, and structural information from within materials. A Mössbauer spectrum is an intensity of γ-ray absorption versus energy for a specific resonant nucleus such as ^(57)Fe or ^(119)Sn. For one nucleus to emit a γ-ray and a second nucleus to absorb it with efficiency, both nuclei must be embedded in solids, a phenomenon known as the “Mössbauer effect.” Mössbauer spectrometry looks at materials from the “inside out,” where “inside” ...

  9. Scattering theory for finitely many sphere interactions supported by concentric spheres

    International Nuclear Information System (INIS)

    We study stationary scattering theory for finitely many sphere interactions formally given by the Hamiltonian H=-Δ+summation j=1Nαjδ(|x|-Rj) and its generalizations to the case of interactions of the second type and interactions with nonseparated boundary conditions. In a previous publication [J. Math. Phys. 29, 660 endash 664 (1988)], it was shown that the self-adjoint Hamiltonian H{αl},{R} corresponding to H may be defined as a limit in norm resolvent convergence of a family Hvar-epsilon of local scaled short-range Hamiltonians. In this paper we also study scattering theory corresponding to Hvar-epsilon and show that the scattering quantities associated with Hvar-epsilon converge to those of H{αl},{R} as var-epsilon →0. copyright 1997 American Institute of Physics

  10. Tin-wall hollow ceramic spheres from slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.T.; Cochran, J.K.

    1992-12-31

    The overall objective of this effort was to develop a process for economically fabricating thin-wall hollow ceramic spheres from conventional ceramic powders using dispersions. This process resulted in successful production of monosized spheres in the mm size range which were point contact bonded into foams. Thin-wall hollow ceramic spheres of small (one to five millimeter) diameter have novel applications as high-temperature insulation and light structural materials when bonded into monolithic foams. During Phase 1 of this program the objective as to develop a process for fabricating thin-wall hollow spheres from powder slurries using the coaxial nozzle fabrication method. Based on the success during Phase 1, Phase 2 was revised to emphasize the assessment of the potential structural and insulation applications for the spheres and modeling of the sphere formation process was initiated. As more understanding developed, it was clear that to achieve successful structural application, the spheres had to be bonded into monolithic foams and the effort was further expanded to include both bonding into structures and finite element mechanical modeling which became the basis of Phase 3. Successful bonding techniques and mechanical modeling resulted but thermal conductivities were higher than desired for insulating activities. In addition, considerable interest had been express by industry for the technology. Thus the final Phase 4 concentrated on methods to reduce thermal conductivity by a variety of techniques and technology transfer through individualized visits. This program resulted in three Ph.D. theses and 10 M.S. theses and they are listed in the appropriate technical sections.

  11. Calculation and study on model of crushing load of HTR absorption sphere

    International Nuclear Information System (INIS)

    The absorption sphere shutdown system is the second shutdown system of 10 MW HTR. The absorption sphere contains 25% B4C, dispersing in graphite matrix. The crushing load, which is an important performance parameter of the absorption sphere, closely relates to the diameter. The effect of graphite sphere diameter and density on the crushing load was studied using the graphite sphere to simulate HTR absorption spheres. Three kinds of graphites with different densities were chosen and processed into five types of spheres with different diameters, and then the crushing experiment was conducted. The results show that the crushing load of the sphere is proportional to the square of the diameter, and increases with the density. For a certain diameter of graphite sphere, increasing the density of the sphere is an effective way to enhance the crushing load. (authors)

  12. Complexation of DNA with positive spheres: phase diagram of charge inversion and reentrant condensation

    OpenAIRE

    Nguyen, Toan T.; Shklovskii, Boris I.

    2001-01-01

    The phase diagram of a water solution of DNA and oppositely charged spherical macroions is studied. DNA winds around spheres to form beads-on-a-string complexes resembling the chromatin 10 nm fiber. At small enough concentration of spheres these "artificial chromatin" complexes are negative, while at large enough concentrations of spheres the charge of DNA is inverted by the adsorbed spheres. Charges of complexes stabilize their solutions. In the plane of concentrations of DNA and spheres the...

  13. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    OpenAIRE

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-01-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon depos...

  14. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  15. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  16. Glass transition of dense fluids of hard and compressible spheres.

    Science.gov (United States)

    Berthier, Ludovic; Witten, Thomas A

    2009-08-01

    We use computer simulations to study the glass transition of dense fluids made of polydisperse repulsive spheres. For hard particles, we vary the volume fraction, phi , and use compressible particles to explore finite temperatures, T>0 . In the hard sphere limit, our dynamic data show evidence of an avoided mode-coupling singularity near phi(MCT) is approximately 0.592; they are consistent with a divergence of equilibrium relaxation times occurring at phi(0) is approximately 0.635, but they leave open the existence of a finite temperature singularity for compressible spheres at volume fraction phi>phi(0). Using direct measurements and a scaling procedure, we estimate the equilibrium equation of state for the hard sphere metastable fluid up to phi(0), where pressure remains finite, suggesting that phi(0) corresponds to an ideal glass transition. We use nonequilibrium protocols to explore glassy states above phi(0) and establish the existence of multiple equations of state for the unequilibrated glass of hard spheres, all diverging at different densities in the range phi in [0.642, 0.664]. Glassiness thus results in the existence of a continuum of densities where jamming transitions can occur. PMID:19792128

  17. 使用 vSphere Web Client

    Institute of Scientific and Technical Information of China (English)

    李晓丽

    2015-01-01

    vSphere有两个客户端,分别是基于C/S架构的、运行于Windows平台的客户端,还有基于B/S架构的、运行在Web浏览罨中的客户端。从VMwarev Sphere5.5开始,基于C/S架构的客户端不再发展,V-Mwarev Sphere所有新功能只能使用vSphere Web Client进行管理。vSphere Web Client需要vCenter Server的支持。在vCenter Server5.5中,vSphere Web Client的管理端口是9443,而在新版的vCenter Server6中,管理端口直接使用TCP的443,vSphere Web Client连接地址的改变为(本文安装vCenter Server时设置的域名为vcenter.heinfo.10cal,在实际生产环境中用你安装配置名称代替)。

  18. Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yongsoon; Wang, Li Q.; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2008-09-18

    Colloidal carbon spheres have been prepared from aqueous alpha-, beta-, and gamma-cyclodextrin (CD) solutions in closed systems under hydrothermal conditions at 160 oC. Both liquid and solid-state 13C NMR spectra taken for samples at different reaction times have been used to monitor the dehydration and carbonization pathways. CD slowly hydrolyzes to glucose and forms 5-hydroxymethyl furfural (HMF) followed by carbonization into colloidal carbon spheres. The isolated carbon spheres are 70-150 nm in diameter, exhibit a core-shell structure, and are comprised of a condensed core (C=C) peppered with resident chemical functionalities including carboxylate and hydroxyl groups. Evidence from 13C solid-state NMR and FT-IR spectra reveal that the evolving carbon spheres show a gradual increase in the amount of aromatic carbon as a function of reaction time and that the carbon spheres generated from gamma-CD contain significantly higher aromatic carbon than those derived from alpha- and beta-CD.

  19. Experimental determination of the dynamics of an acoustically levitated sphere

    Science.gov (United States)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  20. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  1. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    Science.gov (United States)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  2. Fuel Fabrication for Surrogate Sphere-Pac Rodlet

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.

    2005-07-19

    Sphere-pac fuel consists of a blend of spheres of two or three different size fractions contained in a fuel rod. The smear density of the sphere-pac fuel column can be adjusted to the values obtained for light-water reactor (LWR) pellets (91-95%) by using three size fractions, and to values typical of the fast-reactor oxide fuel column ({approx}85%) by using two size fractions. For optimum binary packing, the diameters of the two sphere fractions must differ by at least a factor of 7 (ref. 3). Blending of spheres with smaller-diameter ratios results in difficult blending, nonuniform loading, and lower packing fractions. A mixture of about 70 vol% coarse spheres and 30 vol% fine spheres is needed to obtain high packing fractions. The limiting smear density for binary packing is 86%, with about 82% achieved in practice. Ternary packing provides greater smear densities, with theoretical values ranging from 93 to 95%. Sphere-pac technology was developed in the 1960-1990 period for thermal and fast spectrum reactors of nearly all types (U-Th and U-Pu fuel cycles, oxide and carbide fuels), but development of this technology was most strongly motivated by the need for remote fabrication in the thorium fuel cycle. The application to LWR fuels as part of the DOE Fuel Performance Improvement Program did not result in commercial deployment for a number of reasons, but the relatively low production cost of existing UO{sub 2} pellet fuel is probably the most important factor. In the case of transmutation fuels, however, sphere-pac technology has the potential to be a lower-cost alternative while also offering great flexibility in tailoring the fuel elements to match the exact requirements of any particular reactor core at any given time in the cycle. In fact, the blend of spheres can be adjusted to offer a different composition for each fuel pin or group of pins in a given fuel element. Moreover, it can even provide a vertical gradient of composition in a single fuel pin. For

  3. Acoustical imaging of spheres above a reflecting surface

    Science.gov (United States)

    Chambers, David; Berryman, James

    2003-04-01

    An analytical study using the MUSIC method of subspace imaging is presented for the case of spheres above a reflecting boundary. The field scattered from the spheres and the reflecting boundary is calculated analytically, neglecting interactions between spheres. The singular value decomposition of the response matrix is calculated and the singular vectors divided into signal and noise subspaces. Images showing the estimated sphere locations are obtained by backpropagating the noise vectors using either the free space Green's function or the Green's function that incorporates reflections from the boundary. We show that the latter Green's function improves imaging performance after applying a normalization that compensates for the interference between direct and reflected fields. We also show that the best images are attained in some cases when the number of singular vectors in the signal subspace exceeds the number of spheres. This is consistent with previous analysis showing multiple eigenvalues of the time reversal operator for spherical scatterers [Chambers and Gautesen, J. Acoust. Soc. Am. 109 (2001)]. [Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  4. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  5. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres.

    Science.gov (United States)

    Yu, Jiaguo; Yu, Xiaoxiao

    2008-07-01

    ZnO hollow spheres with porous crystalline shells were one-pot fabricated by hydrothermal treatment of glucose/ZnCl2 mixtures at 180 degrees C for 24 h, and then calcined at different temperatures for 4 h. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of Rhodamine B aqueous solution at ambient temperature. The results indicated that the average crystallite size, shell thickness, specific surface areas, pore structures, and photocatalytic activity of ZnO hollow spheres could be controlled by varying the molar ratio of glucose to zinc ions (R). With increasing R, the photocatalytic activity increases and reaches a maximum value at R = 15, which can be attributed to the combined effects of several factors such as specific surface area, the porous structure and the crystallite size. Further results show that hollow spheres can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and reused than conventional powder photocatalyst. After many recycles for the photodegradation of RhB, the catalyst does not exhibit any great loss in activity, confirming ZnO hollow spheres is stability and not photocorroded. The prepared ZnO hollow spheres are also of great interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology. PMID:18678024

  6. Fuel Fabrication for Surrogate Sphere-Pac Rodlet

    International Nuclear Information System (INIS)

    Sphere-pac fuel consists of a blend of spheres of two or three different size fractions contained in a fuel rod. The smear density of the sphere-pac fuel column can be adjusted to the values obtained for light-water reactor (LWR) pellets (91-95%) by using three size fractions, and to values typical of the fast-reactor oxide fuel column (∼85%) by using two size fractions. For optimum binary packing, the diameters of the two sphere fractions must differ by at least a factor of 7 (ref. 3). Blending of spheres with smaller-diameter ratios results in difficult blending, nonuniform loading, and lower packing fractions. A mixture of about 70 vol% coarse spheres and 30 vol% fine spheres is needed to obtain high packing fractions. The limiting smear density for binary packing is 86%, with about 82% achieved in practice. Ternary packing provides greater smear densities, with theoretical values ranging from 93 to 95%. Sphere-pac technology was developed in the 1960-1990 period for thermal and fast spectrum reactors of nearly all types (U-Th and U-Pu fuel cycles, oxide and carbide fuels), but development of this technology was most strongly motivated by the need for remote fabrication in the thorium fuel cycle. The application to LWR fuels as part of the DOE Fuel Performance Improvement Program did not result in commercial deployment for a number of reasons, but the relatively low production cost of existing UO2 pellet fuel is probably the most important factor. In the case of transmutation fuels, however, sphere-pac technology has the potential to be a lower-cost alternative while also offering great flexibility in tailoring the fuel elements to match the exact requirements of any particular reactor core at any given time in the cycle. In fact, the blend of spheres can be adjusted to offer a different composition for each fuel pin or group of pins in a given fuel element. Moreover, it can even provide a vertical gradient of composition in a single fuel pin. For minor

  7. Thin-film technology development for the PowerSphere

    International Nuclear Information System (INIS)

    The PowerSphere concept consists of a relatively large spherical solar array, which would be deployed from a microsatellite. The PowerSphere will enable microsatellite missions across NASA enterprises and DoD missions by providing ample electric power at an affordable cost. The PowerSphere design provides attitude-independent electric power and thermal control for an enclosed microsatellite payload. The specific power design is scalable, robust in high radiation environments and provides sufficient electric power to allow the use of electric propulsion. Electric propulsion enables precise positioning of microsatellites, which is required for inspectors that would be deployed to observe the International Space Station, Space Shuttle or large unmanned spacecraft

  8. Synthesis and Characterization of Mesoporous Titanium Dioxide Spheres

    Institute of Scientific and Technical Information of China (English)

    GULI Mi-na; CHEN Yu-ning; LI Xiao-tian

    2011-01-01

    Mesoporous titanium dioxide spheres were synthesized by a convenient solvothermal method at room temperature with tetraethyl titanate as a precursor. Investigation by means of X-ray di ffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), and N2 adsorption-desorption isotherms confirms that the sample has a mesostructure with a higher specific surface area and shows that the mesoporous TiO2 spheres have a diameter of 2 μm, the average pore size is about 5.9 nm, and the BET surface area and specific pore volume are about 236 m2/g and 2.116 cm3/g, respectively. The anatase and ruffle mesoporous TiO2 spheres calcined at 700 C show much better photocatalytic activity than the samples calcined at other temperatures and is comparable to an uncaicined sample in the photodegradation of Methyl Blue(MB) under the UV irradiation.

  9. VMware vSphere 5 Administration Instant Reference

    CERN Document Server

    Kusek, Christopher; Daniel, Andy

    2011-01-01

    Compact and portable reference guide for quick answers to VMware vSphere If you're looking to migrate to the newest version of VMware vSphere, this concise guide will get you up to speed and down to business in no time. If you're new to VMware vSphere, this book is for you too! The compact size of this quick reference makes it easy for you to have by your side—whether you're in the field, server room, or at your desk. Helpful elements for finding information such as thumb tabs, tables of contents with page numbers at the beginning of each chapter, and special headers puts what you need a

  10. From Ewald sphere to Ewald shell in nonlinear optics.

    Science.gov (United States)

    Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-01-01

    Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model. PMID:27386951

  11. SILSS: SPHERE/IRDIS Long-Slit Spectroscopy pipeline

    Science.gov (United States)

    Vigan, Arthur

    2016-03-01

    The ESO's VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS) for spectral characterization of young, giant exoplanets detected by direct imaging. The SILSS pipeline is a combination of the official SPHERE pipeline and additional custom IDL routines developed within the SPHERE consortium for the speckle subtraction and spectral extraction of a companion's spectrum; it offers a complete end-to-end pipeline, from raw data (science+calibrations) to a final spectrum of the companion. SILSS works on both the low-resolution (LRS) and medium-resolution (MRS) data, and allows correction for some of the known biases of the instrument. Documentation is included in the header of the main routine of the pipeline.

  12. AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.

  13. Cermet sphere-pac concept for inert matrix fuel

    Science.gov (United States)

    Pouchon, M. A.; Nakamura, M.; Hellwig, Ch.; Ingold, F.; Degueldre, C.

    2003-06-01

    In the inert matrix fuel concept, plutonium reprocessed from spent fuel is burned in an inert matrix, e.g. yttria-stabilized zirconia. Coming from wet reprocessing, the internal gelation can perform an easy micro-spheres production. Utilization of these particles in a sphere-pac realizes a direct fuel production. Besides being economical, this direct usage offers an almost dustless fabrication. One disadvantage of yttria-stabilized zirconia as matrix is its low thermal conductivity. A further reduction by the macroscopic structure of a sphere bed seems unacceptable. This can be eluded by the insertion of a highly conducting phase. Similar to the cermet concept with the embedment of ceramic fuel into metal, the infiltration of a fine metal fraction into a coarse ceramic fuel fraction is studied here. The initial thermal conductivity shows much higher calculated values and the sintering behaviour is also clearly enhanced compared to the pure ceramic bed.

  14. Motion of spheres along a fluid-gas interface.

    Science.gov (United States)

    Cichocki, Bogdan; Ekiel-Jezewska, Maria L; Nägele, Gerhard; Wajnryb, Eligiusz

    2004-08-01

    A system of many spherical particles, suspended in a quiescent fluid and touching a planar free fluid-gas interface, is considered. Stick fluid boundary conditions at the sphere surfaces are assumed. The free surface boundary conditions are taken into account with the use of the method of images. For such a quasi-two-dimensional system, the one-sphere resistance operator is calculated numerically. Moreover, the corresponding friction and mobility tensors are constructed from irreducible multipole expansion. Finally, the long-distance terms of the two-sphere mobility tensor are evaluated explicitly up to the order of 1/r3, where r is the interparticle distance. Experiments which have motivated this work are outlined. PMID:15260785

  15. Political Intersectionality and Democratic Politics in the European Public Sphere

    DEFF Research Database (Denmark)

    Siim, Birte

    2015-01-01

    . Democratic politics refers to conflicts and negotiations across political parties and social movement organisations/NGOs. The transnational approach contributes to illuminate potentials of and barriers for transnational civil society actors to create democratic politics in the European Public Sphere.......Religious and cultural conflicts about accommodation of immigrant minorities in European democracies have become major policy issues during the last 20 years, exacerbated by the political and economic crisis. The essay addresses the inclusion/exclusion of women and ethnic minorities in the European...... Public Sphere (EPS). It is inspired by results and reflections from the European Gender Project (EGP) , where intersectionality was used as an approach for analysing negotiations between gender and ethno-national diversity in selected European countries and in relation to the European Public Sphere...

  16. Particle trajectories around a running cylinder or a sphere

    International Nuclear Information System (INIS)

    The movement of fluid particles around a running cylinder or a sphere is considered. Particle trajectories viewed from a fixed object are contours of the stream function and well known in many cases. Here, we are concerned with trajectories viewed from the absolute coordinates where the object is moving. In 1870, Maxwell considered the problem in irrotational flow of inviscid fluid, and found that the trajectory of a particle is a curve of elastica having a self-intersection point. We consider here a similar problem in three-dimensional (3D) irrotational flow, 3D Stokes flow around a sphere and Brinkman's porous-media flow. In the 3D Stokes case, we found that the trajectories are unbounded and have no self-intersection. In the Brinkman case, we treated both flow around a cylinder and flow around a sphere: our numerical examinations revealed both self-intersecting and non-self-intersecting trajectories.

  17. The Sphere Anemometer - A Fast Alternative to Cup Anemometry

    Science.gov (United States)

    Heißelmann, Hendrik; Hölling, Michael; Peinke, Joachim

    The main problem of cup anemometry is the different response time for increasing and decreasing wind velocities due to its moment of inertia. This results in an overestimation of wind speed under turbulent wind conditions, the so-called over-speeding. Additionally, routine calibrations are necessary due to the wear of bearings. Motivated by these problems the sphere anemometer, a new simple and robust sensor for wind velocity measurements without moving parts, was developed at the University of Oldenburg. In contrast to other known thrust-based sensors, the sphere anemometer uses the light pointer principle to detect the deflection of a bending tube caused by the drag force acting on a sphere mounted at its top. This technique allows the simultaneous determination of wind speed and direction via a two-dimensional position sensitive detector.

  18. Symmetry in Sphere-Based Assembly Configuration Spaces

    Directory of Open Access Journals (Sweden)

    Meera Sitharam

    2016-01-01

    Full Text Available Many remarkably robust, rapid and spontaneous self-assembly phenomena occurring in nature can be modeled geometrically, starting from a collection of rigid bunches of spheres. This paper highlights the role of symmetry in sphere-based assembly processes. Since spheres within bunches could be identical and bunches could be identical, as well, the underlying symmetry groups could be of large order that grows with the number of participating spheres and bunches. Thus, understanding symmetries and associated isomorphism classes of microstates that correspond to various types of macrostates can significantly increase efficiency and accuracy, i.e., reduce the notorious complexity of computing entropy and free energy, as well as paths and kinetics, in high dimensional configuration spaces. In addition, a precise understanding of symmetries is crucial for giving provable guarantees of algorithmic accuracy and efficiency, as well as accuracy vs. efficiency trade-offs in such computations. In particular, this may aid in predicting crucial assembly-driving interactions. This is a primarily expository paper that develops a novel, original framework for dealing with symmetries in configuration spaces of assembling spheres, with the following goals. (1 We give new, formal definitions of various concepts relevant to the sphere-based assembly setting that occur in previous work and, in turn, formal definitions of their relevant symmetry groups leading to the main theorem concerning their symmetries. These previously-developed concepts include, for example: (i assembly configuration spaces; (ii stratification of assembly configuration space into configurational regions defined by active constraint graphs; (iii paths through the configurational regions; and (iv coarse assembly pathways. (2 We then demonstrate the new symmetry concepts to compute the sizes and numbers of orbits in two example settings appearing in previous work. (3 Finally, we give formal

  19. Lifetime Measurement of Cold Atoms in an Integrating Sphere

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Zhuo; WANG Xu-Cheng; CHENG Hua-Dong; XIAO Ling; LIU Liang; WANG Yu-Zhu

    2009-01-01

    We present an experimental measurement of the lifetime of the cold 87Rb atoms in an integrating sphere.The atoms are cooled by the diffuse light which is generated by the diffuse reflection of laser beams in the integrating sphere.Our result shows that the lifetime is primarily determined by the free fall of the cold 87Rb atoms,and its half-life can reach 40 ms,which is suitable for many experiments,especially for a cold atom clock.

  20. Magnetic field generation in fully convective rotating spheres

    CERN Document Server

    Dobler, W; Brandenburg, A

    2004-01-01

    Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and cooling at the surface are presented. The dynamo-generated magnetic field saturates at equipartition field strength near the surface. In the interior, the field is dominated by small-scale structures, but outside the sphere by the global scale. Azimuthal averages of the field reveal a large-scale field of smaller amplitude also inside the star. The internal angular velocity shows some tendency to be constant along cylinders and is ``anti-solar'' (fastest at the poles and slowest at the equator).

  1. Stability index jump for cmc hypersurfaces of spheres

    CERN Document Server

    Perdomo, Oscar M

    2012-01-01

    It is known that the totally umbilical hypersurfaces in the (n+1)-dimensional spheres are characterized as the only hypersurfaces with weak stability index 0. That is, a compact hypersurface with constant mean curvature, cmc, in S^{n+1}, different from an Euclidean sphere, must have stability index greater than or equal to 1. In this paper we prove that the weak stability index of any non-totally umbilical compact hypersurface M\\subset S^{n+1} with cmc cannot take the values 1,2,3... n.

  2. Interpretation of subcritical measurements with polyethylene reflected plutonium sphere

    International Nuclear Information System (INIS)

    Subcritical noise analysis measurements have been performed with an alpha phase plutonium sphere reflected by polyethylene. These measurements were performed at the Los Alamos Critical Experiment Facility in 2002 to provide an estimate of the subcriticality of the plutonium sphere reflected by polyethylene of varying thickness. This paper provides a description of the measurements and presents the analysis of the measurements. The measured and calculated spectral ratios differ are in good agreement with the ENDF/B-VI nuclear data sets and the 'interpreted' and calculated keff are in good agreement. (author)

  3. Quantum black holes: the event horizon as a fuzzy sphere

    International Nuclear Information System (INIS)

    Modeling the event horizon of a black hole by a fuzzy sphere leads us to modify some suggestions in the literature concerning black hole mass spectra. We derive a formula for the mass spectrum of quantum black holes in terms of four integers which define the area, angular momentum, electric and magnetic charge of the black hole. Although the event horizon becomes a commutative sphere in the classical limit a vestige of the quantum theory still persists in that the event horizon stereographically projects onto the non-commutative plane. We also suggest how the classical bounds on extremal black holes might be modified in the quantum theory. (author)

  4. Convexity of Spheres in a Manifold without Conjugate Points

    Indian Academy of Sciences (India)

    Akhil Ranjan; Hemangi Shah

    2002-11-01

    For a non-compact, complete and simply connected manifold without conjugate points, we prove that if the determinant of the second fundamental form of the geodesic spheres in is a radial function, then the geodesic spheres are convex. We also show that if is two or three dimensional and without conjugate points, then, at every point there exists a ray with no focal points on it relative to the initial point of the ray. The proofs use a result from the theory of vector bundles combined with the index lemma.

  5. Mesoporous Trimetallic PtPdRu Spheres as Superior Electrocatalysts.

    Science.gov (United States)

    Jiang, Bo; Ataee-Esfahani, Hamed; Li, Cuiling; Alshehri, Saad M; Ahamad, Tansir; Henzie, Joel; Yamauchi, Yusuke

    2016-05-17

    Mesoporous Trimetallic PtPdRu Spheres with well-defined spherical morphology and uniformly sized pores were synthesized in an aqueous solution using ascorbic acid as the reducing agent and triblock copolymer F127 as the pore directing agent. These mesoporous PtPdRu spheres exhibited enhanced electrocatalytic activity compared to commercial Pt black, resulting in a ∼4.9 times improvement in mass activity for the methanol oxidation reaction. The excellent electrocatalytic activity and stability are due to the unique mesoporous architecture and electronic landscape between different elements. PMID:27072776

  6. Simulations of a supersymmetry inspired model on a fuzzy sphere

    OpenAIRE

    Bietenholz, Wolfgang

    2008-01-01

    We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a v...

  7. VMware vSphere 5.1 cookbook

    CERN Document Server

    GB, Abhilash

    2013-01-01

    A fast-paced, task-oriented Cookbook covering recipes on the installation and configuration of vSphere 5.1 components. The recipes are accompanied with relevant screenshots with an intention to provide a visual guidance as well. The book concentrates more on the actual task rather than the theory around it, making it easier to understand what is really needed to achieve the task.This book is a guide for anyone who wants to learn how to install and configure VMware vSphere components. This is an excellent handbook for support professionals or for anyone intending to give themselves a head start

  8. Smith-Purcell radiation from a chain of spheres

    International Nuclear Information System (INIS)

    Smith-Purcell and diffraction radiation were investigated. These types of radiation appear when a charged particle moves close to a conducting target. Spectral and angular distribution of diffraction radiation from the non-periodic chain of spheres is obtained analytically; local field effects are discussed. Analytical expression for the distribution of Smith-Purcell radiation from the periodic chain of spheres is obtained as well. For the first time it has been shown, that Smith-Purcell radiation for such a system is distributed over the cone. The results are investigated for the particles of different sizes, dielectric and metal, and for both ultrarelativistic and nonrelativistic cases.

  9. Is Random Close Packing of Spheres Well Defined?

    International Nuclear Information System (INIS)

    Despite its long history, there are many fundamental issues concerning random packings of spheres that remain elusive, including a precise definition of random close packing (RCP). We argue that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We suggest that this impasse can be broken by introducing the new concept of a maximally random jammed state, which can be made precise. (c) 2000 The American Physical Society

  10. Unidirectional and Wavelength Selective Photonic Sphere-Array Nanoantennas

    CERN Document Server

    Liu, Yang G; Sha, Wei E I; Chew, Weng Cho

    2015-01-01

    We design a photonic sphere-array nanoantenna (NA) exhibiting both strong directionality and wavelength selectivity. Although the geometric configuration of the photonic NA resembles a plasmonic Yagi-Uda NA, it has different working principles, and most importantly, reduces the inherent metallic loss from plasmonic elements. For any selected optical wavelength, a sharp Fano-resonance by the reflector is tunable to overlap spectrally with a wider dipole resonance by the sphere-chain director leading to the high directionality. The work provides design principles for directional and selective photonic NAs, which is particularly useful for photon detection and spontaneous emission manipulation.

  11. Radiation transport and internal reflection in a sphere

    International Nuclear Information System (INIS)

    We construct an integral equation for the flux intensity in a scattering and absorbing medium using the integro-differential form of the radiative transfer equation in a sphere. The sphere is uniformly irradiated by an external source of arbitrary angular distribution. The Fresnel boundary conditions, which incorporate reflection and refraction, are used. For the special cases of a non-scattering medium, and in the limit of an optically transparent medium, we obtain exact solutions for specular and diffuse refection. Some numerical examples are given which give qualitative agreement with some recent work of Tian and Chiu (JQSRT, 2005)

  12. Natural convection between concentric and vertically eccentric spheres

    Energy Technology Data Exchange (ETDEWEB)

    Tazi-charki, M.N.; Daoudi, S. [Faculte des sciences Dhar Mehraz, Atlas (Morocco); Daguenet, M. [Perpignan Univ., 66 (France)

    1995-12-31

    Laminar natural convection flow between concentric and two vertically eccentric spheres was studied numerically. The inner sphere was heated by the application of a constant heat flux, and the outer was isothermally cooled. The bispherical system of coordinates was used so that the governing equations could be presented in a suitable form for the numerical treatment which was based on the finite volume method. The effect of the Rayleigh number and eccentricity were examined. Results presented streamlines and isotherm contours. Higher rates of heat transfer were observed for greater eccentricities and greater Rayleigh numbers. 4 figs., 7 refs.

  13. Uniqueness of photon spheres in electro-vacuum spacetimes

    CERN Document Server

    Cederbaum, Carla

    2015-01-01

    In a recent paper, the authors established the uniqueness of photon spheres in static vacuum asymptotically flat spacetimes by adapting Bunting and Masood-ul-Alam's proof of static vacuum black hole uniqueness. Here, we establish uniqueness of suitably defined sub-extremal photon spheres in static electro-vacuum asymptotically flat spacetimes by adapting the argument of Masood-ul-Alam. As a consequence of our result, we can rule out the existence of electrostatic configurations involving multiple "very compact" electrically charged bodies and sub-extremal black holes.

  14. Thermal diffusion behavior of hard-sphere suspensions

    OpenAIRE

    Ning, H.; Buitenhuis, J.; Dhont, J. K. G.; Wiegand, S.

    2006-01-01

    We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the co...

  15. Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    Science.gov (United States)

    Esparza, E. D.; Baker, W. E.

    1977-01-01

    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

  16. The criteria for selecting a method for unfolding neutron spectra based on the information entropy theory

    International Nuclear Information System (INIS)

    To further expand the application of an artificial neural network in the field of neutron spectrometry, the criteria for choosing between an artificial neural network and the maximum entropy method for the purpose of unfolding neutron spectra was presented. The counts of the Bonner spheres for IAEA neutron spectra were used as a database, and the artificial neural network and the maximum entropy method were used to unfold neutron spectra; the mean squares of the spectra were defined as the differences between the desired and unfolded spectra. After the information entropy of each spectrum was calculated using information entropy theory, the relationship between the mean squares of the spectra and the information entropy was acquired. Useful information from the information entropy guided the selection of unfolding methods. Due to the importance of the information entropy, the method for predicting the information entropy using the Bonner spheres' counts was established. The criteria based on the information entropy theory can be used to choose between the artificial neural network and the maximum entropy method unfolding methods. The application of an artificial neural network to unfold neutron spectra was expanded. - Highlights: • Two neutron spectra unfolding methods, ANN and MEM, were compared. • The spectrum's entropy offers useful information for selecting unfolding methods. • For the spectrum with low entropy, the ANN was generally better than MEM. • The spectrum's entropy was predicted based on the Bonner spheres' counts

  17. Scattering theory for finitely many sphere interactions supported by concentric spheres

    Energy Technology Data Exchange (ETDEWEB)

    Hounkonnou, M.N.; Hounkpe, M. [Institut de Mathematiques et de Sciences Physiques, Universite Nationale du Benin, BP 613 Porto-Novo (Benin); Shabani, J. [UNESCO Nairobi Office, P. O. Box 30592 Nairobi (Kenya)

    1997-06-01

    We study stationary scattering theory for finitely many sphere interactions formally given by the Hamiltonian H={minus}{Delta}+{summation}{sub j=1}{sup N}{alpha}{sub j}{delta}({vert_bar}x{vert_bar}{minus}R{sub j}) and its generalizations to the case of interactions of the second type and interactions with nonseparated boundary conditions. In a previous publication [J. Math. Phys. {bold 29}, 660{endash}664 (1988)], it was shown that the self-adjoint Hamiltonian H{sub {l_brace}{alpha}{sub l}{r_brace},{l_brace}R{r_brace}} corresponding to H may be defined as a limit in norm resolvent convergence of a family H{sub {var_epsilon}} of local scaled short-range Hamiltonians. In this paper we also study scattering theory corresponding to H{sub {var_epsilon}} and show that the scattering quantities associated with H{sub {var_epsilon}} converge to those of H{sub {l_brace}{alpha}{sub l}{r_brace},{l_brace}R{r_brace}} as {var_epsilon}{r_arrow}0. {copyright} {ital 1997 American Institute of Physics.}

  18. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  19. Strength and signature of force networks in axially compacted sphere and non-sphere granular media: micromechanical investigations

    International Nuclear Information System (INIS)

    Compaction characteristics of granular materials subjected to axial loading are investigated for both sphere and non-sphere granular assemblies. The computational study is based on the discrete element method (DEM). The compressive stress-strain relation obtained from three-dimensional DEM simulations is compared with that of an idealized two-dimensional plane-strain compression test and physical experiments using a bronze sphere assembly. We observed good agreement between the experimental and three-dimensional DEM simulation results, while two-dimensional simulations significantly underestimate the stiffness of particulate bed, particularly at large strains. This demonstrates that two-dimensional analysis is generally inadequate to model the compaction characteristics of granular systems. We performed a detailed analysis on the force-transmission characteristics of granular materials at microscopic level and present a connection between the directional orientation of force-networks and the invariants of the macroscopic stress tensor: the non-sphere systems were able to build up a strongly anisotropic network of heavily loaded contacts. Several complex phenomena, both geometric and kinematic, that are operative in sphere and non-sphere assemblies due to inter-particle interactions during compression are presented here. It is often assumed that the ratio of invariants of the stress tensor is uniform and constant in uni-axial compression tests. Our results show that the ratio of invariants of the stress tensor is non-uniform and non-constant even when the granular assemblies are subjected to the so-called uni-axial compressive loading, which is in agreement with other recent studies (e.g. Gu et al 2001 Int. J. Plasticity 17 147) performed using the finite element method. The non-homogeneous characteristics that are reported at the particulate scale need to be accounted in considering possible continuum models for the granular systems

  20. Uniform shear flow in dissipative gases. Computer simulations of inelastic hard spheres and (frictional) elastic hard spheres

    OpenAIRE

    Astillero, A.; Santos, A.

    2005-01-01

    In the preceding paper (cond-mat/0405252), we have conjectured that the main transport properties of a dilute gas of inelastic hard spheres (IHS) can be satisfactorily captured by an equivalent gas of elastic hard spheres (EHS), provided that the latter are under the action of an effective drag force and their collision rate is reduced by a factor $(1+\\alpha)/2$ (where $\\alpha$ is the constant coefficient of normal restitution). In this paper we test the above expectation in a paradigmatic no...

  1. Gas dynamics during the sphere moving in the stationary gaseous environment

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-06-01

    Full Text Available This paper developed a mathematical model of the gas dynamic fluid flow around the sphere. There are three areas of different mechanisms of the interaction of moving spheres and stationary gaseous environment. It has been proved that  shear flow plays a decisiverole at sphere low velocities, while at sphere velocities close to the speed of sound the critical role is exerted by the impact interaction of the sphere with the center in the front hemisphere. The shear flow behind the sphere makes a cone with stationary gaseous environment. The principle which defines the size of the cone has been established.

  2. Nonpolytopal nonsimplicial lattice spheres with nonnegative toric g-vector

    CERN Document Server

    Billera, Louis J

    2011-01-01

    We construct many nonpolytopal nonsimplicial Gorenstein* meet semi-lattices with nonnegative toric g-vector, supporting a conjecture of Stanley. These are formed as Bier spheres over the face posets of multiplexes, polytopes constructed by Bisztriczky as generalizations of simplices.

  3. METAPHORIC MODELLING OF NON-SPATIAL SPHERES IN MODERN ENGLISH

    Directory of Open Access Journals (Sweden)

    Shamne Nikolay Leonidovich

    2014-06-01

    Full Text Available In the scope of cognitive approach, the article studies the spatial metaphor as a way of understanding and nomination of objects and phenomena of directly not observed social, mental and intellectual spheres, the status and the functional importance of nouns denoting limited space for these processes. The authors describe the set of English polisemantic spatial nouns denoting limited space, reveal semantic multipliers in their basic meaning, define the metaphorical and axiological meanings of polysemants, consider semantic modifications of spatial nouns and describe the models of metaphorical shifts on the basis of re-thinking spatial features. The metaphorical shift of spatial characteristics onto the events and phenomena of social sphere is the most frequent (68, 58 %, as it is realized in most regular metaphorical models. The metaphorical shift of spatial characteristics onto the mental phenomena is marked by lower frequency (24, 28 %, and as a result it is realized in smaller number of metaphorical models. The metaphorical shift of spatial characteristics onto intellectual sphere is marked by the lowest frequency (7, 14 %. It is represented by the minimal number of regular metaphorical models. The authors determine the connection between spatial features and evaluation sphere and reveal the spatial features which prove to be essential in evaluation process. The article shows that from the wide range of semantic multipliers which characterize limited fragment of space, the following spatial features are actualized: "size", "border", "configuration", "loading", "functional characteristics", "constituents", "coordination parameters" and "structural characteristics".

  4. On the classical dynamics of billiards on the sphere

    CERN Document Server

    Spina, M E

    1999-01-01

    We study the classical motion in bidimensional polygonal billiards on the sphere. In particular we investigate the dynamics in tiling and generic rational and irrational equilateral triangles. Unlike the plane or the negative curvature cases we obtain a complex but regular dynamics.

  5. Transport properties of the Fermi hard-sphere system

    CERN Document Server

    Mecca, Angela; Benhar, Omar; Polls, Artur

    2015-01-01

    The transport properties of neutron star matter play an important role in a variety of astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy $\

  6. Three-sphere swimmer in a nonlinear viscoelastic medium

    KAUST Repository

    Curtis, Mark P.

    2013-04-10

    A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.

  7. Tilings of the Sphere by Edge Congruent Pentagons

    OpenAIRE

    Cheuk, Ka Yue; Cheung, Ho Man; Yan, Min

    2013-01-01

    We study edge-to-edge tilings of the sphere by edge congruent pentagons, under the assumption that there are tiles with all vertices having degree 3. We develop the technique of neighborhood tilings and apply the technique to completely classify edge congruent earth map tilings.

  8. Synthesis and characterization of submicron-sized mesoporous aluminosilicate spheres

    Indian Academy of Sciences (India)

    Gautam Gundiah; M Eswaramoorthy; S Neeraj; Srinivasan Natarajan; C N R Rao

    2001-06-01

    Me soporous a luminosilicate spheres of 0 3-0 4 m diameter, with different Si/Al ratios, have been prepared by surfactant templating. Surface area of these materials is in the 510-970 m2g-1 range and pore diameter in the 15-20 Å range.

  9. REGIONAL FEATURES OF ENTREPRENEURSHIP FUNCTIONING IN THE AGRARIAN SPHERE

    OpenAIRE

    Tyumerova I. B.

    2014-01-01

    The article analyzes the activities of the agrarian sphere in the Chuvash Republic; we have also developed a matrix of opportunities for the development of the agrarian sector in conjunction with the entrepreneurship, entrepreneurial development strategy identified the cluster as the main factor of socio-economic development of the region

  10. Gravitation- And Conduction-Driven Melting In A Sphere

    Science.gov (United States)

    Bahrami, Parviz A.; Wang, Taylor G.

    1989-01-01

    Simplifying assumptions lead to approximate closed-form solution. Theoretical paper discusses melting of solid sphere in spherical container. Develops mathematical model of melting process, based in part on simplifying assumptions like those used in theories of lubrication and film condensation. Resulting equation for melting speed as function of melting distance solved approximately in closed form.

  11. Approximation of Hardy space on the unit sphere

    Institute of Scientific and Technical Information of China (English)

    余纯武; 陈莘萌; 王昆扬; 戴峰

    2003-01-01

    The authors discuss the boundedness and approximation properties of translation and mean operator on H1(∑) by the estimates of high degree difference on ultraspherical polynomials, atom de-composition and construct properties on sphere. Also the boundedness and approximation of linear means at all kinds of indexes on Hp(0 < p < 1) and the almost everywhere convergence of Cesaro means are established.

  12. Polyakov relation for the sphere and higher genus surfaces

    CERN Document Server

    Menotti, Pietro

    2015-01-01

    The Polyakov relation, which in the sphere topology gives the changes of the Liouville action under the variation of the position of the sources, in the case of higher genus is related also to the dependence of the action on the moduli of the surface. We write and prove such a relation for genus 1 and for all hyperelliptic surfaces.

  13. The Polyakov relation for the sphere and higher genus surfaces

    Science.gov (United States)

    Menotti, Pietro

    2016-05-01

    The Polyakov relation, which in the sphere topology gives the changes of the Liouville action under the variation of the position of the sources, is also related in the case of higher genus to the dependence of the action on the moduli of the surface. We write and prove such a relation for genus 1 and for all hyperelliptic surfaces.

  14. The Polyakov relation for the sphere and higher genus surfaces

    International Nuclear Information System (INIS)

    The Polyakov relation, which in the sphere topology gives the changes of the Liouville action under the variation of the position of the sources, is also related in the case of higher genus to the dependence of the action on the moduli of the surface. We write and prove such a relation for genus 1 and for all hyperelliptic surfaces. (paper)

  15. "Sighting" the Public: Iconoclasm and Public Sphere Theory

    Science.gov (United States)

    Finnegan, Cara A.; Kang, Jiyeon

    2004-01-01

    This essay considers the ways that iconoclasm, or the will to control images and vision, appears in canonical and contemporary public sphere theory. John Dewey and Jurgen Habermas enact a paradoxical relation to visuality by repudiating a mass culture of images while preferring "good" images and vision. Yet even when advocating for good vision,…

  16. Interaction of two spheres settling in a linearly stratified fluid

    Science.gov (United States)

    Mercier, Matthieu; Toupoint, Clement; Ern, Patricia

    2015-11-01

    The settling dynamics of small objects in stratified fluids is important to understand the fate of the biomass in lakes or oceanic environments, for industrial applications such as waste-water disposal. More specifically, the interaction of two settling bodies is a fundamental problem recently studied numerically for spheres. Experimental results are needed for validation, especially at low and moderate values of the Reynolds number, for different values of the Froude number, the other parameter of interest. We present experimental results on the interaction of two spheres settling in a linearly stratified fluid. The settling dynamics is investigated by tracking their trajectories in three dimensions, using a pair of cameras imaging two perpendicular planes. Two typical cases are observed, the horizontal repulsion of particles initially aligned horizontally, and the Drafting-Kissing-Tumbling of spheres initially aligned vertically. The influence of the initial positions of the spheres, the Reynolds and Froude numbers, is investigated to quantify these effects and their robustness, in comparison to the dynamics in an homogeneous fluid.

  17. Stokesian swimming of a sphere at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2016-01-01

    Explicit expressions are derived for the matrices determining the mean translational and rotational swimming velocities and the mean rate of dissipation for Stokesian swimming at low Reynolds number of a distorting sphere in a viscous incompressible fluid. As an application an efficient helical propeller-type stroke is found and its properties are calculated.

  18. Passive control of a sphere by complex-shaped appendages

    Science.gov (United States)

    Bagheri, Shervin; Lacis, Ugis; Olivieri, Stefano; Mazzino, Andrea

    2015-11-01

    Appendages of various shapes and sizes (e.g. plumes, barbs, tails, feathers, hairs, fins) play an important role in dispersion and locomotion. In our previous work (Lacis, U. et al. Passive appendages generate drift through symmetry breaking. Nat. Commun. 5:5310, doi: 10.1038/ncomms6310, 2014), we showed that a free-falling cylinder with a splitter plate turns and drifts due to a symmetry-breaking instability (called inverted-pendulum instability or IPL). In other words, in a separated flow, the straight position of a short splitter plate is unstable and as a consequence a side force and a torque are induced on the cylinder. In this work, we seek the three-dimensional (3D) appendage shape (on a sphere at Re =200) that induces the largest drift of the sphere. We find that highly non-trivial shapes of appendages on a sphere increase the side force significantly compared to trivial shapes (such as an elliptic sheet). We also find that appendages may be designed to generate drift in either direction, that is, a free-falling sphere can drift either in the direction in which appendage is tilted or in the opposite direction depending on the particular geometry of the appendage. We discuss the physical mechanisms behind these optimal appendage shapes in the context of the IPL instability.

  19. Geodesic regression on spheres : a numerical optimization approach

    OpenAIRE

    Machado, L.; Monteiro, M. Teresa T.

    2013-01-01

    In this paper we address the problem of finding a geodesic curve that best fits a given set of time-labeled points on a sphere. Since the corresponding normal equations are highly non-linear, we formulate the problem as a constrained nonlinear optimization problem and solve it using the routine fmincon from MATLAB with the SQP (Sequential Quadratic Programming) algorithm.

  20. Towards composite spheres as building blocks for structured molecules.

    Science.gov (United States)

    Lee, Lloyd L; Pellicane, Giuseppe

    2016-10-19

    In order to design a flexible molecular model that mimics the chemical moieties of a polyatomic molecule, we propose the 'composite-sphere' model that can assemble the essential elements to produce the structure of the target molecule. This is likened to the polymerization process where monomers assemble to form the polymer. The assemblage is built into the pair interaction potentials which can 'react' (figuratively) with selective pieces into various bonds. In addition, we preserve the spherical symmetries of the individual pair potentials so that the isotropic Ornstein-Zernike equation (OZ) for multi-component mixtures can be used as a theoretical framework. We first test our approach on generating a dumbbell molecule. An equimolar binary mixture of hard spheres and square-well spheres are allowed to react to form a dimer. As the bond length shrinks to zero, we create a site-site model of a Janus-like molecule with a repulsive moiety and an attractive moiety. We employ the zero-separation (ZSEP) closure to solve the OZ equations. The structure and thermodynamic properties are calculated at three isotherms and at several densities and the results are compared with Monte Carlo simulations. The close agreement achieved demonstrates that the ZSEP closure is a reliable theory for this composite-sphere fluid model. PMID:27546819

  1. Rotational Brownian Motion on Sphere Surface and Rotational Relaxation

    Institute of Scientific and Technical Information of China (English)

    Ekrem Aydner

    2006-01-01

    The spatial components of the autocorrelation function of noninteracting dipoles are analytically obtained in terms of rotational Brownian motion on the surface of a unit sphere using multi-level jumping formalism based on Debye's rotational relaxation model, and the rotational relaxation functions are evaluated.

  2. U3Si2 powder sphere by direct current plasma

    International Nuclear Information System (INIS)

    The device for sphere U3Si2 powder by direct current arc plasma was fabricated. In Ar and He mixture plasma atmosphere, the spherical U3Si2 powder was produced from irregular powder in the range of 10-50 μm. The result shows that the conversion rate of the U3Si2 powder could reach 90%

  3. Magnetohydraulic flow through a packed bed of electrically conducting spheres

    International Nuclear Information System (INIS)

    The flow of an electrically conducting fluid through a packed bed of electrically conducting spheres in the presence of a strong magnetic field constitutes a very complex flow situation due to the constant turning of the fluid in and out of magnetic field lines. The interaction of the orthogonal components of the velocity and magnetic field will induce electric fields that are orthogonal to both and the electric fields in turn can cause currents that interact with the magnetic field to generate forces against the direction of flow. The strengths of these generated forces depend primarily upon the closure paths taken by the induced currents which, in turn, depend upon the relative ratio of the electrical resistance of the solid spheres to that of the fluid. Both experimental and analytical analyses of the slow flow of a eutectic mixture of sodium and potassium (NaK) through packed cylinders containing stainless steel spheres in the presence of a strong transverse magnetic field were completed. A theory of magnetohydraulic flow is developed by analogy with the development of hydraulic radius theories of flow through porous media. An exact regional analysis is successfully applied to an infinite bed of electrically conducting spheres with a conducting or non-conducting constraining wall on one side. The equations derived are solved for many different combinations of flowrate, magnetic field strength, porosity, and electrical resistance ratio

  4. Building the Platform of Digital Earth with Sphere Split Bricks

    Directory of Open Access Journals (Sweden)

    WANG Jinxin

    2015-06-01

    Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.

  5. Friction of spheres on a rotating parabolic support

    CERN Document Server

    Soulier, Alexis

    2014-01-01

    This article illustrates the role of friction on the motion of a rolling sphere on pedagogical example. We use a parabolic support rotating around it axis to study the static equilibrium positions of a single sphere. Due to the particular choice of the shape of support, some easy analytical calculations allow theoretical predictions. (i) In the frictionless case, there is an eigen frequency of rotation where the gravity balances the centrifugal force. All positions on the parabola are therefore in static equilibrium. At others rates of rotation, the sphere can go to the center or escape to infinity. It depends only on the sign of the detuning with the eigenfrequency. (ii) In contrast, we show that the static friction imposes a range of equilibrium positions at all rotating rates. These predictions can be compared to the maximum equilibrium radius measured on the experimental device. A reasonable estimate of the static friction between the support and spheres made of different materials can be extracted from t...

  6. Optimizing packing fraction in granular media composed of overlapping spheres.

    Science.gov (United States)

    Roth, Leah K; Jaeger, Heinrich M

    2016-01-28

    What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers. PMID:26592541

  7. Magnetic fields and Brownian motion on the 2-sphere

    International Nuclear Information System (INIS)

    Using constrained path integrals, we study some statistical properties of Brownian paths on the two dimensional sphere. A generalized Levy's law for the probability P(A) that a closed Brownian path encloses an algebraic area A is obtained. Distributions of scaled variables related to the winding of paths around some fixed point are recovered in the asymptotic regime t → ∞

  8. The Spectral Geometry of the Equatorial Podles Sphere

    OpenAIRE

    Dabrowski, Ludwik; Landi, Giovanni; Paschke, Mario; Sitarz, Andrzej

    2004-01-01

    We propose a slight modification of the properties of a spectral geometry a la Connes, which allows for some of the algebraic relations to be satisfied only modulo compact operators. On the equatorial Podles sphere we construct suq2-equivariant Dirac operator and real structure which satisfy these modified properties.

  9. Theory of the sphering of red blood cells.

    Science.gov (United States)

    Fung, Y C; Tong, P

    1968-02-01

    A rigorous mathematical solution of the sphering of a red blood cell is obtained under the assumptions that the red cells is a fluid-filled shell and that it can swell into a perfect sphere in an appropriate hypotonic medium. The solution is valid for finite strain of the cell membrane provided that the membrane is isotropic, elastic and incompressible. The most general nonlinear elastic stress-strain law for the membrane in a state of generalized plane stress is used. A necessary condition for a red cell to be able to sphere is that its extensional stiffness follow a specific distribution over the membrane. This distribution is strongly influenced by the surface tension in the cell membrane. A unique relation exists between the extensional stiffness, pressure differential, surface tension, and the ratio of the radius of the sphere to that of the undeformed red cell. The functional dependence of this stiffness distribution on various physical parameters is presented. A critique of some current literature on red cell mechanics is presented. PMID:5639934

  10. Stokesian swimming of a sphere by radial helical surface wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of radial helical surface waves is studied on the basis of the Stokes equations. Explicit expressions are derived for the matrices characterizing the mean translational and rotational swimming velocities and the mean rate of dissipation to second order in the wave amplitude.

  11. Everyday political talk in the internet-based public sphere

    NARCIS (Netherlands)

    Graham, Todd; Coleman, Stephen; Freelon, Deen

    2015-01-01

    Ever since the advent of the Internet, political communication scholars have debated its potential to facilitate and support public deliberation as a means of revitalizing and extending the public sphere. Much of the debate has focused on the medium’s potential in offering communicative spaces that

  12. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    Science.gov (United States)

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. PMID:26749240

  13. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, Owen T.; Cairns, Warren R. L.; Cook, Jennifer M.; Davidson, Christine M.

    2012-01-01

    This is the 27th annual review published in Journal of Analytical Atomic Spectrometry of the application of atomic spectrometry to the chemical analysis of environmental samples. This Update refers to papers published approximately between September 2010 and August 2011 and continues the series of Atomic Spectrometry Updates (ASUs) in Environmental Analysis1 that should be read in conjunction with other related ASU reviews in the series, namely: clinical and biological materials, foods and be...

  14. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, Owen T.; Warren R. L. Cairns; Cook, Jennifer M.; Davidson, Christine M.

    2013-01-01

    This is the 28th annual review published in JAAS on the application of atomic spectrometry to the chemical analysis of environmental samples. This Update refers to papers published approximately between September 2011 and August 2012 and continues the series of Atomic Spectrometry Updates (ASUs) in Environmental Analysis1 that should be read in conjunction with other related ASUs in the series, namely: clinical and biological materials, foods and beverages2; advances in atomic spectrometry an...

  15. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    Science.gov (United States)

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. PMID:23297031

  16. Evidence of Ostwald ripening during evolution of micro-scale solid carbon spheres

    OpenAIRE

    Heon Ham; No-Hyung Park; Sang Sub Kim; Hyoun Woo Kim

    2014-01-01

    Ostwald ripening is an evolutionary mechanism that results in micro-scale carbon spheres from nano-scale spheres. Vapor-phase carbon elements from small carbon nanoparticles are transported to the surface of submicron-scale carbon spheres, eventually leading to their evolution to micro-scale spheres via well-known growth mechanisms, including the layer-by-layer, island, and mixed growth modes. The results obtained from this work will pave the way to the disclosure of the evolutionary mechanis...

  17. Connection or disconnection? Tracking the mediated public sphere in everyday life

    OpenAIRE

    Couldry, Nick; Livingstone, Sonia; Markham, Tim

    2007-01-01

    Book synopsis: Media and Public Spheres, now available in paperback, presents empirical studies of print, recorded music, movies, radio, television and the Internet that reveal how media structure public spheres as well as how people use media to participate in the public sphere. They explore the nature of public spheres, how they are deliberative, egalitarian, exclusive or alternative, and the dilemmas that each of these present. The studies include cases of media, present and past, in North...

  18. In Defence of Pure Pluralism : two readings of Walzer's Spheres of justice

    NARCIS (Netherlands)

    University Utrecht

    2000-01-01

    In this article I will argue that there are two theories of distributive justice hidden in Walzer's Spheres of Justice. The first one emphasises the separation of distributive spheres. It tries to formulate distributive criteria by sticking faithfully to sphere-specificity. I shall refer to this the

  19. The Role of Internet Political Communication in Development of Public Sphere and Electronic Democracy

    OpenAIRE

    Visvaldis Valtenbergs

    2010-01-01

    The Role of Internet Political Communication in Development of Public Sphere and Electronic Democracy Visvaldis Valtenbergs Keywords: public sphere, internet, e-democracy, parties Central to this thesis are questions about internet’s potential in renewing informed and critical public opinion, and the adaptation of institutions of representative democracy to contemporary notions of public sphere, information consumption, communication and political participation patterns. ...

  20. Uniqueness of photon sphere for Einstein-Maxwell-dilaton black holes with arbitrary coupling constant

    CERN Document Server

    Rogatko, Marek

    2016-01-01

    The uniqueness of static asymptotically flat photon sphere for static black hole solution in Einstein-Maxwell-dilaton theory with arbitrary coupling constant was proposed. Using the conformal positive energy theorem we show that the dilaton sphere subject to the non-extremality condition authorizes a cylinder over a topological sphere.