WorldWideScience

Sample records for bonner sphere spectrometer

  1. A Bonner Sphere Spectrometer for pulsed fields.

    Science.gov (United States)

    Aza, E; Dinar, N; Manessi, G P; Silari, M

    2016-02-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations.

  2. The response of a Bonner Sphere spectrometer to charged hadrons

    CERN Document Server

    Agosteo, S; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n, xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semithick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors wer...

  3. The response of a bonner sphere spectrometer to charged hadrons.

    Science.gov (United States)

    Agosteo, S; Dimovasili, E; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN.

  4. Upgrade of neutron energy spectrometer with single multilayer bonner sphere using onion-like structure

    Energy Technology Data Exchange (ETDEWEB)

    Mizukpshi, Tomoaki; Watanabe, Kenichi; Yamazaki, Atsushi; Uritan, Akira [Nagoya University, Nagoya (Japan); Iguchi, Tetsuo; Ogata, Tomohiro; Muramatsu, Takashi [Mitsubishi Heavy Industries Ltd., Kobe(Japan)

    2016-09-15

    In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type LiCaAlF6 (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

  5. Development of a Bonner Sphere Neutron Spectrometer from a Commercial Neutron Dosimeter

    CERN Document Server

    Chu, M C; Kwok, T; Leung, J K C; Lin, Y C; Liu, H; Luk, K B; Ngai, H Y; Pun, C S J; Wong, H L H

    2016-01-01

    Bonner Spheres have been used widely for the measurement of neutron spectra with neutron energies ranged from thermal up to at least 20 MeV. A Bonner Sphere neutron spectrometer (BSS) was developed by extending a Berthold LB 6411 neutron-dose-rate meter. The BSS consists of a $^{3}$He thermal-neutron detector with integrated electronics, a set of eight polyethylene spherical shells and two optional lead shells of various sizes. The response matrix of the BSS was calculated with GEANT4 Monte Carlo simulation. The BSS had a calibration uncertainty of $\\pm 8.6\\%$ and a detector background rate of $(1.57 \\pm 0.04) \\times 10^{-3}$ s$^{-1}$. A spectral unfolding code NSUGA was developed. The NSUGA code utilizes genetic algorithms and has been shown to perform well in the absence of a priori information.

  6. Response Matrix of a Bonner Spheres Spectrometer with {sup 3} He Detector

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares, Ing. Electrica y Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx

    2004-07-01

    Using MCNP code the response matrix of a Bonner spheres spectrometer was calculated. The spectrometer has a 3.2 cm-diameter thermal neutron detector; this is a {sup 3} He-filled proportional counter that is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12 and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10-9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources, from this comparison calculated matrix is in agreement with the experimental results. Also this matrix was compared against the response matrix calculated for the PTB C spectrometer, Nevertheless that calculation was carried out using a detailed model to describe the proportional counter both matrices were in agreement, small differences are observed in the bare case because the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons probable due to the differences in the cross sections used during both calculations. (Author)

  7. BUMS--Bonner sphere Unfolding Made Simple an HTML based multisphere neutron spectrometer unfolding package

    CERN Document Server

    Sweezy, J; Veinot, K

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at h...

  8. NEMUS--the PTB Neutron Multisphere Spectrometer Bonner spheres and more

    CERN Document Server

    Wiegel, B

    2002-01-01

    The original Bonner sphere spectrometer as it is used and characterized by PTB consists of 12 polyethylene spheres with diameters from 7.62 cm (3'') to 45.72 cm (18'') and a sup 3 He-filled spherical proportional counter used as a central thermal-neutron-sensitive detector and as a bare or cadmium-shielded bare detector. In this paper, a set of four new spheres made of polyethylene with copper or lead inlets is introduced. All spheres are less than 18 kg in mass and their responses to high energy neutrons increase with energy as a result of the increasing (n,xn) cross-sections of copper and lead. The fluence response matrix was calculated up to 10 GeV using an extended neutron cross-section library (LA150) and the MCNP(X) Monte Carlo code. Calibration measurements with neutron energies up to 60 MeV were used to compare the calculated response functions to measured values. For measurements outside the laboratory, a miniaturized, battery-powered electronic set-up was developed. This system with the additional, ...

  9. Determining the neutron spectrum of 241Am-Be and 252Cf sources using bonner sphere spectrometer

    Directory of Open Access Journals (Sweden)

    M.A Varshabi

    2016-06-01

    Full Text Available Bonner spheres system is one of the ways of measuring neutron energy distribution which is often applied in spectrometry and neutron dosimetry. This system includes a thermal neutron detector, being located in the center of several polyethylene spheres, and it is still workable due to the isotropic response of the system which in turn is derived from the spherical symmetry of moderators and the broad measurable range of the energy. In order to practically use this spectrometer, it is necessary to calibrate this system using standard neutron sources. This research aimed to determine the calibration factor of Bonner spheres spectrometry system and energy spectrum of two standard 241Am-Be and 252Cf sources in the atomic energy organization. Calibration and experimental measurement were done via the two standard sources. The response vector of each detector was derived by using MCNPX simulation code, based on the Monte Carlo method. The spectra unfolding of this system was performed through iterative method using the SPUNIT code done in software NSDUAZ6LiI and BUMS. 

  10. Neutron reference spectra measurements with the Bonner multi-spheres spectrometer; Medidas de espectros de referencia de neutrons com o espectrometro de multiesferas de Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Junior, Roberto Mendonca de

    2004-07-01

    This paper aims to define a procedure to use the Bonner Multisphere Spectrometer with a {sup 6}LiI(Eu) detector in order to determine of neutron spectra. It was measured {sup 238}PuBe spectra and same of reference ({sup 241}AmBe, {sup 252}Cf e {sup 252}Cf+D{sub 2}O) published in ISO 8529-1 (2001) Norm. The data were processed by a computer program (BUNKI), which presents the results in neutrons energy fluency. Each input parameter of the program was studied in order to establish their influence in the adjustment result. The environment dose equivalent rate obtained placing the detector 1 m from the {sup 241}AmBe source was 122 {+-} 4 {mu}Sv/h with 7% of uncertainty and 95% of confidence level. The procedure established in this work was tested with the {sup 238}PuBe spectrum, obtaining an environment dose equivalent rate of 286 {+-} 9 {mu}Sv/h, 8% lower than the value measured experimentally used as reference. Through this procedure will be possible to measure neutron spectra in different work places where neutrons sources are used. Knowing these spectra, it will be possible to evaluate which area monitors, are more suitable, as well as, to study better the response of individual neutron monitors, as for instance, to obtain a conversion coefficient more appropriate to the albedo dosimeter used in different work places. As the measurements need a long time to be accomplished, the work optimization is fundamental to reduce the exposing time of the Bonner spectrometer operator. For this reason, an important parameter examined in this paper was the possibility of reducing the number of spheres used during the measurement without changing the final result. Considering the radiation protection standards, this parameter has a huge importance when the measurements are performed in work places where the neutron fluency and gamma rate offer risks to the operator's health, as for instance, in nuclear centrals. Studying this parameter, it was possible to conclude that

  11. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....

  12. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.

    Science.gov (United States)

    Atanackovic, J; Matysiak, W; Witharana, S; Dubeau, J; Waker, A J

    2014-10-01

    Neutron spectrometry measurements were carried out at the McMaster Accelerator Laboratory (MAL), which is equipped with a 3-MV Van de Graaff-type accelerator. Protons were accelerated onto a thick natural lithium target inducing the (7)Li(p,n)(7)Be threshold reaction. Depending on the proton energy, slightly different poly-energetic neutron fields were produced. Neutron spectra were measured at two incident proton energies: 2.15 and 2.24 MeV, which produced poly-energetic neutrons with maximum kinetic energies of 401 and 511 keV, respectively. Measurements were performed at a distance of 1.5 m from the target in the forward direction with three different instruments: Bonner sphere spectrometer, Nested Neutron Spectrometer and ROtational proton recoil SPECtrometer.

  13. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    Science.gov (United States)

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings.

  14. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    Science.gov (United States)

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  15. Neutron spectrometry using artificial neural networks for a Bonner sphere spectrometer with a {sup 3}He detector

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)

    2011-02-15

    Neutron spectra unfolding and dose equivalent calculation are complicated tasks in radiation protection, are highly dependent of the neutron energy, and a precise knowledge on neutron spectrometry is essential for all dosimetry-related studies as well as many nuclear physics experiments. In previous works have been reported neutron spectrometry and dosimetry results, by using the artificial neural networks (Ann) technology as alternative solution, starting from the count rates of a Bonner spheres system with a {sup 6}LiI(Eu) thermal neutrons detector, 7 polyethylene spheres and the UTA4 response matrix with 31 energy bins. In this work, an Ann was designed and optimized by using the RDAnn methodology for the Bonner spheres system used at CIEMAT Spain, which is composed of a {sup 3}He neutron detector, 12 moderator spheres and a response matrix for 72 energy bins. For the Ann design process a neutrons spectra catalogue compiled by the IAEA was used. From this compilation, the neutrons spectra were converted from lethargy to energy spectra. Then, the resulting energy fluence spectra were re-bin ned by using the MCNP code to the corresponding energy bins of the {sup 3}He response matrix before mentioned. With the response matrix and the re-bin ned spectra the counts rate of the Bonner spheres system were calculated and the resulting re-bin ned neutrons spectra and calculated counts rate were used as the Ann training data set. (Author)

  16. Neutron field measurements of the CRNA OB26 irradiator using a Bonner sphere spectrometer for radiation protection purposes.

    Science.gov (United States)

    Mazrou, H; Allab, M

    2012-08-01

    The present work deals with the Bonner sphere spectrometer (BSS) measurements performed, to support the authors' Monte-Carlo calculations, to estimate accurately the main characteristics of the neutron field of the (241)Am-Be-based OB26 irradiator acquired for radiation protection purposes by the Nuclear Research Centre of Algiers. The measurements were performed at a reference irradiation position selected at 150 cm from the geometrical centre of the neutron source. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter. The response matrix of the present spectrometer has been taken to be similar to the original Physikalisch-Technische Bundesanstalt (PTB) (Braunschweig, Germany) BSS's response matrix, with a five bins per decade energy group structure, as there is no significant difference in the BSS's physical characteristics. Thereafter, the authors' BSS measurements were used together with MCNP5 results to unfold the neutron spectrum by means of MAXED and GRAVEL computer codes from the U.M.G. 3.3 package, developed at PTB. Besides, sensitivity analysis has been performed to test the consistency of the unfolding procedure. It reveals that no significant discrepancy was observed in the total neutron fluence and total ambient dose values following the perturbation of some pertinent unfolding parameters except for the case where a 10 bins energy structure was assumed for the guess spectrum. In this latter case, a 5 % difference was observed in the ambient dose equivalent compared with the reference case. Finally, a comparative study performed between different counting systems together with MCNP5 and predictive formulas results shows that they were globally satisfactory, highlighting thereby the relevance of the unfolding procedure and the reliability of the obtained results.

  17. First test of SP{sup 2}: A novel active neutron spectrometer condensing the functionality of Bonner spheres in a single moderator

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Bortot, D. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B.; Esposito, A. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Introini, M.V.; Lorenzoli, M.; Pola, A. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Sacco, D. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); INAIL—DPIA Via di Fontana Candida n.1, 00040 Monteporzio C. (Italy)

    2014-12-11

    The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries.

  18. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    Science.gov (United States)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  19. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to EFisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  20. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  1. Photoneutron spectrum measured with Bonner Spheres in Planetary method mode

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    We measured the spectrum of photoneutrons at 100 cm isocenter linear accelerator (Linac) Varian ix operating at 15 MV Bremsstrahlung mode. In this process was used a radiation field of 20 x 20 cm{sup 2} at a depth of 5 cm in a solid water phantom with dimensions of 30 x 30 x 15 cm{sup 3}. The measurement was performed with a system using it Bonner Spheres spectrometric method Planetary mode. As neutron detector of the spectrometer is used thermoluminescent dosimeters pairs of type 600 and 700. (Author)

  2. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Ortiz R, J. M., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas (Mexico)

    2011-10-15

    NSDUAZ (Neutron Spectrometry and Dosimetry for the Universidad Autonoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with {sup 6}Lil(Eu) developed under Lab View environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectrum to start the iterations, the package include a statistical procedure based on the count rates relative to the count rate in the 8 inches-diameter sphere to select the initial spectrum. Neutron spectrum is unfolded in 32 energy groups ranging from 10{sup -8} up to 231.2 MeV. (Author)

  3. Response matrix of an extended Bonner sphere system

    CERN Document Server

    Vylet, V

    2002-01-01

    We have developed a system of Bonner spheres designed for use around high-energy accelerators. The upper energy limit of the system was extended using a lead radiator, which acts as an energy converter via the (n,xn) reaction. In addition, we use sup 1 sup 1 C activation as an additional component integrated into the system and the spectra unfolding process. In the first version of the system, the lead radiator was present in only one sphere with diameter of 30.48 cm. The object of the present work was to investigate the geometry of the lead radiator and its use in moderators of several different sizes. As a result, we have developed a modular design and calculated the response matrix of the new system.

  4. Measurements of H*(10) in reference neutron fields using Bonner sphere spectrometry and LET spectrometry

    CERN Document Server

    Golnik, N; Králik, M

    2002-01-01

    A Bonner sphere spectrometer and the REM-2 recombination chamber were used for inter-comparison measurements of the neutron component of ambient dose equivalent, H sub n *(10) in reference neutron fields. The sup 2 sup 4 sup 1 Am-Be and sup 2 sup 5 sup 2 Cf neutron sources were exposed either free-in-air or placed in iron or paraffin filters. The REM-2 recombination chamber was used as a LET spectrometer. The agreement of H sub n *(10) values measured with both the methods was within experimental uncertainties of few percent. The determined neutron spectra were used for calculations of the REM-2 chamber response to H*(10).

  5. The optimization study of Bonner sphere in the epi-thermal neutron irradiation field for BNCT.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    The optimization study on the Bonner sphere in the epi-thermal neutron irradiation field for BNCT was done for the moderator material, moderator size, and activation foils as a neutron detector in the sphere. The saturated activity for the activation foil was obtained from the calculated response, and the effective energy range for each Bonner sphere was determined from the saturated activity. We can see that boric acid solution moderator is suitable for the spectrum measurement of a epi-thermal neutron irradiation field.

  6. The Effect of the Choice or Response Matrix on Unfolded Bonner Sphere Spectra.

    Science.gov (United States)

    1984-12-31

    cylindrical, 4 m high x 4 mm dia., europium- activated lithium iodide scintillation crystal as the thermal neutron detector in the centers of polyethylene... Neutroniques Avec les Spheres de Bonner Establissement d’une Matrice Log-Normale de Reference," CEA-N-2241, Commisariat d l’Energie Atomique - France (1981

  7. Application of neural networks for unfolding neutron spectra measured by means of Bonner spheres and activation foils

    CERN Document Server

    Braga, C C

    2001-01-01

    A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results wer...

  8. Neutron spectrometry and dosimetry with neural networks and Bonner spheres: a study to reduce the spheres number; Espectrometria y dosimetria neutronica con redes neuronales y esferas Bonner: un estudio para reducir el numero de esferas

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza G, J. G.; Martinez B, M. R.; Leon P, A. A.; Hernandez P, C. F.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Mendez, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 22, 28040 Madrid (Spain); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); De Sousa L, M. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG (Brazil)

    2016-10-15

    For neutron spectrometry and neutron dosimetry, the Bonner spheres spectrometric system has been the most widely used system, however, the number, size and weight of the spheres composing the system, as well as the need to use a reconstruction code and the long periods of time used to carry out the measurements are some of the disadvantages of this system. For the reconstruction of the spectra, different techniques such as artificial neural networks of reverse propagation have been used. The objective of this work was to reduce the number of Bonner spheres and to use counting speeds in a reverse propagation neural network, optimized by means of the robust design methodology, to reconstruct the neutron spectra. For the design of the neural network we used the neutron spectra of the IAEA and the response matrix of the Bonner spheres with {sup 6}LiI(Eu) detector. The performance of the network was compared; using 7 Bonner spheres against other cases where only 2 and one sphere are used. The network topologies were trained 36 times for each case keeping constant the objective error (1E(-3)), the training algorithm was trains cg and the robust design methodology to determine the best network architectures. With these, the best and worst results were compared. The results obtained using 7 spheres were similar to those with the 5-in sphere, however is still in an information analysis stage. (Author)

  9. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R.M., E-mail: rhowell@mdanderson.or [UT M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Burgett, E.A. [Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA (United States); Wiegel, B. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Hertel, N.E. [Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA (United States)

    2010-12-15

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (and). However, when the initial test of the system was carried out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried-out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9% and 16.7% and the arithmetic mean for all spheres was (10.9 {+-} 1.8)%. These sphere specific correction factors will be applied for all future measurements carried out with the BSE.

  10. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry.

    Science.gov (United States)

    Howell, R M; Burgett, E A; Wiegel, B; Hertel, N E

    2010-12-01

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (Burgett, 2008 and Howell et al., 2009).However, when the initial test of the system was carried-out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9 % and 16.7 % and the arithmetic mean for all spheres was (10.9 ± 1.8) %. These sphere specific correction factors will be applied for all future measurements carried-out with the BSE.

  11. Reprint of The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-12-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated.

  12. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-10-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated.

  13. Comparison of measurements with active and passive Bonner sphere spectrometers

    CERN Document Server

    Hajek, M; Schoner, W; Vana, N

    2000-01-01

    Because of its high biological efficiency, neutron radiation can be a serious source-and not only around accelerators and nuclear fusion reactors. Roughly half of the radiation exposure of aircrew members is caused by cosmic ray-induced neutrons in a wide energy range. Therefore, following the International Commission on Radiological Protection's recommendations, aircrew are treated as occupationally exposed workers by a recent directive of the European Council, which implies various safety precautions including the dosimetric surveillance. The accurate assessment of operational and limiting quantities such as ambient dose equivalent H*(10) and effective dose E requires the knowledge of the neutron energy spectrum. The CERN-CEC neutron reference field has been designed to resemble the neutron spectrum at an average subsonic aviation altitude. Therefore, it provides an excellent calibration facility for all instruments with intended applications in this field. The stray radiation field is created by a mixed be...

  14. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.

  15. Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV – Potential impact on neutron dosimetry at energies higher than 20 MeV

    CERN Document Server

    Rühm, W; Pioch, C; Agosteo, S; Endo, A; Ferrarini, M; Rakhno, I; Rollet, S; Satoh, D; Vincke, H

    2014-01-01

    Bonner Spheres Spectrometry in its high-energy extended version is an established method to quantify neutrons at a wide energy range from several meV up to more than 1 GeV. In order to allow for quantitative measurements, the responses of the various spheres used in a Bonner Sphere Spectrometer (BSS) are usually simulated by Monte Carlo (MC) codes over the neutron energy range of interest. Because above 20 MeV experimental cross section data are scarce, intra-nuclear cascade (INC) and evaporation models are applied in these MC codes. It was suspected that this lack of data above 20 MeV may translate to differences in simulated BSS response functions depending on the MC code and nuclear models used, which in turn may add to the uncertainty involved in Bonner Sphere Spectrometry, in particular for neutron energies above 20 MeV. In order to investigate this issue in a systematic way, EURADOS (European Radiation Dosimetry Group) initiated an exercise where six groups having experience in neutron transport calcula...

  16. Monte Carlo calculations and experimental results of Bonner spheres systems with a new cylindrical Helium-3 proportional counter

    CERN Document Server

    Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L

    2002-01-01

    The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...

  17. Monte Carlo calculations and experimental results of Bonner spheres systems with a new cylindrical Helium-3 proportional counter

    Science.gov (United States)

    Muller, H.; Fernández, F.; Van Ryckeghem, L.; Alexandre, P.; Bouassoule, T.; Pochat, J.-L.; Tomas, M.

    2002-01-01

    The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellòs II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type "F" (0,5NH1/1KI—Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-energetic neutrons and with the CANEL IPSN facility which simulates realistic fields.

  18. Iterative code for the reconstruction of the neutrons spectrum using the Bonner spheres; Codigo iterativo para la reconstruccion del espectro de neutrones usando las esferas Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Reyes H, A.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2012-10-15

    The neutrons are the particles more difficult of detecting for their intrinsic nature. The absence of the neutrons charge makes that an interaction exists with the matter in a different way. The term radiation spectrometry can use to describe the measurement of the intensity of a radiation field with regard to the energy. The intensity distribution with relationship to the energy is commonly known as spectrum. A method to know the neutrons spectrum in the radiation fields to those that people are exposed is the use of the known system as spectrometry system of Bonner spheres, being the more used for the purposes of the radiological protection. The current interest in the electrons spectrometry has stimulated the development of several procedures to carry out the reconstruction of the spectra. During the last decades new codes have been developed such as BUNKIUT, Bums, Fruit, UMG, etc., however, these methods still present several inconveniences as the complexity in their use, the necessity of an expert user and a very near initial spectrum to the spectrum that is wanted to obtain. To solve the mentioned problems it was development the program NSDUAZ (Neutron Spectrometry and Dosimetry from Autonomous University of Zacatecas). The objective of the present work is to prove and to validate the code before mentioned making an analysis of likeness and differences and of advantages and disadvantages with relationship to the codes used at the present time. (Author)

  19. Neutron measurements in the Vandellòs II nuclear power plant with a Bonner sphere system.

    Science.gov (United States)

    Fernández, F; Bakali, M; Tomás, M; Muller, H; Pochat, J L

    2004-01-01

    In some Spanish nuclear power plants of pressurised water reactor (PWR) type, albedo thermoluminescence dosemeters are used for personal dosimetry while survey meters, based on a thermal-neutron detector inside a cylindrical or spherical moderator, are used for dose rate assessment in routine monitoring. The response of both systems is highly dependent on the energy of the existing neutron fields. They are usually calibrated by means of ISO neutron sources with energy distributions quite different from those encountered at these installations. Spectrometric measurements with a Bonner sphere system (BSS) allow us to determine the reference dosimetric values. The UAB group, under request from the National Coordinated Research Action, was in charge of characterising the neutron fields and evaluating the response of personal dosemeters at several measurement points inside the containment building of the Catalan Nuclear Power Plant Vandellòs II. The neutron fields were characterised at five places using the UAB-BSS and a home made unfolding code called MITOM. The results obtained confirm the presence of low-energy components in the neutron field in most of the selected points. Moreover, we have found no influence of the nuclear fuel burning on the shape of the spectrum.

  20. Reconstruction of neutron spectra using neural networks starting from the Bonner spheres spectrometric system; Reconstruccion de espectros de neutrones usando redes neuronales a partir del sistema espectrometrico de esferas de Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Arteaga A, T.; Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)

    2005-07-01

    The artificial neural networks (RN) have been used successfully to solve a wide variety of problems. However to determine an appropriate set of values of the structural parameters and of learning of these, it continues being even a difficult task. Contrary to previous works, here a set of neural networks is designed to reconstruct neutron spectra starting from the counting rates coming from the detectors of the Bonner spheres system, using a systematic and experimental strategy for the robust design of multilayer neural networks of the feed forward type of inverse propagation. The robust design is formulated as a design problem of Taguchi parameters. It was selected a set of 53 neutron spectra, compiled by the International Atomic Energy Agency, the counting rates were calculated that would take place in a Bonner spheres system, the set was arranged according to the wave form of those spectra. With these data and applying the Taguchi methodology to determine the best parameters of the network topology, it was trained and it proved the same one with the spectra. (Author)

  1. Optimization of the architecture of a neural network in neutron spectrometry to reduce the number of Bonner spheres; Optimizacion de la arquitectura de una red neuronal en espectrometria de neutrones para reducer el numero de esferas Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Leon P, A. A.; Martinez B, M. R.; Hernandez P, C. F.; Espinoza G, J. G.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 22, 28040 Madrid (Spain); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); De Sousa L, M. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The neutron spectrometry is an experimental process for determining the energy distribution called the Spectrum. Among the methods available for neutron spectrometry, one can mention the Bonner Sphere Spectrometric System as one of the most used, consisting of a detector placed in the center of a set of polyethylene spheres whose diameters range from 2 to 18 inches, however has some disadvantages such as the long periods of time to perform the measurements, the weight and the spheres number that vary according to the system. From this, alternative methods such as artificial neural networks are proposed. For this project neural networks of reverse propagation were used with the methodology of robust design of artificial neural networks, with the aid of a computational tool that maximizes the performance, making the time used for the training s of the network is the smallest possible and thus gets the orthogonal fixes quickly to determine the best network topology. The counting rates of a spectrometric system with 7 spheres, 2 spheres and one sphere of 5 and 8 inches were used. This methodology seeks to reduce the work used as in the spectrometric system formed by a greater number of spheres, since to enter less data in the counting rates to obtain the spectra with 60 energy levels saves time and space, because at having a smaller number of spheres its portability is easier to move from one place to another, for this we performed several experiments with different errors until we reached the optimal error so that the topology of the network was appropriate and find the best design parameters. A statistical software JMP was also used to obtain the best topologies and thus to retrain obtaining its best and worst spectra, in order to determine if the reduction is possible. (Author)

  2. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  3. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES.

    Science.gov (United States)

    Wuttke, Joachim; Zamponi, Michaela

    2013-11-01

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  4. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  5. Measurement of the neutron spectrum in a room with an accelerator Varian 2300C/D Linac using the Bonner multisphere spectrometer; Medicao do espectro de neutrons em uma sala com um acelerador Varian 2300C/D Linav usando o espectrometro de multiesferas de Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, D.B.S., E-mail: cavalcante@ird.gov.b [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica; Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Lemos Junior, R.M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil); Batista, D.V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The generated neutron field varies considerably and depends on the beam energy, on the shielding of the accelerator, on the filters for beam homogeneity, and also on the mobile collimators and geometry of irradiation. The estimation of the component relative to the photoneutrons has practical interest for evaluation of the radiological risks for the workers and for the patient as well. Due to the high frequency magnetic field, and to the photon abundance resulting of the escape and scattering at treatment room, those measurements present some difficulties. Measurements of the neutron fields can be made with a Bonner spectrometer. Those system was calibrated with referred neutron standard sources and used for make measurements on a spot of the room where a Variant 2300C/D Linac is installed. The unfolding process used the BUNKI computer code for determination of the neutron spectra at the measurement spot

  6. SPHERES, J\\"ulich's High-Flux Neutron Backscattering Spectrometer at FRM II

    CERN Document Server

    Wuttke, Joachim; Drochner, Matthias; Kämmerling, Hans; Kayser, Franz-Joseph; Pardo, Luis Carlos; Prager, Michael; Ossovyi, Vladimir; Schneider, Gerald J; Schneider, Harald; Staringer, Simon; Richter, Dieter

    2012-01-01

    SPHERES (SPectrometer with High Energy RESolution) is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the J\\"ulich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 micro-eV, a dynamic range of +-31 micro-eV, and a signal-to-noise ratio of up to 1750:1.

  7. SPHERES, Jülich's high-flux neutron backscattering spectrometer at FRM II.

    Science.gov (United States)

    Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kämmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J; Schneider, Harald; Staringer, Simon

    2012-07-01

    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Jülich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 μeV, a dynamic range of ± 31 μeV, and a signal-to-noise ratio of up to 1750:1.

  8. SPHERES, Juelich's high-flux neutron backscattering spectrometer at FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kaemmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J.; Schneider, Harald; Staringer, Simon [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2012-07-15

    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Juelich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 {mu}eV, a dynamic range of {+-} 31 {mu}eV, and a signal-to-noise ratio of up to 1750:1.

  9. Optical fiber sensors using hollow glass spheres and CCD spectrometer interrogator

    Science.gov (United States)

    Dakin, John P.; Ecke, Wolfgang; Schroeder, Kerstin; Reuter, Martin

    2009-10-01

    Hollow glass micro-spheres, firstly used to make fiber optic sensors for high hydrostatic pressure, have been interrogated using a high-resolution CCD-based spectrometer, to give far better precision than conventional spectrometric read out. It is found that these simple, low-cost micro-sensors have excellent sensitivity to both static and dynamic pressure, and have the advantage of being hermetically sealed. Many other application areas are foreseen for these low-cost sensors.

  10. Simulation of the response functions of an extended range neutron multisphere spectrometer using FLUKA

    Science.gov (United States)

    Wang, Pan-Feng; Ding, Ya-Dong; Wang, Qing-Bin; Ma, Zhong-Jian; Guo, Si-Ming; Li, Guan-Jia

    2015-07-01

    In this paper, the distribution of radiation field in the CSNS spectrometer hall at Dongguan, China, was simulated by the FLUKA program. The results show that the radiation field of the high energy proton accelerator is dominated by neutron radiation, with a broad range of neutron energies, spanning about eleven orders of magnitude. Simulation and calculation of the response functions of four Bonner spheres with a simplified model is done with FLUKA and MCNPX codes respectively, proving the feasibility of the FLUKA program for this application and the correctness of the calculation method. Using the actual model, we simulate and calculate the energy response functions of Bonner sphere detectors with polyethylene layers of different diameters, including detectors with lead layers, using the FLUKA code. Based on the simulation results, we select eleven detectors as the basic structure for an Extended Range Neutron Multisphere Spectrometer (ERNMS).

  11. Simulation of the response functions of an extended range neutron multisphere spectrometer using FLUKA

    Institute of Scientific and Technical Information of China (English)

    WANG Pan-Feng; DING Ya-Dong; WANG Qing-Bin; MA Zhong-Jian; GUO Si-Ming; LI Guan-Jia

    2015-01-01

    In this paper,the distribution of radiation field in the CSNS spectrometer hall at Dongguan,China,was simulated by the FLUKA program.The results show that the radiation field of the high energy proton accelerator is dominated by neutron radiation,with a broad range of neutron energies,spanning about eleven orders of magnitude.Simulation and calculation of the response functions of four Bonner spheres with a simplified model is done with FLUKA and MCNPX codes respectively,proving the feasibility of the FLUKA program for this application and the correctness of the calculation method.Using the actual model,we simulate and calculate the energy response functions of Bonner sphere detectors with polyethylene layers of different diameters,including detectors with lead layers,using the FLUKA code.Based on the simulation results,we select eleven detectors as the basic structure for an Extended Range Neutron Multisphere Spectrometer (ERNMS).

  12. Development of single-exposure, multidetector neutron spectrometers: the NESCOFI@BTF project.

    Science.gov (United States)

    Bedogni, R; Gómez-Ros, J M; Bortot, D; Pola, A; Introini, M V; Esposito, A; Gentile, A; Mazzitelli, G; Buonomo, B

    2014-10-01

    NESCOFI@BTF is a 3-y project (2011-13) supported by the Scientific Commission 5 of INFN (Italy). The target is the development of neutron spectrometers similar to the Bonner spheres, in terms of response energy interval and accuracy, but able to determine the neutron spectrum in only one exposure. These devices embed multiple (10 to 30) thermal neutron detectors (TNDs) within a single moderator. Two prototypes, called SPherical SPectrometer (SP(2)) and cylindrical spectrometer (CYSP), have been set up. Whilst SP(2) has spherical geometry and nearly isotropic response, the CYSP has cylindrical geometry and is intended to be used as a directional spectrometer. Suitable active TNDs will be embedded in the final version of the devices. The resulting instruments could be used as real-time neutron spectrometers in neutron-producing facilities. This communication describes the design criteria, numerical analysis, experimental issues, state-of-the-art and future developments connected with the development of these instruments.

  13. Study of a gold-foil-based multisphere neutron spectrometer.

    Science.gov (United States)

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  14. Commissioning of a proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.C.; Faught, R.T

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated {sup 252}Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  15. Sci—Fri PM: Dosimetry—02: A Nested Neutron Spectrometer to Measure Neutron Spectra in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, R; Seuntjens, J; Kildea, J [Medical Physics Unit, McGill University, Montreal, Qc (Canada); Licea, A [Canadian Nuclear Safety Commission CNSC, Ottawa, Ontario (Canada)

    2014-08-15

    During high-energy radiotherapy treatments, neutrons are produced in the head of the linac through photonuclear interactions. This has been a concern for many years as photoneutrons contribute to the accepted, yet unwanted, out-of-field doses that pose an iatrogenic risk to patients and an occupational risk to personnel. Presently, in-room neutron measurements are difficult and time-consuming and have traditionally been carried out using Bonner spheres with activation foils and TLDs. In this work, a new detector, the Nested Neutron Spectrometer (NNS) is tested for use in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional Bonner spheres. The NNS, operated in current mode, was used to measure the dose equivalent, average energy and energy spectrum at several positions in a radiotherapy bunker. The average energy and spectra were compared to Monte Carlo simulations while the dose equivalent was compared to bubble detector measurements. The average energies, as measured by the NNS and Monte Carlo simulations, differed by approximately 30% across the bunker. Measurements of the dose equivalent using the NNS and the bubble detectors agreed within 50% in the maze and less than 10% close to the linac head. Apart from some discrepancies at thermal energies, we also found reasonable agreement between NNS-measured and Monte Carlo-simulated spectra at a number of locations within our radiotherapy bunker. Our results demonstrate that the NNS is a suitable detector to be used in high dose-rate radiotherapy environments.

  16. Development of a Geant4 application to characterise a prototype neutron detector based on three orthogonal (3)He tubes inside an HDPE sphere.

    Science.gov (United States)

    Gracanin, V; Guatelli, S; Prokopovich, D; Rosenfeld, A B; Berry, A

    2017-01-01

    The Bonner Sphere Spectrometer (BSS) system is a well-established technique for neutron dosimetry that involves detection of thermal neutrons within a range of hydrogenous moderators. BSS detectors are often used to perform neutron field surveys in order to determine the ambient dose equivalent H*(10) and estimate health risk to personnel. There is a potential limitation of existing neutron survey techniques, since some detectors do not consider the direction of the neutron field, which can result in overly conservative estimates of dose in neutron fields. This paper shows the development of a Geant4 simulation application to characterise a prototype neutron detector based on three orthogonal (3)He tubes inside a single HDPE sphere built at the Australian Nuclear Science and Technology Organisation (ANSTO). The Geant4 simulation has been validated with respect to experimental measurements performed with an Am-Be source.

  17. Experimental test of a newly developed single-moderator, multi-detector, directional neutron spectrometer in reference monochromatic fields from 144 keV to 16.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Gómez-Ros, J.M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Bortot, D. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Gentile, A. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Introini, M.V. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Mazzitelli, M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Sacco, D. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); INAIL – DPIA, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy)

    2015-05-11

    A new directional neutron spectrometer called CYSP (CYlindrical SPectrometer) was developed within the NESCOFI@BTF (2011–2013) collaboration. The device, composed by seven active thermal neutron detectors located along the axis of a cylindrical moderator, was designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons. The new spectrometer condenses the performance of the Bonner Sphere Spectrometer in a single moderator; thus requiring only one exposure to determine the whole spectrum. The CYSP response matrix, determined with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 144 keV to 16.5 MeV, plus a {sup 252}Cf source, available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±2.5%. The new active spectrometer CYSP offers an innovative option for real-time monitoring of directional neutron fields as those produced in neutron beam-lines.

  18. Routh's sphere

    NARCIS (Netherlands)

    Cushman, R.

    2001-01-01

    In this paper we show that the integral map of Rouths sphere has monodromy when the sphere becomes gyroscopically unstable This uses the nonHamiltonian monodromy of Rouths sphere has center of mass not at its geometrical center and moment of inertia tensor with two equal principal moments of inerti

  19. Spectrometer equipment for neutron spectra measurements in mixed neutron/photon fields

    CERN Document Server

    Chernov, V A; Trykov, L A

    2002-01-01

    The paper describes spectrometer equipment in the IPPE experimental laboratory for neutron spectra measurement in mixed (n,gamma) fields. The laboratory was founded in 1957 and it occupies a leading position in the field of nuclear facilities radiation spectrometry and benchmark experiments in Russia. Spectrometer equipment includes spectrometers based on the organic stilbene scintillator, hydrogen counter and Bonner balls. Basic fields of spectrometer application are mixed radiation neutron spectra measurement of radionuclide sources, of nuclear reactors and accelerators; study of neutron transfer through the material, including benchmark experiments and measurement of neutron spectra in the rooms of nuclear facilities.

  20. Measurement of the Surface and Underground Neutron Spectra with the UMD/NIST Fast Neutron Spectrometers

    Science.gov (United States)

    Langford, Thomas J.

    The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon

  1. Public Sphere

    DEFF Research Database (Denmark)

    Trenz, Hans-Jörg

    2015-01-01

    In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....

  2. Quasisymmetric Spheres

    Directory of Open Access Journals (Sweden)

    Vellis Vyron

    2016-03-01

    Full Text Available Let Ω be a planar Jordan domain and α > 0. We consider double-dome-like surfaces Σ(Ω, tα over Ω where the height of the surface over any point x ∈ Ωequals dist(x, ∂Ωα. We identify the necessary and sufficient conditions in terms of and α so that these surfaces are quasisymmetric to S2 and we show that Σ(Ω, tα is quasisymmetric to the unit sphere S2 if and only if it is linearly locally connected and Ahlfors 2-regular.

  3. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  4. First quantum correction to entropy of Vaidya-Bonner black holes due to arbitrary spin fields

    Institute of Scientific and Technical Information of China (English)

    高长军; 沈有根

    2002-01-01

    Using the improved brick-wall model, we have calculated the first quantum correction to the entropy of non-staticblack holes, Vaidya-Bonner black holes, due to the gravitational, electro-magnetic and neutrino fields. The result showsthat both bosonic entropy and fermionic entropy are exactly proportional to the area of the event horizon. Thus, theentropy-area law still holds in such a non-static case.

  5. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  6. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  7. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  8. Hawking radiation of charged Dirac particles in Vaidya-Bonner space-time

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 张建华; 赵峥

    1995-01-01

    The dynamical properties of charged Dirac spinor particles in the Vaidya-Bonner space-time are investigated. The asymptotic solution to the radial part of the charged Dirac equation near the event horizon of the black hole is obtained. The Hawking temperature and the event horizon of the charged evaporating black hole, as well as the spectrum of the Hawking radiation of the Dirac particles, are exactly shown. Thereby, a new approach to the back-reaction of radiation from the non-stationary black holes is established.

  9. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  10. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  11. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  12. Jammed lattice sphere packings

    OpenAIRE

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-01-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...

  13. DISE: directed sphere exclusion.

    Science.gov (United States)

    Gobbi, Alberto; Lee, Man-Ling

    2003-01-01

    The Sphere Exclusion algorithm is a well-known algorithm used to select diverse subsets from chemical-compound libraries or collections. It can be applied with any given distance measure between two structures. It is popular because of the intuitive geometrical interpretation of the method and its good performance on large data sets. This paper describes Directed Sphere Exclusion (DISE), a modification of the Sphere Exclusion algorithm, which retains all positive properties of the Sphere Exclusion algorithm but generates a more even distribution of the selected compounds in the chemical space. In addition, the computational requirement is significantly reduced, thus it can be applied to very large data sets.

  14. MASS SPECTROMETER

    Science.gov (United States)

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  15. SPHERES National Lab Facility

    Science.gov (United States)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  16. Bathymetric surveys of the Kootenai River near Bonners Ferry, Idaho, water year 2011

    Science.gov (United States)

    Fosness, Ryan L.

    2013-01-01

    In 2009, the Kootenai Tribe of Idaho released and implemented the Kootenai River Habitat Restoration Master Plan. This plan aimed to restore, enhance, and maintain the Kootenai River habitat and landscape to support and sustain habitat conditions for aquatic species and animal populations. In support of these restoration efforts, the U.S. Geological Survey, in cooperation with the Kootenai Tribe of Idaho, conducted high-resolution multibeam echosounder bathymetric surveys in May, June, and July 2011, as a baseline bathymetric monitoring survey on the Kootenai River near Bonners Ferry, Idaho. Three channel patterns or reaches exist in the study area—braided, meander, and a transitional zone connecting the braided and meander reaches. Bathymetric data were collected at three study areas in 2011 to provide: (1) surveys in unmapped portions of the meander reach; (2) monitoring of the presence and extent of sand along planned lines within a section of the meander reach; and (3) monitoring aggradation and degradation of the channel bed at specific cross sections within the braided reach and transitional zone. The bathymetric data will be used to update and verify flow models, calibrate and verify sediment transport modeling efforts, and aid in the biological assessment in support of the Kootenai River Habitat Restoration Master Plan. The data and planned lines for each study reach were produced in ASCII XYZ format supported by most geospatial software.

  17. Jammed lattice sphere packings.

    Science.gov (United States)

    Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore

    2013-12-01

    We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

  18. Synthesis of corrected multi-wavelength spectrometers for atmospheric trace gases

    Institute of Scientific and Technical Information of China (English)

    Hikmat H.Asadov; Islam M.Mirzabalayev; Davud Z.Aliyev; Javid A.Agayev; Sima R.Azimova; Nabi A.Nabiyev; Sevinj N.Abdullayeva

    2009-01-01

    The method for synthesis of corrected three-wavelengths spectrometers for trace gas components of atmo sphere on the basis of development of mathematical model has been suggested.The classification table for possible structures of corrected spectrometers is considered.The synthesis allows to reveal some new variants for development of three-wavelength spectrometers for trace gas components of atmosphere.For experimental checkup of achieved theoretical results,a laboratory pattern of three-wavelength spectrometer is developed and tested.

  19. Affine Sphere Relativity

    Science.gov (United States)

    Minguzzi, E.

    2016-11-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  20. Measuring Neutron Spectrum at MIT Research Reactor Utilizing He-3 Bonner Cylinder Approach with an Unfolding Analysis

    Science.gov (United States)

    Leder, Alexander; Ricochet Collaboration

    2016-03-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CENNS) using dark matter style detectors placed near a neutrino source, possibly the MIT research reactor (MITR), which offers a high continuous neutrino flux at high energies. Currently, Ricochet is characterizing the backgrounds at MITR. The main background is the neutrons emitted simultaneously from the core. To characterize this background, we wrapped a Bonner cylinder around a 3He thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum as well its implications for deploying Ricochet in the future.

  1. AlphaSphere

    OpenAIRE

    Place, A.; Lacey, L.; Mitchell, T.

    2013-01-01

    The AlphaSphere is an electronic musical instrument featuring a series of tactile, pressure sensitive touch pads arranged in a spherical form. It is designed to offer a new playing style, while allowing for the expressive real-time modulation of sound available in electronic-based music. It is also designed to be programmable, enabling the flexibility to map a series of different notational arrangements to the pad-based interface.\\ud \\ud The AlphaSphere functions as an HID, MIDI and OSC devic...

  2. Development of Miniature Spectrometers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo

    2007-01-01

    Spectrometer is an essential and necessary optical element used for measuring the chemical components and content of the matter.The development of miniature spectrometers can be traced back to 1980s.The development state and different manufacturing methods of micro-spectrometers are presented.Finally,we analyze the miniaturization trend of spectrometers.Some groundwork for the scientific research is offered by introducing micro-spectrometers development.

  3. The Moyal Sphere

    CERN Document Server

    Eckstein, Michał; Wulkenhaar, Raimar

    2016-01-01

    We construct a family of constant curvature metrics on the Moyal plane and compute the Gauss-Bonnet term for each of them. They arise from the conformal rescaling of the metric in the orthonormal frame approach. We find a particular solution, which corresponds to the Fubini-Study metric and which equips the Moyal algebra with the geometry of a noncommutative sphere.

  4. The Moyal sphere

    Science.gov (United States)

    Eckstein, Michał; Sitarz, Andrzej; Wulkenhaar, Raimar

    2016-11-01

    We construct a family of constant curvature metrics on the Moyal plane and compute the Gauss-Bonnet term for each of them. They arise from the conformal rescaling of the metric in the orthonormal frame approach. We find a particular solution, which corresponds to the Fubini-Study metric and which equips the Moyal algebra with the geometry of a noncommutative sphere.

  5. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    Directory of Open Access Journals (Sweden)

    Rosemarie HAINES

    2013-12-01

    Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.

  6. Absolute multilateration between spheres

    Science.gov (United States)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  7. VMware vSphere Design

    CERN Document Server

    Guthrie, Forbes; Saidel-Keesing, Maish

    2011-01-01

    The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late

  8. A SSS Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The SSS spectrometer, so called simple scintillation spectrometer, is made by BTI (Bubble Technology Industries). The spectrometer can be used in the neutron energy range from 4.0 to 17 MeV. The SSS includes two sections: A probe and an analyzer module

  9. Comparison of neutron spectrum measurement methods used for the epithermal beam of the LVR-15 research reactor.

    Science.gov (United States)

    Viererbl, L; Klupák, V; Lahodová, Z; Marek, M

    2012-07-01

    The LVR-15 research reactor's horizontal channel with its epithermal neutron beam is used mainly for boron neutron capture therapy. Neutrons from the reactor core pass through a special filter before the collimator and the beam outlet. Neutron fluence and spectrum are the basic characteristics of an epithermal neutron beam. Three methods used to measure the beam's neutron spectrum are described: the activation method, a Bonner sphere spectrometer with gold activation detectors and a Bonner sphere spectrometer with LiI(Eu) scintillation detector. Examples of results are compared and discussed.

  10. Panoramic stereo sphere vision

    Science.gov (United States)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  11. Haphazard Packing of Unequal Spheres

    Institute of Scientific and Technical Information of China (English)

    叶大年; 张金民

    1991-01-01

    Haphazard packing of equal and unequal spheres can be performed for the spheres of molecular sieve material with a density of 1.80.The packing of such spheres in air is equivalent to that of nat-ural grains in water.Packing concentrations of equal spheres have been obtained for different pac-king intensities.Unequal spheres can be regarded as equal ones in a wide range of diameter ratios,so far as the packing concentration is concerned.A threshold of diameter ratio exists at 0.70,be-low which the packing concentration is expected to increase.The variation curves of concentration vs.diameter ratio were established in the experiment.The result will help us to understand the process of sedimentation and the concentration of voids in sedimentary rocks.

  12. Isentropic Spheres in General Relativity

    CERN Document Server

    Humi, Mayer

    2016-01-01

    Astrophysical gas clouds undergo thermodynamically irreversible processes and emit heat to their surroundings. Due the emission of this heat one can envision an idealized situation in which gas entropy remains (almost) constant. With this motivation in mind we derive in this paper interior solutions to the Einstein equations of General Relativity for spheres which consist of isentropic gas. In particular we investigate solutions in which the mass distribution inside the sphere has several shells. Such spheres might be considered an early stage for the formation of a "solar system".

  13. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  14. IRAS-based whole-sky upper limit on Dyson Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2008-09-01

    A Dyson Sphere is a hypothetical construct of a star purposely cloaked by a thick swarm of broken-up planetary material to better utilize all of the stellar energy. A clean Dyson Sphere identification would give a significant signature for intelligence at work. A search for Dyson Spheres has been carried out using the 250,000 source database of the IRAS infrared satellite which covered 96% of the sky. The search has used the Calgary data collection of the IRAS Low Resolution Spectrometer (LRS) to look for fits to blackbody spectra. Searches have been conducted for both pure (fully cloaked) and partial Dyson Spheres in the blackbody temperature region 100 {le} T {le} 600 K. Other stellar signatures that resemble a Dyson Sphere are reviewed. When these signatures are used to eliminate sources that mimic Dyson Spheres very few candidates remain and even these are ambiguous. Upper limits are presented for both pure and partial Dyson Spheres. The sensitivity of the LRS was enough to find solar-sized Dyson Spheres out to 300 pc, a reach that encompasses a million solar-type stars.

  15. Data compression on the sphere

    CERN Document Server

    McEwen, J D; Eyers, D M; 10.1051/0004-6361/201015728

    2011-01-01

    Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively. The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and il...

  16. Dyson Spheres around White Dwarfs

    CERN Document Server

    Semiz, İbrahim

    2015-01-01

    A Dyson Sphere is a hypothetical structure that an advanced civilization might build around a star to intercept all of the star's light for its energy needs. One usually thinks of it as a spherical shell about one astronomical unit (AU) in radius, and surrounding a more or less Sun-like star; and might be detectable as an infrared point source. We point out that Dyson Spheres could also be built around white dwarfs. This type would avoid the need for artificial gravity technology, in contrast to the AU-scale Dyson Spheres. In fact, we show that parameters can be found to build Dyson Spheres suitable --temperature- and gravity-wise-- for human habitation. This type would be much harder to detect.

  17. Improved Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Mass Spectrometer project will develop system requirements and analyze the path to space qualification.   The results of this project...

  18. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  19. Evaluation of response matrix of a multisphere neutron spectrometer with water moderator

    Indian Academy of Sciences (India)

    Rahim Khabaz; Hashem Miri Hakimabad

    2011-10-01

    Neutron energy responses of water sphere spectrometers (WSS) to 30 MeV have been calculated by means of Monte Carlo calculations, using the computer code MCNP4C with ENDF/B-VI.0 neutron cross-section. The calculations have been performed for 3He detector (typical SP9) placed inside 2, 3, 5, 8, 12 and 18-inch diameter moderating spheres composed of water in aluminum shell. These simulations included a detailed description of the geometry of the system. The newly calculated responses have been compared to polyethylene sphere responses.

  20. Optical design of MWIR imaging spectrometer with a cold slit

    Science.gov (United States)

    Zhou, Shiyao; Wang, Yueming; Qian, Liqun; Yuan, Liyin; Wang, Jianyu

    2016-05-01

    MWIR imaging spectrometer is promising in detecting spectral signature of high temperature object such as jet steam, guided missile and explosive gas. This paper introduces an optical design of a MWIR imaging spectrometer with a cold slit sharply reducing the stray radiation from exterior environment and interior structure. The spectrometer is composed of a slit, a spherical prism as disperser, two concentric spheres and a correction lens. It has a real entrance pupil to match the objective and for setting the infrared cold shield near the slit and a real exit pupil to match the cold shield of the focal plane array (FPA). There are two cooled parts, one includes the aperture stop and slit, and the other is the exit pupil and the FPA with two specially positioned cooled shields. A detailed stray radiation analysis is represented which demonstrates the outstanding effect of this system in background radiation restraint.

  1. Compact Grism Spectrometer

    Science.gov (United States)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  2. Unveiling small sphere's scattering behavior

    CERN Document Server

    Tzarouchis, Dimitrios C; Sihvola, Ari

    2016-01-01

    A classical way for exploring the scattering behavior of a small sphere is to approximate Mie coefficients with a Taylor series expansion. This ansatz delivered a plethora of insightful results, mostly for small spheres supporting electric localized plasmonic resonances. However, many scattering aspects are still uncharted, especially for the case of magnetic resonances. Here, an alternative system ansatz is proposed based on the Pad\\'e approximants for the Mie coefficients. The extracted results reveal new aspects, such as the existence of a self-regulating radiative damping mechanism for the first magnetic resonance. Hence, a systematic way of exploring the scattering behavior is introduced, sharpening our understanding about sphere's scattering behavior and its emergent functionalities.

  3. Public Sphere as Digital Assemblage

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse...... theories. Drawing from Deleuze & Guattari (1987), Bennett (2010), and Latour (2004) in order to imagine post-human assemblages of public sphere, this paper argues for a relational ontology that emphasizes the complex interactions of political assemblages. Empirically, it draws from the author’s studies......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From...

  4. Matrix dynamics of fuzzy spheres

    CERN Document Server

    Jatkar, D P; Wadia, S R; Yogendran, K P; Jatkar, Dileep P.; Mandal, Gautam; Wadia, Spenta R.

    2002-01-01

    We study the dynamics of fuzzy two-spheres in a matrix model which represents string theory in the presence of RR flux. We analyze the stability of known static solutions of such a theory which contain commuting matrices and SU(2) representations. We find that irreducible as well as reducible representations are stable. Since the latter are of higher energy, this stability poses a puzzle. We resolve this puzzle by noting that reducible representations have marginal directions corresponding to non-spherical deformations. We obtain new static solutions by turning on these marginal deformations. These solutions now have instability or tachyonic directions. We discuss condensation of these tachyons which correspond to classical trajectories interpolating from multiple, small fuzzy spheres to a single, large sphere. We briefly discuss spatially independent configurations of a D3/D5 system described by the same matrix model which now possesses a supergravity dual.

  5. Miniaturised TOF mass spectrometer

    Science.gov (United States)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  6. The GRIFFIN spectrometer

    Science.gov (United States)

    Svensson, C. E.; Garnsworthy, A. B.

    2014-01-01

    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency γ-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) γ-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

  7. Troubleshooting vSphere storage

    CERN Document Server

    Preston, Mike

    2013-01-01

    This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge

  8. Experimental and numerical characterization of the neutron field produced in the n@BTF Frascati photo-neutron source

    CERN Document Server

    Bedogni, R.; Buonomo, B.; Esposito, A.; Mazzitelli, G.; Foggetta, L.; Gomez Ros. J.M.; 10.1016/j.nima.2011.08.032

    2011-01-01

    science and studies of "single event effects". The intensity of the neutron beam obtainable with 510MeV electrons and its fluence energy distribution at a point of reference in the irradiation room were predicted by Monte Carlo simulations and experimentally determined with a Bonner Sphere Spectrometer (BSS). Due to the large photon contri...

  9. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  10. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  11. Phase diagram of elastic spheres.

    Science.gov (United States)

    Athanasopoulou, L; Ziherl, P

    2017-02-15

    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  12. Approximation on the complex sphere

    OpenAIRE

    Alsaud, Huda; Kushpel, Alexander; Levesley, Jeremy

    2012-01-01

    We develop new elements of harmonic analysis on the complex sphere on the basis of which Bernstein's, Jackson's and Kolmogorov's inequalities are established. We apply these results to get order sharp estimates of $m$-term approximations. The results obtained is a synthesis of new results on classical orthogonal polynomials, harmonic analysis on manifolds and geometric properties of Euclidean spaces.

  13. Hard sphere model of atom

    CERN Document Server

    Tsekov, R

    2014-01-01

    The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.

  14. Spheres of Justice within Schools

    DEFF Research Database (Denmark)

    Sabbagh, Clara; Resh, Nura; Mor, Michal;

    2006-01-01

    This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education...

  15. Kinetic theory of hard spheres

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1979-01-01

    Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonloca

  16. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  17. Simulation of flow and sediment transport in the white sturgeon spawning habitat of the Kootenai River near Bonners Ferry, Idaho

    Science.gov (United States)

    Berenbrock, Charles; Bennett, James P.

    2005-01-01

    Characterization of sediment transport of the Kootenai River in the white sturgeon spawning reach is needed by the Kootenai River White Sturgeon Recovery Team to predict sediment-transport conditions that improve spawning conditions for the white sturgeon (Acipenser transmontanus) in the Kootenai River near Bonners Ferry, Idaho. The decreasing population and spawning failure of the white sturgeon has led to much concern. Few wild juvenile sturgeon are found in the river today. The Kootenai River begins in British Columbia, Canada, and flows through Montana, Idaho, and back into British Columbia. A 15-mile reach of the Kootenai River in Idaho was studied, including the white sturgeon spawning reach that has been designated as a critical habitat near Bonners Ferry, Idaho, and a 1-mile long side channel around the western side of Shorty Island. A one-dimensional sediment-transport model of the study reach was developed, calibrated, and used to simulate the response of the hydraulic and sediment system to varying discharges and water-surface elevations. The model comprises 79 cross sections, most of which came from a previous river survey conducted in 2002-03. Bed-sediment samples collected in 2002 and additional samples collected for this study in 2004 were used in the model. The model was calibrated to discharge and water-surface elevations at two U.S. Geological Survey gaging stations. The model also was calibrated to suspended-sediment discharge at several sites in the study reach. The calibrated model was used to simulate six different management alternatives to assess erosion and deposition under varying hydraulic conditions at the end of 21 days of simulation. Alternative 1 was simulated with a discharge of 6,000 cubic feet per second (ft3/s), alternative 2 with 20,000 ft3/s, alternative 3 with 40,000 ft3/s, and alternatives 4 through 6 with 60,000 ft3/s and represents low to high discharges in the river since the construction of Libby Dam. Sediment deposition

  18. The Composite Infrared Spectrometer

    Science.gov (United States)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  19. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  20. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  1. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  2. Galileo Ultraviolet Spectrometer experiment

    Science.gov (United States)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  3. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  4. Vortical flow past a sphere

    Science.gov (United States)

    Mattner, Trent; Chong, Min; Joubert, Peter

    2000-11-01

    Vortical flow past a sphere in a constant diameter pipe was studied experimentally in a guide vane apparatus similar to those used in fundamental experimental studies of vortex breakdown. The initial effect of swirl was to shorten the downstream separation bubble. For a small range of the swirl intensity, an almost stagnant upstream separation bubble formed. As the swirl intensity was increased, the bubble became unstable and an unsteady spiral formed. At high swirl intensity there was a mean recirculation region which penetrated far upstream while the flow on the downstream hemisphere was attached. Measurements of the velocity field were obtained using laser Doppler velocimetry. Analysis of these results suggests that the onset of upstream separation is associated with the formation of a negative azimuthal vorticity component which slows the axial flow near the axis of symmetry. This is consistent with inviscid distortion of the vortex filaments in the diverging flow approaching the sphere.

  5. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  6. Entanglement Entropy of Two Spheres

    CERN Document Server

    Shiba, Noburo

    2012-01-01

    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.

  7. Entanglement entropy of two spheres

    Science.gov (United States)

    Shiba, Noburo

    2012-07-01

    We study the entanglement entropy S AB of a massless free scalar field on two spheres A and B whose radii are R 1 and R 2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information {S_{{A;B}}} equiv {S_A} + {S_B} - {S_{{AB}}} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r ≫ R 1 ,R 2,where S A and S B aretheentanglemententropyontheinsideregionof A and B, respectively. We discuss possible connections of this result with the physics of black holes.

  8. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  9. Principal Fibrations from Noncommutative Spheres

    Science.gov (United States)

    Landi, Giovanni; Suijlekom, Walter Van

    2005-11-01

    We construct noncommutative principal fibrations Sθ7→Sθ4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. "The algebra inclusion is an example of a not-trivial quantum principal bundle."

  10. On sphere-filling ropes

    CERN Document Server

    Gerlach, Henryk

    2010-01-01

    What is the longest rope on the unit sphere? Intuition tells us that the answer to this packing problem depends on the rope's thickness. For a countably infinite number of prescribed thickness values we construct and classify all solution curves. The simplest ones are similar to the seamlines of a tennis ball, others exhibit a striking resemblance to Turing patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.

  11. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  12. Mastering VMware vSphere 5

    CERN Document Server

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  13. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  14. MASS SPECTROMETER LEAK

    Science.gov (United States)

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  15. A SINGLE-EXPOSURE, MULTIDETECTOR NEUTRON SPECTROMETER FOR WORKPLACE MONITORING.

    Science.gov (United States)

    Bedogni, R; Bortot, D; Buonomo, B; Esposito, A; Gómez-Ros, J M; Introini, M V; Mazzitelli, G; Moraleda, M; Pola, A; Romero, A M

    2016-09-01

    This communication describes a recently developed single-exposure neutron spectrometer, based on multiple active thermal neutron detectors located within a moderating sphere, which have been developed jointly by CIEMAT (Spain), INFN (Italy) and Politecnico di Milano (Italy) in the framework of Italian and Spanish collaboration projects. The fabricated prototypes permit to achieve spectrometric resolution with nearly isotropic response for neutron with energies from thermal to 100-200 MeV, thus being able to characterise the complete neutron spectrum in only one exposure by unfolding the measured responses of the detectors. This makes it especially advantageous for characterising neutron fields and workplace monitoring purposes in neutron-producing facilities.

  16. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  17. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  18. VMware vSphere design

    CERN Document Server

    Guthrie, Forbes

    2013-01-01

    Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v

  19. Entanglement entropy of round spheres

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)

    2010-10-18

    We propose that the logarithmic term in the entanglement entropy computed in a conformal field theory for a (d-2)-dimensional round sphere in Minkowski spacetime is identical to the logarithmic term in the entanglement entropy of extreme black hole. The near horizon geometry of the latter is H{sub 2}xS{sub d-2}. For a scalar field this proposal is checked by direct calculation. We comment on relation of this and earlier calculations to the 'brick wall' model of 't Hooft. The case of generic 4d conformal field theory is discussed.

  20. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  1. Spatial heterodyne spectrometer for FLEX

    Science.gov (United States)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  2. Floating behavior of hydrophobic glass spheres.

    Science.gov (United States)

    Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Zhou, Feng

    2009-08-15

    When a hydrophobic solid sphere is floating on water or salt solutions with different concentrations, it is at equilibrium under the impact of gravity, buoyancy force, and curvature force, the component of surface tension in the vertical direction. We have changed the diameters of the spheres and the concentrations of the two selected salts, NaCl and NaNO(3), to study the floating behaviors of these spheres and the contributions of surface tension and buoyancy force to their floatation. Generally speaking, the surface tension plays a more important role than the buoyancy force when the gravity is small, but the buoyancy force plays an identical or a more important role when the spheres are big enough. The wettability of the spheres significantly influences the height below the contact perimeter especially in salt solutions. The theoretical calculation meniscus slope angles at the sphere three-phase contact line are in agreement with experimental results.

  3. Sphere Drag and Heat Transfer.

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  4. The Chiral Dipolar Hard Sphere Model.

    OpenAIRE

    Mazars, Martial

    2009-01-01

    Abstract A simple molecular model of chiral molecules is presented in this paper : the chiral dipolar hard sphere model. The discriminatory interaction between enantiomers is represented by electrostatic (or magnetic) dipoles-dipoles interactions : short ranged steric repulsion are represented by hard sphere potential and, in each molecule, two point dipoles are located inside the sphere. The model is described in detail and some of its elementary properties are given ; in particul...

  5. Absolute Stability Limit for Relativistic Charged Spheres

    CERN Document Server

    Giuliani, Alessandro

    2007-01-01

    We find an exact solution for the stability limit of relativistic charged spheres for the case of constant gravitational mass density and constant charge density. We argue that this provides an absolute stability limit for any relativistic charged sphere in which the gravitational mass density decreases with radius and the charge density increases with radius. We then provide a cruder absolute stability limit that applies to any charged sphere with a spherically symmetric mass and charge distribution. We give numerical results for all cases. In addition, we discuss the example of a neutral sphere surrounded by a thin, charged shell.

  6. Small-world networks on a sphere

    Science.gov (United States)

    Corso, Gilberto; Torres Cruz, Claudia P.

    2017-01-01

    The Small-World Network on a Sphere SWNS is a non-crossing network that has no hubs and presents the small-world property diam log N with diam being the maximal distance between any two vertices and N being the number of vertices. The SWNS is constructed using a partition of the sphere and the parallels are regular sections of the sphere with constant latitude. The number of cells on the parallels, however, increases exponentially from the pole to the equator of the sphere. We analytically compute the distribution of connectivity, the clustering coefficient and the SWNS distances. The resilience of the model against selective attacks is also discussed.

  7. Neutron spectrum unfolding using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: rvega@cantera.reduaz.mx

    2004-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)

  8. SPHERE IRDIS and IFS astrometric strategy and calibration

    CERN Document Server

    Maire, Anne-Lise; Dohlen, Kjetil; Lagrange, Anne-Marie; Gratton, Raffaele; Chauvin, Gael; Desidera, Silvano; Girard, Julien H; Milli, Julien; Vigan, Arthur; Zins, Gerard; Delorme, Philippe; Beuzit, Jean-Luc; Claudi, Riccardo U; Feldt, Markus; Mouillet, David; Puget, Pascal; Turatto, Massimo; Wildi, Francois

    2016-01-01

    We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60+/-0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1". The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255+/-0.009 milliarcseco...

  9. Phononic crystals of poroelastic spheres

    Science.gov (United States)

    Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.

    2016-11-01

    An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.

  10. Status of the SPHERE experiment

    CERN Document Server

    Antonov, R A; Bonvech, E A; Chernov, D V; Dzhatdoev, T A; Finger, Mir; Finger, M; Galkin, V I; Kabanova, N N; Petkun, A S; Podgrudkov, D A; Roganova, T M; Shaulov, S B; Sysoeva, T I

    2012-01-01

    Here is presented the current state of the SPHERE-2 balloon-borne experiment. The detector is elevated up to 1 km above the snow surface and registers the reflected Vavilov-Cherenkov radiation from extensive air showers. This method has good sensitivity to the mass-composition of the primary cosmic rays due to its high resolution near the shower axis. The detector consists of a 1500 mm spherical mirror with a 109 PMT cluster in its focus. The electronics record a signal pulse profile in each PMT. In the last 2 years the detector was upgraded: time resolution of pulse registration was enhanced up to 12.5 ns, channel sensitivity was increased by a factor of 3, a new LED-based relative PMT calibration method was introduced, and new hardware and etc. was installed.

  11. The Hubble Sphere Hydrogen Survey

    CERN Document Server

    Peterson, J B; Pen, U L; Peterson, Jeffrey B.; Bandura, Kevin; Pen, Ue Li

    2006-01-01

    An all sky redshift survey, using hydrogen 21 cm emission to locate galaxies, can be used to track the wavelength of baryon acoustic oscillations imprints from z ~ 1.5 to z = 0. This will allow precise determination of the evolution of dark energy. A telescope made of fixed parabolic cylindrical reflectors offers substantial benefit for such a redshift survey. Fixed cylinders can be built for low cost, and long cylinders also allow low cost fast fourier transform techniques to be used to define thousands of simultaneous beams. A survey made with fixed reflectors naturally covers all of the sky available from it's site with good uniformity, minimizing sample variance in the measurement of the acoustic peak wavelength. Such a survey will produce about a billion redshifts, nearly a thousand times the number available today. The survey will provide a three dimensional mapping of a substantial fraction of the Hubble Sphere.

  12. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  13. Electric dipoles on the Bloch sphere

    CERN Document Server

    Vutha, Amar C

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  14. The Positive Freedom of the Public Sphere

    DEFF Research Database (Denmark)

    Hansen, Ejvind

    2015-01-01

    The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus...

  15. Reversible thermal gelation in soft spheres

    DEFF Research Database (Denmark)

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...

  16. Innovation embedded in entrepreneurs’ networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak;

    2014-01-01

    Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...... is negatively affected by private sphere networking and positively affected by public sphere networking, but innovation is less promoted by public sphere networking in China than in Denmark....

  17. Instability of Extremal Relativistic Charged Spheres

    CERN Document Server

    Anninos, P; Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question, ``Can relativistic charged spheres form extremal black holes?" in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstr\\"om solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal ($Q = M$) limit and the black hole limit ($R = R_+$). That is, we find that charged spheres undergo gravitational collapse before they reach $Q = M$, suggesting that extremal Reissner-Nordtr\\"om black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, ...

  18. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  19. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  20. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  1. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  2. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  3. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can "instantaneously"...

  4. The GRAVITY spectrometers: optical qualification

    Science.gov (United States)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  5. Hitting spheres on hyperbolic spaces

    CERN Document Server

    Cammarota, Valentina

    2011-01-01

    For a hyperbolic Brownian motion on the Poincar\\'e half-plane $\\mathbb{H}^2$, starting from a point of hyperbolic coordinates $z=(\\eta, \\alpha)$ inside a hyperbolic disc $U$ of radius $\\bar{\\eta}$, we obtain the probability of hitting the boundary $\\partial U$ at the point $(\\bar \\eta,\\bar \\alpha)$. For $\\bar{\\eta} \\to \\infty$ we derive the asymptotic Cauchy hitting distribution on $\\partial \\mathbb{H}^2$ and for small values of $\\eta$ and $\\bar \\eta$ we obtain the classical Euclidean Poisson kernel. The exit probabilities $\\mathbb{P}_z\\{T_{\\eta_1}sphere. For the hyperbolic half-space $\\mathbb{H}^n$ we obtain the Poisson kernel of a ball in terms of a series involving Gegenbauer polynomials and hypergeometric functions. For small do...

  6. Lines, Circles, Planes and Spheres

    CERN Document Server

    Purdy, George B

    2009-01-01

    Let $S$ be a set of $n$ points in $\\mathbb{R}^3$, no three collinear and not all coplanar. If at most $n-k$ are coplanar and $n$ is sufficiently large, the total number of planes determined is at least $1 + k \\binom{n-k}{2}-\\binom{k}{2}(\\frac{n-k}{2})$. For similar conditions and sufficiently large $n$, (inspired by the work of P. D. T. A. Elliott in \\cite{Ell67}) we also show that the number of spheres determined by $n$ points is at least $1+\\binom{n-1}{3}-t_3^{orchard}(n-1)$, and this bound is best possible under its hypothesis. (By $t_3^{orchard}(n)$, we are denoting the maximum number of three-point lines attainable by a configuration of $n$ points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.

  7. Automated Nuclear Quadruple Resonance Spectrometer

    Directory of Open Access Journals (Sweden)

    IVANCHUK, M.

    2008-06-01

    Full Text Available Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  8. Automated Nuclear Quadruple Resonance Spectrometer

    OpenAIRE

    2008-01-01

    Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  9. Aerial View of StenniSphere

    Science.gov (United States)

    2001-01-01

    StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.

  10. Performance Evaluation of List Sphere Detector

    Institute of Scientific and Technical Information of China (English)

    HE Xiang; LUO Han-wen; YI Yang

    2005-01-01

    A list sphere detector can use a smaller list than commonly believed by employing an appropriate soft output approximation method. Its effect on the "quality" of detector's soft output value is evaluated by measuringmutual information under ergodic channel. The result shows a length 40 list is adequate for a 4 × 4 16QAM MIMO system without system-level iteration. For the ergodic channel, the gain of a sphere detector over the linear MMSE detector is dependent on channel coding rate, which answers an important question when sphere detector should be used in system level design. All these theoretical results are then verified by Monte Carlo simulation.

  11. Preparation of modified SiO2 colloidal spheres with succinic acid and the assembly of colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    FANG Jun; WANG XiuFeng; WANG LieSong; CHENG Bing; WU YuanTing; ZHU WanLin

    2007-01-01

    SiO2 colloidal spheres were synthesized by St(o)ber method. In order to enhance surface charge of the SiO2 spheres, they were modified with succinic acid. Scanning electron microscope (SEM) shows that the average size of modified SiO2 spheres is 473 nm, and its distribution standard deviation is less than 5%; Fourier-transform infrared spectra (FT-IR) and X-ray photoelectron spectrometer (XPS) results indicate that one end of succinic acid is chemically bonded to the SiO2 spheres through esterification; Zeta potential of the modified SiO2 spheres in water solution is improved from -53.72 to -67.46 mV, and surface charge density of the modified SiO2 spheres is enhanced from 0.19 to 0.94 μC/cm2. SiO2 colloidal crystal was fabricated from aqueous colloidal solution by the vertical deposition method at 40℃ and 60% relative humidity. SEM images show that the sample of SiO2 colloidal crystal is face-centered cubic (fcc) structure with its (111) planes parallel to the substrate. Transmission measurement shows the existence of photonic band gap at 1047 nm.

  12. Computer simulation of rod-sphere mixtures

    CERN Document Server

    Antypov, D

    2003-01-01

    Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...

  13. ANALYSIS OF MECHANISMS FINANCING OF CULTURAL SPHERE

    Directory of Open Access Journals (Sweden)

    Costandachi Gheorghe

    2008-01-01

    Full Text Available In this work is made analysis concern basically state structures of culture and arts activities, is describes the problems are met during the reforming process the financial mechanisms in cultural sphere. Author disclosed the ways evolve private and estate financing cultural sphere, also is disclosed why is need estate financial support. The work contains something detailed measures actions to improve financial and mechanisms financing of cultural sphere. Analyzing questions of modernization of budgetary financing of branch the author have formulated effectiveness of use of budgetary funds at all levels in cultural structures and proposed the ways of finishing of market reforms in cinematography. In the final of work is presented scheme system of financing, formation and distribution of financial resources in cinematography and is making conclusions and is offered wais of the solutions created present situation in this sphere in Moldova.

  14. Spheres of Exemption, Figures of Exclusion

    DEFF Research Database (Denmark)

    , the history of ideas, social science, political science and literature studies, Spheres of Exemption, Figures of Exclusion offers thirteen investigations into the co-constitutive relationship between subjectivity and political and legal order, combining theoretical reflection with empirical and historical...

  15. Scalar Casimir effect between two concentric spheres

    CERN Document Server

    Ozcan, Mustafa

    2012-01-01

    The Casimir effect giving rise to an attractive force between the closely spaced two concentric spheres that confine the massless scalar field is calculated by using a direct mode summation with contour integration in the complex plane of eigenfrequencies. We devoleped a new approach appropriate for the calculation of the Casimir energy for spherical boundary conditions. The Casimir energy for a massless scalar field between the closely spaced two concentric spheres coincides with the Casimir energy of the parallel plates for a massless scalar field in the limit when the dimensionless parameter {\\eta}, ({\\eta}=((a-b)/(\\surd(ab))) where a (b) is inner (outer) radius of sphere), goes to zero. The efficiency of new approach is demonstrated by calculation of the Casimir energy for a massless scalar field between the closely spaced two concentric half spheres. PACS number(s): 03.70.+k, 12.20.DS, 11.10.Gh

  16. Directional spin wavelets on the sphere

    CERN Document Server

    McEwen, Jason D; Büttner, Martin; Peiris, Hiranya V; Wiaux, Yves

    2015-01-01

    We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is able to probe the directional intensity of spin signals. Furthermore, directional spin scale-discretised wavelets support the exact synthesis of a signal on the sphere from its wavelet coefficients and satisfy excellent localisation and uncorrelation properties. Consequently, directional spin scale-discretised wavelets are likely to be of use in a wide range of applications and in particular for the analysis of the polarisation of the cosmic microwave background (CMB). We develop new algorithms to compute (scalar and spin) forward and inverse wavelet transforms exactly and efficiently for very large data-sets containing tens of millions of samples on the sphere. By leveraging a novel sampling theorem on the rotation group developed in a companion article, only hal...

  17. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  18. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  19. Effective Depletion Potential of Colloidal Spheres

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Hua; MA Hong-Ru

    2004-01-01

    @@ A new semianalytical method, which is a combination of the density functional theory with Rosenfeld density functional and the Ornstein-Zernike equation, is proposed for the calculation of the effective depletion potentials between a pair of big spheres immersed in a small hard sphere fluid. The calculated results are almost identical to the integral equation method with the Percus-Yevick approximation, and are also in agreement well with the Monte Carlo simulation results.

  20. Gender, Diversity and the European Public Sphere

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2009-01-01

    This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to.......This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....

  1. Point defects in hard-sphere crystals

    OpenAIRE

    Pronk, S.; Frenkel, D.

    2001-01-01

    We report numerical calculations of the concentration of interstitials in hard-sphere crystals. We find that, in a three-dimensional fcc hard-sphere crystal at the melting point, the concentration of interstitials is 2 * 10^-8. This is some three orders of magnitude lower than the concentration of vacancies. A simple, analytical estimate yields a value that is in fair agreement with the numerical results.

  2. vSphere virtual machine management

    CERN Document Server

    Fitzhugh, Rebecca

    2014-01-01

    This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.

  3. Geometrical Dynamics in a Transitioning Superconducting Sphere

    Directory of Open Access Journals (Sweden)

    Claycomb J. R.

    2006-10-01

    Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  4. Inverse Magnus effect on a rotating sphere

    Science.gov (United States)

    Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul

    2011-11-01

    In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.

  5. Ultra Compact Imaging Spectrometer (UCIS)

    Science.gov (United States)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  6. JPL Fourier transform ultraviolet spectrometer

    Science.gov (United States)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  7. Terminal energy distribution of blast waves from bursting spheres

    Science.gov (United States)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  8. Collinear swimmer propelling a cargo sphere at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2014-01-01

    The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes' equations in the presence of a sphere with no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.

  9. The Separate Spheres Model of Gendered Inequality.

    Science.gov (United States)

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  10. The Separate Spheres Model of Gendered Inequality.

    Directory of Open Access Journals (Sweden)

    Andrea L Miller

    Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  11. A high-throughput neutron spectrometer

    Science.gov (United States)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  12. Water exit dynamics of buoyant spheres

    Science.gov (United States)

    Truscott, Tadd T.; Epps, Brenden P.; Munns, Randy H.

    2016-11-01

    Buoyant spheres released below the free surface can rise well above the surface in a phenomenon known as pop-up. Contrary to intuition, increasing the release depth sometimes results in a lower pop-up height. We present the pop-up height of rising buoyant spheres over a range of release depths (1-12.5 diameters) and Reynolds numbers (4 ×104 to 6 ×105 ). While the dynamics of rising buoyant spheres and bubbles has been thoroughly investigated for Reynolds numbers below 104, pop-up in these larger-Reynolds-number regimes has not been studied. Yet the underwater motions of the sphere for the Reynolds numbers we study are the key to understanding the pop-up height. Two major regimes are apparent: vertical and oscillatory. The vertical regime exhibits a nearly vertical underwater trajectory and results in the largest pop-up heights. The oscillatory regime exhibits an underwater trajectory with periodic lateral motions and results in lower pop-up heights; this periodic lateral motion is modulated by unsteady vortex shedding in the wake of the sphere. Despite these complex fluid structure interactions, the experiments presented herein yield extremely repeatable results.

  13. Robotics Programming Competition Spheres, Russian Part

    Science.gov (United States)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  14. Inside the ETH spectrometer magnet

    CERN Multimedia

    1974-01-01

    The ETH spectrometer magnet being prepared for experiment S134, which uses a frozen spin polarized target to study the associated production of a kaon and a lambda by negative pions interacting with protons (CERN-ETH, Zurich-Helsinki-Imperial College, London-Southampton Collaboration). (See Photo Archive 7406316)

  15. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  16. The smallsat TIR spectrometer MIBS

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Lucas, J.W.

    2005-01-01

    In frame of the ESA Earthcare MSI study, TNO Science and Industry has developed a compact spectrometer which is optimized for operation in the 7 to 14 μm wavelength region. By optimizing the throughput of the system, and using the advantages of modern manufacturing technologies to the largest extend

  17. Alpha proton x ray spectrometer

    Science.gov (United States)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  18. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Escuela Politecnica Superior, Departamento de Electrotecnia y Electronica, Avda. Menendez Pidal s/n, Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)

    2011-02-15

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  19. Classical and quantum dynamics of the sphere

    Science.gov (United States)

    Lasukov, Vladimir; Moldovanova, Evgeniia; Abdrashitova, Maria; Malik, Hitendra; Gorbacheva, Ekaterina

    2016-07-01

    In Minkowski space, there has been developed the mathematic quantum model of the real particle located on the sphere evolving owing to the negative pressure inside the sphere. The developed model is analogous to the geometrodynamic model of the Lemaitre-Friedmann primordial atom in superspace-time, whose spatial coordinate is the scale factor functioning as a radial coordinate. There is a formulation of quantum geometrodynamics in which the spatial coordinate is an offset of the scale factor and wave function at the same time. With the help of the Dirac procedure for extracting the root from the Hamiltonian operator we have constructed a Dirac quantum dynamics of the sphere with fractional spin.

  20. The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids

    NARCIS (Netherlands)

    Oyarzun, B.A.; Van Westen, T.; Vlugt, T.J.H.

    2013-01-01

    he liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10,

  1. Path integral representations on the complex sphere

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  2. vSphere design best practices

    CERN Document Server

    Bolander, Brian

    2014-01-01

    An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.

  3. Willmore energy estimates in conformal Berger spheres

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Manuel, E-mail: mbarros@ugr.es [Departamento de Geometria y Topologia, Facultad de Ciencias Universidad de Granada, 1807 Granada (Spain); Ferrandez, Angel, E-mail: aferr@um.es [Departamento de Matematicas, Universidad de Murcia Campus de Espinardo, 30100 Murcia (Spain)

    2011-07-15

    Highlights: > The Willmore energy is computed in a wide class of surfaces. > Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. > The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  4. Does Negative Type Characterize the Round Sphere?

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2007-01-01

    We discuss the measure theoretic metric invariants extent, mean distance and symmetry ratio and their relation to the concept of negative type of a metric space. A conjecture stating that a compact Riemannian manifold with symmetry ratio 1 must be a round sphere, was put forward in a previous paper....... We resolve this conjecture in the class of Riemannian symmetric spaces by showing, that a Riemannian manifold with symmetry ratio 1 must be of negative type and that the only compact Riemannian symmetric spaces of negative type are the round spheres....

  5. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  6. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  7. New schemes of static mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: baisanov@mail.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  8. Packing Effect of Excluded Volume on Hard-Sphere Colloids

    Institute of Scientific and Technical Information of China (English)

    肖长明; 金国钧; 马余强

    2001-01-01

    We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.

  9. The effect of PTSA on preparation of mesophase carbon spheres.

    Directory of Open Access Journals (Sweden)

    Youliang Cheng

    2009-05-01

    Full Text Available Mesophase spheres have been synthesized by heat-treating a medium coal tar pitch at 420 ºC for 2 hours in the presence of P-toluene sulphonic acid (PTSA. The effect of PTSA on synthesis of mesophase spheres had been studied. It was found that PTSA promotes the formation of mesophase spheres in coal tar pitch through acceleratingpolymerization of aromatic hydrocarbons. PTSA content between 3 and 5 wt % gave similar size spheres, beyond which as the PTSA content increases, the size of spheres increases. 5 wt % PTSA gives uniform spheres with small size, good spherical shape and smooth surface.

  10. [Study on the absolute spectral irradiation calibration method for far ultraviolet spectrometer in remote sensing].

    Science.gov (United States)

    Yu, Lei; Lin, Guan-Yu; Chen, Bin

    2013-01-01

    The present paper studied spectral irradiation responsivities calibration method which can be applied to the far ultraviolet spectrometer for upper atmosphere remote sensing. It is difficult to realize the calibration for far ultraviolet spectrometer for many reasons. Standard instruments for far ultraviolet waveband calibration are few, the degree of the vacuum experiment system is required to be high, the stabilities of the experiment are hardly maintained, and the limitation of the far ultraviolet waveband makes traditional diffuser and the integrating sphere radiance calibration method difficult to be used. To solve these problems, a new absolute spectral irradiance calibration method was studied, which can be applied to the far ultraviolet calibration. We build a corresponding special vacuum experiment system to verify the calibration method. The light source system consists of a calibrated deuterium lamp, a vacuum ultraviolet monochromater and a collimating system. We used the calibrated detector to obtain the irradiance responsivities of it. The three instruments compose the calibration irradiance source. We used the "calibration irradiance source" to illuminate the spectrometer prototype and obtained the spectral irradiance responsivities. It realized the absolute spectral irradiance calibration for the far ultraviolet spectrometer utilizing the calibrated detector. The absolute uncertainty of the calibration is 7.7%. The method is significant for the ground irradiation calibration of the far ultraviolet spectrometer in upper atmosphere remote sensing.

  11. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  12. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  13. On-Chip Random Spectrometer

    CERN Document Server

    Redding, Brandon; Sarma, Raktim

    2013-01-01

    Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems [1]. In the field of photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting [2-5]. Here, we utilize multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafe...

  14. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  15. Holographic Fabry-Perot spectrometer.

    Science.gov (United States)

    Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L

    2011-02-15

    We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.

  16. Spheres: from Ground Development to ISS Operations

    Science.gov (United States)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  17. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  18. First results of the SPHERE experiment

    Directory of Open Access Journals (Sweden)

    Shaulov Sergey

    2013-06-01

    Full Text Available First results of the balloon-borne experiment SPHERE are presented. The primary spectrum in the energy range 1016 – 5 · 1017 eV is compared with data of other experiments. The primary energies were reconstructed using characteristics of the Vavilov-Cherenkov radiation from extensive air showers, reflected from a snow surface.

  19. 1/4-pinched contact sphere theorem

    DEFF Research Database (Denmark)

    Ge, Jian; Huang, Yang

    2016-01-01

    Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness res...

  20. SPHERE ZIMPOL: Overview and performance simulation

    NARCIS (Netherlands)

    Thalmann, C.; Schmid, H.M.; Boccaletti, A.; Mouillet, D.; Dohlen, K.; Roelfsema, R.; Carbillet, M.; Gisler, D.; Beuzit, J.-L.; Feldt, M.; Gratton, R.; Joos, F.; Keller, C.U.; Kragt, J.; Pragt, J.H.; Puget, P.; Rigal, F.; Snik, F.; Waters, R.; Wildi, F.

    2008-01-01

    The ESO planet finder instrument SPHERE will search for the polarimetric signature of the reflected light from extrasolar planets, using a VLT telescope, an extreme AO system (SAXO), a stellar coronagraph, and an imaging polarimeter (ZIMPOL). We present the design concept of the ZIMPOL instrument, a

  1. Casimir stress on lossy magnetodielectric spheres

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Knoell, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    An expression for the Casimir stress on arbitrary dispersive and lossy linear magnetodielectric matter at finite temperature, including left-handed material, is derived and applied to spherical systems. To cast the relevant part of the scattering Green tensor for a general magnetodielectric sphere in a convenient form, classical Mie scattering is reformulated.

  2. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  3. Performance and Politics in the Public Sphere

    Directory of Open Access Journals (Sweden)

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  4. The Public Sphere, Globalization and Technological Development

    OpenAIRE

    Tina Sikka

    2006-01-01

    Tina Sikka examines the emergence and transformation of Habermas's theory of the public sphere, looking at how this concept informs the debates around communication technologies in development. Development (2006) 49, 87–93. doi:10.1057/palgrave.development.1100277

  5. Steel Spheres and Skydiver--Terminal Velocity

    Science.gov (United States)

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  6. Transnational public spheres : A spatial perspective

    NARCIS (Netherlands)

    Forough, Mohammadbagher

    2015-01-01

    Whereas more and more transnational challenges (such as global financial crises, climate change, terrorism, migration, and so forth) are affecting people’s lives, democratic systems and their public spheres (i.e. spaces in which citizens can express their collective concerns) are national. To give a

  7. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  8. Determinantal point process models on the sphere

    DEFF Research Database (Denmark)

    Møller, Jesper; Nielsen, Morten; Porcu, Emilio

    We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance functi...

  9. The Nationalisation of the Domestic Sphere

    NARCIS (Netherlands)

    Storm, H.J.

    2016-01-01

    Banal forms of nationalism permeate our everyday life. However, it is not very clear when all kinds of banal objects and practices became nationalised. In this article, I focus on the domestic sphere by analysing how around 1900 a small group of activists began to propagate the nationalisation of do

  10. Pious Entertainment: Hizbullah's Islamic Cultural Sphere

    NARCIS (Netherlands)

    Alagha, J.E.

    2011-01-01

    Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and unders

  11. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  12. Experimentation on recurrent sphere collision with Audacity

    Science.gov (United States)

    Muradoglu, Murat; Ng, Enoch Ming Wei; Ng, Tuck Wah

    2014-11-01

    Under the theme of collisions that occur repeatedly, we conducted easy and inexpensive experiments of rebounding spheres and Newton’s cradle with two spheres to determine the coefficients of restitution using the sound record feature in modern laptops and a free and open source software called Audacity. In the rebounding sphere experiment, the coefficients of restitution of the golf and ping pong balls used were found to be 0.727 ± 0.025 and 0.816 ± 0.041 respectively. With the Netwon’s cradle experiment, the coefficient of restitution of two steel sphere balls was found to be 0.987 ± 0.003. The contrasts in the results obtained from both experiments permit the operational principles of a pendulum to be emphasized, and engagements to be made to consider the transfer of kinetic energy in the form of vibrational energy of the bodies’ constituents. Using a one-dimensional two-mass model with spring and damper linkages to account for harmonic motions that occur during impact, we found it possible to perform a simple analysis to account for this, and how it can be linked to high energy transfer modes such as the phenomenon of resonance and impedance matching.

  13. Hollow silica spheres: synthesis and mechanical properties.

    Science.gov (United States)

    Zhang, Lijuan; D'Acunzi, Maria; Kappl, Michael; Auernhammer, Günter K; Vollmer, Doris; van Kats, Carlos M; van Blaaderen, Alfons

    2009-03-03

    Core-shell polystyrene-silica spheres with diameters of 800 nm and 1.9 microm were synthesized by soap-free emulsion and dispersion polymerization of the polystyrene core, respectively. The polystyrene spheres were used as templates for the synthesis of silica shells of tunable thickness employing the Stöber method [Graf et al. Langmuir 2003, 19, 6693]. The polystyrene template was removed by thermal decomposition at 500 degrees C, resulting in smooth silica shells of well-defined thickness (15-70 nm). The elastic response of these hollow spheres was probed by atomic force microscopy (AFM). A point load was applied to the particle surface through a sharp AFM tip, and successively increased until the shell broke. In agreement with the predictions of shell theory, for small deformations the deformation increased linearly with applied force. The Young's modulus (18 +/- 6 GPa) was about 4 times smaller than that of fused silica [Adachi and Sakka J. Mater. Sci. 1990, 25, 4732] but identical to that of bulk silica spheres (800 nm) synthesized by the Stöber method, indicating that it yields silica of lower density. The minimum force needed to irreversibly deform (buckle) the shell increased quadratically with shell thickness.

  14. Fabrication and microwave properties of hollow nickel spheres prepared by electroless plating and template corrosion method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guiqin, E-mail: wanggq@dlut.edu.cn; Wang, Lifang; Gan, Yulin; Lu, Wei

    2013-07-01

    Using carbonyl iron as template, hollow nickel spheres were prepared by electroless plating on carbonyl iron and template corrosion method. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), transmission electron microscope (TEM), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and vector network analyzer. Results showed that the shell thickness can be controlled by adjusting the loadage of carbonyl iron templates. The hollow nickel spheres exhibited good magnetic properties with a saturation magnetization of 48.56 emu/g and enhanced coercivity (as high as 260 Oe). The real (ε′) and imaginary (ε″) parts of complex permittivity of hollow nickel spheres first increased and then decreased as the shell thickness increased, and the sample with the thinnest shell showed the lowest complex permittivity. For the complex permeability, the resonance peak shifted to the lower frequency and then moved to higher frequency, as the shell thickness increased. The microwave absorption performances could be tuned by changing the shell thickness. In this study, the minimum reflection loss (RL) value of −27.2 dB was obtained at 13.4 GHz with a matching thickness of 1.4 mm and the effective absorption band (RL <−5 dB) from 11.8 to 18 GHz, covering the whole Ku-band (12.4−18 GHz).

  15. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  16. Radiation of non-relativistic particle on a conducting sphere and a string of spheres

    CERN Document Server

    Shul'ga, N F; Larikova, E A

    2016-01-01

    The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.

  17. VMware vSphere PowerCLI Reference Automating vSphere Administration

    CERN Document Server

    Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan

    2011-01-01

    Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and

  18. Revitalization of the Public Sphere: A Comparison between Habermasian and the New Public Sphere

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-06-01

    Full Text Available “Public sphere” is an important component of modern polity. Civil society brings the state in touch with the needs of the citizens through the medium of public sphere. However, Habermas argues that “public sphere” experienced refeudalization owing to various factors i.e. propaganda, cultural industry, market and state intervention. The “public” was condemned to be mere spectator again. This article argues that modern technologies enabled new public sphere (NPS can help restore public status as participant in the democratic process. By employing interpretivist approach the article compares the Habermasian ideal of public sphere with NPS and constructs a matrix, depicting the various related aspects between the two models for highlighting the revival of the public sphere.

  19. Revitalization of the Public Sphere: A Comparison between Habermasian and the New Public Sphere

    OpenAIRE

    2014-01-01

    “Public sphere” is an important component of modern polity. Civil society brings the state in touch with the needs of the citizens through the medium of public sphere. However, Habermas argues that “public sphere” experienced refeudalization owing to various factors i.e. propaganda, cultural industry, market and state intervention. The “public” was condemned to be mere spectator again. This article argues that modern technologies enabled new public sphere (NPS) can help restore ...

  20. Cavity formation by the impact of Leidenfrost spheres

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  1. Ultrasonic beam-plotting with very small spheres.

    Science.gov (United States)

    Round, W H; Swan, H

    1991-12-01

    A method of pulse-echo ultrasonic beam plotting is described. It differs from traditional pulse-echo beam plotting in that the ultrasonic pulses are scattered off a totally isolated sphere rather than a sphere suspended on a wire. The method also allows extremely small spheres to be used thus providing greater resolution. It is demonstrated that pulse-echo beam plotting using spheres of different size produces different iso-echo amplitude curves.

  2. On Vassiliev invariants of braid groups of the sphere

    CERN Document Server

    Kaabi, N

    2012-01-01

    We construct a universal Vassiliev invariant for braid groups of the sphere and the mapping class groups of the sphere with $n$ punctures. The case of a sphere is different from the classical braid groups or braids of oriented surfaces of genus strictly greater than zero, since Vassiliev invariants in a group without 2-torsion do not distinguish elements of braid group of a sphere.

  3. Self-lensing of a Singular Isothermal Sphere

    OpenAIRE

    Wang, Yun

    1999-01-01

    Many astrophysical systems can be approximated as isothermal spheres. In an isothermal sphere, the ``foreground'' objects can act as lenses on ``background'' objects in the same distribution. We study gravitational lensing by a singular isothermal sphere analytically. Our results may have interesting applications.

  4. 21 CFR 886.3320 - Eye sphere implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...

  5. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  6. FPGA based pulsed NQR spectrometer

    Science.gov (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  7. Static Fourier transform infrared spectrometer.

    Science.gov (United States)

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

  8. Fourier-Transform Infrared Spectrometer

    Science.gov (United States)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  9. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  10. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  11. THE SPECTRUM OF COMPACT HYPERSURFACE IN SPHERE

    Institute of Scientific and Technical Information of China (English)

    Xu Senlin; Deng Qintao; Chen Dongmei

    2004-01-01

    Let M be a compact minimal hypersurface of sphere Sn+1(1). Let (M) be H (r)-torus of sphere Sn+ 1 (1).Assume they have the same constant mean curvature H, the result in [1] is that ifSpec0(M, g) =Spec0((M), g),then for 3≤ n ≤ 6, r2≤n-1/n or n ≥ 6, r2 ≥ n-1, then M is isometric to (M). We improved the result and prove that: if Spec0(M,g) =Spec0((M),g), then M is isometric to (M). Generally, if Specp(M,g) =Specp((M),g), here p is fixed and satisfies that n(n - 1) ≠ 6p(n - p), then M is isometric to (M).

  12. Event Driven Langevin simulations of Hard Spheres

    CERN Document Server

    Scala, Antonio

    2011-01-01

    The blossoming of interest in colloids and nano-particles has given renewed impulse to the study of hard-body systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during an integration timestep. This in not the case for hard-body systems, where there is no clearcut between the correlation time of the noise and the timescale of the interactions. Starting first from a splitting of the Fokker-Plank operator associated with the Langevin dynamics, and then from an approximation of the two-body Green's function, we introduce and test two new algorithms for the simulation of the Langevin dynamics of hard-spheres.

  13. Electromagnetic Scattering by Spheres of Topological Insulators

    CERN Document Server

    Ge, Lixin; Zi, Jian

    2015-01-01

    The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

  14. Theory of tectonics in the sphere

    CERN Document Server

    Ribeiro, A; Taborda, R; Ribeiro, Antonio; Matias, Luis; Taborda, Rui

    2005-01-01

    Soft or Deformable Plate Tectonics in the sphere must follow geometric rules inferred from the orthographic projection. An analytic equivalent of this geometry can be derived by the application of Potential Field Methods in the case of Atlantic type oceans. Laplace equation must be obeyed by the velocity field between the ridge and the passive margin if we neglect the very slight compressibility of ocean lithosphere. A strain wave propagates in the sphere analogous to the behaviour of a free harmonic oscillator. Combining zonal harmonics of order one and sectorial harmonics of degree one we obtain a tesseral harmonic equivalent to the orthographic solution. This potential field approach is valid for homogeneous deformation regime in oceanic lithosphere. Above a compression threshold of 5 to 10% buckling and simultaneous faulting occurs. In Pacific type oceans a dynamic approach, similar to a forced oscillation, must be applied because there are sinks in subduction zones.

  15. Entanglement entropy for the n-sphere

    CERN Document Server

    Casini, H

    2010-01-01

    We calculate the entanglement entropy for a sphere and a massless scalar field in any dimensions. The reduced density matrix is expressed in terms of the infinitesimal generator of conformal transformations keeping the sphere fixed. The problem is mapped to the one of a thermal gas in a hyperbolic space and solved by the heat kernel approach. The coefficient of the logarithmic term in the entropy for 2 and 4 spacetime dimensions are in accordance with previous numerical and analytical results. In particular, the four dimensional result, together with the one reported by Solodukhin, gives support to the Ryu-Takayanagi holographic anzats. We also find there is no logarithmic contribution to the entropy for odd space time dimensions.

  16. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  17. Second-Generation Curvelets on the Sphere

    CERN Document Server

    Chan, Jennifer Y H; Kitching, Thomas D; McEwen, Jason D

    2015-01-01

    Curvelets are efficient to represent highly anisotropic signal content, such as local linear and curvilinear structure. First-generation curvelets on the sphere, however, suffered from blocking artefacts. We present a new second- generation curvelet transform, where scale-discretised curvelets are constructed directly on the sphere. Scale-discretised curvelets exhibit a parabolic scaling relation, are well-localised in both spatial and harmonic domains, support the exact analysis and synthesis of both scalar and spin signals, and are free of blocking artefacts. We present fast algorithms to compute the exact curvelet transform, reducing computational complexity from $\\mathcal{O}(L^5)$ to $\\mathcal{O}(L^3\\log_{2}{L})$ for signals band-limited at $L$. The implementation of these algorithms is made publicly available. Finally, we present an illustrative application demonstrating the effectiveness of curvelets for representing directional curve-like features in natural spherical images.

  18. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  19. Black carbon measurements using an integrating sphere

    Science.gov (United States)

    Hitzenberger, R.; Dusek, U.; Berner, A.

    1996-08-01

    An integrating sphere was used to determine the black carbon (BC) content of aerosol filter samples dissolved in chloroform (method originally described by Heintzenberg [1982]). The specific absorption coefficient Ba (equal to absorption per mass) of the samples was also measured using the sphere as an integrating detector for transmitted light. Comparing the Ba of ambient samples taken in Vienna, Austria, to the BC concentrations measured on the dissolved filters, a value of approximately 6 m2/g was found to be a reasonable value for the Ba of the black carbon found at the site. The size dependence of Ba of a nebulized suspension of soot was measured using a rotating impactor, and a reasonable agreement between measured and calculated values was found.

  20. Criticality of a {sup 237}Np Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rene G.; Hayes, David K.; Cappiello, Charlene C.; Myers, William L.; Jaegers, Peter J.; Clement, Steven D.

    2003-07-22

    A critical mass experiment using a 6-kg {sup 237}Np sphere has been performed. The purpose of the experiment is to get a better estimate of the critical mass of {sup 237}Np. To attain criticality, the {sup 237}Np sphere was surrounded with 93 wt % {sup 235}U shells. A 1/M as a function of uranium mass was performed. An MCNP neutron transport code was used to model the experiment. The MCNP code yielded a k{sub eff} of 0.99089 {+-} 0.0003 compared with a k{sub eff} 1.0026 for the experiment. Based on these results, it is estimated that the critical mass of {sup 237}Np ranges from kilogram weights in the high fifties to low sixties.

  1. Nineteenth Century Public And Private Spheres

    Directory of Open Access Journals (Sweden)

    SIMA REMINA

    2014-12-01

    Full Text Available The aim of this paper is to illustrate the public and private spheres. The former represents the area in which each of us carries out their daily activities, while the latter is mirrored by the home. Kate Chopin and Charlotte Perkins Gilman are two salient nineteenth-century writers who shape the everyday life of the historical period they lived in, within their literary works that shed light on the areas under discussion.

  2. Supersymmetric theories on squashed five-sphere

    CERN Document Server

    Imamura, Yosuke

    2012-01-01

    We construct supersymmetric theories on the SU(3)xU(1) symmetric squashed five-sphere with 2, 4, 6, and 12 supercharges. We first determine the Killing equation by dimensional reduction from 6d, and use Noether procedure to construct actions. The supersymmetric Yang-Mills action is straightforwardly obtained from the supersymmetric Chern-Simons action by using a supersymmetry preserving constant vector multiplet.

  3. Lp CONVERGENCE OF CESARO MEANS ON SPHERE

    Institute of Scientific and Technical Information of China (English)

    Dai Feng; Zhang Xirong

    2000-01-01

    Let Rnbe n-dimensional Euclidean space with n≤3. Denote by Ωn the unit sphere in Rn. For f ∈ L(Ωn) ve denote by σNo (f) its Cesaro means of order δ for spherical harmonic expansions. The special value λ= 2λ n-2 of δ is knowm as the critical one. For 0<δ≤λ, we set P0=2 λ/δ+λ

  4. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2003-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of weighted distances between the circle and the facilities is minimized, or such that the maximum weighted distance is minimized. The problem properties are analyzed, and we...... give solution procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible....

  5. On the revolution of heavenly spheres

    CERN Document Server

    Copernicus, Nicolaus

    1995-01-01

    The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.

  6. Stable Stationary Harmonic Maps to Spheres

    Institute of Scientific and Technical Information of China (English)

    Fang Hua LIN; Chang You WANG

    2006-01-01

    For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere Sk. We show that the singular set of stable-stationary harmonic maps from B5 to S3 is the union of finitely many isolated singular points and finitely many Holder continuous curves. We also discuss the minimization problem among continuous maps from Bn to S2.

  7. Poincar\\'e Sphere and Decoherence Problems

    CERN Document Server

    Kim, Y S

    2012-01-01

    Henri Poincar\\'e formulated the mathematics of the Lorentz transformations, known as the Poincar\\'e group. He also formulated the Poincar\\'e sphere for polarization optics. It is shown that these two mathematical instruments can be combined into one mathematical device which can address the internal space-time symmetries of elementary particles, decoherence problems in polarization optics, entropy problems, and Feynman's rest of the universe.

  8. Soft-sphere model for liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.

    1977-11-08

    A semi-empirical soft-sphere model of fluids is modified for application to the thermodynamic properties of liquid metals. Enthalpy, volume, and sound speed are computed as functions of temperature for 13 metals and compared with experimental data. Critical points and coexistence curves are also computed and compared with experimental data, where these have been measured. Strengths and weaknesses of the model are discussed.

  9. Collapse of three on a sphere

    Energy Technology Data Exchange (ETDEWEB)

    Kidambi, R.; Newton, P.K. [Southern California Univ., Los Angeles (United States). Dept. of Aerospace Engineering, Center for Applied Mathematical Sciences

    1999-12-01

    The self-similar collapse of three vortices moving on the surface of a sphere of radius R is analysed and compared with known results of critical literature. Formulas for the collapsing trajectories are derived and compared with the planar formulas. The Hamiltonian system is derived governing the vortex motion. In this projected plane, the solutions are not self-similar. In the last section, the collapse process is studied using tri-linear coordinates, which reduces the system to a planar one.

  10. A property of the bidimensional sphere

    CERN Document Server

    Cavachi, Marius

    2011-01-01

    It is natural to ask for a reasonable constant k having the property that any open set of area greater than k on a bidimensional sphere of area 1 always contains the vertices of a regular tetrahedron. We shall prove that it is sufficient to take k=3/4. In fact we shall prove a more general result. The interested reader will not have any problem in establishing that 3/4 is the best constant with this property.

  11. The Internet And The Public Sphere

    OpenAIRE

    Kürşat, Fide; Özad, Bahire Efe

    2005-01-01

    Habermas (1989) proposes a ‘public sphere’, a setting where people talk freely on the public issues. In his early works, Habermas was rather pessimistic about the provision of the public sphere; however, soon after the introduction of the Internet as an ultimately decentralized medium, in his later work, Habermas (1996) seems more optimistic about the Internet as the provider of the ‘public sphere’. The Internet which is particularly popular among the young people, not only pro...

  12. Effects of confinement on a rotating sphere

    Science.gov (United States)

    Liu, Qianlong; Prosperetti, Andrea

    2009-11-01

    The hydrodynamic force and couple acting on a rotating sphere in a quiescent fluid are modified by nearby boundaries with possible consequences on spin-up and spin-down times of particles uspended in a fluid, their wall deposition, entraiment and others. Up to now, the vast majority of papers dealing with these problems have considered the low-Reynolds-number regime. This paper focuses on the effect of inertia on the hydrodynamic interaction of a spinning sphere with nearby boundaries. Rotation axes parallel and perpendicular to a plane boundary as well as other situations are studied. Several steady and transient numerical results are presented and interptreted in terms of physical scaling arguments. The Navier-Stokes equations for an incompressible, constant-property Newtonian fluid are solved by the finite-difference PHYSALIS method. Among the noteworthy features of this method are the fact that the no-slip condition at the particle surface is satisfied exactly and that the force and torque on the sphere are obtained directly as a by-product of the computation. This feature avoids the need to integrate the stress over the particle surface, which with other methods is a step prone to numerical inaccuracies. A locally refined mesh surrounding the particle is used to enhance the resolution of boundary layers maintaining a manageable overall computational cost.

  13. Willmore Spheres in Compact Riemannian Manifolds

    CERN Document Server

    Mondino, Andrea

    2012-01-01

    The paper is devoted to the variational analysis of the Willmore, and other L^2 curvature functionals, among immersions of 2-dimensional surfaces into a compact riemannian m-manifold (M^m,h) with m>2. The goal of the paper is twofold, on one hand, we give the right setting for doing the calculus of variations (including min max methods) of such functionals for immersions into manifolds and, on the other hand, we prove existence results for possibly branched Willmore spheres under various constraints (prescribed homotopy class, prescribed area) or under curvature assumptions for M^m. To this aim, using the integrability by compensation, we develop first the regularity theory for the critical points of such functionals. We then prove a rigidity theorem concerning the relation between CMC and Willmore spheres. Then we prove that, for every non null 2-homotopy class, there exists a representative given by a Lipschitz map from the 2-sphere into M^m realizing a connected family of conformal smooth (possibly branche...

  14. Confined disordered strictly jammed binary sphere packings

    Science.gov (United States)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  15. Preparation and antibacterial activities of hollow silica-Ag spheres.

    Science.gov (United States)

    Lin, Lin; Zhang, Haifang; Cui, Haiying; Xu, Mingqiang; Cao, Shunsheng; Zheng, Guanghong; Dong, Mingdong

    2013-01-01

    Hollow silica spheres with round mesoporous shells were synthesized by core-shell template method, using monodispersed cationic polystyrene particles as core, and TEOS (tetraethoxysilane) as the silica source to form shell. After calcination at 550°C, uniform spheres with a thin shell of silica and hollow interior structures. Transmission electron microscopy results showed that the size of the spheres is about 700 nm in diameter with narrow distribution. In addition, the spheres have a high surface area of 183 m(2)/g. The spheres were subsequently used as silver-loading substrates and the silver loaded spheres were tested in antimicrobial study against gram negative bacteria Eschrichia coli in vitro. The hollow silica-Ag spheres proved significantly higher antibacterial efficacy against E. coli as compared to that of the common silica-Ag particles.

  16. A Pulsed Spectrometer Designed for Feedback NQR

    Science.gov (United States)

    Schiano, J. L.; Ginsberg, M. D.

    2000-02-01

    A pulsed NQR spectrometer specifically designed to facilitate real-time tuning of pulse sequence parameters is described. A modular approach based on the interconnection of several rack-mounted blocks provides easy access to all spectrometer signals and simplifies the task of modifying the spectrometer design. We also present experimental data that demonstrates the ability of the spectrometer to increase the signal to noise ratio of NQR measurements by automatically adjusting the pulse width in the strong off-resonant comb pulse sequence.

  17. Liquid bridge force between two unequal-sized spheres or a sphere and a plane

    Institute of Scientific and Technical Information of China (English)

    You chuan Chen; Yong zhi Zhao; Hong li Gao; Jin yang Zheng

    2011-01-01

    Liquid bridge force acting between wet particles is an important property in particle characterization.This paper deals with liquid bridge force between either two unequal-sized spherical particles or a sphere and a flat plate under conditions where gravitational effect arising from bridge distortion is negligible.In order to calculate the force of the liquid bridge efficiently and accurately,expressions of liquid configuration and liquid bridge force were derived by building a mechanical model,which assumes the liquid bridge to be circular in shape between either two unequal-sized spheres or a sphere and a plane.To assess the accuracy of the numerical results of the calculated liquid bridge forces,they were compared to the published experimental data.

  18. Uniform Fe3O4-PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres

    Science.gov (United States)

    Wang, Xiaocong; Tang, Saide; Liu, Jing; He, Ziqiong; An, Lijuan; Zhang, Chenxi; Hao, Jingmei; Feng, Wei

    2009-05-01

    Core-shell multifunctional composite spheres consisting of Fe3O4-polyaniline (PANi) shell and polystyrene (PS) core were fabricated using core-shell-structured sulfonated PS spheres (with uniform diameter of 250 nm) as templates. PANi was doped in situ by sulfonic acid resulting the composite spheres are well conductive. Dissolved with solvent, PS cores were removed from the core-shell composite spheres and hollow Fe3O4-PANi spheres were obtained. Removing the PANi and PS components by calcinations produced hollow Fe3O4 spheres. The cavity size of the hollow spheres was uniformly approximate to 190 nm and the shell thickness was 30 nm. The cavity size and the shell thickness can be synchronously controlled by varying the sulfonation time of the PS templates. The shell thickness in size range was of 20-86 nm when the sulfonation time was changed from 1 to 4 h. These resulting spheres could be arranged in order by self-assembly of the templates. Both the Fe3O4-PANi/PS composite spheres and the hollow Fe3O4 spheres exhibit a super-paramagnetic behavior. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder scattering were used to characterize these as-prepared spheres.

  19. Electromagnetic-scattering by bi-sphere groups and coherent-beam scattering by homogeneous spheres

    Institute of Scientific and Technical Information of China (English)

    Linsheng LIU; Hengyu KE; Zhensen WU; Lu BAI

    2008-01-01

    By using Mie's theory, the boundary condi-tions, and some advanced mathematical knowledge, the scattering problem of a plane-wave by bi-sphere groups and of cores-traversed coherent Gauss-beams by one sphere was addressed. In each, the coefficients of the scattering-field expressions were deduced. Finally, the result was predigested and transfigured so that the available form for programming was achieved. On deducing, the former adopted the undetermined coeffi-cient method and the latter used the plane geometry method. Moreover, the complexity of the calculation was decreased here.

  20. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  1. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  2. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    Science.gov (United States)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  3. Zinc coordination spheres in protein structures.

    Science.gov (United States)

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne

    2013-10-07

    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  4. Neutron spectrometry with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx

    2005-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  5. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  6. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  7. Sphere impact and penetration into wet sand

    Science.gov (United States)

    Marston, J. O.; Vakarelski, I. U.; Thoroddsen, S. T.

    2012-08-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  8. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2007-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible. The models may be used in preliminary studies on the location of large linear facilities on the earth's surface, such as superhighways, pipelines, and transmission lines, or in totally different...

  9. A pattern formation problem on the sphere

    Directory of Open Access Journals (Sweden)

    Clara E. Garza-Hume

    2007-02-01

    Full Text Available We consider a semi-linear elliptic equation on the sphere $mathbf{S}^n subset mathbb{R}^{n+1}$ with $n$ odd and subcritical nonlinearity. We show that given any positive integer $k$, if the exponent $p$ of the nonlinear term is sufficiently close to the critical Sobolev exponent $p^*$, then there exists a positive solution with $k$ peaks. Moreover, the minimum energy solutions with $k$ peaks are such that the centers of these concentrations converge as $po p^*$ to the solution of an underlying geometrical problem, namely, arranging $k$ points on $mathbf{S}^n$ so they are as far away from each other as possible.

  10. Nonlinear sequential laminates reproducing hollow sphere assemblages

    Science.gov (United States)

    Idiart, Martín I.

    2007-07-01

    A special class of nonlinear porous materials with isotropic 'sequentially laminated' microstructures is found to reproduce exactly the hydrostatic behavior of 'hollow sphere assemblages'. It is then argued that this result supports the conjecture that Gurson's approximate criterion for plastic porous materials, and its viscoplastic extension of Leblond et al. (1994), may actually yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity. To cite this article: M.I. Idiart, C. R. Mecanique 335 (2007).

  11. NATURAL FREQUENCIES OF SUBMERGED PIEZOCERAMIC HOLLOW SPHERES

    Institute of Scientific and Technical Information of China (English)

    Cai Jinbiao; Chen Weiqiu; Ye Guiru; Ding Haojiang

    2000-01-01

    An exact 3D analysis of free vibration of a piezoceramic hollow sphere submerged in a compressible fluid is presented in this paper.A separation method is adopted to simplify the basic equations for spherically isotropic piezoelasticity.It is shown that there are two independent classes of vibration.The first one is independent of the fluid medium as well as the electric field,while the second is associated with both the fluid parameter and the piezoelectric effect.Exact frequency equations are derived and numerical results are obtained.

  12. A Mass Spectrometer Simulator in Your Computer

    Science.gov (United States)

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  13. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...

  14. Multidensity integral-equation theory for short diblock hard-sphere-sticky-hard-sphere chains.

    Science.gov (United States)

    Wu, Ning; Chiew, Y C

    2010-04-01

    The multidensity Ornstein-Zernike integral equation theory is applied to study a simple model of hard sphere/sticky hard sphere diblock chains. The multidensity integral equation formalism has been successfully used to model the equilibrium structure and thermodynamic properties of homonuclear chains and shorter dimer fluids; to our knowledge it has not been applied to model diblock chains. In this work, a diblock chain fluids is represented by an m-component equal molar mixture of hard spheres with species 1,2,...,mh and sticky hard spheres with species mh+1,mh+2,...,m. Each spherical particle has two attractive sites A and B except species 1 and m, which have only one site per particle. In the limit of complete association, this mixture yields a system of monodisperse diblock chains. A general solution of this model is obtained in the Percus-Yevick, Polymer Percus-Yevick and ideal chain approximations. Both structural and thermodynamic properties of this model are investigated. From this study, a microphase separation is predicted for relatively short diblock symmetric and asymmetric chains. This microphase separation is enhanced at lower temperature and higher density. When chain length increases, the phase transition changes from a microphase level to a macrophase level. The size of microdomain structure is found to be dependent on total chain length, relative ratio of block lengths, temperature, and density.

  15. Percolation of disordered jammed sphere packings

    Science.gov (United States)

    Ziff, Robert M.; Torquato, Salvatore

    2017-02-01

    We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato–Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.

  16. Characterizing HR3549B using SPHERE

    CERN Document Server

    Mesa, D; D'Orazi, V; Ginski, C; Desidera, S; Bonnefoy, M; Gratton, R; Langlois, M; Marzari, F; Messina, S; Antichi, J; Biller, B; Bonavita, M; Cascone, E; Chauvin, G; Claudi, R U; Curtis, I; Fantinel, D; Feldt, M; Garufi, A; Galicher, R; Henning, Th; Incorvaia, S; Lagrange, A M; Millward, M; Perrot, C; Salasnich, B; Scuderi, S; Sissa, E; Wahhaj, Z; Zurlo, A

    2016-01-01

    Aims. In this work, we characterize the low mass companion of the A0 field star HR3549. Methods. We observed HR3549AB in imaging mode with the the NIR branch (IFS and IRDIS) of SPHERE@VLT, with IFS in YJ mode and IRDIS in the H band. We also acquired a medium resolution spectrum with the IRDIS long slit spectroscopy mode. The data were reduced using the dedicated SPHERE GTO pipeline, purposely designed for this instrument. We employed algorithms such as PCA and TLOCI to reduce the speckle noise. Results. The companion was clearly visible both with IRDIS and IFS.We obtained photometry in four different bands as well as the astrometric position for the companion. Based on our astrometry, we confirm that it is a bound object and put constraints on its orbit. Although several uncertainties are still present, we estimate an age of ~100-150 Myr for this system, yielding a most probable mass for the companion of 40-50MJup and T_eff ~300-2400 K. Comparing with template spectra points to a spectral type between M9 and...

  17. Global warming in the public sphere.

    Science.gov (United States)

    Corfee-Morlot, Jan; Maslin, Mark; Burgess, Jacquelin

    2007-11-15

    Although the science of global warming has been in place for several decades if not more, only in the last decade and a half has the issue moved clearly into the public sphere as a public policy issue and a political priority. To understand how and why this has occurred, it is essential to consider the history of the scientific theory of the greenhouse effect, the evidence that supports it and the mechanisms through which science interacts with lay publics and other elite actors, such as politicians, policymakers and business decision makers. This article reviews why and how climate change has moved from the bottom to the top of the international political agenda. It traces the scientific discovery of global warming, political and institutional developments to manage it as well as other socially mediated pathways for understanding and promoting global warming as an issue in the public sphere. The article also places this historical overview of global warming as a public issue into a conceptual framework for understanding relationships between society and nature with emphasis on the co-construction of knowledge.

  18. Resonance for loop homology of spheres

    CERN Document Server

    Hingston, Nancy

    2011-01-01

    A Riemannian or Finsler metric on a compact manifold M gives rise to a length function on the free loop space \\Lambda M, whose critical points are the closed geodesics in the given metric. If X is a homology class on \\Lambda M, the minimax critical level cr(X) is a critical value. Let M be a sphere of dimension >2, and fix a metric g and a coefficient field G. We prove that the limit as deg(X) goes to infinity of cr(X)/deg(X) exists. We call this limit the "global mean frequency" of M. As a consequence we derive resonance statements for closed geodesics on spheres; in particular either all homology on \\Lambda M of sufficiently high degreee lies hanging on closed geodesics whose mean frequency (average index / length) equals the global mean frequency, or there is a sequence of infinitely many closed geodesics whose mean frequencies converge to the global mean frequency. The proof uses the Chas-Sullivan product and results of Goresky-Hingston [GH].

  19. Approximating and learning by Lipschitz kernel on the sphere

    Institute of Scientific and Technical Information of China (English)

    CAO Fei-long; WANG Chang-miao

    2014-01-01

    This paper investigates some approximation properties and learning rates of Lips-chitz kernel on the sphere. A perfect convergence rate on the shifts of Lipschitz kernel on the sphere, which is faster than O(n-1/2), is obtained, where n is the number of parameters needed in the approximation. By means of the approximation, a learning rate of regularized least square algorithm with the Lipschitz kernel on the sphere is also deduced.

  20. Lightcone dualities for curves in the lightcone unit 3-sphere

    OpenAIRE

    2013-01-01

    In this paper, we consider the curves in the unit 3-sphere in the lightcone. The unit 3-sphere can be canonically embedded in the lightcone and de Sitter 4-space in Lorentz-Minkowski 5-space. We investigate these curves in the framework of the theory of Legendrian dualities between pseudo-spheres in Lorentz-Minkowski 5-space. (C) 2013 AIP Publishing LLC.

  1. GRADIENT INDEX SPHERES BY THE SEQUENTIAL ACCRETION OF GLASS POWDERS

    Energy Technology Data Exchange (ETDEWEB)

    MARIANO VELEZ

    2008-06-15

    The Department of Energy is seeking a method for fabricating mm-scale spheres having a refractive index that varies smoothly and continuously from the center to its surface [1]. The fabrication procedure must allow the creation of a range of index profiles. The spheres are to be optically transparent and have a refractive index differential greater than 0.2. The sphere materials can be either organic or inorganic and the fabrication technique must be capable of scaling to low cost production. Mo-Sci Corporation proposed to develop optical quality gradient refractive index (GRIN) glass spheres of millimeter scale (1 to 2 mm diameter) by the sequential accretion and consolidation of glass powders. Other techniques were also tested to make GRIN spheres as the powder-accretion method produced non-concentric layers and poor optical quality glass spheres. Potential ways to make the GRIN spheres were (1) by "coating" glass spheres (1 to 2 mm diameter) with molten glass in a two step process; and (2) by coating glass spheres with polymer layers.

  2. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  3. Oil capture from a water surface by a falling sphere

    Science.gov (United States)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  4. Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2010-07-01

    Full Text Available We review our construction of a bifundamental version of the fuzzy 2-sphere and its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane model. This is shown to be completely equivalent to the usual (adjoint fuzzy sphere. We discuss the mathematical details of the bifundamental fuzzy sphere and its field theory expansion in a model-independent way. We also examine how this new formulation affects the twisting of the fields, when comparing the field theory on the fuzzy sphere background with the compactification of the 'deconstructed' (higher dimensional field theory.

  5. IBM WebSphere Application Server 80 Administration Guide

    CERN Document Server

    Robinson, Steve

    2011-01-01

    IBM WebSphere Application Server 8.0 Administration Guide is a highly practical, example-driven tutorial. You will be introduced to WebSphere Application Server 8.0, and guided through configuration, deployment, and tuning for optimum performance. If you are an administrator who wants to get up and running with IBM WebSphere Application Server 8.0, then this book is not to be missed. Experience with WebSphere and Java would be an advantage, but is not essential.

  6. Extensive nuclear sphere generation in the human Alzheimer's brain.

    Science.gov (United States)

    Kolbe, Katharina; Bukhari, Hassan; Loosse, Christina; Leonhardt, Gregor; Glotzbach, Annika; Pawlas, Magdalena; Hess, Katharina; Theiss, Carsten; Müller, Thorsten

    2016-12-01

    Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models and their existence in the human brain had not been known. Existence of nuclear spheres in the human brain was studied using immunohistochemistry. Cell culture experiments were used to study regulative mechanisms of nuclear sphere generation. The comparison of human frontal cortex brain samples from Alzheimer's disease (AD) patients to age-matched controls revealed a dramatically and highly significant enrichment of nuclear spheres in the AD brain. Costaining demonstrated that neurons are distinctly affected by nuclear spheres, but astrocytes never are. Nuclear spheres were predominantly found in neurons that were negative for threonine 668 residue in APP phosphorylation. Cell culture experiments revealed that JNK3-mediated APP phosphorylation reduces the amount of sphere-positive cells. The study suggests that nuclear spheres are a new APP-derived central hallmark of AD, which might be of crucial relevance for the molecular mechanisms in neurodegeneration.

  7. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  8. [The coding correction of slit diffraction in Hadamard transform spectrometer].

    Science.gov (United States)

    Li, Bo; Wang, Shu-Rong; Huang, Yu; Wang, Jun-Bo

    2013-08-01

    According to the principles of Hadamard transform spectrometer and the slit diffraction characteristics, the influence of spectrometer entrance slit diffraction of Hadamard transform spectrometer on the measurement result was analyzed, for the diffraction case, the Hadamard transform spectrometer instrument structure matrix was studied, and the Hadamard transform spectrometer encoding/decoding method was established. The analysis of incident spectral verified the correctness of the coding/ decoding. This method is very important for the high precision measurement of Hadamard transform spectrometer.

  9. Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence of steady granular flow

    OpenAIRE

    Mitarai, Namiko; Nakanishi, Hiizu

    2002-01-01

    Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard sphere limit of the soft sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional...

  10. Simulation of flow and sediment mobility using a multidimensional flow model for the White Sturgeon critical-habitat reach, Kootenai River near Bonners Ferry, Idaho

    Science.gov (United States)

    Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.

    2005-01-01

    In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation

  11. Mini-Orange Spectrometer at CIAE

    CERN Document Server

    Zheng, Yun; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-01-01

    A Mini-Orange spectrometer used for in-beam measurements of internal conversion electrons, which consists of a Si(Li) detector and different sets of SmO$_5$ permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at China Institute of Atomic Energy. The working principle and configuration of the Mini-Orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the Mini-Orange spectrometer.

  12. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  13. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  14. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  15. Inner Sphere and Outer Sphere Electron Transfer to Methyl Iodide. Deuterium and 13C Kinetic Isotope Effects

    DEFF Research Database (Denmark)

    Holm, Torkil; Crossland, Ingolf

    1996-01-01

    Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in......Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in...

  16. Quantum Baker map on the sphere

    CERN Document Server

    Pakonski, P; Zyczkowski, K; Pakonski, Prot; Ostruszka, Andrzej; Zyczkowski, Karol

    1998-01-01

    We construct analogue of the baker map on the sphere. We analyze its classical and quantum versions. The classical map is characterized by dynamical entropy equal to ln(2) and has a similar set of periodic orbits as the map on the torus. The quantum map is represented by a real, orthogonal matrix of an even dimension. Semiclassical dynamics and time evolution may be studied with the help of the SU(2) coherent states and the generalized Husimi distribution. In contrast to the standard baker map on the torus, the map analyzed in this paper does not exhibit the time reversal symmetry. Semiclassical ensemble of quantum maps, obtained by averaging over a range of matrix sizes, displays statistical properties characteristic of circular unitary ensemble.

  17. On the Torus Cobordant Cohomology Spheres

    Indian Academy of Sciences (India)

    Ali Özkurt; Doğan Dönmez

    2009-02-01

    Let be a compact Lie group. In 1960, P A Smith asked the following question: ``Is it true that for any smooth action of on a homotopy sphere with exactly two fixed points, the tangent -modules at these two points are isomorphic?" A result due to Atiyah and Bott proves that the answer is `yes’ for $\\mathbb{Z}_p$ and it is also known to be the same for connected Lie groups. In this work, we prove that two linear torus actions on $S^n$ which are -cobordant (cobordism in which inclusion of each boundary component induces isomorphisms in $\\mathbb{Z}$-cohomology) must be linearly equivalent. As a corollary, for connected case, we prove a variant of Smith’s question.

  18. Planetary method to measure the neutrons spectrum in lineal accelerators of medical use; Metodo planetario para medir el espectro de neutrones en aceleradores lineales de uso medico

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Benites R, J. L., E-mail: fermineutron@yahoo.com [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calzada de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico)

    2014-08-15

    A novel procedure to measure the neutrons spectrum originated in a lineal accelerator of medical use has been developed. The method uses a passive spectrometer of Bonner spheres. The main advantage of the method is that only requires of a single shot of the accelerator. When this is used around a lineal accelerator is necessary to operate it under the same conditions so many times like the spheres that contain the spectrometer, activity that consumes enough time. The developed procedure consists on situating all the spheres of the spectrometer at the same time and to realize the reading making a single shot. With this method the photo neutrons spectrum produced by a lineal accelerator Varian ix of 15 MV to 100 cm of the isocenter was determined, with the spectrum is determined the total flow and the ambient dose equivalent. (Author)

  19. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  20. Supercapacitor Performance of Hollow Carbon Spheres by Direct Pyrolysis of Melamine-formaldehyde Resin Spheres

    Institute of Scientific and Technical Information of China (English)

    MA Fang-wei; SUN Li-ping; ZHAO Hui; LI Qiang; HUO Li-hua; XIA Tian; GAO Shan

    2013-01-01

    The nitrogen and oxygen co-doped hollow carbon spheres(HCSs) were prepared via a simple pyrolysis of solid melamine-formaldhyde resin spheres.The carbonization temperature has an important influence on the specific surface area,pore-size distribution and heteroatom contents of HCSs.The synergistic effects of those physical and chemical properties on supercapacitor performance were systematically investigated.Among the HCSs obtained at different temperatures,HCSs-800(co-doped HCSs at 800 ℃) exhibits the best reversible specific capacitance in 2 mol/L H2SO4 electrolyte and meanwhile maintains a high-class capacitance retention capability.The nitrogen heteroatoms were confirmed to play a crucial role in improving capacitance in an acid medium.This kind of nitrogen doped HCSs is a potential candidate for an efficient electrode material for supercapacitors.

  1. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  2. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  3. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  4. Long-Wave Infrared Dyson Spectrometer

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  5. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  6. Electronically-Scanned Fourier-Transform Spectrometer

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  7. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  8. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  9. ISLA: An Isochronous Spectrometer with Large Acceptances

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, D., E-mail: bazin@nscl.msu.edu; Mittig, W.

    2013-12-15

    A novel type of recoil mass spectrometer and separator is proposed for the future secondary radioactive beams of the ReA12 accelerator at NSCL/FRIB, inspired from the TOFI spectrometer developed at the Los Alamos National Laboratory for online mass measurements. The Isochronous Spectrometer with Large Acceptances (ISLA) is able to achieve superior characteristics without the compromises that usually plague the design of large acceptance spectrometers. ISLA can provide mass-to-charge ratio (m/q) measurements to better than 1 part in 1000 by using an optically isochronous time-of-flight independent of the momentum vector of the recoiling ions, despite large acceptances of 20% in momentum and 64 msr in solid angle. The characteristics of this unique design are shown, including requirements for auxiliary detectors around the target and the various types of reactions to be used with the re-accelerated radioactive beams of the future ReA12 accelerator.

  10. Weighted Approximation for Jackson-Matsuoka Polynomials on the Sphere

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2012-01-01

    Full Text Available We consider the best approximation by Jackson-Matsuoka polynomials in the weighted Lp space on the unit sphere of Rd. Using the relation between K-functionals and modulus of smoothness on the sphere, we obtain the direct and inverse estimate of approximation by these polynomials for the h-spherical harmonics.

  11. VMware vSphere 5.5 cookbook

    CERN Document Server

    G B, Abhilash

    2015-01-01

    This is an excellent handbook for system administrators, support professionals, or for anyone intending to give themselves a headstart in learning how to install, configure, and manage a vSphere environment. It is also a good task-oriented reference guide for consultants or infrastructure architects who design and deploy vSphere environments.

  12. Squeeze flow between a sphere and a textured wall

    Energy Technology Data Exchange (ETDEWEB)

    Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)

    2016-02-15

    The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.

  13. Orbital Motion of Electrically Charged Spheres in Microgravity

    Science.gov (United States)

    Banerjee, Shubho; Andring, Kevin; Campbell, Desmond; Janeski, John; Keedy, Daniel; Quinn, Sean; Hoffmeister, Brent

    2008-01-01

    The similar mathematical forms of Coulomb's law and Newton's law of gravitation suggest that two uniformly charged spheres should be able to orbit each other just as two uniform spheres of mass are known to do. In this paper we describe an experiment that we performed to demonstrate such an orbit. This is the first published account of a…

  14. Homological properties of Podle′s quantum spheres

    Institute of Scientific and Technical Information of China (English)

    LIU LiYu; SHEN YunYi; WU QuanShui

    2014-01-01

    The standard Podle′s quantum sphere is Artin-Schelter regular as showed by Kra¨hmer(2012).The non-standard Podle′s quantum spheres are proved to be Auslander-regular,Cohen-Macaulay and Artin-Schelter regular in this paper.

  15. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...

  16. Axioms of spheres in lightlike geometry of submanifolds

    Indian Academy of Sciences (India)

    RACHNA RANI; RAKESH KUMAR; R K NAGAICH

    2016-10-01

    We prove that if an indefinite Kaehler manifold $\\bar{M}$ with lightlike submanifolds satisfies the axioms of holomorphic 2$r$-spheres, axioms of holomorphic 2$r$-planes, axioms of transversal $r$-spheres and axioms of transversal $r$-planes, then it is an indefinite complex space form.

  17. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....

  18. A REMARK ON THE QUASI-HARMONIC SPHERES

    Institute of Scientific and Technical Information of China (English)

    XuDeliang; ZhouChunqin

    2002-01-01

    Several theorems on the finiteness of energy for quasi-harmonic spheres are proved,some counter-examples which state that the energy of quasi-harmonic sphere may be infinite are given. The results support some conditions of a question posed by Lin Fanghua and Wang Changyou.

  19. Dual-Purpose Millikan Experiment with Polystyrene Spheres

    Science.gov (United States)

    Wall, C. N.; Christensen, F. E.

    1975-01-01

    This procedure, using polystyrene spheres of specified diameter, renders the Millikan oil drop experiment more accurate than the conventional procedure of the polystyrene spheres, eliminates size estimation error, and removes the guesswork involved in assigning proper index integers to the observed charges. (MLH)

  20. Direct measurement of thermodynamic properties of colloidal hard spheres

    NARCIS (Netherlands)

    Dullens, R.P.A.; Kegel, W.K.; Aarts, D.G.A.L.

    2008-01-01

    Recently, we have shown how to measure thermodynamic properties of colloidal hard sphere suspensions by microscopy [Dullens et al. (2006) PNAS 103, 529]. Here, we give full experimental details on how to acquire three dimensional snapshots of a colloidal hard sphere suspension over a wide range of d

  1. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  2. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  3. A Spectrometer Based on Diffractive Lens

    Institute of Scientific and Technical Information of China (English)

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  4. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  5. 1987 calibration of the TFTR neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  6. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  7. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  8. Impact of supersymmetry on the nonperturbative dynamics of fuzzy spheres

    CERN Document Server

    Anagnostopoulos, K N; Nagao, K; Nishimura, J; Anagnostopoulos, Konstantinos N.; Azuma, Takehiro; Nagao, Keiichi; Nishimura, Jun

    2005-01-01

    We study a 4d supersymmetric matrix model with a cubic term, which incorporates fuzzy spheres as classical solutions, using Monte Carlo simulations and perturbative calculations. The fuzzy sphere in the supersymmetric model turns out to be always stable if the large-N limit is taken in such a way that various correlation functions scale. This is in striking contrast to analogous bosonic models, where the fuzzy sphere decays into the pure Yang-Mills vacuum due to quantum effects when the coefficient of the cubic term becomes smaller than a critical value. We also find that the power-law tail of the eigenvalue distribution, which exists in the supersymmetric model without the cubic term, disappears in the presence of the fuzzy sphere in the large-N limit. Coincident fuzzy spheres turn out to be unstable, which implies that the dynamically generated gauge group is U(1).

  9. On-Chip Fabrication of Glass Sphere Laser

    Directory of Open Access Journals (Sweden)

    Kishi Tetsuo

    2015-01-01

    Full Text Available Fabrication and application of glass spherical micro-cavity for lasing are reported. Surface-tension molding (StM and localized-laser heating (LLH techniques have been developed to fabricate glass super sphere, which is partially truncated spherical shape, and true spheres, respectively. Whispering gallery mode (WGM resonances or laser oscillations from the spherical glasses were demonstrated. Super-spherical glasses possessed WGM resonances on its equatorial plane. The equatorial plane with high roundness (>0.99 serves a high quality factor to lead laser oscillation. LLH technique enables us to fabricate true spheres on a transparent substrate. Tellurite glass spheres prepared by the LLH technique showed laser oscillation with few-mW-order thresholds by direct pumping. StM and LLH technique are very suitable for both preparation and utilization of glass spheres for optical micro-cavity.

  10. SPHERE: a scalable multicast framework in overlay networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents Sphere, a scalable multicast framework in overlay network. Sphere is a highly efficient, self-organizing and robust multicast protocol overlayed on the Internet. The main contributions of this paper are twofold. First, Sphere organizes the control topology of overlay network in two directions: horizontal and vertical. The horizontal meshes are used to locate and organize hosts in tracks, and the vertical meshes are used to manage the data paths between tracks. Second, Sphere balances stress and stretch of the overlay network by assigning hosts into different tracks and clusters. This structure distributes stress on the multicast trees uniformly, and meantime makes path stretch as small as possible.Simulations results show that Sphere can support multicast with large group size and has good performance on organizing meshes and building data delivery trees.

  11. Encapsulation of urease enzyme in xanthan-alginate spheres.

    Science.gov (United States)

    Elçin, Y M

    1995-10-01

    Urease-containing xanthan-alginate spheres were prepared by a two-step process which involved the Ca2+ coupling of the polysaccharides, followed by gentle glutaraldehyde cross-linking with amine groups of gelatin present in the initial mixture. This second step caused a slight decrease in the enzymatic activity but increased the stability. The water content and size distribution of the spheres were examined together with the sphere morphology. The effect of polymer ratio and enzyme loading on urease activity was investigated. An increase in xanthan content was found to affect the water uptake of the spheres. Temperature and pH stability of encapsulated urease was found to be higher than the free form. The xanthan-alginate spheres showed 75% of maximum urease activity even after 20 repeated uses under optimal conditions.

  12. Imaging spheres with general incident wavefronts using a dipole decomposition

    Science.gov (United States)

    Izen, Steven H.; Ovryn, Ben

    1998-06-01

    Although scattering for spheres with plane wave illumination was solved precisely by Mie in 1909, often it is of interest to image spheres with non-planar illumination. An extension of Mie theory which incorporates non-planar illumination requires knowledge of the coefficients for a spherical harmonic expansion of the incident wavefront about the center of the sphere. These coefficients have been determined for a few special cases, such as Gaussian beams, which have a relatively simple model. Using a vectorized Huygen's principle, a general vector wavefront can be represented as a superposition of dipole sources. We have computed the spherical wave function expansion coefficients of an arbitrarily placed dipole and hence the scattering from a sphere illuminated by a general wavefront can be computed. As a special case, Mie's solution of plane wave scattering was recovered. POtential applications include scattering with partially coherent illumination. Experimental results from the scattering from polystyrene spheres using Koehler illumination show agreement with numerical tests.

  13. Priority Guidelines Of The Service Sphere Development In Uzbekistan

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Safarov

    2011-04-01

    Full Text Available The present research article is devoted to study the priorities of service sphere development in Uzbekistan. The comparative analysis of service sphere development during 1996-2009 were presented, survey of disperse territories, analysis and generalization methods used to identify trends in services sphere. Disperse markets were grouped into markets with high, medium and low development level.  Retail trade is identified one of the most important components of service sphere in Uzbekistan. Retail turnover figures were predicted until 2013 used retrospective data for forecasting. Linear trend - trends of increase or decrease of index, visual analysis of time series dynamics(graphic presentation were used to solve the studied problem. Main priorities and targets in service sphere in Uzbekistan and it’s role in economy were determined.

  14. Holomorphic Two-Spheres in Complex Grassmann Manifold (2, 4)

    Indian Academy of Sciences (India)

    Xiaowei Xu; Xiaoxiang Jiao

    2008-08-01

    In this paper, we use the harmonic sequence to study the linearly full holomorphic two-spheres in complex Grassmann manifold (2,4). We show that if the Gaussian curvature (with respect to the induced metric) of a non-degenerate holomorphic two-sphere satisfies ≤ 2 (or ≥ 2), then must be equal to 2. Simultaneously, we show that one class of the holomorphic two-spheres with constant curvature 2 is totally geodesic. Concerning the degenerate holomorphic two-spheres, if its Gaussian curvature ≤ 1 (or ≥ 1), then =1. Moreover, we prove that all holomorphic two-spheres with constant curvature 1 in (2,4) must be (4)-equivalent.

  15. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  16. NIST Calibration of a Neutron Spectrometer ROSPEC.

    Science.gov (United States)

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  17. Dynamic simulation of sphere motion in a vertical tube

    Science.gov (United States)

    Yu, Zhaosheng; Phan-Thien, Nhan; Tanner, Roger I.

    2004-11-01

    In this paper, the sedimentation of a sphere and its radial migration in a Poiseuille flow in a vertical tube filled with a Newtonian fluid are simulated with a finite-difference-based distributed Lagrange multiplier (DLM) method. The flow features, the settling velocities, the trajectories and the angular velocities of the spheres sedimenting in a tube at different Reynolds numbers are presented. The results show that at relatively low Reynolds numbers, the sphere approaches the tube axis monotonically, whereas in a high-Reynolds-number regime where shedding of vortices takes place, the sphere takes up a spiral trajectory that is closer to the tube wall than the tube axis. The rotation motion and the lateral motion of the sphere are highly correlated through the Magnus effect, which is verified to be an important (but not the only) driving force for the lateral migration of the sphere at relatively high Reynolds numbers. The standard vortex structures in the wake of a sphere, for Reynolds number higher than 400, are composed of a loop mainly located in a plane perpendicular to the streamwise direction and two streamwise vortex pairs. When moving downstream, the legs of the hairpin vortex retract and at the same time a streamwise vortex pair with rotation opposite to that of the legs forms between the loops. For Reynolds number around 400, the wake structures shed during the impact of the sphere on the wall typically form into streamwise vortex structures or else into hairpin vortices when the sphere spirals down. The radial, angular and axial velocities of both neutrally buoyant and non-neutrally buoyant spheres in a circular Poiseuille flow are reported. The results are in remarkably good agreement with the available experimental data. It is shown that suppresion of the sphere rotation produces significant large additional lift forces pointing towards the tube axis on the spheres in the neutrally buoyant and more-dense-downflow cases, whereas it has a negligible

  18. Artificial neural networks in neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2005-07-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  19. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  20. An echelle diffraction grating for imaging spectrometer

    Science.gov (United States)

    Yang, Minyue; Wang, Han; Li, Mingyu; He, Jian-Jun

    2016-09-01

    We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

  1. Directed synthesis of stable large polyoxomolybdate spheres.

    Science.gov (United States)

    Roy, Soumyajit; Bossers, Lydia C A M; Meeldijk, Hans J D; Kuipers, Bonny W M; Kegel, Willem K

    2008-02-05

    Polyoxometalates or POMs, a class of inorganic transition metal-oxide based clusters, have gained significant interest owing to their catalytic, magnetic, and material science applications. All such applications require high surface area POM based materials. However, chemically synthesized POMs are still at most in the range of a few nanometers, with their size and morphology being difficult to control. Hence, there is an immediate need to develop design principles that allow easy control of POM morphology and size on mesoscopic (50-500 nm) length scales. Here, we report a design strategy to meet this need. Our method reported here avoids a complex chemical labyrinth by using a prefabricated cationic 1,2-dioleol-3-trimethylammonium-propane (DOTAP) vesicle as a scaffold/structure directing agent and gluing simple anionic heptamolybdates by electrostatic interaction and hydrogen bonds to form large POM spheres. By this method, complexity in the resulting structure can be deliberately induced either via the scaffold or via the oxometalate. The high degree of control in the matter of the size and morphology of the resulting POM superstructures renders this method attractive from a synthetic standpoint.

  2. Infinity-Norm Sphere-Decoding

    CERN Document Server

    Seethaler, Dominik

    2008-01-01

    The most promising approaches for efficient detection in multiple-input multiple-output (MIMO) wireless systems are based on sphere-decoding (SD). The conventional (and optimum) norm that is used to conduct the tree traversal step in SD is the l-two norm. It was, however, recently shown that using the l-infinity norm instead significantly reduces the VLSI implementation complexity of SD at only a marginal performance loss. These savings are due to a reduction in the length of the critical path and the silicon area of the circuit, but also, as observed previously through simulation results, a consequence of a reduction in the computational (algorithmic) complexity. The aim of this paper is an analytical performance and computational complexity analysis of l-infinity norm SD. For i.i.d. Rayleigh fading MIMO channels, we show that l-infinity norm SD achieves full diversity order with an asymptotic SNR gap, compared to l-two norm SD, that increases at most linearly in the number of receive antennas. Moreover, we ...

  3. Collective excitations in soft-sphere fluids.

    Science.gov (United States)

    Bryk, Taras; Gorelli, Federico; Ruocco, Giancarlo; Santoro, Mario; Scopigno, Tullio

    2014-10-01

    Despite that the thermodynamic distinction between a liquid and the corresponding gas ceases to exist at the critical point, it has been recently shown that reminiscence of gaslike and liquidlike behavior can be identified in the supercritical fluid region, encoded in the behavior of hypersonic waves dispersion. By using a combination of molecular dynamics simulations and calculations within the approach of generalized collective modes, we provide an accurate determination of the dispersion of longitudinal and transverse collective excitations in soft-sphere fluids. Specifically, we address the decreasing rigidity upon density reduction along an isothermal line, showing that the positive sound dispersion, an excess of sound velocity over the hydrodynamic limit typical for dense liquids, displays a nonmonotonic density dependence strictly correlated to that of thermal diffusivity and kinematic viscosity. This allows rationalizing recent observation parting the supercritical state based on the Widom line, i.e., the extension of the coexistence line. Remarkably, we show here that the extremals of transport properties such as thermal diffusivity and kinematic viscosity provide a robust definition for the boundary between liquidlike and gaslike regions, even in those systems without a liquid-gas binodal line. Finally, we discuss these findings in comparison with recent results for Lennard-Jones model fluid and with the notion of the "rigid-nonrigid" fluid separation lines.

  4. Quantum Hall effect on odd spheres

    Science.gov (United States)

    Coşkun, Ü. H.; Kürkçüoǧlu, S.; Toga, G. C.

    2017-03-01

    We solve the Landau problem for charged particles on odd dimensional spheres S2 k -1 in the background of constant SO (2 k -1 ) gauge fields carrying the irreducible representation (I/2 ,I/2 ,…,I/2 ). We determine the spectrum of the Hamiltonian, the degeneracy of the Landau levels and give the eigenstates in terms of the Wigner D -functions, and for odd values of I , the explicit local form of the wave functions in the lowest Landau level (LLL). The spectrum of the Dirac operator on S2 k -1 in the same gauge field background together with its degeneracies is also determined, and in particular, its number of zero modes is found. We show how the essential differential geometric structure of the Landau problem on the equatorial S2 k -2 is captured by constructing the relevant projective modules. For the Landau problem on S5, we demonstrate an exact correspondence between the union of Hilbert spaces of LLLs, with I ranging from 0 to Imax=2 K or Imax=2 K +1 to the Hilbert spaces of the fuzzy CP 3 or that of winding number ±1 line bundles over CP 3 at level K , respectively.

  5. Integrated marketing communications in educational sphere

    OpenAIRE

    2013-01-01

    The article investigates the paradigm of Integrated Marketing Communication and their main features. The author explains concept of Integrated Marketing Communication on the practical example in educational sphere. В статье рассказывается о понятии и основных чертах интегрированных маркетинговых коммуникаций. Автор поясняет положения концепции интегрированных маркетинговых коммуниакций на конкретном примере в образовательной сфере....

  6. Forming MOFs into spheres by use of molecular gastronomy methods.

    Science.gov (United States)

    Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard

    2014-07-14

    A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes.

  7. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    KAUST Repository

    Marston, Jeremy

    2011-06-20

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.

  8. Synthesis and Characterization of Oil-Chitosan Composite Spheres

    Directory of Open Access Journals (Sweden)

    Wei-Ting Wang

    2013-05-01

    Full Text Available Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles and lipophilic materials (i.e., rhodamine B or epirubicin could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres, 2.31 ± 0.08 mm (oil-chitosan composites, 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites, and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites, respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.

  9. Synthesis and characterization of oil-chitosan composite spheres.

    Science.gov (United States)

    Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru Mihai; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting

    2013-05-16

    Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites), and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites), respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin) could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.

  10. Public sphere as assemblage: the cultural politics of roadside memorialization.

    Science.gov (United States)

    Campbell, Elaine

    2013-09-01

    This paper investigates contemporary academic accounts of the public sphere. In particular, it takes stock of post-Habermasian public sphere scholarship, and acknowledges a lively and variegated debate concerning the multiple ways in which individuals engage in contemporary political affairs. A critical eye is cast over a range of key insights which have come to establish the parameters of what 'counts' as a/the public sphere, who can be involved, and where and how communicative networks are established. This opens up the conceptual space for re-imagining a/the public sphere as an assemblage. Making use of recent developments in Deleuzian-inspired assemblage theory - most especially drawn from DeLanda's (2006) 'new philosophy of society' - the paper sets out an alternative perspective on the notion of the public sphere, and regards it as a space of connectivity brought into being through a contingent and heterogeneous assemblage of discursive, visual and performative practices. This is mapped out with reference to the cultural politics of roadside memorialization. However, a/the public sphere as an assemblage is not simply a 'social construction' brought into being through a logic of connectivity, but is an emergent and ephemeral space which reflexively nurtures and assembles the cultural politics (and political cultures) of which it is an integral part. The discussion concludes, then, with a consideration of the contribution of assemblage theory to public sphere studies. (Also see Campbell 2009a).

  11. Radar Imaging of Spheres in 3D using MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Berryman, J G

    2003-01-21

    We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.

  12. Generation of Spheres from Dental Epithelial Stem Cells

    Science.gov (United States)

    Natsiou, Despoina; Granchi, Zoraide; Mitsiadis, Thimios A.; Jimenez-Rojo, Lucia

    2017-01-01

    The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes. PMID:28154538

  13. Oscillation effects upon film boiling from a sphere.

    Science.gov (United States)

    Schmidt, W. E.; Witte, L. C.

    1972-01-01

    Heat transfer rates from a silver-plated copper sphere, 0.75 in. in diameter, were studied by high speed photography during oscillations of the sphere in saturated liquid nitrogen and Freon-11. The oscillation frequencies ranged from zero to 13 Hz, and the amplitude-to-diameter ratio varied from zero to 2.67. The sphere was supported by a thin-walled stainless steel tube and carried a thermocouple attached near the lower stagnation point. A Fastax WF-3 16mm movie camera was used at about 2000 frames/sec. The differences in the vapor removal process at lower and higher oscillation frequencies are discussed.

  14. Spherical interferometry for the characterization of precision spheres

    Science.gov (United States)

    Nicolaus, R. A.; Bartl, G.

    2016-09-01

    Interferometry with spherical wavefronts is usually used for characterizing precise optics. A special spherical interferometer was set up to measure the volume of high precision spheres used for the new definition of the SI unit kilogram, for which a fundamental constant, such as Planck’s constant h or Avogadro’s constant N A, was to be determined. Furthermore with this type of interferometer and with a special evaluating algorithm, absolute form deviations of spheres can be determined. With this knowledge, a sphere can be processed further to reach unrivaled small sphericity deviations.

  15. From Ewald sphere to Ewald shell in nonlinear optics

    Science.gov (United States)

    Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-01

    Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.

  16. Simulations of a supersymmetry inspired model on a fuzzy sphere

    Energy Technology Data Exchange (ETDEWEB)

    Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-11-15

    We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a variant of this model on a fuzzy sphere. The prospect to restore exact supersymmetry in certain limits is under investigation. (orig.)

  17. Stochastic hard-sphere dynamics for hydrodynamics of nonideal fluids.

    Science.gov (United States)

    Donev, Aleksandar; Alder, Berni J; Garcia, Alejandro L

    2008-08-15

    A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressibility, and adjustable transport coefficients. This stochastic hard-sphere dynamics (SHSD) algorithm is a modification of the direct simulation Monte Carlo algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nanoparticle suspended in a compressible solvent.

  18. Self-diffusion in liquid gallium and hard sphere model

    Directory of Open Access Journals (Sweden)

    Blagoveshchenskii Nikolay

    2015-01-01

    Full Text Available Incoherent and coherent components of quasielastic neutron scattering have been studied in the temperature range of T = 313 K – 793 K aiming to explore the applicability limits of the hard-sphere approach for the microscopic dynamics of liquid gallium, which is usually considered as a non-hard-sphere system. It was found that the non-hard-sphere effects come into play at the distances shorter than the average interatomic distance. The longer range diffusive dynamics of liquid Ga is dominated by the repulsive forces between the atoms.

  19. VMware vSphere 4 Administration Instant Reference

    CERN Document Server

    Lowe, Scott; Johnson, Matthew K

    2009-01-01

    The only quick reference guide to the number one virtualization product!. Get all your solutions about VMware's newest virtualization infrastructure software on the spot with this handy reference guide. Designed for quick access with special headings, thumb tabs, easy-to-read lists, and more, this book is the perfect companion to any comprehensive VMware guide, such as Mastering VMware vSphere 4 .: Covers the market-leading virtualization product, VMware's new vSphere 4; Offers a quick-access reference for your day-to-day administration of vSphere 4; Includes thumb tabs, secondary and tertiary

  20. Mastering VMware vSphere 5.5

    CERN Document Server

    Lowe, Scott; Guthrie, Forbes; Liebowitz, Matt; Atwell, Josh

    2013-01-01

    The 2013 edition of the bestselling vSphere book on the market Virtualization remains the hottest trend in the IT world, and VMware vSphere is the industry's most widely deployed virtualization solution. The demand for IT professionals skilled in virtualization and cloud-related technologies is great and expected to keep growing. This comprehensive Sybex guide covers all the features and capabilities of VMware vSphere, showing administrators step by step how to install, configure, operate, manage, and secure it. This perfect blend of hands-on instruction, conceptual explanation, and practic

  1. The total spectral radiant flux calibration using a spherical spectrometer at National Institute of Metrology China

    Science.gov (United States)

    Zhao, Weiqiang; Liu, Hui; Liu, Jian

    2016-11-01

    At present day, in the field of lighting the incandescent lamps are phasing out. The solid state lighting products, i.e. LED, and the related market are developing very fast in China for its promising application, due to the energy-saving and the colorful features. For the quality control and the commercial trade purpose, it is highly necessary to measure the optical parameters of LED light sources with a fast, easy and affordable facility. Therefore, more test labs use the spherical spectrometer to measure LED. The quasi- monochrome of LED and the V(lambda) of silicon photodetector mismatch problem is reduced or avoided, because the total spectral radiant flux (TSRF) is measured, and all the optical parameters are calculate from the TSRF. In such a way, the spherical spectrometer calibration requires TSRF standard lamps instead of the traditional total flux standard lamps. National Institute of Metrology China (NIM) has studied and developed the facilities for TSRF measurement and provides related calibration services. This paper shows the TSRF standard lamp calibration procedure using a spherical spectrometer in every-day calibration and its traceable link to the primary SI unit at NIM. The sphere is of 1.5 m diameter, and installed with a spectrometer and a silicon photodetector. It also shows the detail of data process, such as the spectral absorption correction method and the calculation of the result derived from the spectral readings. The TSRF calibration covers the spectra range of 350 nm to 1050 nm, with a measurement uncertainty of 3.6% 1.8% (k=2).

  2. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  3. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  4. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  5. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  6. Fast neutron detection with a segmented spectrometer

    Science.gov (United States)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  7. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  8. Digital logarithmic airborne gamma ray spectrometer

    Science.gov (United States)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  9. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D.; Hollerbach, R., E-mail: david.cebron@ujf-grenoble.fr, E-mail: r.hollerbach@leeds.ac.uk [Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich CH-8092 (Switzerland)

    2014-07-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.

  10. Ensuring Economic Security in Lending Sphere

    Directory of Open Access Journals (Sweden)

    Ivan Vadimovich Kochikin

    2016-06-01

    Full Text Available Relevance of the topic is determined by the need for sustainable development of the country’s banking system, capable of ensuring the process of raising funds to producers and the public for their projects. One of the implementation of this objective is to discourage unfair behavior in financial markets. Trust is a key factor in the development of financial markets, therefore it is necessary to suppress the appearance of unfair practices and participants – black creditors, falsification of financial statements, trading on insider information and market manipulation. It requires a whole range of activities, and above all ensuring the inevitability and proportionality of punishment for unscrupulous players, the introduction of requirements for the business reputation of the management of financial institutions.The article is devoted to structuring legal violations in the lending sphere. The analysis of indicators of credit organizations in Russia was conducted to fulfill this aim. This analysis revealed the causes of sustainable growth of overdue accounts payable – job cuts in enterprises, violations in the financial sector, various errors in the credit granting / raising. The authors carry out the systematization and classification of offenses in the area of lending, provide examples, as well as factual material illustrating the violations in the lending process having the characteristics of a fraud. The article substantiates the obligations of employees of the credit institution, in the result of which risks of granting credit to fraudsters can be reduced. The methods of fraud prevention should include the identified methods of protection against fraud in the area under consideration – exchange of information by banks associated with the criminal intentions of customers; technology development and technical support, training, and personnel responsibilities.

  11. [The power of religion in the public sphere] / Alar Kilp

    Index Scriptorium Estoniae

    Kilp, Alar, 1969-

    2012-01-01

    Arvustus: Buthler, Judith, Habermas, Jürgen, Taylor, Charles, West, Cornel. The power of religion in the public sphere. (Eduardo Mendieta, Jonathan VanAntwerpen (eds.) Afterword by Craig Calhoun.) New York ; Chichester : Columbia University Press, 2011

  12. An elastic two-sphere swimmer in Stokes flow

    CERN Document Server

    Nasouri, Babak; Elfring, Gwynn J

    2016-01-01

    Swimming at low Reynolds number in Newtonian fluids is only possible through non-reciprocal body deformations due to the kinematic reversibility of the Stokes equations. We consider here a model swimmer consisting of two linked spheres, wherein one sphere is rigid and the other an incompressible neo-Hookean solid. The two spheres are connected by a rod which changes its length periodically. We show that the deformations of the body are non-reciprocal despite the reversible actuation and hence, the elastic two-sphere swimmer propels forward. Our results indicate that even weak elastic deformations of a body can qualitatively alter swimming dynamics and should not be neglected in analyzing swimming in Stokes flows.

  13. An elastic two-sphere swimmer in Stokes flow

    Science.gov (United States)

    Nasouri, Babak; Elfring, Gwynn

    2016-11-01

    Swimming at low Reynolds number in Newtonian fluids is only possible through non-reciprocal body deformations due to the kinematic reversibility of the Stokes equations. We consider here a model swimmer consisting of two linked spheres, wherein one sphere is rigid and the other an incompressible neo-Hookean solid. The two spheres are connected by a rod which changes its length periodically. We show that the deformations of the body are non-reciprocal despite the reversible actuation and hence, the elastic two-sphere swimmer propels forward. Our results indicate that even weak elastic deformations of a body can qualitatively alter swimming dynamics and should not be neglected in analyzing swimming in Stokes flows.

  14. Synthesis of Nanometer-sized Mesoporous Oxide Spheres

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A few hundreds nanometer-sized mesoporous silica and alumina spheres were synthesized in organic solvents. The impacts of ammonia, N,N-dimethylformamide (DMF) and stirring speed were also investigated.

  15. A Breakthrough in Sphere Packing: The Search for Magic Functions

    NARCIS (Netherlands)

    Laat, D. de; Vallentin, F.

    2016-01-01

    This paper by David de Laat and Frank Vallentin is an exposition about the two recent breakthrough results in the theory of sphere packings. It includes an interview with Henry Cohn, Abhinav Kumar, Stephen D. Miller and Maryna Viazovska.

  16. Numerical simulation of negative Magnus force on a rotating sphere

    Science.gov (United States)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2010-11-01

    Flow characteristics and fluid force on a sphere rotating along with axis perpendicular to mean air flow were investigated using Large Eddy Simulation at two different Reynolds numbers of 10,000 and 200,000. As a result of simulation, opposite flow characteristics around the sphere and displacement of the separation point were visualized depending on the Reynolds number even though the sphere rotates at the same rotation speed according to the Reynolds number. When Reynolds number is 10,000, flow characteristics agree with the flow field explained in the Magnus effect. However sphere rotates at the same rotation speed while increasing Reynolds number to 200,000, separation point moves in opposite direction and wake appears in the different direction. The reason of the negative Magnus force was discussed in terms of the boundary layer transition on the surface.

  17. Dynamic equivalences in the hard-sphere dynamic universality class.

    Science.gov (United States)

    López-Flores, Leticia; Ruíz-Estrada, Honorina; Chávez-Páez, Martín; Medina-Noyola, Magdaleno

    2013-10-01

    We perform systematic simulation experiments on model systems with soft-sphere repulsive interactions to test the predicted dynamic equivalence between soft-sphere liquids with similar static structure. For this we compare the simulated dynamics (mean squared displacement, intermediate scattering function, α-relaxation time, etc.) of different soft-sphere systems, between them and with the hard-sphere liquid. We then show that the referred dynamic equivalence does not depend on the (Newtonian or Brownian) nature of the microscopic laws of motion of the constituent particles, and hence, applies independently to colloidal and to atomic simple liquids. Finally, we verify another more recently proposed dynamic equivalence, this time between the long-time dynamics of an atomic liquid and its corresponding Brownian fluid (i.e., the Brownian system with the same interaction potential).

  18. The Blaschke conjecture and great circle fibrations of spheres

    OpenAIRE

    2001-01-01

    We construct an explicit diffeomorphism taking any fibration of a sphere by great circles into the Hopf fibration, using elementary geometry--indeed the diffeomorphism is a local (differential) invariant, algebraic in derivatives.

  19. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J; Rogers, Michael R

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  20. A Reaction Sphere for High Performance Attitude Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our innovative reaction sphere (Doty pending patent application serial number 61/164,868) has the potential to provide much higher performance than a conventional...

  1. ANOMIE DEVELOPMENT IN RELIGIOUS SPHERE OF POSTSOVIET SOCIETY

    Directory of Open Access Journals (Sweden)

    Pletnev Alexander Vladislavovich

    2013-04-01

    Full Text Available In the current article the author analyzes influence of amendments in the religious sphere of postsoviet society for the increase of anomie in it. He indicates main factors that influence the anomie and charactarize specific features of religious sphere of modern Russian society. They are religious variety, caused by missionery activity and restore of traditional confessions (Orthodox, Islam, Judiasm, Buddism, Lutheranism, and also actualization of the religious identity matter, the phenomen of “out of confession herecy” and religious conflicts. According to the researcher opinion, amendments in the spiritual sphere influence the studied phenomen as well as trasnformation of political and economic system, caused by transfer from communism to democracy and from planning to market economy. The possible ways of anomie decrease via religious sphere of the society such as increase of Orthodox church belivers, adaptation of its tradition and practics, new religious cult inctitualization are indicated in this article as well.

  2. Experimental evidence of zero forward scattering by magnetic spheres.

    Science.gov (United States)

    Mehta, R V; Patel, Rajesh; Desai, Rucha; Upadhyay, R V; Parekh, Kinnari

    2006-03-31

    Magnetically induced diffraction patterns by micron sized magnetic spheres dispersed in a ferrofluid disappear at a certain critical magnetic field. This critical field is found to depend on the concentration of the ferrofluid and on the volume of the magnetic spheres. We attribute this effect to the zero forward scattering by magnetic spheres as predicted by Kerker, Wang, and Giles [J. Opt. Soc. Am. 73, 765 (1983)]. We suggest that such a dispersion can be used to study the optical analogues of localization of electrons in condensed matter, the Hall effect, and the anisotropic diffusion, etc. The combination of the micron sized magnetic spheres and the ferrofluid will also be useful to design magnetically tunable photonic devices.

  3. Forces encountered by a sphere during impact into sand

    Science.gov (United States)

    Joubaud, Sylvain; Homan, Tess; Gasteuil, Y.; Lohse, Detlef; van der Meer, Devaraj

    2014-12-01

    We describe direct measurements of the acceleration of an object impacting on a loosely packed granular bed under various pressures, using an instrumented sphere. The sphere acts as a noninvasive probe that measures and continuously transmits the acceleration as it penetrates into the sand, using a radio signal. The time-resolved acceleration of the sphere reveals the detailed dynamics during the impact that cannot be resolved from the position information alone. Because of the unobstructed penetration, we see a downward acceleration of the sphere at the moment the air cavity collapses. The compressibility of the sand bed is observed through the oscillatory behavior of the acceleration curve for various ambient pressures; it shows the influence of interstitial air on the compaction of the sand as a function of time.

  4. Phonon contribution to the entropy of hard-sphere crystals.

    Science.gov (United States)

    Elser, Veit

    2014-05-01

    Comparing the entropies of hard spheres in the limit of close packing, for different stacking sequences of the hexagonal layers, has been a challenge because the differences are so small. Here we present a method based on a "sticky-sphere" model by which the system interpolates between hard spheres in one limit and a harmonic crystal in the other. For the fcc and hcp stackings we have calculated the entropy difference in the harmonic (sticky) limit, as well as the differences in the free energy change upon removing the stickiness in the model. The former, or phonon entropy, accounts for most of the entropy difference. Our value for the net entropy difference, Δs = 0.001164(8)k(B) per sphere, is in excellent agreement with the best previous estimate by Mau and Huse [Phys. Rev. E 59, 4396 (1999)].

  5. On isometric extension problem between two unit spheres

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres. Some important results of the related problems are outlined and the recent progress is mentioned.

  6. On isometric extension problem between two unit spheres

    Institute of Scientific and Technical Information of China (English)

    Ding GuangGui

    2009-01-01

    In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres.Some important results of the related problems are outlined and the recent progress is mentioned.

  7. Diffusive Wave Spectroscopy of a random close packing of spheres

    Science.gov (United States)

    Crassous, J.

    2007-06-01

    We are interested in the propagation of light in a random packing of dielectric spheres within the geometrical optics approximation. Numerical simulations are performed using a ray tracing algorithm. The effective refractive indexes and the transport mean free path are computed for different refractive indexes of spheres and intersticial media. The variations of the optical path length under small deformations of the spheres assembly are also computed and compared to the results of Diffusive Wave Spectroscopy experiments. Finally, we propose a measure of the transport mean free path and a Diffusive Wave Spectroscopy experiment on a packing of glass spheres. The results of those experiments agree with the predictions of this ray tracing approach.

  8. The Volume of a Sphere: A Chinese Derivation.

    Science.gov (United States)

    Swetz, Frank J.

    1995-01-01

    Examines how ancient Chinese mathematicians attempted to correct an error concerning the volume of a sphere in the Nine Chapters on the Mathematical Art, a compendium of the mathematics known and used in China in ancient times. (MKR)

  9. Wind speed and direction measurements using the sphere anemometer

    Science.gov (United States)

    Heisselmann, Hendrik; Hoelling, Michael; Peinke, Joachim

    2009-11-01

    In times of growing energy demand, the importance of wind energy is rapidly increasing and so is the need for accurate wind speed and direction measurements. The widely spread cup anemometers show significant over-speeding under turbulent wind conditions as inherent in atmospherical flows while being solely capable of detecting the wind speed. Therefore, we propose the newly developed sphere anemometer as a simple an robust sensor for direction and velocity measurements. The sphere anemometer exploits the velocity-dependent deflection of a tube, which is the order of μm and can be detected by means of a light pointer as used in atomic force microscopes. In comparative measurements under laboratory conditions the sphere anemometer showed a significantly higher temporal resolution then cup anemometers while it does not exhibit any over-speeding. Additionally, results of atmospherical wind measurements with the sphere anemometer and state-of-the-art cup anemometry are presented.

  10. A 4[pi] dilepton spectrometer: PEPSI

    Energy Technology Data Exchange (ETDEWEB)

    Buda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Bacelar, J.C.S. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Balanda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Klinken, J. van (Kernfysisch Versneller Inst., Groningen (Netherlands)); Sujkowski, Z. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Woude, A. van der (Kernfysisch Versneller Inst., Groningen (Netherlands))

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd[sub 2]Fe[sub 14]B permanent magnets forming a compact 4[pi] magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ([alpha][sub [pi

  11. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  12. Wide size range fast integrated mobility spectrometer

    Science.gov (United States)

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  13. Vacuum system for the SAMURAI spectrometer

    Science.gov (United States)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  14. SAMURAI spectrometer for RI beam experiments

    Science.gov (United States)

    Kobayashi, T.; Chiga, N.; Isobe, T.; Kondo, Y.; Kubo, T.; Kusaka, K.; Motobayashi, T.; Nakamura, T.; Ohnishi, J.; Okuno, H.; Otsu, H.; Sako, T.; Sato, H.; Shimizu, Y.; Sekiguchi, K.; Takahashi, K.; Tanaka, R.; Yoneda, K.

    2013-12-01

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  15. SAMURAI spectrometer for RI beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayash@lambda.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Chiga, N. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Isobe, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Kondo, Y. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kubo, T.; Kusaka, K.; Motobayashi, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Ohnishi, J.; Okuno, H.; Otsu, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sako, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sato, H.; Shimizu, Y. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sekiguchi, K.; Takahashi, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Tanaka, R. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Yoneda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2013-12-15

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  16. Preliminary results from a new spin spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Bedrossian, P.J. [Lawrence Livermore National Lab., CA (United States); Cummins, T.R. [Univ. of Missouri, Rolla, MO (United States). Dept. of Physics] [and others

    1998-12-31

    The first preliminary results from a novel spectrometer for elementally-specific measurements of magnetic surfaces and ultrathin films are presented here. The key measurements are based upon spin-resolving and photon-dichroic photoelectron spectroscopy. True spin-resolution is achieved by the use of a Mini-Mott detection scheme. The photon-dichroic measurements include the variant magnetic x-ray linear dichroism (MXLD). Both a multi-channel, energy dispersive collection scheme as well as the spin-detecting Mini-Mott apparatus are used in data collection. The Spin Spectrometer is based at the Spectromicroscopy Facility (Beamline 7) at the Advanced Light Source.

  17. Satellite Relative Motion Control for MIT’s SPHERES Program

    Science.gov (United States)

    2012-03-01

    firing combinations of its twelve cold gas thrusters [2]. These thrusters either fire at a specific value or they do not fire at all. This on-off...Satellite Relative Motion Control for MIT’s SPHERES Program THESIS Samuel P. Barbaro, Second Lieutenant, USAF AFIT/ GA /ENY/12-M02 DEPARTMENT OF THE...United States. AFIT/ GA /ENY/12-M02 Satellite Relative Motion Control for MIT’s SPHERES Program THESIS Presented to the Faculty Department of

  18. Sphere Lower Bound for Rotated Lattice Constellations in Fading Channels

    CERN Document Server

    Fabregas, Albert Guillen i

    2007-01-01

    We study the error probability performance of rotated lattice constellations in frequency-flat Nakagami-$m$ block-fading channels. In particular, we use the sphere lower bound on the underlying infinite lattice as a performance benchmark. We show that the sphere lower bound has full diversity. We observe that optimally rotated lattices with largest known minimum product distance perform very close to the lower bound, while the ensemble of random rotations is shown to lack diversity and perform far from it.

  19. Magnetic relaxation in chain-of-spheres ferromagnetic particles

    CERN Document Server

    Yang, J S

    2002-01-01

    The thermal activation of elongated ferromagnetic particles is analyzed using a chain-of-spheres model. The spheres within the chain are assumed to be coupled magnetically with dipolar interaction. The effect of uniaxial magnetocrystalline anisotropy along the chain is also taken into account. It was shown that the behavior of thermal switching critically depends on the relative strength of shape anisotropy and magnetocrystalline anisotropy, field orientation, sweep field rate and temperature.

  20. Silica hollow spheres with nano-macroholes like diatomaceous earth.

    Science.gov (United States)

    Fujiwara, Masahiro; Shiokawa, Kumi; Sakakura, Ikuko; Nakahara, Yoshiko

    2006-12-01

    Artificial synthesis of hollow cell walls of diatoms is an ultimate target of nanomaterial science. The addition of some water-soluble polymers such as sodium polymethacrylate to a solution of water/oil/water emulsion system, which is an essential step of the simple synthetic procedure of silica hollow spheres (microcapsules), led to the formation of silica hollow spheres with nano-macroholes (>100 nm) in their shell walls, the morphologies of which are analogous to those of diatom earth.

  1. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  2. Preparation of Nanocrystalline MoS2 Hollow Spheres

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Nanocrystalline MoS2 with hollow spherical morphology has been prepared by the hydrothermal method. The products are characterized by means of X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy. The experimental results give the evidence that the sample is consists of hollow spheres 400~600 nm in diameter, and there is much whisker on the surface of MoS2 hollow sphere.

  3. Existence of conformal metrics on spheres with prescribed Paneitz curvature

    CERN Document Server

    Ben-Ayed, M

    2003-01-01

    In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n >= 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature.

  4. Semiclassical and quantum Liouville theory on the sphere

    OpenAIRE

    Menotti, Pietro; Vajente, Gabriele

    2004-01-01

    We solve the Riemann-Hilbert problem on the sphere topology for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincare' accessory parameters. In this way we compute the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the case of n finite charges and m infinitesimal. With the same technique we compute the exact Green function on the sphere with three fin...

  5. Rigidity theorem forWillmore surfaces in a sphere

    Indian Academy of Sciences (India)

    Hongwei Xu; Dengyun Yang

    2016-05-01

    Let 2 be a compact Willmore surface in the (2 + )-dimensional unit sphere 2+. Denote by and the mean curvature and the squared length of the second fundamental form of 2, respectively. Set $\\rho^2 = S − 2H^2$. In this note, we proved that there exists a universal positive constant , such that if $\\parallel \\rho^2\\parallel_2 \\lt C$, then $\\rho^2 = 0$ and 2 is a totally umbilical sphere.

  6. Microwave characterization of submicrometer-sized nickel hollow sphere composites

    Science.gov (United States)

    Deng, Yida; Zhao, Ling; Shen, Bin; Liu, Lei; Hu, Wenbin

    2006-07-01

    In this work, we report on the microwave properties of the nickel hollow spheres (NHSs) synthesized by a facile autocatalytic reduction method. The resonance characterization of the NHS-polyvinyl butyral composite, due to the skin effect, is observed in the microwave frequency. It is shown that the resonant and the matching frequencies of the composite largely depend on the particle size of the spheres.

  7. The squashed fuzzy sphere, fuzzy strings and the Landau problem

    CERN Document Server

    Andronache, Stefan

    2015-01-01

    We discuss the squashed fuzzy sphere, which is a projection of the fuzzy sphere onto the equatorial plane, and use it to illustrate the stringy aspects of noncommutative field theory. We elaborate explicitly how strings linking its two coincident sheets arise in terms of fuzzy spherical harmonics. In the large N limit, the matrix-model Laplacian is shown to correctly reproduce the semi-classical dynamics of these charged strings, as given by the Landau problem.

  8. The squashed fuzzy sphere, fuzzy strings and the Landau problem

    Science.gov (United States)

    Andronache, Stefan; Steinacker, Harold C.

    2015-07-01

    We discuss the squashed fuzzy sphere, which is a projection of the fuzzy sphere onto the equatorial plane, and use it to illustrate the stringy aspects of noncommutative field theory. We elaborate explicitly how strings linking its two coincident sheets arise in terms of fuzzy spherical harmonics. In the large N limit, the matrix-model Laplacian is shown to correctly reproduce the semi-classical dynamics of these charged strings, as given by the Landau problem.

  9. Liouville theory and uniformization of four-punctured sphere

    CERN Document Server

    Hadasz, L; Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    Few years ago Zamolodchikov and Zamolodchikov proposed an expression for the 4-point classical Liouville action in terms of the 3-point actions and the classical conformal block. In this paper we develop a method of calculating the uniformizing map and the uniformizing group from the classical Liouville action on n-punctured sphere and discuss the consequences of Zamolodchikovs conjecture for an explicit construction of the uniformizing map and the uniformizing group for the sphere with four punctures.

  10. Progress on sol-gel sphere-pac development

    Energy Technology Data Exchange (ETDEWEB)

    Suchomel, R R

    1978-01-01

    The ORNL sol-gel program is reviewed briefly. Advantages of the sol-gel sphere-pac are listed. Three sizes of microspheres are being used; the two largest sized fractions are blended and then loaded into the fuel rod, followed by packing of the smallest microspheres into void spaces using a low-energy vibrator. Sol-gel sphere-pac also appears attractive for breeder reactor fuel fabrication. (DLC)

  11. Sound Scattering and Its Reduction by a Janus Sphere Type

    Directory of Open Access Journals (Sweden)

    Deliya Kim

    2014-01-01

    Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.

  12. Investigating hard sphere interactions through spin echo scattering angle measurement

    Science.gov (United States)

    Washington, Adam

    Spin Echo Scattering Angle Measurement (SESAME) allows neutron scattering instruments to perform real space measurements on large micron scale samples by encoding the scattering angle into the neutron's spin state via Larmor precession. I have built a SESAME instrument at the Low Energy Neutron Source. I have also assisted in the construction of a modular SESAME instrument on the ASTERIX beamline at Los Alamos National lab. The ability to tune these instruments has been proved mathematically and optimized and automated experimentally. Practical limits of the SESAME technique with respect to polarization analyzers, neutron spectra, Larmor elements, and data analysis were investigated. The SESAME technique was used to examine the interaction of hard spheres under depletion. Poly(methyl methacrylate) spheres suspended in decalin had previously been studied as a hard sphere solution. The interparticle correlations between the spheres were found to match the Percus-Yevick closure, as had been previously seen in dynamical light scattering experiments. To expand beyond pure hard spheres, 900kDa polystyrene was added to the solution in concentrations of less than 1% by mass. The steric effects of the polystyrene were expected to produce a short-range, attractive, "sticky" potential. Experiment showed, however, that the "sticky" potential was not a stable state and that the spheres would eventually form long range aggregates.

  13. Squeeze flow of a Carreau fluid during sphere impact

    KAUST Repository

    Uddin, J.

    2012-07-19

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  14. Global Calibration of Multiple Cameras Based on Sphere Targets

    Directory of Open Access Journals (Sweden)

    Junhua Sun

    2016-01-01

    Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.

  15. Hard-sphere limit of soft-sphere model for granular materials: stiffness dependence of steady granular flow.

    Science.gov (United States)

    Mitarai, Namiko; Nakanishi, Hiizu

    2003-02-01

    Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard-sphere limit of the soft-sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard-sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional flow, however, we demonstrate that the collision rate diverges as the power of the particle stiffness so that the time fraction of the multiple contacts remains finite even in the hard-sphere limit, although the contact time fraction for the binary collisions tends to zero.

  16. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  17. A new Generation of Spectrometer Calibration Techniques based on Optical Frequency Combs

    CERN Document Server

    Schmidt, Piet O; Kimeswenger, Stefan

    2007-01-01

    Typical astronomical spectrographs have a resolution ranging between a few hundred to 200.000. Deconvolution and correlation techniques are being employed with a significance down to 1/1000 th of a pixel. HeAr and ThAr lamps are usually used for calibration in low and high resolution spectroscopy, respectively. Unfortunately, the emitted lines typically cover only a small fraction of the spectrometer's spectral range. Furthermore, their exact position depends strongly on environmental conditions. A problem is the strong intensity variation between different (intensity ratios {>300). In addition, the brightness of the lamps is insufficient to illuminate a spectrograph via an integrating sphere, which in turn is important to calibrate a long-slit spectrograph, as this is the only way to assure a uniform illumination of the spectrograph pupil. Laboratory precision laser spectroscopy has experienced a major advance with the development of optical frequency combs generated by pulsed femto-second lasers. These lase...

  18. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  19. HyTES: Thermal Imaging Spectrometer Development

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  20. Digital Signal Processing in the GRETINA Spectrometer

    Science.gov (United States)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  1. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  2. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...

  3. Study and Demarcating of Electron Magnetic Spectrometer

    Institute of Scientific and Technical Information of China (English)

    LIYe-jun; SHANYu-sheng; TAOYe-zheng; CHENGYou-jian; ZHANGHai-feng

    2003-01-01

    The principle of electron magnetic spectrometer is a moving charged particle circles a central point for the Lorenz force when it moves in a steady magnetic field, at the same time, we consider the influence of gravity excursion, magnetic grads excursion and curvature excursion. Having adopted yoke iron equalizing technology and had magnetic field and gravity field at the same line.

  4. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  5. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  6. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response f

  7. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  8. Computer Enhanced SRO NQR-Spectrometer

    Science.gov (United States)

    Mano, Koichi; Hashimoto, Masao

    1986-02-01

    An automatic computer supported SRO NQR spectrometer system was constructed for the measurement of time dependent NQR signal intensities. The system has several functions: fast scanning (500 kH z/25 s), averaging, smoothing, automatic noise level estimation, automatic peak detection, etc. The process of the ß → α phase transition of p-dichlorobenzene is illustrated by the 3-dimensional spectrum .

  9. Broadband Infrared Heterodyne Spectrometer: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  10. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Institute of Scientific and Technical Information of China (English)

    Hamid Sazegaran; Ali-Reza Kiani-Rashid; Jalil Vahdati Khaki

    2016-01-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere (DI–SHS) syntactic foamswere investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and en-ergy-dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compres-sion behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that mi-crocracks start and grow from the interface region.

  11. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Science.gov (United States)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-06-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron-steel hollow sphere (DI-SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder-binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI-SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI-SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

  12. Tin-wall hollow ceramic spheres from slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.T.; Cochran, J.K.

    1992-12-31

    The overall objective of this effort was to develop a process for economically fabricating thin-wall hollow ceramic spheres from conventional ceramic powders using dispersions. This process resulted in successful production of monosized spheres in the mm size range which were point contact bonded into foams. Thin-wall hollow ceramic spheres of small (one to five millimeter) diameter have novel applications as high-temperature insulation and light structural materials when bonded into monolithic foams. During Phase 1 of this program the objective as to develop a process for fabricating thin-wall hollow spheres from powder slurries using the coaxial nozzle fabrication method. Based on the success during Phase 1, Phase 2 was revised to emphasize the assessment of the potential structural and insulation applications for the spheres and modeling of the sphere formation process was initiated. As more understanding developed, it was clear that to achieve successful structural application, the spheres had to be bonded into monolithic foams and the effort was further expanded to include both bonding into structures and finite element mechanical modeling which became the basis of Phase 3. Successful bonding techniques and mechanical modeling resulted but thermal conductivities were higher than desired for insulating activities. In addition, considerable interest had been express by industry for the technology. Thus the final Phase 4 concentrated on methods to reduce thermal conductivity by a variety of techniques and technology transfer through individualized visits. This program resulted in three Ph.D. theses and 10 M.S. theses and they are listed in the appropriate technical sections.

  13. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.

    Science.gov (United States)

    Klatt, Michael A; Torquato, Salvatore

    2014-11-01

    We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a

  14. Characterization of a {sup 239}PuBe isotopic neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Sanchez, A., E-mail: fermineutron@yahoo.com [IPN, Escuela Superior de Fisica y Matematicas, 07738 Mexico D. F. (Mexico)

    2012-10-15

    A Bonner sphere spectrometer was used to determine the features of a {sup 239}PuBe neutron source used to operate the ESFM-Ipn Subcritical Reactor. The spectrometer is a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter polyethylene spheres, that was located 100 cm from the neutron source. The count rates obtained with the spectrometer were unfolded using the NSDUAZ code and neutron spectrum, total fluence, and ambient dose equivalent were determined. A Monte Carlo calculation, using the MCNP5 code, was carried out to estimate the spectrum and integral features being less that values obtained experimentally due to the presence of {sup 241}Pu in the Pu used to fabricate the source. Using the experimental information the actual neutron yield and the mass fraction of {sup 241}Pu was estimated. (Author)

  15. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  16. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  17. BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱升云; 勾振辉; 等

    1994-01-01

    A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).

  18. Miniature anastigmatic spectrometer design with a concave toroidal mirror.

    Science.gov (United States)

    Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan

    2016-03-01

    An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.

  19. Procedure to measure the neutrons spectrum around a lineal accelerator for radiotherapy; Procedimiento para medir el espectro de los neutrones en torno a un acelerador lineal para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M.; Letechipia de L, C. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Benites R, J. L. [Servicios de Salud de Nayarit, Centro Estatal de Cancerologia, Calzada de la Cruz 116 Sur, 63000 Tepic, Nayarit (Mexico); Salas L, M. A., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Agronomia, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2013-10-15

    An experimental procedure was developed, by means of Bonner spheres, to measure the neutrons spectrum around Linacs of medical use that only requires of a single shot of the accelerator; to this procedure we denominate Planetary or Isocentric method. One of the problems associated to the neutrons spectrum measurement in a radiotherapy room with lineal accelerator is because inside the room a mixed, intense and pulsed radiation field takes place affecting the detection systems based on active detector; this situation is solved using a passive detector. In the case of the Bonner spheres spectrometer the active detector has been substituted by activation detectors, trace detectors or thermoluminescent dosimeters. This spectrometer uses several spheres that are situated one at a time in the measurement point, this way to have the complete measurements group the accelerator should be operated, under the same conditions, so many times like spheres have the spectrometer, this activity can consume a long time and in occasions due to the work load of Linac to complicate the measurement process too. The procedure developed in this work consisted on to situate all the spectrometer spheres at the same time and to make the reading by means of a single shot, to be able to apply this procedure, is necessary that before the measurements two characteristics are evaluated: the cross-talking of the spheres and the symmetry conditions of the neutron field. This method has been applied to determine the photo-neutrons spectrum produced by a lineal accelerator of medical use Varian ix of 15 MV to 100 cm of the isocenter located to 5 cm of depth of a solid water mannequin of 30 x 30 x 15 cm. The spectrum was used to determine the total flow and the environmental dose equivalent. (Author)

  20. Evaluation of Delayed Critical ORNL Unreflected HEU Metal Sphere (ORSphere)

    Science.gov (United States)

    Marshall, M. A.; Bess, J. D.

    2014-04-01

    In 1971 and 1972 experimenters at the Oak Ridge Critical Experiment Facility performed critical experiments using an unreflected metal sphere of highly enriched uranium (HEU). The sphere used for the criticality experiments, originally used for neutron leakage spectrum measurements by General Atomic Company, consisted of three main parts and were assembled with a vertical assembly machine. Two configurations were tested. The first was nearly spherical with a nominal radius of 3.467 inches and had a reactivity of 68.1 ± 2.0 cents. The sphere parts were then re-machined as a sphere with a nominal radius of 3.4425 inches. This assembly had a reactivity of -23 cents. The method, dimensions, and uncertainty of the critical experiment were extensively recorded and documented. The original purpose of the experiments was for comparison to GODIVA I experiments. The ORNL unreflected HEU Metal Spheres have been evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (scheduled for inclusion in the September 2013 edition).

  1. Crown sealing and buckling instability during water entry of spheres

    KAUST Repository

    Marston, J. O.

    2016-04-05

    We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.

  2. Convenient integrating sphere scanner for accurate luminous flux measurements

    Science.gov (United States)

    Winter, S.; Lindemann, M.; Jordan, W.; Binder, U.; Anokhin, M.

    2009-08-01

    Measurement results and applications of a recently developed device for the measurement of the spatial uniformity of integrating spheres are presented. Due to the complexity of their implementation, sphere scanners are mainly used by national metrology institutes to increase the accuracy of relative and absolute luminous flux measurements (Ohno et al 1997 J. IES 26 107-14, Ohno and Daubach 2001 J. IES 30 105-15, Ohno 1998 Metrologia 35 473-8, Hovila et al 2004 Metrologia 41 407-13). The major drawback of traditional scanners for integrating spheres is the necessity of a complex and time-consuming sphere modification, as the lamp holder has to be replaced by a new scanner holder with additional cables for power supply and for communication with the stepping motor control unit (Ohno et al 1997 J. IES 26 107-14). Therefore, with traditional scanners the relative spatial sphere responsivity already changes due to the installation of a special scanner holder. The new scanner simply substitutes the lamp under test: it can be screwed into an E27 lamp socket, as it needs only two electrical contacts. Two wires are simultaneously used for the power supply of the stepping motor control unit, the scanner light source (LED) and for the signal transmission of commands and results. The benefits of scanner-assisted measurements are shown for spotlight lamp calibrations.

  3. Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yongsoon; Wang, Li Q.; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2008-09-18

    Colloidal carbon spheres have been prepared from aqueous alpha-, beta-, and gamma-cyclodextrin (CD) solutions in closed systems under hydrothermal conditions at 160 oC. Both liquid and solid-state 13C NMR spectra taken for samples at different reaction times have been used to monitor the dehydration and carbonization pathways. CD slowly hydrolyzes to glucose and forms 5-hydroxymethyl furfural (HMF) followed by carbonization into colloidal carbon spheres. The isolated carbon spheres are 70-150 nm in diameter, exhibit a core-shell structure, and are comprised of a condensed core (C=C) peppered with resident chemical functionalities including carboxylate and hydroxyl groups. Evidence from 13C solid-state NMR and FT-IR spectra reveal that the evolving carbon spheres show a gradual increase in the amount of aromatic carbon as a function of reaction time and that the carbon spheres generated from gamma-CD contain significantly higher aromatic carbon than those derived from alpha- and beta-CD.

  4. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  5. Realistic packed bed generation using small numbers of spheres

    Energy Technology Data Exchange (ETDEWEB)

    Pavlidis, D., E-mail: dimitrios.pavlidis04@imperial.ac.uk; Lathouwers, D.

    2013-10-15

    Highlights: • A method for generating 3D, periodic, closely packed beds of small numbers (<50) of spheres is presented. • The method is able to reproduce characteristics for the entirety (including nearwall area) of a randomly stacked bed. • Results are in good agreement with reference numerical data. -- Abstract: A method for stochastically generating three-dimensional, periodic, closely packed beds of small numbers (less than 50) of spheres is presented. This is an essential and integral part of realistic modelling of fluid flow and heat transfer through packed beds. In order to be able to reproduce the entirety of these complex geometries (in the radial direction) using small numbers of spheres, they are divided into two regions: the near-wall region (up to 4–5 sphere diameters from the solid wall in the wall-normal direction) and the core region. Near-wall stackings are doubly periodic and include a solid wall, while core stackings are triply periodic. A computational method for generating such geometries is presented for each region. Both are based on overlap removal methods. Results are compared against reference numerical data. Diagnostics used to evaluate the models include average packing fractions and coordination numbers, porosity profiles and distributions of the angle between two spheres which touch a common neighbour. Results are in good qualitative and quantitative agreement with the available reference data.

  6. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  7. Evaluation of the sphere anemometer for atmospheric wind measurements

    Science.gov (United States)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2014-11-01

    Our contribution will compare the sphere anemometer and two standard sensors for wind energy and meteorology based on data from a near-shore measurement campaign. We will introduce the characteristics of the sphere anemometer - a drag-based sensor for simultaneous wind speed and direction measurements, which makes use of the highly resolving light pointer principle to detect the velocity-dependent deflection of sphere mounted on a flexible tube. Sphere anemometer, cup anemometer and 3D sonic anemometer were installed at near-shore site in the German Wadden Sea. A comparison of the anemometers was carried out based on several month of high frequency data obtained from this campaign. The measured wind speed and direction data were analyzed to evaluate the capability of the sphere anemometer under real operating conditions, while the sensor characteristics obtained from previous wind tunnel experiments under turbulent conditions served as a reference to assess the durability and to identify challenges of the new anemometer. A characterization of the atmospheric wind conditions at the test site is performed based on the recorded wind data. Wind speed and wind direction averages and turbulence intensities are analyzed as well as power spectra and probability density functions. Supported by the German Ministry of Economics and Energy.

  8. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  9. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Science.gov (United States)

    Yoneda, K.

    2012-11-01

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  10. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, K. [RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  11. Fourier and Hadamard transform spectrometers - A limited comparison. II

    Science.gov (United States)

    Harwit, M.; Tai, M. H.

    1977-01-01

    A mathematical approach was used to compare interferometric spectrometers and Hadamard transform spectrometers. The principle results are reported, noting that the simple Hadamard spectrometer encodes more efficiently than a Michelson interferometer which, in turn, encodes less efficiently than is usually acknowledged. Hirschfeld's (1977) major objections to these findings are discussed, although it is noted that none of his objections is supported by evidence.

  12. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  13. A wideband spectrometer for the SRT

    Science.gov (United States)

    Comoretto, G.; Natale, V.

    A radiotelescope operating at millimeter wavelengths must be able to analyze an instantaneous bandwidth of at least a few GHz in spectroscopic mode, with a number of spectral points of the order of thousands. Two solutions are examined. In the first, it is assumed that a multi-channel digital spectrometer, with a bandwidth of the order of 100 MHz for each channel, will be available. In this case, a digital filterbank derived from the experience with the ALMA correlator could be used to synthesize a total bandwidth of 1-2 GHz. For wider bandwidths, an acousto-optical spectrometer is proposed. The experience at IRA, Sez. di Firenze with these instruments is presented, and possible solutions are outlined.

  14. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    TAN ChengMing; YAN YiHua; TAN BaoLin; XU GuiRong

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrom-eter by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  15. Data Reduction with the MIKE Spectrometer

    CERN Document Server

    Bernstein, Rebecca A; Prochaska, J Xavier

    2015-01-01

    This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics of the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.

  16. A 4 π dilepton spectrometer: PEPSI

    Science.gov (United States)

    Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.

  17. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  18. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  19. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  20. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  1. WSPEC: A Waveguide Filter Bank Spectrometer

    CERN Document Server

    Che, George; Underhill, Matthew; Mauskopf, Philip; Groppi, Christopher; Jones, Glenn; Johnson, Bradley; McCarrick, Heather; Flanigan, Daniel; Day, Peter

    2015-01-01

    We have designed, fabricated, and measured a 5-channel prototype spectrometer pixel operating in the WR10 band to demonstrate a novel moderate-resolution (R=f/{\\Delta}f~100), multi-pixel, broadband, spectrometer concept for mm and submm-wave astronomy. Our design implements a transmission line filter bank using waveguide resonant cavities as a series of narrow-band filters, each coupled to an aluminum kinetic inductance detector (KID). This technology has the potential to perform the next generation of spectroscopic observations needed to drastically improve our understanding of the epoch of reionization (EoR), star formation, and large-scale structure of the universe. We present our design concept, results from measurements on our prototype device, and the latest progress on our efforts to develop a 4-pixel demonstrator instrument operating in the 130-250 GHz band.

  2. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  3. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    Replacing this large bulky tert-butyl carbamate with a thinner less sterically encumbering protecting group such as a methyl carbamate may eliminate the...This instrument has been an asset in organic synthesis and natural product isolation and teaching in organic, biochemistry, and instrumental analysis...isolation and teaching in organic, biochemistry, and instrumental analysis classes. Over the last year thie mass spectrometer has directly influenced the

  4. The Berkeley tunable far infrared laser spectrometers

    Science.gov (United States)

    Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.

    1991-01-01

    A detailed description is presented for a tunable far infrared laser spectrometer based on frequency mixing of an optically pumped molecular gas laser with tunable microwave radiation in a Schottky point contact diode. The system has been operated on over 30 laser lines in the range 10-100/cm and exhibits a maximum absorption sensitivity near one part in a million. Each laser line can be tuned by + or - 110 GHz with first-order sidebands.

  5. Calibration and monitoring of spectrometers and spectrophotometers.

    Science.gov (United States)

    Frings, C S; Broussard, L A

    1979-06-01

    We have delineated some of the factors affecting the performance of spectrometers and spectrophotometers in the clinical laboratory and have presented some of the methods for verifying that these instruments are functioning properly. At a minimum, every laboratory should perform periodic inspections of spectrometric functions to check wavelength calibration, linearity of detector response, and stray radiation. Only through such an inspection program can a laboratory ensure that these instruments are not contributing to inaccurate analytical results.

  6. VAMOS: a VAriable MOde high acceptance Spectrometer

    CERN Document Server

    Savajols, H

    1999-01-01

    The study of reactions induced by the future SPIRAL beams at GANIL requires new techniques: the low intensity of secondary beams implies the need of a very high efficiency detection system ; the study of nearly or completely unknown nuclei, over a wide range of masses and energies, needs a very efficient method for attributing a reaction product to a nucleus. The VAriable MOde high acceptance Spectrometer VAMOS is being designed and built especially for this purpose.

  7. Midrapidity measurements with the BRAHMS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    The forward- and midrapidity-arms of the BRAHMS experiment are designed to measure charged particle production over a wide range of transverse momentum for rapidities, 0{le}y{le}4. Details of the midrapidity spectrometer, which provides coverage for 0{le}{eta}{le}1.3, are presented here. The capabilities for inclusive {pi}{sup +-}, K{sup +-}, and p{sup +-} measurements and boson pair correlations are discussed.

  8. Development of Electron Magnetic Spectrometer and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interaction between ultra-short pulse laser and solid plasma produces hot electron. Thereare many methods to study hot electron spectrum and space distribution. But the way of electron magnetic spectrometer is the most directional method. Particles with charge act circle movement in spare magnetic field. Different energy electrons have different whirl radius. So along whirl diameter direction electron spectrum can be obtained. Actually, electron is affected by gravity excursion and magnetic grads and curvature excursion besides lawrence power. The direction of

  9. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  10. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  11. VMware vSphere 5 Administration Instant Reference

    CERN Document Server

    Kusek, Christopher; Daniel, Andy

    2011-01-01

    Compact and portable reference guide for quick answers to VMware vSphere If you're looking to migrate to the newest version of VMware vSphere, this concise guide will get you up to speed and down to business in no time. If you're new to VMware vSphere, this book is for you too! The compact size of this quick reference makes it easy for you to have by your side—whether you're in the field, server room, or at your desk. Helpful elements for finding information such as thumb tabs, tables of contents with page numbers at the beginning of each chapter, and special headers puts what you need a

  12. Damped Arrow-Hurwicz algorithm for sphere packing

    Science.gov (United States)

    Degond, Pierre; Ferreira, Marina A.; Motsch, Sebastien

    2017-03-01

    We consider algorithms that, from an arbitrarily sampling of N spheres (possibly overlapping), find a close packed configuration without overlapping. These problems can be formulated as minimization problems with non-convex constraints. For such packing problems, we observe that the classical iterative Arrow-Hurwicz algorithm does not converge. We derive a novel algorithm from a multi-step variant of the Arrow-Hurwicz scheme with damping. We compare this algorithm with classical algorithms belonging to the class of linearly constrained Lagrangian methods and show that it performs better. We provide an analysis of the convergence of these algorithms in the simple case of two spheres in one spatial dimension. Finally, we investigate the behaviour of our algorithm when the number of spheres is large in two and three spatial dimensions.

  13. The Schr\\"odinger-Poisson system on the sphere

    CERN Document Server

    Gérard, Patrick

    2010-01-01

    We study the Schr\\"odinger-Poisson system on the unit sphere $\\SS^2$ of $\\RR^3$, modeling the quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the Cauchy problem for this system. We prove that this problem is regularly well-posed on every $H^s(\\SS ^2)$ with $s>0$, and not uniformly well-posed on $L^2(\\SS ^2)$. The proof of well-posedness relies on multilinear Strichartz estimates, the proof of ill-posedness relies on the construction of a counterexample which concentrates exponentially on a closed geodesic. In a second part of the paper, we prove that this model can be obtained as the limit of the three dimensional Schr\\"odinger-Poisson system, singularly perturbed by an external potential that confines the particles in the vicinity of the sphere.

  14. Improved List Sphere Decoder for Multiple Antenna Systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced-complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list construction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.

  15. AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.

  16. Diversity and the European Public Sphere. The Case of Denmark

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene; Siim, Birte; Agustin, Lise Rolandsen

    2010-01-01

    This report contains empirical findings from the Danish case within the Eurosphere project. It is based on 55 interviews with Danish opinion makers on the topics of diversity, EU polity and the European public sphere The empirical research programme of EUROSPHERE aims to explore whether...... it is possible to develop an inclusive public sphere in the European Union. Based on different scenarios and alternative combinations of different approaches to diversity, polity, and the public sphere, EUROSPHERE aims to identify the notions, discourses, and objectives that are in the process of becoming...... Series represents the finalization of the very first step of a comprehensive comparative research programme. The aim of this series is to provide a brief summary of a huge data material collected by the project researchers. This report summarises empirical findings from the Danish setting...

  17. Anomalous Motion of a Sphere Falling through Water

    Science.gov (United States)

    Kuwabara, Goro; Chiba, Seiji; Kono, Kimitoshi

    1983-10-01

    A pendulum motion of a sphere falling through water under the action of gravity was studied experimentally for the Reynolds number between 1.5× 103 and 4.0× 104, and its explanation is given. The quantitative analysis of the path with stereoscopic photographs showed that the bending of the path from the vertical line occured through the action of a side force L acting perpendicularly to the path and alternating its direction with a frequency whose Strouhal number was about 0.2. Visual observation with a VIDEO revealed that the force L arose from a circulating flow around the sphere, which was generated and alternated its sense of rotation by shedding asymmetric vortex loops from alternate sides of the sphere. The lift coefficient was found to be about 0.3. The drag coefficient increased from 0.4 to 0.9 when the circulating flow reversed.

  18. Radiation of charge bunches revolving around a metamaterial sphere

    Science.gov (United States)

    Torabi, Mahmoud; Shokri, Babak

    2017-01-01

    We investigate the interaction of a relativistic uniformly rotating charge with a metamaterial sphere in the microwave range. The charge revolves around the sphere at the equatorial plane. The root mean square of the radiation field for different types of metamaterial spheres is presented and its dependence on some usual parameters is considered. They demonstrate that the radiation field is concentrated near the surface and shifts towards the centre by increasing charge energy for conventional and double-negative metamaterials. The stopping and deflection forces acting on the charge are also calculated. Finally, we generalize these results to a line charge bunch. This study has potential application in the area of high-power radiation sources and accelerators.

  19. The Sphere Anemometer - A Fast Alternative to Cup Anemometry

    Science.gov (United States)

    Heißelmann, Hendrik; Hölling, Michael; Peinke, Joachim

    The main problem of cup anemometry is the different response time for increasing and decreasing wind velocities due to its moment of inertia. This results in an overestimation of wind speed under turbulent wind conditions, the so-called over-speeding. Additionally, routine calibrations are necessary due to the wear of bearings. Motivated by these problems the sphere anemometer, a new simple and robust sensor for wind velocity measurements without moving parts, was developed at the University of Oldenburg. In contrast to other known thrust-based sensors, the sphere anemometer uses the light pointer principle to detect the deflection of a bending tube caused by the drag force acting on a sphere mounted at its top. This technique allows the simultaneous determination of wind speed and direction via a two-dimensional position sensitive detector.

  20. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.