WorldWideScience

Sample records for bone-marrow derived pro-angiogenic

  1. Bone Marrow-Derived Macrophages (BMM)

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Porse, Bo

    2008-01-01

    INTRODUCTIONBone marrow-derived macrophages (BMM) are primary macrophage cells, derived from bone marrow cells in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is a lineage-specific growth factor that is responsible for the proliferation and differentiation...... of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929...... cells and is used in the form of L929-conditioned medium. Under these conditions, the bone marrow monocyte/macrophage progenitors will proliferate and differentiate into a homogenous population of mature BMMs. The efficiency of the differentiation is assessed using fluorescence-activated cell sorting...

  2. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  3. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vascu

  4. Bone marrow-derived cell regulation of skeletal muscle regeneration

    OpenAIRE

    Sun, Dongxu; Martinez, Carlo O.; OCHOA, OSCAR; Ruiz-Willhite, Lourdes; Bonilla, Jose R.; Centonze, Victoria E.; Waite, Lindsay L.; Joel E. Michalek; McManus, Linda M.; Shireman, Paula K.

    2009-01-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type ...

  5. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  6. Bone marrow-derived CD13+ cells sustain tumor progression

    OpenAIRE

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-mali...

  7. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    OpenAIRE

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R.

    2006-01-01

    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we ...

  8. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    OpenAIRE

    Muschler, George F.; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal f...

  9. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    OpenAIRE

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. We have defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few...

  10. Bone marrow-derived cell regulation of skeletal muscle regeneration.

    Science.gov (United States)

    Sun, Dongxu; Martinez, Carlo O; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R; Centonze, Victoria E; Waite, Lindsay L; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2009-02-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2(-/-) mice into irradiated WT or CCR2(-/-) host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2(-/-) BM. Furthermore, numbers of MPCs (CD34(+)/Sca-1(-)/CD45(-) cells) were significantly increased in mice receiving CCR2(-/-) BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration. PMID:18827026

  11. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation.

    Directory of Open Access Journals (Sweden)

    Dorothée Cantinieaux

    Full Text Available Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.

  12. Bone marrow-derived pancreatic stellate cells in rats.

    Science.gov (United States)

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  13. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina;

    2004-01-01

    discrepancies may reflect balance between immunoregulatory and neurocytopathologic roles for NO. We investigated selective effects of bone marrow-derived versus CNS parenchymal sources of iNOS in EAE in chimeric mice. Chimeras that selectively expressed or ablated iNOS in leukocytes both showed significant...... delay in disease onset, with no difference in disease severity. We conclude that bone marrow-derived and CNS parenchymal sources of iNOS-derived NO both play a regulatory role in EAE....

  14. Bone Marrow Derived Adult Stem Cell Implantation: A Possible Permanent Treatment Modality for Type 2 Diabetics

    OpenAIRE

    R.S. KAHLON; M.K. Manchanda; P. KANWAL

    2011-01-01

    Introduction: Diabetes is one of the most prevalent chronic disease that exists in the world. Type 2Diabetes is the predominant type of diabetes. Management is basically limited to exercise, diet and oralhypoglycemic drugs before insulin therapy has to be instituted. But bone marrow derived stem cellimplantation into the islets has shown very encouraging results for diabetics.Methods: Bone marrow derived stem cells when implanted in the pancreas leads to regeneration ofinsulin producing Beta ...

  15. Contribution of bone marrow-derived fibrocytes to liver fibrosis.

    Science.gov (United States)

    Xu, Jun; Cong, Min; Park, Tae Jun; Scholten, David; Brenner, David A; Kisseleva, Tatiana

    2015-02-01

    Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Despite recent reports on the emerging contribution of fibrocytes to fibrosis of parenchymal and non-parenchymal organs and tissues, fibrocytes remain the most understudied pro-fibrogenic cellular population. In the past years fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis by giving rise to collagen type I producing cells/myofibroblasts. Hence, the role of fibrocytes in fibrosis is not well defined since different studies often contain controversial results on the number of fibrocytes recruited to the site of injury versus the number of fibrocyte-derived myofibroblasts in the same fibrotic organ. Furthermore, many studies were based on the in vitro characterization of fibrocytes formed after outgrowth of BM and/or peripheral blood cultures. Therefore, the fibrocyte function(s) still remain(s) lack of understanding, mostly due to (I) the lack of mouse models that can provide complimentary in vivo real-time and cell fate mapping studies of the dynamic differentiation of fibrocytes and their progeny into collagen type I producing cells (and/or possibly, other cell types of the hematopoietic system); (II) the complexity of hematopoietic cell differentiation pathways in response to various stimuli; (III) the high plasticity of hematopoietic cells. Here we summarize the current understanding of the role of CD45(+) collagen type I(+) BM-derived cells in the pathogenesis of liver injury. Based on data obtained from various organs undergoing fibrogenesis or other type of chronic injury, here we also discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses. PMID:25713803

  16. Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Insulin-Dependent Diabetes

    OpenAIRE

    Fotino, Carmen; Ricordi, Camillo; Lauriola, Vincenzo; Alejandro, Rodolfo; Pileggi, Antonello

    2010-01-01

    The bone marrow is an invaluable source of adult pluripotent stem cells, as it gives rise to hematopoietic stem cells, endothelial progenitor cells, and mesenchymal cells, amongst others. The use of bone marrow-derived stem cell (BMC) transplantation (BMT) may be of assistance in achieving tissue repair and regeneration, as well as in modulating immune responses in the context of autoimmunity and transplantation. Ongoing clinical trials are evaluating the effects of BMC to preserve functiona...

  17. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    OpenAIRE

    Yongping Su; Chunmeng Shi; Chunxue Li; Xinze Ran; Junping Wang; Shiwu Dong; Fengchao Wang; Zhongmin Zou; Dengqun Liu

    2010-01-01

    Interstitial cells of Cajal (ICCs) in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs) could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of ...

  18. Bone marrow-derived stem cells and respiratory disease.

    Science.gov (United States)

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  19. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    Science.gov (United States)

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  20. Chronic foot-shock stress potentiates the influx of bone marrow-derived microglia into hippocampus.

    Science.gov (United States)

    Brevet, Marie; Kojima, Hideto; Asakawa, Akihiro; Atsuchi, Kaori; Ushikai, Miharu; Ataka, Koji; Inui, Akio; Kimura, Hiroshi; Sevestre, Henri; Fujimiya, Mineko

    2010-07-01

    For several years, a new population of microglia derived from bone marrow has been described in multiple settings such as infection, trauma, and neurodegenerative disease. The aim of this study was to investigate the migration of bone marrow-derived cells to the brain parenchyma after stress exposure. Stress exposure was performed in mice that had received bone marrow transplantation from GFP mice, allowing identification of blood-derived elements within the brain. Electric foot-shock exposure was chosen because of its ability to serve as fundamental and physical stress in mice. Bone marrow-derived GFP(+) cells migrated to the ventral part of the hippocampus and acquired a ramified microglia-like morphology. Microglia marker Iba1 was expressed by 100% of the ramified cells, whereas ramified cells were negative for the astrocyte marker GFAP. Compared with the case in the control group, ramified cells significantly increased after chronic exposure to stress (5 days). One month after 5 days of stress exposure, ramified cells significantly decreased in ventral hippocampus compared with the group examined immediately after the last stress exposure. We report for the first time the migration of bone marrow-derived cells to the ventral hippocampus after stress exposure. These cells have the characteristics of microglia. Mechanisms responsible for this migration and their roles in the brain remain to be determined. PMID:20155811

  1. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  2. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  3. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function*

    OpenAIRE

    Wang, Jian-an; Fan, You-qi; Li, Chang-Ling; He, Hong; Sun, Yong; Lv, Bing-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells. BMCs wer...

  4. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity

    OpenAIRE

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E.; Franquesa, Marcella; Engela, Anja U; Korevaar, Sander S; Roelofs, Helene; Genever, Paul G; IJzermans, Jan NM; Betjes, Michiel GH; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J.

    2013-01-01

    Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral ...

  5. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  6. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    Institute of Scientific and Technical Information of China (English)

    Bruno; C; Huber; Ulrich; Grabmaier; Stefan; Brunner

    2014-01-01

    Parathyroid hormone(PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.

  7. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration.

    Science.gov (United States)

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-11-26

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  8. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus;

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  9. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  10. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    International Nuclear Information System (INIS)

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [35S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D+ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated

  11. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural...

  12. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  13. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice.

    Directory of Open Access Journals (Sweden)

    Koji Ataka

    Full Text Available BACKGROUND: Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow. METHODS AND FINDINGS: Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1(lowCCR2(+CXCR4(high, as distinct from CX3CR1(highCCR2(-CXCR4(low resident microglia, and express higher levels of interleukin-1β (IL-1β but lower levels of tumor necrosis factor-α (TNF-α. Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1 in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1 in the bone marrow and increases the frequency of CXCR4(+ monocytes in peripheral circulation. And then a chemokine (C-C motif receptor 2 (CCR2 or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN. CONCLUSION: Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.

  14. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    OpenAIRE

    Burdon, Tom J.; Arghya Paul; Nicolas Noiseux; Satya Prakash; Dominique Shum-Tim

    2010-01-01

    During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines ...

  15. Defective TGFβ signaling in bone marrow-derived cells prevents Hedgehog-induced skin tumors

    OpenAIRE

    Fan, Qipeng; Gu, Dongsheng; Liu, Hailan; Yang, Ling; Zhang, Xiaoli; Yoder, Mervin C.; Kaplan, Mark H.; Xie, Jingwu

    2013-01-01

    Hedgehog (Hh) signaling in cancer cells drives changes in the tumor microenvironment that are incompletely understood. Here we report that Hh- driven tumors exhibit an increase in myeloid-derived suppressor cells (MDSC) and a decrease in T cells, indicative of an immune suppressive tumor microenvironment. This change was associated with activated TGFβ signaling in several cell types in BCCs. We determined that TGFβ signaling in bone marrow (BM)-derived cells, not keratinocytes, regulates MDSC...

  16. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  17. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    OpenAIRE

    Ryoichi Tashima; Satsuki Mikuriya; Daisuke Tomiyama; Miho Shiratori-Hayashi; Tomohiro Yamashita; Yuta Kohro; Hidetoshi Tozaki-Saitoh; Kazuhide Inoue; Makoto Tsuda

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controver...

  18. Contribution of bone marrow derived cells to the pancreatic tumor microenvironment

    OpenAIRE

    Scarlett, Christopher J.

    2013-01-01

    Pancreatic cancer is a complex, aggressive, and heterogeneous malignancy driven by the multifaceted interactions within the tumor microenvironment. While it is known that the tumor microenvironment accommodates many cell types, each playing a key role in tumorigenesis, the major source of these stromal cells is not well-understood. This review examines the contribution of bone marrow-derived cells (BMDC) to pancreatic carcinogenesis, with respect to their role in constituting the tumor microe...

  19. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells

    OpenAIRE

    Chunfang Liu; Zhongwei Chen; Zhihong Chen; Tao Zhang; Yuan Lu

    2006-01-01

    It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs), which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form ma...

  20. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells1*

    OpenAIRE

    LIU, CHUNFANG; Chen, Zhongwei; Chen, Zhihong; Zhang, Tao; Lu, Yuan

    2006-01-01

    It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs), which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form ma...

  1. AI-05IMPACT OF GBM MICROENVIRONMENT ON EXPRESSION PROFILE OF BONE MARROW DERIVED PROGENITOR CELLS

    OpenAIRE

    Burrell, Kelly; Singh, Sanjay; Agnihotri, Sameer; Hill, Richard; Aldape, Kenneth; Zadeh, Gelareh

    2014-01-01

    We have recently shown that bone marrow derived cells (BMDC) provide a distinct tumor region dependent contribution to glioblastoma multiforme (GBM) neovascularization. The influence of GBM microenvironment on differentiation and modulation of expression factors by BMDC however remains unknown. In this study we establish the differential expression profile of BMDC as a consequence of recruitment and interaction with the GBM microenvironment and in response to radiation (RTx) and anti-angiogen...

  2. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis

    OpenAIRE

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M.; Hosoya, Hitomi; St. John, Lisa S.; Molldrem, Jeffrey J.; Corti, Angelo; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2013-01-01

    The progression of many solid tumors is associated with increased vascularization. We previously recognized involvement in tumor development and angiogenesis of tumor stromal cells expressing the CD13 protease aminopeptidase. The basic biological concept of participation of nontumor cells in the cancer stroma microenvironment is strengthened in the present study by our finding that a CD11b+CD13+ myeloid subset of bone marrow-derived cells affects pericyte biology and angiogenesis and thereby ...

  3. Osteobiol (r) enhances osteogenic differentiation in bone marrow derived stem cells

    OpenAIRE

    D. Lauritano; Carinci, F.; Zollino, I; A. Hassanipour; Saggese, V; A. Palmieri; Girardi, A; Cura, F; A. Piras; Zamboni, P.; Brunelli, G

    2012-01-01

    OsteoBiol (R) (OsteoBiol, Tecnoss Dental, Turin, Italy) a cortical collagenated porcine bone is largely employed in oral implant techniques for bone regeneration thanks to its biocompatibility and osteoconductivity To study the mechanism by which cortical porcine bone promotes osteoblast differentiation and bone regeneration, changes in expression level of bone related genes were investigated by real time RT-PCR, in bone marrow derived stem cells and human osteoblasts cultivated with OsteoBio...

  4. Use of Bone Marrow derived Stem Cells in patients with Cardiovascular Disorders

    OpenAIRE

    Abraham S; Naveen AT; Kirtivasan V; Prasad GN; Karthik Vaidyanathan; Rajesh V.; Madhusankar N; Cherian KM

    2007-01-01

    Patients with end stage heart failure have very few treatment options. The long waiting times for transplant and the complications associated with immunosuppression has led to the search for alternatives. Subsequent to the isolation and characterization of stem cells, tremendous advances have been made and the safety and feasibility of autologous bone marrow derived stem cells has been proven in preclinical studies. Clinical studies have also shown mobilized cells repair the infracted heart, ...

  5. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    OpenAIRE

    Ayatollahi, M.; Geramizadeh, B; Zakerinia, M; M Ramzi; Yaghobi, R.; Hadadi, P.; Rezvani, A. R.; Aghdai, M.; N Azarpira; Karimi, H.

    2012-01-01

    Background: The ability of mesenchymal stem cells (MSCs) to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering. Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential. Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells we...

  6. Bone Marrow-Derived Endothelial Progenitors Expressing Delta-Like 4 (Dll4) Regulate Tumor Angiogenesis

    OpenAIRE

    Real, Carla; Remédio, Leonor; Caiado, Francisco; Igreja, Cátia; Borges, Cristina; Trindade, Alexandre; Pinto-do-Ó, Perpétua; Yagita, Hideo; Duarte, Antonio; Dias, Sérgio

    2011-01-01

    Neo-blood vessel growth (angiogenesis), which may involve the activation of pre-existing endothelial cells (EC) and/or the recruitment of bone marrow-derived vascular precursor cells (BM-VPC), is essential for tumor growth. Molecularly, besides the well established roles for Vascular endothelial growth factor (VEGF), recent findings show the Notch signalling pathway, in particular the ligand Delta-like 4 (Dll4), is also essential for adequate tumor angiogenesis; Dll4 inhibition results in imp...

  7. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    Science.gov (United States)

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. PMID:27206766

  8. Effect of allogeneic bone marrow derived stromal cells on induced third-degree skin burn healing in mouse

    Directory of Open Access Journals (Sweden)

    Leyla Soleymani

    2014-10-01

    Conclusion: This experimental modulation of wound healing suggests that bone marrow-derived stromal cells can significantly enhance the rate of wound healing possibly through stimulation of granulation tissue, angiogenesis, fibroblast proliferation and collagen deposition.

  9. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    International Nuclear Information System (INIS)

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro

  10. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  11. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    OpenAIRE

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed ...

  12. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  13. Altered protein secretions during interactions between adipose tissue- or bone marrow-derived stromal cells and inflammatory cells

    OpenAIRE

    Hattori, Hidemi; Ishihara, Masayuki

    2015-01-01

    Introduction Paracrine effects can be exploited in cell-based therapies that secrete factors, such as chemokines and cytokines, and can recruit inflammatory cells to transplants. In this study, mouse adipose tissue-derived stromal cells (ASCs) and bone marrow-derived stromal cells (ST2 cells) were used to examine changes in paracrine interactions with inflammation cells. Methods Green fluorescent protein positive (GFP+) bone marrow cells (BMCs) were injected into an irradiated mouse via the f...

  14. Characteristics of bone marrow-derived endothelial progenitor cells in aged mice

    International Nuclear Information System (INIS)

    Evidence for dysfunction of endothelial repair in aged mice was sought by studying the pattern of induced differentiation, quantity, and function of bone marrow-derived endothelial progenitor cells (EPCs) in aged mice. The CD117-positive stem cell population was separated from bone marrow by magnetic activated cell-sorting system (MACS), and EPCs were defined by demonstrating the expression of CD117+CD34+Flk-1+ by flow cytometry. After 7 days of culture, the number of clones formed was counted, and proliferation and migration of EPCs were analyzed by MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and modified Boyden chamber assay. The results demonstrated that compared to the control group, the quantity of bone marrow-derived CD117+ stem cells and EPCs, as well as the proliferation, migration, the number of clones formed, and phagocytotic function of EPCs were significantly reduced in aged mice. There were no significant differences in the morphology and induced differentiation pattern of EPCs between the aged mouse group and the control group. Authors suggest that the dysfunction of EPCs may serve as a surrogate parameter of vascular function in old mice

  15. Use of Bone Marrow derived Stem Cells in patients with Cardiovascular Disorders

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    Full Text Available Patients with end stage heart failure have very few treatment options. The long waiting times for transplant and the complications associated with immunosuppression has led to the search for alternatives. Subsequent to the isolation and characterization of stem cells, tremendous advances have been made and the safety and feasibility of autologous bone marrow derived stem cells has been proven in preclinical studies. Clinical studies have also shown mobilized cells repair the infracted heart, improving function and survival. We have started a clinical study to evaluate the efficacy of bone marrow derived stem cells. Bone-marrow was aspirated from the right iliac crest and the stem cells were isolated by density gradient method and suspended according to the mode of delivery.From Jan 2007 till date 10 patients (8 adults, 2 children, age with end stage cardiovascular disorder of varied etiology (Ischemic left ventricular dysfunction - 6 patients, Primary pulmonary hypertension - 2 patients, Dilated cardiomyopathy -1 patient, Biventricular non-compaction -1 patient underwent stem cell therapy. All patients were evaluated and cardiac function was measured by using echocardiography and thallium scintigraphy. There were no procedure related complications. These patients are being regularly followed-up and one patient who has completed 6-month follow-up has shown improvement in perfusion as well as increase in ejection fraction of 10%. Stem cell therapy in patients with end-stage cardiovascular disorder might be a promising tool by means of angiogenesis and other paracrine mechanisms.

  16. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  17. Thy-1+ dendritic cells in murine epidermis are bone marrow-derived

    International Nuclear Information System (INIS)

    Thy-1+, Ly-5+ dendritic cells have recently been described as a resident cell population in murine epidermis, but their ontogeny and function are unknown. The origin and turnover of epidermal Thy-1+ cells utilizing chimeric mice were investigated. Lethally x-irradiated AKR/J (Thy-1.1+) and AKR/Cum (Thy-1.2+) mice were reconstituted with allogeneic bone marrow cells with or without thymocytes from congenic AKR/Cum or AKR/J mice, respectively. The density of residual indigenous Thy-1.1+ cells in AKR/J chimeras and Thy-1.2+ cells in AKR/Cum chimeras was substantially reduced following x-irradiation, as determined by immunofluorescence staining of epidermal sheets. Epidermal repopulation by allogeneic Thy-1+ dendritic epidermal cells was first observed at 5 weeks in AKR/J chimeras and at 7 weeks in AKR/Cum chimeras and progressed slowly. Repopulation was not enhanced by increasing the number of allogeneic bone marrow cells injected from 2 X 10(7) to 10(8) cells or by the addition of 8 X 10(7) allogeneic thymocytes to the donor inoculate. Epidermal repopulation by allogeneic Thy-1.2+ cells was not seen in AKR/J mice reconstituted with syngeneic bone marrow cells and allogeneic Thy-1.2+ AKR/Cum thymocytes. Taken together, these results indicate that Thy-1+ dendritic epidermal cells are derived from the bone marrow and suggest that they are not related to conventional peripheral T-lymphocytes

  18. Radioprotection against radiation induced bone marrow syndrome by a semi-synthetic derivative of chlorophyll

    International Nuclear Information System (INIS)

    A plethora of biological properties have been attributed to chlorophyllin (CHL), the water soluble derivative of the green plant pigment chlorophyll. Several studies are available describing its ability to modify genotoxic effects. It has been shown that administration CHL to human lymphopenic individuals led to the recovery and restoration of the immune system and also inhibited aflatoxin B1-DNA binding in individuals residing in high risk exposure to this liver carcinogen. The present study is aimed at establishing radioprotective efficacy of CHL against ionizing radiation induced hematopoietic syndrome. CHL offered complete protection against whole body irradiation (WBI, 7 Gy) induced mortality in mice. This observation was supported by increase in the number of macroscopic endogenous colonies enumerated on the surface of the spleens taken from CHL+WBI group as compared to WBI group. Radioprotection by CHL was found to be mediated by increasing the frequency of hematopoietic stem cells (HSCs) as evaluated by side population assay. Administration of CHL induced G1 arrest in bone marrow cells, increased number of granulocytes and neutrophils in the peripheral blood. At the molecular level, activation of ERK was observed in bone marrow cells obtained from CHL administered mice. In conclusion, CHL mediated radioprotection was attributed to increased stem cell numbers, G1 arrest in bone marrow cells, increased neutrophil numbers and ERK activation. (author)

  19. Bone Marrow-Derived Stem Cells:A Mixed Blessing in the Multifaceted World of Diabetic Complications

    OpenAIRE

    Mangialardi, Giuseppe; Madeddu, Paolo

    2016-01-01

    Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected b...

  20. Culture medium of bone marrow-derived human mesenchymal stem cells effects lymphatic endothelial cells and tumor lymph vessel formation

    OpenAIRE

    ZHAN, JIE; Li, Yahong; Yu, Jing; ZHAO, YUANYAUN; CAO, WENMING; Ma, Jie; Sun, Xiaoxian; Sun, Li; QIAN, HUI; Zhu, Wei; Xu, Wenrong

    2015-01-01

    Human bone marrow mesenchymal stem cells (hBM-MSCs) favor tumor growth and metastasis in vivo and in vitro. Neovascularization is involved in several pathological conditions, including tumor growth and metastasis. Previous studies have demonstrated that human bone marrow MSC-derived conditioned medium (hBM-MSC-CM) can promote tumor growth by inducing the expression of vascular epidermal growth factor (VEGF) in tumor cells. However, the effect of BM-MSCs on tumor lymph vessel formation has yet...

  1. Autologous bone marrow-derived progenitor cell transplantation for myocardial regeneration after acute infarction

    Directory of Open Access Journals (Sweden)

    Obradović Slobodan

    2004-01-01

    Full Text Available Background. Experimental and first clinical studies suggest that the transplantation of bone marrow derived, or circulating blood progenitor cells, may beneficially affect postinfarction remodelling processes after acute myocardial infarction. Aim. This pilot trial reports investigation of safety and feasibility of autologous bone marrow-derived progenitor cell therapy for faster regeneration of the myocardium after infarction. Methods and results. Four male patients (age range 47-68 years with the first extensive anterior, ST elevation, acute myocardial infarction (AMI, were treated by primary angioplasty. Bone marrow mononuclear cells were administered by intracoronary infusion 3-5 days after the infarction. Bone marrow was harvested by multiple aspirations from posterior cristae iliacae under general anesthesia, and under aseptic conditions. After that, cells were filtered through stainless steel mesh, centrifuged and resuspended in serum-free culture medium, and 3 hours later infused through the catheter into the infarct-related artery in 8 equal boluses of 20 ml. Myocardial viability in the infarcted area was confirmed by dobutamin stress echocardiography testing and single-photon emission computed tomography (SPECT 10-14 days after infarction. One patient had early stent thrombosis immediately before cell transplantation, and was treated successfully with second angioplasty. Single average ECG revealed one positive finding at discharge, and 24-hour Holter ECG showed only isolated ventricular ectopic beats during the follow-up period. Early findings in two patients showed significant improvement of left ventricular systolic function 3 months after the infarction. There were no major cardiac events after the transplantation during further follow-up period (30-120 days after infarction. Control SPECT for the detection of ischemia showed significant improvement in myocardial perfusion in two patients 4 months after the infarction

  2. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics.

    Science.gov (United States)

    N'diaye, Marie; Warnecke, Andreas; Flytzani, Sevasti; Abdelmagid, Nada; Ruhrmann, Sabrina; Olsson, Tomas; Jagodic, Maja; Harris, Robert A; Guerreiro-Cacais, Andre Ortlieb

    2016-03-01

    Dendritic cells are professional APCs that play a central role in the initiation of immune responses. The limited ex vivo availability of dendritic cells inspires the widespread use of bone marrow-derived dendritic cells as an alternative in research. However, the functional characteristics of bone marrow-derived dendritic cells are incompletely understood. Therefore, we compared functional and phenotypic characteristics of rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3 ligand bone marrow-derived dendritic cells. A comparison of surface markers revealed that FLT3 ligand-bone marrow-derived dendritic cells expressed signal regulatory protein α, CD103, and CD4 and baseline levels of MHC class II, CD40, and CD86, which were highly up-regulated upon stimulation. Conversely, GM-CSF/IL-4-bone marrow-derived dendritic cells constitutively expressed signal regulatory protein α, CD11c, and CD11b but only mildly up-regulated MHC class II, CD40, or CD86 following stimulation. Expression of dendritic cell-associated core transcripts was restricted to FLT3 ligand-bone marrow-derived dendritic cells . GM-CSF/IL-4-bone marrow-derived dendritic cells were superior at phagocytosis but were outperformed by FLT3 ligand-bone marrow-derived dendritic cells at antigen presentation and T cell stimulation in vitro. Stimulated GM-CSF/IL-4-bone marrow-derived dendritic cells secreted more TNF, CCL5, CCL20, and NO, whereas FLT3 ligand-bone marrow-derived dendritic cells secreted more IL-6 and IL-12. Finally, whereas GM-CSF/IL-4-bone marrow-derived dendritic cell culture supernatants added to resting T cell cultures promoted forkhead box p3(+) regulatory T cell populations, FLT3 ligand-bone marrow-derived dendritic cell culture supernatants drove Th17 differentiation. We conclude that rat GM-CSF/IL-4-bone marrow-derived dendritic cells and FLT3 ligand-bone marrow-derived dendritic cells are functionally distinct. Our data support the current rationale that FLT3

  3. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  4. Engraftment of bone marrow-derived cells after nonlethal radiation in syngeneic C57BL/6mice%Engraftment of bone marrow-derived cells after nonlethal radiation in syngeneic C57BL/6 mice

    Institute of Scientific and Technical Information of China (English)

    Wu Liao; Tan Li; Wang Yu; Liu Dengqun; Shi Chunmeng

    2015-01-01

    Objective To study the characteristics of cell engraftment in mice at a lower dose under nonlethal radiated condition.Methods A syngeneic C57BL/6 mouse model,transplanted with 1 × 107 bone marrow cells and exposed to 2.5 Gy whole body irradiation (WBI),was selected to study the chimerism of cells from green fluorescent protein positive (GFP +) transgenic mice.The control group was injected with GFP + cells without receiving irradiation.In addition,an allogenic transplantation model of BALB/c mice was also investigated which was infused by GFP + cells from C57BL/6 mice.The engraftment of bone marrow-derived cells (BMDCs) was detected by immunohistochemistry in bone marrow,liver,lung,small intestine and spleen.Results The transplanted bone marrow cells successfully grafted in the haematopoietic tissues from syngeneic GFP transgenic mice.The transplanted GFP+ cells were also detected in the non-haematopoietic tissues,such as the small intestine,liver,spleen and lung,after irradiation.However,a lethal dose irradiation of 8 Gy was required to establish successful chimerism in allogeneic transplantation model by infusing the bone marrow cells from C57BL/6 mice to BALB/c mice.Conclusions Bone marrow-derived cells can be successfully grafted into various recipient tissues receiving a 2.5 Gy dose of radiation in syngeneic mice,but not in allogeneic mice.This nonlethal model may help to further study the plasticity and mechanism of bone marrow-derived cells in tissue repair and regeneration after radiation injury.

  5. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells☆

    OpenAIRE

    Tang, Yue; Cui, Yongchun; Luo, Fuliang; Liu, Xiaopeng; Wang, XiaoJuan; Wu, Aili; Zhao, Junwei; Tian, Zhong; Wu, Like

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and do...

  6. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    OpenAIRE

    Zhang, Ting; Lee, Yuk Wai; Rui, Yun Feng; Cheng, Tin Yan; Jiang, Xiao Hua; Li, Gang

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-cul...

  7. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    OpenAIRE

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  8. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  9. Preliminary study on the freeze-drying of human bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Zhang, Shao-zhi; Qian, Huan; Wang, Zhen; Fan, Ju-li; Zhou, Qian; Guang-ming CHEN; Li, Rui; Fu, Shan; Sun, Jie

    2010-01-01

    Long-term preservation and easy transportation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) will facilitate their application in medical treatment and bioengineering. A pilot study on the freeze-drying of hBM-MSCs was carried out. hBM-MSCs were loaded with trehalose. The glass transition temperature of the freeze-drying suspension was measured to provide information for the cooling and primary drying experiment. After freeze-drying, various rehydration processes were tested....

  10. EXPRESSION OF rhBMP-7 GENE IN TRANSDUCED BONE MARROW DERIVED STROMAL CELLS

    Institute of Scientific and Technical Information of China (English)

    段德宇; 杜靖远; 王洪; 刘勇; 郭晓东

    2002-01-01

    Objective. To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells(BMSCs). Methods. The marker gene , pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. Results. The exogenous gene could be expressed efficiently in transduced BMSCs. Conculsion. The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.

  11. Myeloid derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow

    OpenAIRE

    Ramachandran, Indu; Martner, Anna; Pisklakova, Alexandra; Condamine, Thomas; Chase, Tess; Vogl, Thomas; Roth, Johannes; Gabrilovich, Dmitry; Nefedova, Yulia

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are one of the major factors limiting immune response in cancer. However, their role in bone marrow (BM), the site of primary localization of multiple myeloma (MM), is poorly understood. In this study we found a significant accumulation of CD11b+CD14−CD33+ immune suppressive MDSC in BM of patients with newly diagnosed MM. To assess the possible role of MDSC in MM, we used immune competent mouse models. Immune suppressive MDSC accumulated in BM of mice a...

  12. Reduction of radiation-induced damage to salivary gland by bone marrow derived stem cells

    International Nuclear Information System (INIS)

    Irradiation of the salivary glands can result in severe side effects that reduce the patient's quality of life. Late damage to the salivary glands is mainly caused by exhaustion of the tissue's stem cells. Post-irradiation replacement of salivary gland stem cells with healthy donor stem cells may reduce complications. Bone marrow derived stem cells (BMSC) have been show to be multipotent and engraft in many tissue after injury. In this study we assessed the potential of BMSC to reduce irradiation-induced salivary gland damage. The salivary glands of wild type C57Bl/6 mice were locally irradiated with 20 Gy. Thirty days later, BMSC from transgenic eGFP+ C57Bl/6 mice were transplanted by i.v. injection or by direct injection into the salivary glands. In addition, animals were transplanted with eGFP + bone marrow after 9.5 Gy TBI excluding the salivary glands. Subsequently, the animals were locally irradiated to the salivary gland with 20 Gy. Thirty days later i.v. G-CSF mobilised eGFP + bone marrow derived stem cells to the peripheral blood. Again thirty days after mobilisation, the salivary gland were harvested. eGFP + cells were detected by confocal laser fluorescence scanning microscopy and flow cytometry and H and E histology was performed. eGFP + cells were detected in the salivary gland after all protocols. The number of eGFP + cells in irradiated salivary glands was highest in animals treated with G-CSF. Intraglandular transplantation, in contrast, was successful only in 1 out of 8 attempts. Immuno-histochemistry using a-SM-actin antibodies showed the close vicinity of actin and eGFP within the cells, demonstrating the occurrence of BMSC derived myoepithelial cells in irradiated salivary gland. Further, cell-type specific antibodies will reveal the nature of all eGFP + cells. H and E histology revealed improved gland morphology in animals treated with G-CSF after irradiation when compared to the non-treated animals. These preliminary results indicate that bone

  13. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells

    OpenAIRE

    Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A.; Byrd, John C.; Satoskar, Abhay R.

    2015-01-01

    Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF...

  14. Anticoagulants on yield of bone marrow-derived mononuclear cells harvested from dogs

    Directory of Open Access Journals (Sweden)

    Harald Fernando Vicente de Brito

    2015-11-01

    Full Text Available Cell therapy with bone marrow-derived mononuclear cells is an alternative to therapy with mesenchymal stem cell cultures. The aim of the present research was the comparison of the yield of bone marrow-derived mononuclear cells harvested from dogs with two different anticoagulants. Bone marrow was harvested from the iliac crest of five healthy dogs aged between 15 and 30 months, and the effect of two anticoagulant solutions, CPDA-1 (citrate phosphate dextrose adenine-1 and heparin, on the isolation of mononuclear cells was compared. Mononuclear cells were isolated in a density gradient and stained for CD9 and CD44 for characterization by flow cytometry. Means were compared using Student's paired t-test. Samples harvested with CPDA-1 yielded an average of 5.16x106 (±1.76x106 to 20.20x106 (±1.55x106 mononuclear cells/mL, whereas the yield of samples harvested with heparin varied between 4.56x106 (±0.69x106 and 24.30x106 (±2.12x106 mononuclear cells mL-1. By flow cytometry, mean percentage of double-stained cells varied from 1.96% (±0.64% to 5.01% (±0.73% for CPDA-1 and from 2.23% (±0.70% to 7.27% (±0.97% for heparin. No significant statistical differences were observed on yield or CD9 and CD44 expression. Further studies are recommended to assess efficacy of CPDA on mononuclear cell isolation.

  15. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yuxin Wu; Jinghan Zhang; Xiaoming Ben

    2013-01-01

    Non-adherent bone marrow cel-derived mesenchymal stem cel s from C57BL/6J mice were sepa-rated and cultured using the “pour-off” method. Non-adherent bone marrow cel-derived mesen-chymal stem cel s developed colony-forming unit-fibroblasts, and could be expanded by supple-mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cel-derived mesenchymal stem cel s exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cel-derived mesenchymal stem cel s fromβ-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cel s positive for LacZ andβ-galactosidase staining were observed in the ischemic tissues, and cel s co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cel-derived mesenchymal stem cel s could differentiate into neuronal-like cel s in vitro and in vivo.

  16. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Yongping Su

    2010-01-01

    Full Text Available Interstitial cells of Cajal (ICCs in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65%±3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25%±4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders.

  17. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...

  18. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  19. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda; Kastrup, Jens; Simonsen, Ulf; Zachar, Vladimir; Fink, Trine

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  20. Development of donor-derived thymic lymphomas after allogeneic bone marrow transplantation in AKR/J mice

    International Nuclear Information System (INIS)

    The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/J mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis

  1. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  2. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  3. Senescing human bone-marrow-derived clonal mesenchymal stem cells have altered lysophospholipid composition and functionality.

    Science.gov (United States)

    Lee, Seul Ji; Yi, TacGhee; Ahn, Soo Hyun; Lim, Dong Kyu; Hong, Ji Yeon; Cho, Yun Kyoung; Lim, Johan; Song, Sun U; Kwon, Sung Won

    2014-03-01

    Mesenchymal stem cells (MSCs) have been used in a wide range of research and clinical studies because MSCs do not have any ethical issues and have the advantage of low carcinogenicity due to their limited proliferation. However, because only a small number of MSCs can be obtained from the bone marrow, ex vivo amplification is inevitably required. For that reason, this study was conducted to acquire the metabolic information to examine and control the changes in the activities and differentiation potency of MSCs during the ex vivo culture process. Endogenous metabolites of human bone-marrow-derived clonal MSCs (hcMSCs) during cellular senescence were profiled by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS). To select significant metabolites, we used the linear mixed effects model having fixed effects for batch and time (passage) and random effects for metabolites, determining the mean using a t test and the standard deviation using an F test. We used structural analysis with representative standards and spectrum patterns with different collision energies to distinctly identify eight metabolites with altered expression during senescence as types of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), such as LPC 16:0 and LPE 22:4. The present study revealed changes in endogenous metabolites and mechanisms due to senescence. PMID:24498988

  4. Nestin Positive Bone Marrow Derived Cells Responded to Injury Mobilize into Peripheral Circulation and Participate in Skin Defect Healing

    Science.gov (United States)

    Lv, Yajie; He, Tao; An, Yulin; Tang, Zhangui; Deng, Zhihong

    2015-01-01

    Exogenously infused mesenchymal stem cells (MSCs) are thought to migrate to injury site through peripheral blood stream and participate in tissue repair. However, whether and how endogenous bone marrow MSCs mobilized to circulating and targeted to tissue injury has raised some controversy, and related studies were restricted by the difficulty of MSCs identifying in vivo. Nestin, a kind of intermediate filament protein initially identified in neuroepithelial stem cells, was recently reported as a credible criteria for MSCs in bone marrow. In this study, we used a green fluorescent protein (GFP) labeled bone marrow replacement model to trace the nestin positive bone marrow derived cells (BMDCs) of skin defected-mice. We found that after skin injured, numbers of nestin+ cells in peripheral blood and bone marrow both increased. A remarkable concentration of nestin+ BMDCs around skin wound was detected, while few of these cells could be observed in uninjured skin or other organs. This recruitment effect could not be promoted by granulocyte colony-stimulating factor (G-CSF), suggests a different mobilization mechanism from ones G-CSF takes effect on hematopoietic cells. Our results proposed nestin+ BMDCs as mobilized candidates in skin injury repair, which provide a new insight of endogenous MSCs therapy. PMID:26633897

  5. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury.

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  6. Comparative study of the differentiation potential of rat bone marrow mesenchymal stem cells and rat muscle-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ivan Alexandra

    2013-01-01

    Full Text Available We present a comparative study of the plasticity of rat bone marrow mesenchymal stem cells (MSCs and rat muscle-derived stem cells (MDSCs. The study was performed on two cell populations that were isolated by aspiration from the femur bone marrow and gastrocnemius muscle biopsy of 6-week-old albino rats. Both cell populations were exposed to identical stimulation conditions. The cells were capable of undergoing osteogenic, chondrogenic, adipogenic and epithelial differentiation, as shown by histochemistry and immunostaining techniques. The MDSC population showed behavior and characteristics similar to the bone marrow MSC population; however, the osteogenic and adipogenic potential was more reduced compared to MSCs. Our results indicate a positive expression of E cadherin and Cytokeratin 10 after 28 days under epithelial stimulation, suggesting a potential use for gastrocnemius muscle MDSCs as a promising source for regenerative therapies, including re-epithelialization and skin regeneration.

  7. Bone marrow-derived progenitor cells in de novo liver regeneration in liver transplant.

    Science.gov (United States)

    Lee, Sung-Gyu; Moon, Sung-Hwan; Kim, Hee-Je; Lee, Ji Yoon; Park, Soon-Jung; Chung, Hyung-Min; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Hojong; Kwon, Tae-Won; Cho, Yong-Pil

    2015-09-01

    The study was designed (1) to examine the hypothesis that circulating progenitor cells play a role in the process of de novo regeneration in human liver transplants and that these cells arise from a cell population originating in, or associated with, the bone marrow and (2) to investigate whether the transplanted liver volume has an effect on the circulating recipient-derived progenitor cells that generate hepatocytes during this process. Clinical data and liver tissue characteristics were analyzed in male individuals who underwent sex-mismatched adult-to-adult living donor liver transplantation using dual left lobe grafts. Dual left lobe grafts were examined at the time of transplantation and 19 to 27 days after transplantation. All recipients showed recovery of normal liver function and a significant increase in the volume of the engrafted left lobes after transplantation. Double staining for a Y-chromosome probe and the CD31 antigen showed the presence of hybrid vessels composed of recipient-derived cells and donor cells within the transplanted liver tissues. Furthermore, CD34-expressing cells were observed commingling with Y-chromosome+ cells. The ratio of recipient-derived vessels and the number of Y+ CD34+ cells tended to be higher when smaller graft volumes underwent transplantation. These findings suggest that the recruitment of circulating bone marrow-derived progenitor cells could contribute to vessel formation and de novo regeneration in human liver transplants. Moreover, graft volume may be an important determinant for the active mobilization of circulating recipient-derived progenitor cells and their contribution to liver regeneration. PMID:25761987

  8. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  9. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon

    OpenAIRE

    Brittan, M; Hunt, T.; Jeffery, R.; Poulsom, R.; Forbes, S.J.; K. Hodivala-Dilke; Goldman, J.; Alison, M R; Wright, N. A.

    2002-01-01

    Background and aims: In order to establish whether extraintestinal cells contribute to the turnover and repair of gastrointestinal tissues, we studied the colons and small intestines of female mice that had received a male bone marrow transplant, together with gastrointestinal biopsies from female patients that had developed graft versus host disease after receiving a bone marrow transplant from male donors.

  10. Therapeutic potential of bone marrow-derived mesenchymal stem cells in cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2012-07-01

    Full Text Available Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies.

  11. Generation and characterization of bovine bone marrow-derived macrophage cell line.

    Science.gov (United States)

    Xiao, Jiajia; Xie, Rongxia; Li, Qiaoqiao; Chen, Wuju; Zhang, Yong

    2016-05-01

    Macrophages, as the forefront of innate immune defense, have an important role in the host responses to mycobacterial infection. Therefore, a stable macrophage cell line is needed for future bovine immune system research on the bacterial infection. In this study, we established a bovine macrophage cell line by introducing the human telomerase reverse transcriptase (hTERT) gene into bovine bone marrow-derived macrophages (bBMMs). The TERT-bBMMs cells expressed macrophage surface antigen (CD11b, CD282) and upregulated expression of the cytokines IL-1β, IL-6, IL-10, IL-12, TNF-α in response to bacterial invasion. These results demonstrate that this cell line provide reliable cell model system for future studies on interactions between the bovine macrophages and Mycobacterium tuberculosis. PMID:26936441

  12. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    Science.gov (United States)

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  13. Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment

    Directory of Open Access Journals (Sweden)

    Rogério Pezato

    2014-01-01

    Full Text Available Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.

  14. EXPRESSION OF rhBMP—7 GENE IN TRANSDUCED BONE MARROW DERIVED STROMAL CELLS

    Institute of Scientific and Technical Information of China (English)

    段德宇; 杜靖远

    2002-01-01

    Objective:To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells(BMSCs).Methods:The marker gene,pbLacZ,was transferred into cultured BMSCs and the expression of transduced gene by x-gal staining was examined.Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs.Through immunohistochemical staining and RT-PCR assay,the expression of rhBMP7 gene was detected.Results:The exogenous gene could be expressed efficiently in transduced BMSCs.Conculsion:The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.

  15. Morphology and morphometry of feline bone marrow-derived mesenchymal stem cells in culture

    Directory of Open Access Journals (Sweden)

    Bruno B. Maciel

    2014-11-01

    Full Text Available Mesenchymal stem cells (MSC are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs. The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes. To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3. The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6 cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h. The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h.The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h to 21.29µm (120h. However, at P3, the nucleus length was 26.35µm (24h and 25.22µm (120h. This information could be important for future application and use of feline BM-MSCs.

  16. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  17. Different Balance of Wnt Signaling in Adult and Fetal Bone Marrow-Derived Mesenchymal Stromal Cells.

    Science.gov (United States)

    Paciejewska, Maja M; Maijenburg, Marijke W; Gilissen, Christian; Kleijer, Marion; Vermeul, Kim; Weijer, Kees; Veltman, Joris A; von Lindern, Marieke; van der Schoot, C Ellen; Voermans, Carlijn

    2016-06-15

    Mesenchymal stromal cells (MSCs) are applied as novel therapeutics for their regenerative and immune-suppressive capacities. Clinical applications, however, require extensive expansion of MSCs. Fetal bone marrow-derived MSCs (FBMSCs) proliferate faster than adult bone marrow-derived MSC (ABMSCs). To optimize expansion and function of MSC in general, we explored the differences between ABMSC and FBMSC. Gene expression profiling implicated differential expression of genes encoding proteins in the Wnt signaling pathway, including excreted inhibitors of Wnt signaling, particularly by ABMSC. Both MSC types had a similar basal level of canonical Wnt signaling. Abrogation of autocrine Wnt production by inhibitor of Wnt production-2 (IWP2) reduced canonical Wnt signaling and cell proliferation of FBMSCs, but hardly affected ABMSC. Addition of exogenous Wnt3a, however, induced expression of the target genes lymphocyte enhancer-binding factor (LEF) and T-cell factor (TCF) faster and at lower Wnt3a levels in ABMSC compared to FBMSC. Medium replacement experiments indicated that ABMSC produce an inhibitor of Wnt signaling that is effective on ABMSC itself but not on FBMSC, whereas FBMSC excrete (Wnt) factors that stimulate proliferation of ABMSC. In contrast, FBMSC were not able to support hematopoiesis, whereas ABMSC displayed hematopoietic support sensitive to IWP2, the inhibitor of Wnt factor excretion. In conclusion, ABMSC and FBMSC differ in their Wnt signature. While FBMSC produced factors, including Wnt signals, that enhanced MSC proliferation, ABMSC produced Wnt factors in a setting that enhanced hematopoietic support. Thus, further unraveling the molecular basis of this phenomenon may lead to improvement of clinical expansion protocols of ABMSCs. PMID:27154244

  18. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  19. Bone marrow-derived mesenchymal stem cell therapy for decompensated liver cirrhosis: A meta-analysis

    Science.gov (United States)

    Pan, Xing-Nan; Zheng, Lian-Qiu; Lai, Xiao-Huan

    2014-01-01

    AIM: To assess the efficacy and safety of bone marrow-derived mesenchymal stem cell (BM-MSC) in the treatment of decompensated liver cirrhosis. METHODS: The search terms “bone marrow stem cell” “chronic liver disease” “transfusion” and “injection” were used in the Cochrane Library, Med-Line (Pub-Med) and Embase without any limitations with respect to publication date or language. Journals were also hand-searched and experts in the field were contacted. The studies which used BM-MSC in the treatment of any chronic liver disease were included. Comprehensive Review Manager and Meta-Analyst software were used for statistical analysis. Publication bias was evaluated using Begg’s test. RESULTS: Out of 78 studies identified, five studies were included in the final analysis. The studies were conducted in China, Iran, Egypt and Brazil. Analysis of pooled data of two controlled studies by Review Manager showed that the mean decline in scores for the model for end-stage liver disease (MELD) was -1.23 [95%CI: -2.45-(-0.01)], -1.87 [95%CI: -3.16-(-0.58)], -2.01 [95%CI: -3.35-(-0.68)] at 2, 4 and 24 wk, respectively after transfusion. Meta-analysis of the 5 studies showed that the mean improvement in albumin levels was -0.28, 2.60, 5.28, 4.39 g/L at the end of 8, 16, 24, and 48 wk, respectively, after transfusion. MELD scores, alanine aminotransferase, total bilirubin levels and prothrombin times improved to some extent. BM-MSC injections resulted in no serious adverse events or complications. CONCLUSION: BM-MSC infusion in the treatment of decompensated liver cirrhosis improved liver function. At the end of year 1, there were no serious side effects or complications. PMID:25320545

  20. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  1. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  2. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  3. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  4. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhao

    Full Text Available The objective of this study is to determine the role of perilipin 1 (Plin1 in whole body or bone marrow-derived cells on atherogenesis.Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/- females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/- were transplanted into LDL receptor deficient mice (LDLR-/-. Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1.Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.

  5. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells★

    OpenAIRE

    Huang, Yun; Lu, Mingnan; Guo, Weitao; Zeng, Rong; Wang, Bin; Wang, Huaibo

    2013-01-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, wi...

  6. Clonal Characterization of Bone Marrow Derived Stem Cells and Their Application for Bone Regeneration

    OpenAIRE

    Xiao, Yin; Mareddy, Shobha; Crawford, Ross

    2010-01-01

    Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolat...

  7. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU+ insulin- PDX-1+ cells, Ngn3+ cells and insulin+ glucagon+ cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34+ cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  8. Preliminary Study on Biological Properties of Adult Human Bone Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    WU Tao; BAI Hai; WANG Jingchang; SHI Jingyun; WANG Cunbang; LU Jihong; OU Jianfeng; WANG Qian

    2006-01-01

    Objective: To establish a method of culture and expansion of adult human bone marrow-derived MSCs in vitro and to explore their biological properties. Methods: Mononuclear cells were obtained from 5 mL adult human bone marrow by density gradient centrifugation with Percoll solution. Adult human MSCs were cultured in Dulbecco's Modified Eagle's Medium with low glucose (LG-DMEM) containing 10% fetal calf serum at a density of 2× 105 cell/cm2. The morphocytology was observed under phase-contrast microscope. The cell growth was measured by MTT method. The flow cytometer was performed to examine the expression of cell surface molecules and cell cycle. The ultrastructure of MSCs was observed under transmission electron microscope. The immunomodulatory functions of MSCs were measured by MTT method. The effects of MSCs on the growth of K562 cells and the dynamic change of HA, Ⅳ-C, LN concentration in the culture supernatant of MSCs was also observed. Results: The MSCs harvested in this study were homogenous population and exhibited a spindle-shaped fibroblastic morphology. The cell growth curve showed that MSCs had a strong ability of proliferation. The cells were positive for CD44,while negative for hematopoietic cell surface marker such as CD3, CD4, CD7, CD13, CD14, CD15, CD19,CD22, CD33, CD34, CD45 and HLA-DR, which was closely related to graft versus host disease. Above 90% cells of MSCs were found at G0/G1 phase. The ultrastructure of MSCs indicated that there were plenty of cytoplasmic organelles. Allogeneic peripheral blood lymphocytes proliferation was suppressed by MSCs and the inhibition ratio was 60.68% (P<0.01). The suppressive effect was also existed in the culture supernatant of MSCs and the inhibition ratio was 9.00% (P<0.05). When lymphocytes were stimulated by PHA, the suppression effects of the culture supernatant were even stronger and the inhibition ratio was 20.91%(P<0.01). Compared with the cell growth curve of the K562 cells alone, the K562

  9. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  10. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue

    International Nuclear Information System (INIS)

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse. (author)

  11. A Modified Method of Insulin Producing Cells’ Generation from Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paweł Czubak

    2014-01-01

    Full Text Available Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells’ transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs. In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs. We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors’ concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  12. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells. PMID:25405207

  13. Bone marrow-derived endothelial progenitor cells are involved in aneurysm repair in rabbits.

    Science.gov (United States)

    Fang, Xinggen; Zhao, Rui; Wang, Kuizhong; Li, Zifu; Yang, Penfei; Huang, Qinghai; Xu, Yi; Hong, Bo; Liu, Jianmin

    2012-09-01

    Endothelial progenitor cells (EPC) are believed to be involved in aneurysmal repair and remodeling. The aim of this study was to test this hypothesis and, if true, explore how EPC contribute to aneurysm repair in a rabbit model of elastase-induced carotid aneurysm. Rabbits were divided randomly into an in situ carotid EPC transfusion group (ISCT group, n=5), and an intravenous EPC transfusion group (IVT group, n=5). Autologous EPC were double-labeled with Hoechst 33342 and 5,6-carboxyfluorescein diacetate succinimidyl ester before injection into the animals in either the carotid artery (ISCT group) or marginal ear veins (IVT group). Three weeks later, labeled cells in the aneurysms were observed with respect to location, adhesion, and growth to detect signs of aneurysm repair. Labeled EPC were detected within the neointima in all five aneurysms in the ISCT group and in three of the five aneurysms in the IVT group, but there was no endothelial growth in the aneurysmal neointima in either group. These results show that bone marrow-derived EPC are involved in the process of aneurysm repair in this rabbit model. PMID:22789632

  14. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    Science.gov (United States)

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  15. Rapamycin Modulates the Maturation of Rat Bone Marrow-derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Yingjun DING; Xiang CHENG; Tingting TANG; Rui YAO; Yong CHEN; Jiangjiao XIE; Xian YU; Yuhua LIAO

    2008-01-01

    The purpose of the study was to observe the effect of rapamycin (RAPA) on the differentiation and maturation of rat bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs from Wistar rats were cultured with granulocyte-macrophage colony-stimulating factor plus interleukin-4in the presence or absence of RAPA (20 ng/mL), and stimulated with lipopolysaccharide (LPS) for 24h before cells and supernatants were collected. Surface phenotype of BMDCs was flow-cytometrically detected to determine the expression of maturation markers, MHC class Ⅱ and CD86. Supematants were analyzed for the production of IL-12 and IFN-γ cytokines by using ELISA.BMDCs were co-cultured with T cells from Lewis rats and mixed lymphocyte reaction was assessed by MTT method. The morphology of BMDCs stimulated with LPS remained immature after RAPA pretreatment. RAPA significantly decreased the CD86 expression, impaired the IL-12 and IFN-γproduction of BMDCs stimulated with LPS, and inhibited the proliferation of allogeneic T cells. In conclusion, RAPA can inhibit the maturation of BMDCs stimulated with LPS in terms of the morphology, surface phenotype, cytokine production, and ability of BMDCs to stimulate the proliferation of allogeneic T cells in vitro.

  16. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells

    Directory of Open Access Journals (Sweden)

    Chunfang Liu

    2006-09-01

    Full Text Available It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs, which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form many tumor types, including epithelial tumors, neural tumors, muscular tumors, tumors of fibroblasts, blood vessel endothelial tumors, and tumors of poor differentiation in vivo. Moreover, a single transformed BMDC has the ability to self-renew, differentiate spontaneously into various types of tumor cells in vitro, express markers associated with multipotency, and form teratoma in vivo. These data suggest that multipotent cancer stem cells seemed to originate from transformed BMDCs. Conclusively, these findings reveal that BMDCs might be a source of many tumor types, even teratoma. In addition, multipotent cancer stem cells might originate from malignant transformed BMDCs.

  17. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells1*

    Science.gov (United States)

    Liu, Chunfang; Chen, Zhongwei; Chen, Zhihong; Zhang, Tao; Lu, Yuan

    2006-01-01

    Abstract It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs), which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form many tumor types, including epithelial tumors, neural tumors, muscular tumors, tumors of fibroblasts, blood vessel endothelial tumors, and tumors of poor differentiation in vivo. Moreover, a single transformed BMDC has the ability to self-renew, differentiate spontaneously into various types of tumor cells in vitro, express markers associated with multipotency, and form teratoma in vivo. These data suggest that multipotent cancer stem cells seemed to originate from transformed BMDCs. Conclusively, these findings reveal that BMDCs might be a source of many tumor types, even teratoma. In addition, multipotent cancer stem cells might originate from malignant transformed BMDCs. PMID:16984729

  18. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    Science.gov (United States)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  19. Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy

    Science.gov (United States)

    Xing, Feiyue; Wang, Jiongkun; Hu, Mingqian; Yu, Yu; Chen, Guoliang; Liu, Jing

    2011-07-01

    A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

  20. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells.

    Science.gov (United States)

    Al Ghrbawy, Nesrien M; Afify, Reham Abdel Aleem Mohamed; Dyaa, Nehal; El Sayed, Asmaa A

    2016-09-01

    Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease. PMID:27429519

  1. Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines.

    Science.gov (United States)

    Van Goor, Angelica; Slawinska, Anna; Schmidt, Carl J; Lamont, Susan J

    2016-10-01

    Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function. PMID:27238770

  2. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    M Ayatollahi

    2012-01-01

    Full Text Available Background: The ability of mesenchymal stem cells (MSCs to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering.Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential.Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells were layered over the Ficoll-Paque density-gradient and plated in tissue cultures dish. The adherent cells expanded rapidly and maintained with periodic passages until a relatively homogeneous population was established. The identification of adherent cells and the immune-surface markers was performed by flow cytometric analysis at the third passage. The in vitro differentiation of MSCs into osteoblast and adipocytes was also achieved.Results: The MSCs were CD11b (CR3, CD45, CD34, CD31 (PCAM-1, CD40, CD80 (B7-1, and HLA-class II negative because antigen expression was less than 5%, while they showed a high expression of CD90, and CD73. The differentiation of osteoblasts, is determined by deposition of a mineralized extracellular matrix in the culture plates that can be detected with Alizarin Red. Adipocytes were easily identified by their morphology and staining with Oil Red.Conclusion: MSCs can be isolated and expanded from most healthy donors, providing for a source of cell-based therapy.

  3. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  4. Immune Dysfunction Associated with Abnormal Bone Marrow-Derived Mesenchymal Stroma Cells in Senescence Accelerated Mice

    Science.gov (United States)

    Li, Ming; Guo, Kequan; Adachi, Yasushi; Ikehara, Susumu

    2016-01-01

    Senescence accelerated mice (SAM) are a group of mice that show aging-related diseases, and SAM prone 10 (SAMP10) show spontaneous brain atrophy and defects in learning and memory. Our previous report showed that the thymus and the percentage of T lymphocytes are abnormal in the SAMP10, but it was unclear whether the bone marrow-derived mesenchymal stroma cells (BMMSCs) were abnormal, and whether they played an important role in regenerative medicine. We thus compared BMMSCs from SAMP10 and their control, SAM-resistant (SAMR1), in terms of cell cycle, oxidative stress, and the expression of PI3K and mitogen-activated protein kinase (MAPK). Our cell cycle analysis showed that cell cycle arrest occurred in the G0/G1 phase in the SAMP10. We also found increased reactive oxygen stress and decreased PI3K and MAPK on the BMMSCs. These results suggested the BMMSCs were abnormal in SAMP10, and that this might be related to the immune system dysfunction in these mice. PMID:26840301

  5. Bone marrow-derived macrophages exclusively expressed caveolin-2: The role of inflammatory activators and hypoxia.

    Science.gov (United States)

    Maceckova, Michaela; Martiskova, Hana; Koudelka, Adolf; Kubala, Lukas; Lojek, Antonin; Pekarova, Michaela

    2015-11-01

    Caveolins are specific proteins involved in regulation of signal transduction to intracellular space. Still, their contribution to immune functions has not been completely clarified. Thus, we decided to characterize the expression of caveolins in bone marrow-derived macrophages (BMDMs) under resting and inflammatory conditions. The effect of classical activators (lipopolysaccharide, LPS; interferon-gamma, IFN-γ) was further potentiated with hypoxic (5% O2) conditions. The activation of p44/42-extracellular signal-regulated kinases 1 and 2 (ERK1/2) and expression of caveolin-1, -2, and -3, hypoxia inducible factor-1 alpha (HIF-1α), as well as inducible nitric oxide synthase (iNOS) was monitored using the Western blot technique. The production of nitric oxide (NO) and tumor necrosis factor-alpha (TNFα) was analyzed by Griess method or ELISA, respectively. BMDMs were also transfected with siRNA against caveolin-2. Importantly, our study showed for the first time that BMDMs expressed only caveolin-2, and its level decreased after activation of macrophages with LPS, IFN-γ, and/or hypoxia. The expression of caveolin-2 negatively correlates with the iNOS and HIF-1α protein levels, as well as with the LPS/IFN-γ- and hypoxia-induced activation of ERK1/2. We concluded that caveolin-2 is most probably involved in regulation of pro-inflammatory responses of BMDMs, triggered via activation of ERK1/2. PMID:26215374

  6. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    Science.gov (United States)

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  7. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    OpenAIRE

    Ribeiro-Resende Victor; Carrier-Ruiz Alvaro; R Lemes Robertha M; Reis Ricardo A M; Mendez-Otero Rosalia

    2012-01-01

    Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that s...

  8. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management

    OpenAIRE

    V. Remya; Naveen Kumar; Sharma, A. K.; Mathew, Dayamon D.; Mamta Negi; S.K. Maiti; Sameer Shrivastava; S. Sonal; KURADE, N.P.

    2014-01-01

    Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care. Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc) seeded extracellular matrix [ECM]) was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim ...

  9. Reprogramming of bone marrow-derived mesenchymal stem cells into functional insulin-producing cells by chemical regimen

    OpenAIRE

    Wang, Qiwei; Ye, Lingling; Liu, Hong; Liu, Xingmao; Li, Shichong; Chen, Zhaolie

    2012-01-01

    Beta-cell transplantation is considered to be the most effective approach to cure type 1 diabetes (T1D). Unfortunately, the scarce availability of donor tissue limits the applicability of this therapy. Recent stem cell research progress shows stem cell therapy may be a potential means to solve this problem. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewable and multipotent adult stem cells which can differentiate into the three germ layers. Here we aimed to investigate wheth...

  10. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    OpenAIRE

    Zariyantey Abdul Hamid; Winnie Hii Lin Lin; Basma Jibril Abdalla; Ong Bee Yuen; Elda Surhaida Latif; Jamaludin Mohamed; Nor Fadilah Rajab; Chow Paik Wah; Muhd Khairul Akmal Wak Harto; Siti Balkis Budin

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at var...

  11. Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    International Nuclear Information System (INIS)

    Recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC) implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective (before and after) design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology: this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to who transplant of stem cells derived from bone marrow mobilized with granulocyte colonies growth stimulating factor via coronary arteries or epicardium was realized. Two groups of patients were included: Ten patients with anterior wall infarct and 2. Five patients with chronic ischemic cardiopathy, all with extensive necrosis demonstrated by absence of myocardial viability through nuclear medicine and ejection fraction of less than 40%. Results: significant improvement of ejection fraction from 29.44 ± 3.36 to 37.6 ± 5.3 with p<0.001 and decrease of ventricular systolic and diastolic volume without statistical significance (p =0.31 and 0.4 respectively) were demonstrated. Exercise capacity evidenced by increment in the six minutes test, exercise time and the MET number achieved, increased in a significant way. There were significant changes in the perfusion defect from the second follow-up month and no complications directly related to the stem cells derived from bone marrow transplant or the use of stimulating granulocyte colony factor were presented. Conclusions: this is the first experience of stem cells derived from bone marrow transplant associated to the administration of stimulating granulocyte growth colony factor in which recovery of left ventricular function was demonstrated, as well as improvement in exercise capacity and in the perfusion defect

  12. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia;

    2012-01-01

    Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-d...... from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA(+) cells being the main source of MMP13, a stromal mediator of cancer cell invasion....

  13. Graft-derived anti-HPA-2b production after allogeneic bone-marrow transplantation

    DEFF Research Database (Denmark)

    Taaning, E; Jacobsen, N; Morling, N

    1994-01-01

    We report on a male who received a bone-marrow allograft from his HLA identical sister for acute myelogenous leukaemia. After transplantation, the patient suffered from refractoriness to the transfusions of HLA-matched platelets and a strong platelet-specific antibody, anti-HPA-2b, of IgG1 subclass...... was demonstrated in the patient's serum. In the serum of the bone-marrow donor a weak IgG1 anti-HPA-2b was demonstrated. IgG allotyping of the patient and donor showed identical results. We could not determine the origin of the anti-HPA-2b, although we hypothesize that the anti-HPA-2b was produced by...... immunocompetent donor lymphocytes infused with the suspension of bone-marrow cells....

  14. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yun Huang; Mingnan Lu; Weitao Guo; Rong Zeng; Bin Wang; Huaibo Wang

    2013-01-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.

  15. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    International Nuclear Information System (INIS)

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F1 were high responders and EO-LR→F1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  16. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Zhang, Gechen; Ka, Ka; Huang, Wenhua

    2014-01-01

    In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone...

  17. Effects of bone marrow-derived endothelial progenitor cell transplantation on vein microenvironment in a rat model of chronic thrombosis

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-qiang; MENG Qing-you; WU Hao-rong

    2007-01-01

    Background Endothelial progenitor cells(EPCs) have been used in both experimental studies and clinical treatments of limb ischemia,as well as in the construction of engineered vascular tissue.The objective of this study was to investigate the effects of transplanted bone marrow-derived EPCs on the vein microenvironment in a rat model of chronic vein thrombosis.Methods Mononuclear cells were isolated from the bone marrow of immature rats by density gradient centrifugation,cultured,and then transplanted into experimentally induced thrombi into inferior vena cava through the femoral vein.Vascular endothelial growth factor(VEGF),angiopoietin-1(ANG-1) and monocyte chemotactic protein-1(MCP-1) mRNA and protein expression levels were measured by real-time quantitative polymerase chain reaction and Western blotting of thrombi and adjacent caval walls 28 days post-transplantation.Results Levels of VEGF,ANG-1,and MCP-1 mRNA in EPC-transplanted thrombi were 100%,230.7%,and 212.5% of levels detected in the sham-operated group(P<0.01),and 99.9%,215.4%,and 177.8% of levels detected in the experimental control group(P<0.01).VEGF,ANG-1 and MCP-1 protein levels exhibited a similar trend.Conclusions Transplanted bone marrow-derived EPCs appear to alter the vein microenvironment in experimentally induced chronic vein thrombosis by upregulating cytokines associated with thrombic organization and recanalization.

  18. Differentiation of bone marrow derived Thy-1+β2M-cells into hepatocytes induced by coculture with transgenic CFSCs

    Institute of Scientific and Technical Information of China (English)

    WANG Yunfang; NAN Xue; ZHANG Rui; LI Yanhua; YUE Wen; YAN Fang; PEI Xuetao

    2004-01-01

    Studies of transplantation in vivo indicted that bone marrow derived stem cells had a potential to differentiate into mature hepatocytes. However, there are lots of doubts and uncertainties in the influencing factors and control agents of effectively inducing stem cell differentiation in vitro, the efficiency of stem cells' differentiation into hepatocytes and differentiated cells' life-span and functional state,etc. In this study, rat bone marrow derived Thy-1+β2M- cells (BDTCs) were induced to differentiate into hepatocytes by co-culturing with CFSC/HGF feeder layers which expressed hHGF efficiently and stably. RT-PCR and immunofluorescent texts proved induced BDTCs expressed infant and adult hepatocyte specific genes. Further more, these cells displayed functions of indocyanine green (ICG) uptake, ammonium metabolism and albumin production. It was shown that growth factors together with hepatic nonparenchyma cells provided a feasible microenvironment for differentiation of bone marrow stem cells into hepatocytes. The studies not only provided a significant biological model for going deep into the mechanism of stem cell plasticity, but also offered a theoretical and technical foundation of gene and stem cell engineering-based regenerative medicine for end-stage liver diseases.

  19. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  20. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  1. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yue Tang; Yongchun Cui; Fuliang Luo; Xiaopeng Liu; Xiaojuan Wang; Aili Wu; Junwei Zhao; Zhong Tian; Like Wu

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells.

  2. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder.

    Science.gov (United States)

    Jo, Hyogyeong; Jung, Minyoung; Seo, Dong Jin; Park, Dong Joon

    2015-11-13

    The purpose of the study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on olfactory epithelium (OE) of morphologic and functional restoration following neural Sensorineural Disorder in rats. Except the Normal group, twenty-one rats underwent Triton X-100 (TX-100) irrigation to induce degeneration of OE, and then BMSCs and PBS were treated from the both medial canthus to the rear part of the both nasal cavity into the experimental group and then were observed for restoration according to time point. At two and four weeks after transplantation with BMSCs, restoration of OE was observed with olfactory marker protein (OMP) and behavioral test. And we observed the expression of OMP, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). After TX-100 irrigation, the OE almost disappeared in 3 days. At four weeks after transplantation with BMSCs, the thickness and cellular composition of OE was considerably restored to normal group and expression of OMP was markedly increased when compared with PBS group and reduced the searching time in the behavioral test. Furthermore at two weeks after treatment with BMSCs, expression of NGF and BDNF was greatly increased when compared with PBS group. However at four weeks after treatment with BMSCs, expression of NGF and BDNF was slightly decreased. Our results suggest the BMSCs transplantation affect restoration of OE and olfaction, most likely via regulation of the neurotrophic factor expression, especially the expression of NGF and BDNF and has a possibility of a new therapeutic strategy for the treatment of olfactory disorder caused by the degeneration of OE. PMID:26427869

  3. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  4. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELMα) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMα) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  5. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Angara, Kartik; Zeng, Peng; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2015-12-28

    Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5 × 10(6) GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade. PMID:26404753

  6. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration

    International Nuclear Information System (INIS)

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation

  7. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration.

    Science.gov (United States)

    Huang, J C; Basu, S K; Zhao, X; Chien, S; Fang, M; Oehler, V G; Appelbaum, F R; Becker, P S

    2015-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation. PMID:25860293

  8. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  9. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Takeshi, E-mail: tkawafb@shinshu-u.ac.jp [Integrated Department of Sciences of Functional Foods, Graduate School of Agriculture, Shinshu University, Nagano (Japan)

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  10. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    Science.gov (United States)

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  11. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    Science.gov (United States)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  12. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  13. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  14. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice

    Science.gov (United States)

    Meurer, Steffen K.; Neß, Melanie; Weiskirchen, Sabine; Kim, Philipp; Tag, Carmen G.; Kauffmann, Marlies; Huber, Michael; Weiskirchen, Ralf

    2016-01-01

    Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research. PMID:27337047

  15. Selective Retention of Bone Marrow-Derived Cells to Enhance Spinal Fusion

    OpenAIRE

    Muschler, George F.; Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A.; Valdevit, Antonio D.; Kambic, Helen E.; Davros, William J.; Easley, Kirk A.; Powell, Kimerly A.

    2005-01-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal ...

  16. GMP-Compliant Isolation and Large-Scale Expansion of Bone Marrow-Derived MSC

    OpenAIRE

    Fekete, Natalie; Rojewski, Markus T.; Fürst, Daniel; Kreja, Ludwika; Ignatius, Anita; Dausend, Julia; Schrezenmeier, Hubert

    2012-01-01

    Background Mesenchymal stromal cells (MSC) have gained importance in tissue repair, tissue engineering and in immunosupressive therapy during the last years. Due to the limited availability of MSC in the bone marrow, ex vivo amplification prior to clinical application is requisite to obtain therapeutic applicable cell doses. Translation of preclinical into clinical-grade large-scale MSC expansion necessitates precise definition and standardization of all procedural parameters including cell s...

  17. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development.

    OpenAIRE

    Menssen Adriane; Häupl Thomas; Sittinger Michael; Delorme Bruno; Charbord Pierre; Ringe Jochen

    2011-01-01

    Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC) differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic diffe...

  18. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  19. Demonstration of early functional compromise of bone marrow derived hematopoietic progenitor cells during bovine neonatal pancytopenia through in vitro culture of bone marrow biopsies

    Directory of Open Access Journals (Sweden)

    Laming Eleanor

    2012-10-01

    Full Text Available Abstract Background Bovine neonatal pancytopenia (BNP is a syndrome characterised by thrombocytopenia associated with marked bone marrow destruction in calves, widely reported since 2007 in several European countries and since 2011 in New Zealand. The disease is epidemiologically associated with the use of an inactivated bovine virus diarrhoea (BVD vaccine and is currently considered to be caused by absorption of colostral antibody produced by some vaccinated cows (“BNP dams”. Alloantibodies capable of binding to the leukocyte surface have been detected in BNP dams and antibodies recognising bovine MHC class I and β-2-microglobulin have been detected in vaccinated cattle. In this study, calves were challenged with pooled colostrum collected from BNP dams or from non-BNP dams and their bone marrow hematopoietic progenitor cells (HPC cultured in vitro from sternal biopsies taken at 24 hours and 6 days post-challenge. Results Clonogenic assay demonstrated that CFU-GEMM (colony forming unit-granulocyte/erythroid/macrophage/megakaryocyte; pluripotential progenitor cell colony development was compromised from HPCs harvested as early as 24 hour post-challenge. By 6 days post challenge, HPCs harvested from challenged calves failed to develop CFU-E (erythroid colonies and the development of both CFU-GEMM and CFU-GM (granulocyte/macrophage was markedly reduced. Conclusion This study suggests that the bone marrow pathology and clinical signs associated with BNP are related to an insult which compromises the pluripotential progenitor cell within the first 24 hours of life but that this does not initially include all cell types.

  20. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  1. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program. METHODOLOGY/PRINCIPAL FINDINGS: We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators. CONCLUSIONS/SIGNIFICANCE: This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further

  2. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  3. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Dong-Chang Zhao; Jun-Xia Lei; Rui Chen; Wei-Hua Yu; Xiu-Ming Zhang; Shu-Nong Li; Peng Xiang

    2005-01-01

    AIM: Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to investigate the effect of infusion of bone marrow (BM)-derived MSCs on the experimental liver fibrosis in rats.METHODS: MSCs isolated from BM in male Fischer 344 rats were infused to female Wistar rats induced with carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN).There were two random groups on the 42nd d of CCl4:CCl4/MSCs, to infuse a dose of MSCs alone; CCl4/saline,to infuse the same volume of saline as control. There were another three random groups after exposure to DMN: DMN10/MSCs, to infuse the same dose of MSCs on d 10; DMN10/saline, to infuse the same volume of saline on d 10; DMN20/MSCs, to infuse the same dose of MSCson d 20. The morphological and behavioral changes ofrats were monitored everyday. After 4-6 wk of MSCs administration, all rats were killed and fibrosis index were assessed by histopathology and radioimmunoassay. Smooth muscle alpha-actin (alpha-SMA) of liver were tested by immunohistochemistry and quantified by IBAS 2.5 software. Male rats sex determination region on the Y chromosome (sry) gene were explored by PCR.RESULTS: Compared to controls, infusion of MSCsreduced the mortality rates of incidence in CCl4-induced model (10% vs 20%) and in DMN-induced model (2040% vs 90%).The amount of collagen deposition and alpha-SMA staining was about 40-50% lower in liver of rats with MSCs than that of rats without MSCs. The similar results were observed in fibrosis index. And the effect of the inhibition of fibrogenesis was greater in DMN10/MSCs than in DMN20/MSCs. The sry gene was positive in the liver of rats with MSCs treatment by PCR.CONCLUSION: MSCs treatment can protect against

  4. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    OpenAIRE

    Shi-lei Guo; Zhi-ying Zhang; Yan Xu; Yun-xia Zhi; Chang-jie Han; Yu-hao Zhou; Fang Liu; Hai-yan Lin; Chuan-sen Zhang

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were...

  5. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy

    OpenAIRE

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-mali...

  6. Isolation and Assessment of Mesenchymal Stem Cells Derived From Bone Marrow: Histologic and Histomorphometric Study in a Canine Periodontal Defect.

    Science.gov (United States)

    Paknejad, Mojgan; Eslaminejad, Mohamadreza Baghaban; Ghaedi, Baharak; Rokn, Amir-Reza; Khorsand, Afshin; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Dehghan, Mohammad Mehdi; Moslemi, Neda; Nowzari, Hessam

    2015-06-01

    The aim of the present study was to investigate an isolation procedure to culture mesenchymal stem cells derived from bone marrow and evaluate their potential in periodontal regeneration. Potential stem cells from bone marrow, aspirated from the iliac crest of nine mongrel canines 1 to 2 years of age, were cultivated. After the examination of surface epitopes of the isolated cells, the total RNA from osteogenic, adipogenic, and chondrogenic cell cultures were analyzed by reverse transcription polymerase chain reaction (RT-PCR) to confirm stem cell gene expressions. 2 × 10(7) mL of the stem cells were loaded on 0.2 mL of anorganic bovine bone mineral (ABBM) granules. In each animal, bilateral acute/chronic intrabony periodontal defects were created surgically and by placement of ligatures around the cervical aspect of the teeth. At week 5, after flap debridement, the bilateral defects were randomly assigned to 2 treatment groups: the control group received ABBM, and the test group received BMSCs-loaded ABBM. Eight weeks after transplantation, regenerative parameters were analyzed histologically and histometrically. The RNA expressions confirmed the cultivation of mesenchymal stem cell. More new cementum and periodontal ligament (PDL) were measured in the test group (cementum: 3.33 ± 0.94 vs 2.03 ± 1.30, P = 0.027; PDL: 2.69 ± 0.73 vs 1.53 ± 1.21, P = 0.026). New bone formation was similar in both groups (2.70 ± 0.86 vs 1.99 ± 1.31; P = 0.193). Mesenchymal stem cells derived from bone marrow should be considered a promising technique for use in patients with periodontal attachment loss and merits further investigations. PMID:24383495

  7. Clinical trials using autologous bone marrow and peripheral blood-derived progenitor cells in patients with acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Michał Tendera

    2005-12-01

    Full Text Available This paper discusses the current data concerning the results of major clinical trials using bone marrow-derived and peripheral blood-derived stem/progenitor cells in treatment of patients with acute myocardial infarction (AMI and depressed left ventricular ejection fraction. In all major trials (TOPCARE-AMI, BOOST, the primary outcome measure was increase in left ventricular systolic function (LVEF and left ventricle remodeling. The most consistent finding is the significant increase in LVEF. Some trials suggest also reduction of left ventricular remodeling. Although the absolute LVEF increase is small (6-9%, it may substantially contribute to the improvement of global LV contractility. None of the studies in AMI patients treated with intracoronary infusion of progenitor cells revealed excess risk of arrythmia, restenosis or other adverse effects attributable to the therapy. The exact mechanism of improved myocardial contractile function remains unknown, however, there are several possible explanations: therapeutic angiogenesis improving the blood supply to the infarct border zone, paracrine modulation of myocardial fibrosis and remodeling (e.g. inhibition of myocyte apoptosis and transdifferentiation of stem/progenitor cells into functional cardiomyocytes. No study showed the superiority of the particular subpopulation of autologous progenitor cells in terms of left ventricular function improvement in AMI. In fact, most of the clinical trials used the whole population of mononuclear bone marrow-derived progenitor cells, peripheral blood derived progenitor cells (endothelial progenitors.

  8. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... lymphoma , and myeloma can be treated with a bone marrow transplant . This is now often called a stem cell ... are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. " ...

  9. Bone marrow biopsy

    Science.gov (United States)

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  10. Bone marrow aspiration

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  11. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Erik van Kampen

    Full Text Available INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO mice were transplanted with bone marrow (BM from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.

  12. A simple and efficient method for deriving neurospheres from bone marrow stromal cells

    International Nuclear Information System (INIS)

    Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases

  13. Thrombin binds to murine bone marrow-derived macrophages and enhances colony-stimulating factor-1-driven mitogenesis

    International Nuclear Information System (INIS)

    The binding and mitogenic properties of thrombin have been established in various transformed cell lines. In such systems, thrombin induces cell division in the absence of exogenous growth factors, and the enzyme is considered to act directly as a mitogen. This study explores thrombin's interaction with nontransformed, growth factor-dependent cells. Binding of 125I-alpha-thrombin to colony-stimulating factor (CSF)-1-dependent bone marrow-derived macrophages is saturable, time-dependent, and displaceable by both unlabeled alpha-thrombin, and esterolytically inactive thrombin. Both dissociation studies of pre-bound radio-labeled thrombin and Scatchard analysis assisted by the program Ligand suggest adherence of thrombin-binding data to a multi-site model. There are an estimated 2 x 10(4) high affinity sites (Kd = 7 x 10(-9)M) and 2 x 10(6) low affinity sites (Kd = 9 x 10(-7)M) per cell. Quiescent bone marrow-derived macrophages were cultured with either 10(-8)M thrombin, 1000 units of CSF-1/ml, or both and [3H]thymidine incorporation was determined. Thrombin alone did not induce mitogenesis. CSF-1 induced mitogenesis with peak [3H] thymidine incorporation occurring 24 h after addition of the mitogen. This CSF-1-dependent mitogenic influence was enhanced greater than 2-fold by treatment with thrombin

  14. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management

    Directory of Open Access Journals (Sweden)

    V. Remya

    2014-11-01

    Full Text Available Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care. Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc seeded extracellular matrix [ECM] was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim bladder (FSB. Goat bone marrow-derived cells (G-BMdc were seeded over this decellularized matrix. Efficacy of this cell matrix construct in wound repair was tested by implanting it over 20 mm2 × 20 mm2 size fullthickness skin wound created over the dorsum of rat. The study was conducted in 16 clinically healthy adult rats of either sex. The animals were randomly divided into 2 equal groups of 8 animals each. In Group I, animal’s wounds were repaired with a cellular FSB matrix. In Group II, wounds were repaired with G-BMdc seeded a cellular FSB matrix. Immune response and efficacy of healing were analyzed. Results: Quality of healing and immuno tolerance to the biological substitute was significantly better in Group II than Group I. Conclusion: Seeding with BMdc increases the wound healing potency and modulates the immune response to a significantly negligible level. The BMdc seeded acellular FSB matrix was found to be a novel biomaterial for wound management.

  15. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  16. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  17. Bone marrow-derived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment.

    Science.gov (United States)

    Guo, Shi-Lei; Zhang, Zhi-Ying; Xu, Yan; Zhi, Yun-Xia; Han, Chang-Jie; Zhou, Yu-Hao; Liu, Fang; Lin, Hai-Yan; Zhang, Chuan-Sen

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that "neural-like cells" may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG), immunohistochemistry, and transmission electron microscopy (TEM) were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve. PMID:25861281

  18. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  19. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Yuichi [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Nishiyama, Masahiko, E-mail: yamacho@saitama-med.ac.jp [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan)

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  20. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  1. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  2. Bone marrow-derived matrix metalloproteinase-9 is associated with fibrous adhesion formation after murine flexor tendon injury.

    Directory of Open Access Journals (Sweden)

    Alayna E Loiselle

    Full Text Available The pathogenesis of adhesions following primary tendon repair is poorly understood, but is thought to involve dysregulation of matrix metalloproteinases (Mmps. We have previously demonstrated that Mmp9 gene expression is increased during the inflammatory phase following murine flexor digitorum (FDL tendon repair in association with increased adhesions. To further investigate the role of Mmp9, the cellular, molecular, and biomechanical features of healing were examined in WT and Mmp9(-/- mice using the FDL tendon repair model. Adhesions persisted in WT, but were reduced in Mmp9(-/- mice by 21 days without any decrease in strength. Deletion of Mmp9 resulted in accelerated expression of neo-tendon associated genes, Gdf5 and Smad8, and delayed expression of collagen I and collagen III. Furthermore, WT bone marrow cells (GFP(+ migrated specifically to the tendon repair site. Transplanting myeloablated Mmp9(-/- mice with WT marrow cells resulted in greater adhesions than observed in Mmp9(-/- mice and similar to those seen in WT mice. These studies show that Mmp9 is primarily derived from bone marrow cells that migrate to the repair site, and mediates adhesion formation in injured tendons. Mmp9 is a potential target to limit adhesion formation in tendon healing.

  3. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    Science.gov (United States)

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  4. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    Energy Technology Data Exchange (ETDEWEB)

    Vadas, M.A.

    1982-02-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F/sub 1/ mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR..-->..F/sub 1/ were high responders and EO-LR..-->..F/sub 1/ were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy.

  5. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  6. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 105 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×105 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  7. Bone marrow derived stem cells for the treatment of end-stage liver disease.

    Science.gov (United States)

    Margini, Cristina; Vukotic, Ranka; Brodosi, Lucia; Bernardi, Mauro; Andreone, Pietro

    2014-07-21

    End-stage disease due to liver cirrhosis is an important cause of death worldwide. Cirrhosis results from progressive, extensive fibrosis and impaired hepatocyte regeneration. The only curative treatment is liver transplantation, but due to the several limitations of this procedure, the interest in alternative therapeutic strategies is increasing. In particular, the potential of bone marrow stem cell (BMSC) therapy in cirrhosis has been explored in different trials. In this article, we evaluate the results of 18 prospective clinical trials, and we provide a descriptive overview of recent advances in the research on hepatic regenerative medicine. The main message from the currently available data in the literature is that BMSC therapy is extremely promising in the context of liver cirrhosis. However, its application should be further explored in randomized, controlled trials with large cohorts and long follow-ups. PMID:25083082

  8. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors

    OpenAIRE

    Avanzini, Maria Antonietta; Bernardo, Maria Ester; Cometa, Angela Maria; Perotti, Cesare; Zaffaroni, Nadia; Novara, Francesca; Visai, Livia; Moretta, Antonia; Del Fante, Claudia; Villa, Raffaella; Ball, Lynne M.; Fibbe, Willem E; Maccario, Rita; Locatelli, Franco

    2009-01-01

    Umbilical cord blood is an attractive source of stem cells for several cell-based therapies. In this paper, it is shown that umbilical cord blood-derived mesenchymal stroma cells, cultured in the presence of platelet lysate, have an increased proliferative potential but comparable immunomodulatory functions relative to their bone marrow-derived counterparts.

  9. Efficient nano iron particle-labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Jia

    2011-03-01

    Full Text Available Rong Chen*, Hui Yu*, Zhen-Yu Jia, Qun-Li Yao, Gao-Jun TengJiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China *These authors have contributed equally to this workAbstract: In this study, we sought to label mouse bone marrow-derived endothelial progenitor cells (EPCs with Resovist® in vitro and to image them using 7.0 Tesla (T magnetic resonance imaging (MRI. Mouse bone marrow-derived EPCs were cultured in endothelial basal medium with endothelial growth supplement. They were then characterized by immunocytochemistry, flow cytometry, and fluorescence quantitative polymerase chain reaction. Their functions were evaluated by measuring their uptake of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (Dil-Ac-LDL, binding of fluorine isothiocyanate (FITC-labeled Ulex europaeus agglutinin (UEA, and formation of capillary-like networks. EPCs were labeled with superparamagnetic iron oxide (SPIO and their proliferation was then assessed in a water-soluble tetrazolium (WST-8-based cell proliferation assay. Spin echo sequence (multislice, multiecho [MSME] and gradient echo sequence (2D-FLASH were used to detect differences in the numbers of labeled cells by 7.0 T MRI. The results showed that the cultured cells were of “cobblestone”-like shape and positive for CD133, CD34, CD31, von Willebrand factor, kinase domain receptor, and CD45, but negative for F4/80. They could take up Dil-Ac-LDL, bind FITC-UEA, and form capillary-like networks on Matrigel in vitro. Prussian-blue staining demonstrated that the cells were efficiently labeled with SPIO. The single-cell T2* effect was more obvious in the 2D-FLASH sequence than in the MSME sequence. Further, there were almost no adverse effects on cell vitality and proliferation. In conclusion, mouse bone marrow-derived EPCs can be

  10. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells

    Science.gov (United States)

    McAllister, T. N.; Du, T.; Frangos, J. A.

    2000-01-01

    Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.

  11. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells

    DEFF Research Database (Denmark)

    Pedersen, Charlotte Demuth; Fang, J J; Pedersen, Anders Elm

    2009-01-01

    show that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of...... CD80 surface expression. In contrast, the most effective method was the lipid-based method using the siRNA transfection reagent GeneSilencer((R)) from Genlantis. This protocol resulted in up to 92% FITC-siRNA positive cells after 4 h which declined to 62% and 59% 24 and 48 h post......Selective gene silencing using RNA interference (RNAi) has been shown to be an efficient method for manipulation of cellular functions. In this study, we compare three previously established methods for transfection of murine bone marrow-derived DC (BM-DC). We tested the efficacy of electroporation...

  12. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chunxi; Dai Kerong [Department of Orthopedics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011 (China); Yuan Guangyin; Zhang Jia [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Tang Ze; Zhang Xiaoling [Lab of Osteopaedic Cellular and Molecular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine - SJTUSM, Shanghai 200025 (China)

    2010-08-01

    In this study, adult human bone marrow-derived stromal cells (hBMSCs) were cultured in extracts of magnesium (Mg) and the Mg alloys AZ91D and NZ30K for 12 days. We studied the indirect effects of Mg alloys on hBMSC viability. Alkaline phosphatase activity and the expression of osteogenic differentiation marker genes were used to evaluate the effects of the Mg alloys on the osteogenic differentiation of hBMSCs. The results indicate that {<=}10 mM concentration of Mg in the extracts did not inhibit the viability and osteogenic differentiation of hBMSCs. However, the results suggest that the high pH of the extracts, which is a result of the rapid corrosion of Mg and the Mg alloys, is unfavorable to the viability and osteogenic differentiation of hBMSCs.

  13. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation

    International Nuclear Information System (INIS)

    In this study, adult human bone marrow-derived stromal cells (hBMSCs) were cultured in extracts of magnesium (Mg) and the Mg alloys AZ91D and NZ30K for 12 days. We studied the indirect effects of Mg alloys on hBMSC viability. Alkaline phosphatase activity and the expression of osteogenic differentiation marker genes were used to evaluate the effects of the Mg alloys on the osteogenic differentiation of hBMSCs. The results indicate that ≤10 mM concentration of Mg in the extracts did not inhibit the viability and osteogenic differentiation of hBMSCs. However, the results suggest that the high pH of the extracts, which is a result of the rapid corrosion of Mg and the Mg alloys, is unfavorable to the viability and osteogenic differentiation of hBMSCs.

  14. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-an; FAN You-qi; LI Chang-ling; HE Hong; SUN Yong; LV Bin-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells.BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI)control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5× 106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplantation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and

  15. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina;

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  16. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  17. Genetic response and morphologic characterization of chicken bone-marrow derived dendritic cells during infection with high and low pathogenic avian influenza viruses

    Science.gov (United States)

    Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...

  18. Role of Bone Marrow-Derived Stem Cells in Polyps Development in Mice with ApcMin/+ Mutation

    Directory of Open Access Journals (Sweden)

    Michele Barone

    2015-01-01

    Full Text Available We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp could modify the differentiation program of bone marrow-derived stem cells (BMSCs, involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female ApcMin/+ mice were transplanted with bone marrow (BM cells obtained from either male age-matched ApcMin/+ (Apc-Tx-Apc or wild type (WT (WT-Tx-Apc mice. At 4 and 7 weeks after transplantation, BM-derived colonocytes were recognized by colocalization of Y-chromosome and Cdx2 protein (specific colonocyte marker. Polyp number, volume, and grade of dysplasia were not influenced by irradiation/transplantation procedures since they were similar in both untreated female ApcMin/+ and Apc-Tx-Apc mice. At 4 and 7 weeks after transplantation, a progressive significant reduction of polyp number and volume was observed in WT-Tx-Apc mice. Moreover, the number of WT-Tx-Apc mice with a high-grade dysplastic polyps significantly decreased as compared to Apc-Tx-Apc mice. Finally, at 4 and 7 weeks after transplantation, WT-Tx-Apc mice showed a progressive significant increase of Y+/Cdx2+ cells in “normal” mucosa, whereas, in the adenomatous tissue, Y+/Cdx2+ cells remained substantially unvaried. Our findings demonstrate that WT BMSCs do not participate in polyp development but rather inhibit their growth. The substitution of genotypically altered colonocytes with Y+/Cdx2+ cells probably contributes to this process.

  19. Imaging of Bone Marrow.

    Science.gov (United States)

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  20. New Insights on Human Nestin-positive Bone Marrow-derived Multipotent Cells

    Directory of Open Access Journals (Sweden)

    SimonePacini

    2014-05-01

    Full Text Available Recent investigations have made considerable progress in the understanding of tissue regeneration driven by mesenchymal stromal cells (MSCs. Data indicate the anatomical location of MSC as residing in the “perivascular” space of blood vessels dispersed across the whole body. This histological localization suggests that MSCs contribute to the formation of new blood vessels in vivo. Indeed, MSCs can release angiogenic factors and protease to facilitate blood vessel formation and in vitro are able to promote/support angiogenesis. However, the direct differentiation of MCSs into endothelial cells is still matter of debate. Most of the conflicting data might arise from the presence of multiple subtypes of cells with heterogeneous morph-functional features within the MSC cultures. According to this scenario, we hypothesize that the presence of the recently described Mesodermal Progenitor Cells (MPCs within the MSCs cultures is responsible for their variable angiogenic potential. Indeed, MPCs are Nestin-positive CD31-positive cells exhibiting angiogenic potential that differentiate in MSC upon proper stimuli. The ISCT criteria do not account for the presence of MPC within MSC culture generating confusion in the interpretation of MSC angiogenic potential. In conclusion, the discovery of MPC gives new insight in defining MSC ancestors in human bone marrow, and indicates the tunica intima as a further, and previously overlooked, possible additional source of MSC.

  1. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Directory of Open Access Journals (Sweden)

    Ruifeng Liu

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp., including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  2. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin.

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types. PMID:27239202

  3. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  4. Spatiotemporal control of gene expression in bone-marrow derived cells of the tumor microenvironment induced by MRI guided focused ultrasound.

    Science.gov (United States)

    Fortin, Pierre-Yves; Lepetit-Coiffé, Matthieu; Genevois, Coralie; Debeissat, Christelle; Quesson, Bruno; Moonen, Chrit T W; Konsman, Jan Pieter; Couillaud, Franck

    2015-09-15

    The tumor microenvironment is an interesting target for anticancer therapies but modifying this compartment is challenging. Here, we demonstrate the feasibility of a gene therapy strategy that combined targeting to bone marrow-derived tumor microenvironment using genetically modified bone-marrow derived cells and control of transgene expression by local hyperthermia through a thermo-inducible promoter. Chimera were obtained by engraftment of bone marrow from transgenic mice expressing reporter genes under transcriptional control of heat shock promoter and inoculated sub-cutaneously with tumors cells. Heat shocks were applied at the tumor site using a water bath or magnetic resonance guided high intensity focused ultrasound device. Reporter gene expression was followed by bioluminescence and fluorescence imaging and immunohistochemistry. Bone marrow-derived cells expressing reporter genes were identified to be mainly tumor-associated macrophages. We thus provide the proof of concept for a gene therapy strategy that allows for spatiotemporal control of transgenes expression by macrophages targeted to the tumor microenvironment. PMID:26299614

  5. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    OpenAIRE

    Jensen Jonas; Tvedesøe Claus; Rölfing Jan Hendrik Duedal; Foldager Casper Bindzus; Lysdahl Helle; Kraft David Christian Evar; Chen Muwan; Baas Jorgen; Le Dang Quang Svend; Bünger Cody Eric

    2016-01-01

    Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phos...

  6. Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice.

    Science.gov (United States)

    Hasegawa-Ishii, Sanae; Inaba, Muneo; Li, Ming; Shi, Ming; Umegaki, Hiroyuki; Ikehara, Susumu; Shimada, Atsuyoshi

    2016-04-01

    Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction. PMID:25577138

  7. Bone Marrow Aspiration and Biopsy

    Science.gov (United States)

    ... Global Sites Search Help? Bone Marrow Aspiration and Biopsy Share this page: Was this page helpful? Also ... Examination Formal name: Bone Marrow Aspiration; Bone Marrow Biopsy Related tests: Complete Blood Count ; WBC Differential ; Reticulocyte ...

  8. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC.

    Directory of Open Access Journals (Sweden)

    Natalie Fekete

    Full Text Available BACKGROUND: Mesenchymal stromal cells (MSC have gained importance in tissue repair, tissue engineering and in immunosupressive therapy during the last years. Due to the limited availability of MSC in the bone marrow, ex vivo amplification prior to clinical application is requisite to obtain therapeutic applicable cell doses. Translation of preclinical into clinical-grade large-scale MSC expansion necessitates precise definition and standardization of all procedural parameters including cell seeding density, culture medium and cultivation devices. While xenogeneic additives such as fetal calf serum are still widely used for cell culture, its use in the clinical context is associated with many risks, such as prion and viral transmission or adverse immunological reactions against xenogeneic components. METHODS AND FINDINGS: We established animal-free expansion protocols using platelet lysate as medium supplement and thereby could confirm its safety and feasibility for large-scale MSC isolation and expansion. Five different GMP-compliant standardized protocols designed for the safe, reliable, efficient and economical isolation and expansion of MSC was performed and MSC obtained were analyzed for differentiation capacity by qPCR and histochemistry. Expression of standard MSC markers as defined by the International Society for Cellular Therapy as well as expression of additional MSC markers and of various chemokine and cytokine receptors was analysed by flow cytometry. Changes of metabolic markers and cytokines in the medium were addressed using the LUMINEX platform. CONCLUSIONS: The five different systems for isolation and expansion of MSC described in this study are all suitable to produce at least 100 millions of MSC, which is commonly regarded as a single clinical dose. Final products are equal according to the minimal criteria for MSC defined by the ISCT. We showed that chemokine and integrin receptors analyzed had the same expression pattern

  9. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2011-09-01

    Full Text Available Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17, which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. Results The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. Conclusions Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for

  10. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus

    Directory of Open Access Journals (Sweden)

    Farrell Regina M

    2004-09-01

    Full Text Available Abstract Background Human infections with Sin Nombre virus (SNV and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS, a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC from deer mouse bone marrow using commercially-available house mouse (Mus musculus granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.

  11. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  12. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    Science.gov (United States)

    González-Fernández, Maria L; Pérez-Castrillo, Saúl; Sánchez-Lázaro, Jaime A; Prieto-Fernández, Julio G; López-González, Maria E; Lobato-Pérez, Sandra; Colaço, Bruno J; Olivera, Elías R; Villar-Suárez, Vega

    2016-07-01

    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans. PMID:27347833

  13. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    Science.gov (United States)

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. PMID:26038125

  14. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  15. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  16. Bone marrow transplantation

    International Nuclear Information System (INIS)

    Peculiarities of clinico-hematologic pattern in patients with acute leukosis when ionizing radiation is used as prepration regime for hystocompatible bone marrow transplantation are listed. Chemico-radiopreparation of patients with acute leukosis is described, different techniques of bone marrow transplantation are presented, secondary signs of the disease are shown

  17. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  18. What Is a Bone Marrow Transplant?

    Science.gov (United States)

    ... this page Print this page What is a bone marrow transplant? A bone marrow or cord blood transplant is ... with healthy bone marrow. Tweet What is a bone marrow transplant How a bone marrow transplant works Transplant process ...

  19. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Directory of Open Access Journals (Sweden)

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  20. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model.

    Science.gov (United States)

    Li, Lu; Zeng, Zhutian; Qi, Ziping; Wang, Xin; Gao, Xiang; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2015-01-01

    Bone-marrow transplantation (BMT) can repopulate the liver through BM-derived hepatocyte (BMDH) generation, although the underlying mechanism remains unclear. Using fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mice as a liver-failure model, we confirmed that BMDHs were generated by fusion of BM-derived CD11b(+)F4/80(+)myelomonocytes with resident Fah(-/-) hepatocytes. Hepatic NK cells became activated during BMDH generation and were the major IFN-γ producers. Indeed, both NK cells and IFN-γ were required for BMDH generation since WT, but not NK-, IFN-γ-, or IFN-γR1-deficient BM transplantation successfully generated BMDHs and rescued survival in Fah(-/-) hosts. BM-derived myelomonocytes were determined to be the IFN-γ-responding cells. The IFN-γ-IFN-γR interaction contributed to the myelomonocyte-hepatocyte fusion process, as most of the CD11b(+) BMDHs in mixed BM chimeric Fah(-/-) hosts transplanted with a 1:1 ratio of CD45.1(+) WT and CD45.2(+) Ifngr1(-/-) BM cells were of CD45.1(+) WT origin. Confirming these findings in vitro, IFN-γ dose-dependently promoted the fusion of GFP(+) myelomonocytes with Fah(-/-) hepatocytes due to a direct effect on myelomonocytes; similar results were observed using activated NK cells. In conclusion, BMDH generation requires NK cells to facilitate myelomonocyte-hepatocyte fusion in an IFN-γ-dependent manner, providing new insights for treating severe liver failure. PMID:26345133

  1. Bone marrow transplantation enhances trafficking of host-derived myelomonocytic cells that rescue intestinal mucosa after whole body radiation

    International Nuclear Information System (INIS)

    Background: Bone marrow (BM)-derived cells were demonstrated within intestines after radiation damage and were reported to be responsible for intestine repair. However, there was a discrepancy between intestine epithelial clonogenic regeneration, and mouse survival after BM transplantation (BMT) and radiation. The contribution of BM to acute intestine repair after radiation needed further investigation. Methods: Mouse survival, intestine microcolony assay, immunohistochemical studies of both intestine and BM were evaluated in mice after whole body irradiation (WBI) and BMT. Immunoblotting, flowcytometry, and double immunostaining were used to evaluate the amount and the character of stroma cells within intestines of recipient mice after receiving gender-mismatched BMT or BMT from green fluorescence donors. Results: Stromal cell proliferation within the lamina propria correlated with the beneficial effect of BMT to intestine recovery and day-8 survival of mice. Few donor-derived cells were found before the completion of intestine repair. The number of host but not donor-derived myelomonocytic and stromal cells increased dramatically within one week after radiation and BMT. Depletion of myelomonocytic cells of recipient mice abolished the mitigating effect of BMT. Conclusions: Besides rescuing injured BM from aplasia, BMT triggers trafficking of host CD11b(+) myelomonocytic cells from the host marrow to the radiation-injured intestinal mucosa, enhancing the proliferation of intestinal stroma cells, leading secondarily to epithelial regeneration.

  2. Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by Survivin on experimental stroke in rats

    Directory of Open Access Journals (Sweden)

    Cheng Ronghua

    2011-07-01

    Full Text Available Abstract Background This study was performed to determine whether injury induced by cerebral ischemia could be further improved by transplantation with bone marrow-derived mesenchymal stem cells (MSCs modified by Survivin (SVV. Methods MSCs derived from bone marrow of male Sprague-Dawley rats were infected by the self-inactive lentiviral vector GCFU carrying green fluorescent protein (GFP gene and SVV recombinant vector (GCFU-SVV. In vitro, vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF were detected in infected MSCs supernatants under hypoxic conditions by ELSIA. In vivo, experiments consisted of three groups, one receiving intravenous injection of 500 μl of phosphate-buffered saline (PBS without cells (control group and two groups administered the same volume solution with either three million GFP-MSCs (group GFP or SVV/GFP-MSCs (group SVV. All animals were submitted to 2-hour middle cerebral artery occlusion (MCAO and then reperfusion. Differentiation and survival of the transplanted MSCs were determined by confocal microscope. Western blot was used to detect the expression of VEGF and bFGF in ischemic tissue. A 2,3,5-triphenyltetrazolium chloride (TTC staining was used to assess the infarct volume. Evaluation of neurological function was performed using a modified Neurological Severity Score (mNSS. Results In vitro, modification with SVV further increased secretion of VEGF and bFGF under hypoxic condition. In vivo, only very few transplantated cells co-expressed GFP and NeuN. The survival transplanted cells in the group SVV was 1.3-fold at 4 days after transplantation and 3.4-fold higher at 14 days after transplantation, respectively, when compared with group GFP. Expression of VEGF and bFGF in the ischemic tissue were further up-regulated by modification with SVV. Moreover, modification with SVV further reduced the cerebral infarct volume by 5.2% at 4 days after stroke and improved post

  3. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  4. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RTPCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  5. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  6. Histopathological Comparison between Bone Marrow- and Periodontium-derived Stem Cells for Bone Regeneration in Rabbit Calvaria

    Science.gov (United States)

    Kadkhoda, Z.; Safarpour, A.; Azmoodeh, F.; Adibi, S.; Khoshzaban, A.; Bahrami, N.

    2016-01-01

    Background: Periodontitis is an important oral disease. Stem cell therapy has found its way in treatment of many diseases. Objective: To evaluate the regenerative potential of periodontal ligament-derived stem cells (PDLSCs) and osteoblast differentiated from PDLSC in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs) and pre-osteoblasts in calvarial defects. Methods: After proving the existence of surface markers by flow cytometry, BM-MSCs were differentiated into osteoblasts. 5 defects were made on rabbit calvaria. 3 of them were first covered with collagen membrane and then with BM-MSCs, PDLSCs, and pre-osteoblasts. The 4th defect was filled with collagen membrane and the 5th one was served as control. After 4 weeks, histological (quantitative) and histomorphological (qualitative) surveys were performed. Results: Both cell lineages were positive for CD-90 cell marker, which was specifically related to stem cells. Alizarin red staining was done for showing mineral material. RT-PCR set up for the expression of Cbfa1 gene, BMP4 gene, and PGLAP gene, confirmed osteoblast differentiation. The findings indicated that although PDLSCs and pre-osteoblasts could be used for bone regeneration, the rate of regeneration in BM-MSCs-treated cavities was more significant (p<0.0001). Conclusion: The obtained results are probably attributable to the effective micro-environmental signals caused by different bone types and the rate of cell maturation. PMID:26889369

  7. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen

    Science.gov (United States)

    Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan

    2014-01-01

    Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy. PMID:24998261

  8. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  9. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Andreas Matthäus Bader

    Full Text Available Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, "post-ischemic" cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic

  10. Pro-angiogenic properties of orosomucoid (ORM)

    International Nuclear Information System (INIS)

    The acute phase protein orosomucoid (ORM), also known as alpha1-acid glycoprotein (AGP), is found to be increased in infection, inflammation and cancer. Recently, we demonstrated that ORM is produced by endothelial cells and detectable in urine samples of patients with bladder cancer. However, it was not clarified yet whether ORM plays a role in new vessel formation. To this aim we performed overexpression and gene silencing for ORM in human microvascular endothelial cells (HDMECs). ORM purified from human plasma was used individually or in combination with VEGF-A in endothelial tube formation, migration and proliferation assay. The in vivo effect of ORM in angiogenesis was studied using the chicken chorionallantois membrane (CAM) with subsequent counting of blood vessels on histological sections from the stimulated areas of CAM tissue. Our data show that ORM alone enhances migration but not proliferation of HDMECs. ORM alone does not induce endothelial tubes in vitro but simultaneous application of ORM with VEGF-A increases the number and the network of VEGF-A-induced endothelial tubes. Remarkably, ORM alone induces new vessel formation in vivo using CAM assay and supports the VEGF-A-induced new vessel formation in this assay. Taken together, our results let assume that ORM has pro-angiogenic properties and supports the angiogenic effect of VEGF-A. Thus, ORM seems to be involved in the regulation of angiogenesis.

  11. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  12. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  13. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia.

    Science.gov (United States)

    Ismail, Ahmed M; Abdou, Said M; Aty, Hassan Abdel; Kamhawy, Adel H; Elhinedy, Mohammed; Elwageh, Mohammed; Taha, Atef; Ezzat, Amal; Salem, Hoda A; Youssif, Said; Salem, Mohamed L

    2016-08-01

    Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia. PMID:25511801

  14. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-03-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer. PMID:26797476

  15. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Francis, W.R., E-mail: w.francis@swansea.ac.uk [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Owens, S.E.; Wilde, C. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Pallister, I. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Trauma and Orthopaedics, Morriston Hospital, Swansea (United Kingdom); Kanamarlapudi, V. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Zou, W., E-mail: weizou60@hotmail.com [College of Life Sciences, Liaoning Normal University, Dalian 116081 (China); Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian 116081 (China); Xia, Z. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom)

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.

  16. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.

    Science.gov (United States)

    Luan, Xi-Ying; Wang, Yong; Duan, Xiang; Duan, Qiao-Yan; Li, Ming-Zhong; Lu, Shen-Zhou; Zhang, Huan-Xiang; Zhang, Xue-Guang

    2006-12-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture. PMID:18458403

  17. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    Science.gov (United States)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  18. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  19. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  20. Overexpression of Yin Yang 1 in bone marrow-derived human multiple myeloma and its clinical significance.

    Science.gov (United States)

    Huerta-Yepez, Sara; Liu, Hong; Baritaki, Stavroula; Del Lourdes Cebrera-Muñoz, Maria; Rivera-Pazos, Clara; Maldonado-Valenzuela, Altagracia; Valencia-Hipolito, Alberto; Vega, Mario I; Chen, Haiming; Berenson, James R; Bonavida, Benjamin

    2014-09-01

    Multiple myeloma (MM) patients initially respond to conventional therapy, however, many develop resistance and have recurrences. We have reported in other tumors that the transcription factor Yin Yang 1 (YY1) is a resistant factor and, thus, we hypothesized that YY1 may be over-expressed in MM. Significantly, higher expression (staining intensity and cell frequency) of YY1 in MM cell lines and in bone marrow-derived (BM) MM from 22 MM patients was observed as compared to expression in normal BM. Higher nuclear YY1 staining was associated with disease progression. Bioinformatic analyses of mRNA in data sets corroborated the above findings and showed significant overexpression of YY1 in MM compared to normal tissues and other hematopoietic disorders. The role of YY1 expression in the regulation of drug resistance was exemplified in a drug-resistant MM cell line transfected with YY1 siRNA and which was shown to be sensitized to bortezomib-induced apoptosis. These findings highlight the potential prognostic significance of YY1 expression level in MM patients and as a therapeutic target. PMID:24970600

  1. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  2. Collection of Macaca fascicularis cDNAs derived from bone marrow, kidney, liver, pancreas, spleen, and thymus

    Directory of Open Access Journals (Sweden)

    Kameoka Yosuke

    2009-09-01

    Full Text Available Abstract Background Consolidating transcriptome data of non-human primates is essential to annotate primate genome sequences, and will facilitate research using non-human primates in the genomic era. Macaca fascicularis is a macaque monkey that is commonly used for biomedical and ecological research. Findings We constructed cDNA libraries of Macaca fascicularis, derived from tissues obtained from bone marrow, liver, pancreas, spleen, and thymus of a young male, and kidney of a young female. In total, 5'-end sequences of 56,856 clones were determined. Including the previously established cDNA libraries from brain and testis, we have isolated 112,587 cDNAs of Macaca fascicularis, which correspond to 56% of the curated human reference genes. Conclusion These sequences were deposited in the public sequence database as well as in-house macaque genome database http://genebank.nibio.go.jp/qfbase/. These data will become valuable resources for identifying functional parts of the genome of macaque monkeys in future studies.

  3. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  4. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  5. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  6. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    International Nuclear Information System (INIS)

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments

  7. Magnetically Responsive Bone Marrow Mesenchymal Stem Cell-Derived Smooth Muscle Cells Maintain Their Benefits to Augmenting Elastic Matrix Neoassembly.

    Science.gov (United States)

    Swaminathan, Ganesh; Sivaraman, Balakrishnan; Moore, Lee; Zborowski, Maciej; Ramamurthi, Anand

    2016-04-01

    Abdominal aortic aneurysms (AAA) represent abnormal aortal expansions that result from chronic proteolytic breakdown of elastin and collagen fibers by matrix metalloproteases. Poor elastogenesis by adult vascular smooth muscle cells (SMCs) limits regenerative repair of elastic fibers, critical for AAA growth arrest. Toward overcoming these limitations, we recently demonstrated significant elastogenesis by bone marrow mesenchymal stem cell-derived SMCs (BM-SMCs) and their proelastogenesis and antiproteolytic effects on rat aneurysmal SMCs (EaRASMCs). We currently investigate the effects of super paramagnetic iron oxide nanoparticle (SPION) labeling of BM-SMCs, necessary to magnetically guide them to the AAA wall, on their functional benefits. Our results indicate that SPION-labeling is noncytotoxic and does not adversely impact the phenotype and elastogenesis by BM-SMCs. In addition, SPION-BM-SMCs showed no changes in the ability of the BM-SMCs to stimulate elastin regeneration and attenuate proteolytic activity by EaRASMCs. Together, our results are promising toward the utility of SPIONs for magnetic targeting of BM-SMCs for in situ AAA regenerative repair. PMID:26830683

  8. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy.

    Science.gov (United States)

    Jeon, Young-Joo; Kim, Jumi; Cho, Jin Hyoung; Chung, Hyung-Min; Chae, Jung-Il

    2016-05-01

    Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy. J. Cell. Biochem. 117: 1112-1125, 2016. © 2015 Wiley Periodicals, Inc. PMID:26448537

  9. Malignant Transformation in Glioma Steered by an Angiogenic Switch: Defining a Role for Bone Marrow-Derived Cells.

    Science.gov (United States)

    Xu, Raymond; Pisapia, David; Greenfield, Jeffrey P

    2016-01-01

    Low-grade gliomas, such as pilocytic astrocytoma and subependymoma, are often characterized as benign tumors due to their relative circumscription radiologically and typically non-aggressive biologic behavior. In contrast, low-grades that are by their nature diffusely infiltrative, such as diffuse astrocytomas and oligodendrogliomas, have the potential to transform into malignant high-grade counterparts and, given sufficient time, invariably do so. These high-grade gliomas carry very poor prognoses and are largely incurable, warranting a closer look at what causes this adverse transition. A key characteristic that distinguishes low- and high-grade gliomas is neovascularization: it is absent in low-grade gliomas, but prolific in high-grade gliomas, providing the tumor with ample blood supply for exponential growth. It has been well described in the literature that bone marrow-derived cells (BMDCs) may contribute to the angiogenic switch that is responsible for malignant transformation of low-grade gliomas. In this review, we will summarize the current literature on BMDCs and their known contribution to angiogenesis-associated tumor growth in gliomas. PMID:26973806

  10. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report

    OpenAIRE

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-01-01

    Introduction Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. Case presentation A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a ...

  11. Conditioned Medium from Bone marrow-derived Mesenchymal Stem Cells improves recovery after Spinal Cord Injury in rats: an original strategy to avoid cell transplantation.

    OpenAIRE

    Dorothée Cantinieaux; Renaud Quertainmont; Silvia Blacher; Loïc Rossi; Thomas Wanet; Agnès Noël; Gary Brook; Jean Schoenen; Rachelle Franzen

    2013-01-01

    Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been ...

  12. Influence of intracoronary injections of bone-marrow-derived mononuclear cells on large myocardial infarction outcome: Quantum of initial necrosis is the key

    OpenAIRE

    Obradović Slobodan; Balint Bela; Romanović Radoslav; Trifunović Zoran; Rusović Siniša; Baškot Branislav; Dopuđa Marija; Trifunović Gordana; Rafajlovski Sašo; Jung Robert; Gligić Branko

    2009-01-01

    Background/Aim. Autologous bone-marrow-derived intracoronary injection of mononuclear cells (MNC) modestly improved left ventricular ejection fraction (LVEF) in the selected patients after acute ST elevation myocardial infarction (STEMI). Major determinants of stem cell therapy outcome in the subacute phase of STEMI still remain unknown. Therefore, the aim of this study was to determine modifying factors for the outcome of stem cell therapy after STEMI. Methods. Eighteen patients in the stem ...

  13. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo

    OpenAIRE

    Yunhao Qin; Lian Wang; Zhengliang Gao; Genyin Chen; Changqing Zhang

    2016-01-01

    Emerging evidence suggests that extracellular vesicles (EVs) are secreted by diverse tissues and play important roles in cell-cell communication, organ interactions and tissue homeostasis. Studies have reported the use of EVs to stimulate tissue regeneration, such as hepatic cell regeneration, and to treat diseases, such as pulmonary hypertension. However, little is known about the osteogenic effect of EVs. In this study, we explore the role of bone marrow stromal cell-derived EVs in the regu...

  14. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Byron Deorosan; Nauman, Eric A.

    2011-01-01

    Mesenchymal stem cells (MSCs) have become a critical addition to all facets of tissue engineering. While most in vitro research has focused on their behavior in two-dimensional culture, relatively little is known about the cells' behavior in three-dimensional culture, especially with regard to their metabolic state. To evaluate MSC metabolism during twodimensional culture, murine bone marrow-derived MSCs were cultured for one week using twelve different medium compositions, varying in both gl...

  15. Evaluation of the Therapeutic Potential of Bone Marrow-Derived Myeloid Suppressor Cell (MDSC) Adoptive Transfer in Mouse Models of Autoimmunity and Allograft Rejection

    OpenAIRE

    Drujont, Lucile; Carretero-Iglesia, Laura; Bouchet-Delbos, Laurence; Beriou, Gaelle; Merieau, Emmanuel; Hill, Marcelo; Delneste, Yves; Cuturi, Maria Cristina; Louvet, Cedric

    2014-01-01

    Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the...

  16. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia

    OpenAIRE

    Gupta, Pawan K; Chullikana, Anoop; Parakh, Rajiv; Desai, Sanjay; Das, Anjan; Gottipamula, Sanjay; Krishnamurthy, Sagar; Anthony, Naveen; Pherwani, Arun; Majumdar, Anish S

    2013-01-01

    Background Peripheral vascular disease of the lower extremities comprises a clinical spectrum that extends from no symptoms to presentation with critical limb ischemia (CLI). Bone marrow derived Mesenchymal Stem Cells (BM- MSCs) may ameliorate the consequences of CLI due to their combinatorial potential for inducing angiogenesis and immunomodulatory environment in situ. The primary objective was to determine the safety of BM- MSCs in patients with CLI. Methods Prospective, double blind random...

  17. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    OpenAIRE

    Chen X-C; Luo Y.; Wu Y; Zhang X-W; Wang R; Jia Y-Q; Teng H; Yang J-L; Hu M; Zhang R.; Tian L; Zhao X; Wei Y-Q

    2008-01-01

    Abstract Background Bone marrow-derived stromal cells (BMSCs) are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Recept...

  18. Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    L.M.G. De Kroon (Laurie M.G.); R. Narcisi (Roberto); E.N. Blaney Davidson (Esmeralda); M.A. Cleary (Mairéad); H.M. van Beuningen (Henk); W.J.L.M. Koevoet (Wendy J.L.M.); G.J.V.M. van Osch (Gerjo); P.M. van der Kraan (Peter)

    2015-01-01

    textabstractIntroduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta; (TGFbeta;) is crucial for inducing chondrogenic differentiation of BMSCs

  19. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFbeta-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    NARCIS (Netherlands)

    Kroon, L.M.G. de; Narcisi, R.; Davidson, E.N.; Cleary, M.A.; Beuningen, H.M. van; Koevoet, W.J.; Osch, G.J. van; Kraan, P.M. van der

    2015-01-01

    INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta (TGFbeta) is crucial for inducing chondrogenic differentiation of BMSCs and is known

  20. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Kojima, Hideto; Katagi, Miwako [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakae, Yuki [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Terashima, Tomoya [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakagawa, Takahiko [TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto (Japan); Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Maegawa, Hiroshi [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Udagawa, Jun [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan)

    2015-06-12

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{sup +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.

  1. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    International Nuclear Information System (INIS)

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP+) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP+ cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin

  2. Bone marrow fat.

    Science.gov (United States)

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  3. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.

    Science.gov (United States)

    Toosi, S; Naderi-Meshkin, H; Kalalinia, F; Peivandi, M T; Hossein Khani, H; Bahrami, A R; Heirani-Tabasi, A; Mirahmadi, M; Behravan, J

    2016-01-01

    Mesenchymal stem cells (MSCs) have been considered promising tools for new clinical concepts in supporting cellular therapy and regenerative medicine. More recently, Ream/Irrigator/Aspirator (RIA) was introduced as a source of MSCs. In this study we compared MSCs derived from three different sources (iliac crest bone marrow (ICBM), adipose tissue (AT), and (RIA)) regarding the morphology, the success rate of isolating MSCs, colony frequency, expansion potential, osteogenic and chondrogenic differentiation capacity. MSCs were isolated from three different sources and flow cytometric analyses were performed for cell characterization. Colony-forming unit-fibroblast (CFU-F) assay and population doubling time (PDT) were evaluated for MSCs derived from three different sources and differentiation potential of RIA, ICBM-, and AT-MSCs were determined by staining. Additionally, gene expression profiles for tissue specific markers corresponding to osteogenesis and chondrogenesis were analyzed using real time polymerase chain reaction (RT-PCR). Cultured with the appropriate condition, osteogenic and chondrogenic differentiation could be confirmed in all MSC preparations. Flow cytometry analysis indicated that RIA- and AT-derived MSCs have more homogenous populations than ICBM-MSCs. A comparison of the colonogenic ability in different tissues by CFU-F assay after 10 days showed that more colonies are formed from RIA-MSCs than from ICBM-MSCs, and AT-MSCs. AT-MSCs, were dispersed with no obvious colonies. The RIA-MSCs underwent osteogenesis and chondrogenesis at a faster rate than ICBM and AT-MSCs. Direct comparisons of RIA- to ICBM- and AT-MSCs have shown the RIA-MSCs have higher differentiation toward osteoblast and chondrocytes compared to other sources of MSCs. Hence, RIA-MSCs may be recommended as a more suitable source for treating orthopedic disorders. PMID:27609477

  4. Contact-dependent abrogation of bone marrow-derived plasmacytoid dendritic cell differentiation by murine mesenchymal stem cells.

    Science.gov (United States)

    Hackstein, Holger; Tschipakow, Inna; Bein, Gregor; Nold, Philipp; Brendel, Cornelia; Baal, Nelli

    2016-07-15

    Plasmacytoid dendritic cells (pDCs) are rare central regulators of antiviral immunity and unsurpassed producers of interferon-α (IFN-α). Despite their crucial role as a link between innate and adaptive immunity, little is known about the modulation of pDC differentiation by other bone marrow (BM) cells. In this study, we investigated the modulation of pDC differentiation in Flt-3 ligand (Flt3L)-supplemented BM cultures, using highly purified mesenchymal stem cells (MSCs) that were FACS-isolated from murine BM based on surface marker expression and used after in vitro expansion. Initial analysis revealed an almost complete inhibition of BM-derived pDC expansion in the presence of >2% MSC. This inhibition was cell contact-dependent and soluble factor-independent, as indicated by trans-well experiments. The abrogation of functional pDC development by MSCs was confirmed after TLR9 stimulation, revealing a complete, contact-dependent suppression of the IFN-a producing capacity of pDCs in Flt3L MSC BM co-cultures. MSC selectively inhibited pDC development in contrast to myeloid DC development, as indicated by the significantly increased numbers of myeloid DC in Flt3L-supplemented BM cultures. The absence of significant MSC-mediated inhibitory effects on myeloid DC differentiation was confirmed by additional experiments in GM-CSF/IL-4-supplemented BM cultures. In summary, we describe a novel contact-dependent immunomodulatory mechanism of MSC that targets the BM-derived expansion of functional pDCs. PMID:27233615

  5. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  6. Microscopic examination and cytokine expression of bone marrow-derived dendritic cells following exposure to low pathogenic avian ionfluenza

    Science.gov (United States)

    Dendritic cells (DC) function as professional antigen presenting cells, and act as sentinels of the immune system. They are a part of the primary immune response to pathogens and help bridge the innate and adaptive immune responses. They are believed to migrate from bone marrow into the blood stre...

  7. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia;

    2012-01-01

    Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM...

  8. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  9. Bone marrow-derived stromal cells are invasive and hyperproliferative and alter transforming growth factor-α-induced pulmonary fibrosis.

    Science.gov (United States)

    Madala, Satish K; Edukulla, Ramakrishna; Schmidt, Stephanie; Davidson, Cynthia; Ikegami, Machiko; Hardie, William D

    2014-04-01

    Pulmonary fibrosis is caused by excessive proliferation and accumulation of stromal cells. Fibrocytes are bone marrow (BM)-derived cells that contribute to pathologic stromal cell accumulation in human lung disease. However, the cellular source for these stromal cells and the degree of fibrocyte contribution to pulmonary fibrosis remain unclear. To determine the etiology of stromal cell excess during pulmonary fibrosis, we measured fibrocytes during the progression of fibrosis in the transforming growth factor (TGF)-α transgenic mouse model. Lung epithelial-specific overexpression of TGF-α led to progressive pulmonary fibrosis associated with increased accumulation of fibrocytes in the fibrotic lesions. Although reconstitution of BM cells into TGF-α mice demonstrated accumulation of these cells in fibrotic lesions, the majority of the cells did not express α-smooth muscle actin, suggesting that fibrocytes did not transform into myofibroblasts. To explore the mechanisms of fibrocytes in pulmonary fibrogenesis, adoptive cell-transfer experiments were performed. Purified fibrocytes were transferred intravenously into TGF-α transgenic mice, and fibrosis endpoints were compared with controls. Analysis of lung histology and hydroxyproline levels demonstrated that fibrocyte transfers augment TGF-α-induced lung fibrosis. A major subset of TGF-α-induced fibrocytes expressed CD44 and displayed excessive invasiveness, which is attenuated in the presence of anti-CD44 antibodies. Coculture experiments of resident fibroblasts with fibrocytes demonstrated that fibrocytes stimulate proliferation of resident fibroblasts. In summary, fibrocytes are increased in the progressive, fibrotic lesions of TGF-α-transgenic mice and activate resident fibroblasts to cause severe lung disease. PMID:24199692

  10. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts

    International Nuclear Information System (INIS)

    The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined. We evaluated the effects of dasatinib on bone marrow-derived mesenchymal stromal cells (MSC) differentiation into osteoblasts, in the presence or absence of a mixture of dexamethasone, ascorbic acid and β-glycerophosphate (DAG) for up to 21 days. The differentiation kinetics was assessed by evaluating mineralization of the extracellular matrix, alkaline phosphatase (ALP) activity, and expression of osteoblastic markers (receptor activator of nuclear factor kappa B ligand [RANKL], bone sialoprotein [BSP], osteopontin [OPN]). Dasatinib significantly increased the activity of ALP and the level of calcium deposition in MSC cultured with DAG after, respectively, 7 and 14 days; it upregulated the expression of BSP and OPN genes independently of DAG; and it markedly downregulated the expression of RANKL gene and protein (decrease in RANKL/OPG ratio), the key factor that stimulates osteoclast differentiation and activity. Our results suggest a dual role for dasatinib in both (i) stimulating osteoblast differentiation leading to a direct increase in bone formation, and (ii) downregulating RANKL synthesis by osteoblasts leading to an indirect inhibition of osteoclastogenesis. Thus, dasatinib is a potentially interesting candidate drug for the treatment of osteolysis through its dual effect on bone metabolism

  11. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  12. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  13. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.

    Science.gov (United States)

    Piryaei, Abbas; Soleimani, Masoud; Heidari, Mohammad Hassan; Saheli, Mona; Rohani, Razieh; Almasieh, Mohammadali

    2015-05-01

    Adult cardiomyocytes lack the ability to proliferate and are unable to repair damaged heart tissue, therefore differentiation of stem cells to cardiomyocytes represents an exceptional opportunity to study cardiomyocytes in vitro and potentially provides a valuable source for replacing damaged tissue. However, characteristic maturity of the in vitro differentiated cardiomyocytes and methods to achieve it are yet to be optimized. In this study, differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs) into cardiomyocytes is accomplished and the process investigated ultrastructurally. The hBM-MSCs were alternatively treated with 5 μM of 5-azacytidine (5-aza) for 8 weeks resulting in differentiation to cardiomyocytes. Expressions of cardiomyocyte-specific genes [cardiac α-actinin, cardiac β-myosin heavy chain (MHC) and connexin-43] and proteins (cardiac α-actinin, cardiac troponin and connexin-43) were confirmed in a time-dependent manner from the first to the fifth weeks post-induction. Ultrastructural maturation of hBM-MSCs-derived cardiomyocyte (MSCs-CM) corresponded with increase in number and organization of myofilaments in cells over time. Starting from week five, organized myofibrils along with developing sarcomeres were detectable. Later on, MSCs-CM were characterized by the presence of sarcoplasmic reticulum, T-tubules and diads as cardiomyocytes connected to each other by intercalated disc-like structures. Here, we showed the potential of hBM-MSCs as a source for the production of cardiomyocytes and confirmed mature ultrastructural characteristics of these cells using our alternative incubation method. PMID:25573851

  14. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    International Nuclear Information System (INIS)

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation

  15. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.

    Science.gov (United States)

    Han, Sufang; Wang, Bin; Li, Xing; Xiao, Zhifeng; Han, Jin; Zhao, Yannan; Fang, Yongxiang; Yin, Yanyun; Chen, Bing; Dai, Jianwu

    2016-07-01

    Accumulating evidence has revealed three-dimensional (3D) culture could better mimic the stem cell niche in vivo in comparison with conventional two-dimensional (2D) culture. In this study, we found that bone marrow derived mesenchymal stem cells (BMSCs) cultured in 3D collagen scaffold (3D BMSCs) exhibited distinctive features including significantly enhancing neurotrophic factor secretions and reducing macrophage activations challenged by lipopolysaccharide (LPS) in vitro. To further evaluate 3D BMSCs' potential benefits to the regeneration of spinal cord injury (SCI), the 3D and 2D BMSCs were respectively implanted in rat hemisected SCI. Compared with 2D cohort, 3D BMSCs transplantation significantly reduced the expressions of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 at 5 days after transplantation, markedly enhanced axonal regeneration, and promoted motor functional recovery during 8 weeks of observation. When Nocodazole was used to depolymerize the cytoskeleton of 3D BMSCs, the changed expressions of neurotrophic factors and inflammatory cytokines were blunted, at least partially. Thus synergistic effects of neuronal protection and immunomodulation of 3D BMSCs may lead to a better functional recovery of SCI and the underlying mechanism may involve the alteration of their cellular morphology because of 3D culture. This study contributes to a better understanding of the cellular characteristics of 3D BMSCs and provides a novel strategy to promote the repair of the injured spinal cord. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1759-1769, 2016. PMID:26990583

  16. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses.

    Science.gov (United States)

    Bellini, Alberto; Mattoli, Sabrina

    2007-09-01

    Human fibrocytes are mesenchymal progenitors that exhibit mixed morphological and molecular characteristics of hematopoietic stem cells, monocytes and fibroblasts. They likely represent the obligate intermediate stage of differentiation into mature mesenchymal cells of a bone marrow-derived precursor of the monocyte lineage under permissive conditions. On in vitro stimulation with pro-fibrotic cytokines and growth factors, human fibrocytes produce large quantities of extracellular matrix components and further differentiate into cells identical to the contractile myofibroblasts that emerge at the tissue sites during repair processes and in some fibrotic lesions. Studies in various animal models of wound healing or fibrotic diseases have confirmed the ability of fibrocytes to differentiate into mature mesenchymal cells in vivo and have suggested a causal link between fibrocyte accumulation and ongoing tissue fibrogenesis or vascular remodeling in response to tissue damage or hypoxia. Fibrocytes synthesizing new collagen or acquiring myofibroblast markers have been detected in human hypertrophic scars, in the skin of patients affected by nephrogenic systemic fibrosis, in human atherosclerotic lesions, and in pulmonary diseases characterized by repeated cycles of inflammation and repair, like asthma. The presence of fibrocyte-like cells has been reported in human chronic pancreatitis and chronic cystitis. Similar cells also populate the stroma surrounding human benign tumors. The available data indicate that human fibrocytes serve as a source of mature mesenchymal cells during reparative processes and in fibrotic disorders or stromal reactions predominantly associated with a persistent inflammatory infiltrate or with the selective recruitment of monocytes induced by ischemic changes and tumor development. A deeper understanding of the mechanisms involved in fibrocyte differentiation in these pathological conditions may lead to the development of novel therapies for

  17. The susceptive alendronate-treatment timing and dosage for osteogenesis enhancement in human bone marrow-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Chang

    Full Text Available Recent studies indicated that alendronate enhanced osteogenesis in osteoblasts and human bone marrow-derived stem cells. However, the time- and dose-dependent effects of Aln on osteogenic differentiation and cytotoxicity of hBMSCs remain undefined. In present study, we investigated the effective dose range and timing of hBMSCs. hBMSCs were treated with various Aln doses (1, 5 and 10 µM according to the following groups: group A was treated with Aln during the first five days of bone medium, groups B, C and D were treated during the first, second, and final five days of osteo-induction medium and group E was treated throughout the entire experiment. The mineralization level and cytotoxicity were measured by quantified Alizarin Red S staining and MTT assay. In addition, the reversal effects of farnesyl pyrophosphate and geranylgeranyl pyrophosphate replenishment in group B were also investigated. The results showed that Aln treatment in groups A, B and E enhanced hBMSC mineralization in a dose-dependent manner, and the most pronounced effects were observed in groups B and E. The higher dose of Aln simultaneously enhanced mineralization and caused cytotoxicity in groups B, C and E. Replenishment of FPP or GGPP resulted in partial or complete reverse of the Aln-induced mineralization respectively. Furthermore, the addition of FPP or GGPP also eliminated the Aln-induced cytotoxicity. We demonstrated that hBMSCs are susceptible to 5 µM Aln during the initiation stage of osteogenic differentiation and that a 10 µM dose is cytotoxic.

  18. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Bita; Kong, Yen P. [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Kaigler, Darnell [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109 (United States); Putnam, Andrew J., E-mail: putnam@umich.edu [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.

  19. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua

    2008-01-01

    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  20. Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kalomoiris, Stefanos; Cicchetto, Andrew C; Lakatos, Kinga; Nolta, Jan A; Fierro, Fernando A

    2016-09-01

    Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888666

  1. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  2. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Koch, Thomas Gadegaard; Heerkens, T.;

    2009-01-01

    Objective: Orthopaedic injury is the most common cause of lost training days or premature retirement in the equine athlete. Cell-based therapies are a potential new treatment option in musculo-skeletal diseases. Mesenthymal stromal cells (MSC) have been derived from multiple sources in the horse ...

  3. Bone marrow stromal cell: mediated neuroprotection for spinal cord repair

    OpenAIRE

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic factors, enabling neuroprotection/tissue sparing in a rat model of spinal cord injury. In this model system, bone marrow stromal cell-mediated tissue sparing leads to motor and sensory function impr...

  4. Bone marrow origin of Ia molecules purified from epidermal cells

    International Nuclear Information System (INIS)

    Using radiation bone marrow chimeras, we have shown that Ia molecules purified from epidermal cell preparations of the mouse reflect the Ia phenotype of the bone marrow donor. This result strongly suggests that Ia molecules are synthesized by a bone-marrow-derived cell in the epidermis. Furthermore, results of peptide map analysis of immunoprecipitated biosynthetically labeled Ia suggest that the Ia molecules found in skin are identical to those found on B lymphocytes. These results support biochemical as well as serologic identity

  5. Archival bone marrow samples

    DEFF Research Database (Denmark)

    Lund, Bendik; Najmi, Laeya A; Wesolowska-Andersen, Agata;

    2015-01-01

    AB Archival samples represent a significant potential for genetic studies, particularly in severe diseases with risk of lethal outcome, such as in cancer. In this pilot study, we aimed to evaluate the usability of archival bone marrow smears and biopsies for DNA extraction and purification, whole...... with samples stored for 4 to 10 years. Acceptable call rates for SNPs were detected for 7 of 42 archival samples. In conclusion, archival bone marrow samples are suitable for DNA extraction and multiple marker analysis, but WGA was less successful, especially when longer fragments were analyzed. Multiple SNP...

  6. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  7. Bone-marrow transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series To use the sharing features on ... slide 4 out of 4 Normal anatomy Overview Bone-marrow is a soft, fatty tissue found inside of ...

  8. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2+) thymocytes, which reaches maximum number of 10 to 20 x 106 cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1+) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 106). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype

  9. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

    Science.gov (United States)

    Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein anddaidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal s...

  10. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    OpenAIRE

    Zoleikha Golipoor; Fereshteh Mehraein; Fariba Zafari; Akram Alizadeh; Shima Ababzadeh; Maryam Baazm

    2016-01-01

    Objective: Bone marrow (BM) is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL) stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB) in response to tissue injury. In this study we ...

  11. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  12. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices

    OpenAIRE

    Endres, M; Hutmacher, D.W.; Salgado, A. J.; Kaps, C; RINGE, J; Reis, R. L.; Sittinger, M; Brandwood, A.; Schantz, J. T.

    2003-01-01

    The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated...

  13. The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients

    OpenAIRE

    Tan, Hiang Boon; Giannoudis, Peter V.; Boxall, Sally A; McGonagle, Dennis; Jones, Elena

    2015-01-01

    Background Fracture healing is a complex process regulated by a variety of cells and signalling molecules which act both locally and systemically. The aim of this study was to investigate potential changes in patients’ mesenchymal stem cells (MSCs) in the iliac crest (IC) bone marrow (BM) and in peripheral blood (PB) in relation to the severity of trauma and to correlate them with systemic changes reflective of inflammatory and platelet responses following fracture. Methods ICBM samples were ...

  14. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Pietilä, Mika; Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2011-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donor...

  15. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma

    OpenAIRE

    Roubeix, Christophe; Godefroy, David; Mias, Céline; Sapienza, Anaïs; Riancho, Luisa; Degardin, Julie; Fradot, Valérie; Ivkovic, Ivana; Picaud, Serge; Sennlaub, Florian; Denoyer, Alexandre; Rostene, William; Sahel, José Alain; Parsadaniantz, Stéphane Melik; Brignole-Baudouin, Françoise

    2015-01-01

    Introduction Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs...

  16. Characterization of thymus - and bone marrow-derived lymphocytes in rats by means of 3H-uridine incorporation

    International Nuclear Information System (INIS)

    Lymphocytes from various lymphoid oro.ans and from the thoracic duct of normal and thymectomized rats, irradiated and reconstituted with syngeneic bone marrow were tested in vitro in a minimal non-enriched cultivation medium with 3H-uridine, and the percentage of uridine-labelled lymphocytes was determined. The highest number of heavily labelled small lymphocytes was found in the thymus and in the thoracic duct, fewer in peripheral blood, the lymph nodes and the spleen, the smallest number in the bone marrow. The thymectomized animals showed reduced uridine uptake. The method of immune rosette formation was used to determine the presence of B lymphocytes in the lymphoid rat population. The highest quantity of B lymphocytes was recorded in the bone marrow and the least in the thymus and in the thoracic duct. Thymectomized animals had a significantly higher percentage of EAC rosettes than normal and sham-operated animals. The methods employed and existing literary data enabled us to identify the heavily uridine-labelled lymphocytes as T cells, while unlabelled lymphocytes are considered to be B cells. The difference in uridine uptake in rat lymphocytes may serve as one of the T lymphocyte markers in a heterologous lymphoid population. (author)

  17. Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure.

    Science.gov (United States)

    Darabi, Shahram; Tiraihi, Taki; Ruintan, Atefeh; Abbaszadeh, Hojatt Allah; Delshad, AliReza; Taheri, Taher

    2013-09-01

    Bone marrow stromal cells (BMSCs) were reported to form floating aggregation of cells with expression of nestin, a marker for neural stem cells (NSCs). The purpose of this investigation is to evaluate the morphology and the molecular markers expressed by NSCs derived from these neurospheres. The BMSCs were isolated from Sprague Dawley rats and evaluated for osteogenesis, lipogenesis, and expression of fibronectin, CD90, CD106, CD31, and Oct4. The BMSCs were cultured with Dulbecco's modified Eagle's medium (DMEM)/F12 containing 15% fetal bovine serum, then with DMEM/F12 containing 2% B27, basic fibroblast growth factor, and epidermal growth factor. The cell aggregates or spheres were stained with acridine orange, which showed that the neurospheres comprised aggregated cells at either premitotic/postsynthetic (PS), postmitotic/presynthetic (PM) phases of cell cycle, or a mixture of both. The NSCs harvested from the neurospheres were polar with eccentric nucleus, and at either a PS or a PM cell cycle phases, some cells at the latter phase tended to form rosette-like structures. The cells were immunostained for molecular markers such as nestin, neurofilament 68 (NF68), NF160, and NF200 and glial fibrillary acidic protein (GFAP). Myelin basic protein (MBP), the pluripotency (Oct4, Nanog, and SOX2), and the differentiation genes (NeuroD1, Tubb4, and Musashi I) were also evaluated using reverse transcription polymerase chain reaction (RT-PCR). Nestin, NF68, NF160, NF200, GFAP, O4, and N-cadherin were expressed in the NSCs. The percentage of immunoreactive cells to nestin was significantly higher than that of the other neuronal markers. MBP was not expressed in BMSCs, neurospheres, and NSCs. The neurospheres were immunoreactive to GFAP. RT-PCR showed the expression of NeuroD1 and Musashi I. The pluripotency gene (SOX2) was expressed in NSCs. Oct4 and Nanog were expressed in BMSCs, while Oct4 and SOX2 were expressed in the neurosphere. This indicates that a pluripotency

  18. Targeting Bone Marrow to Potentiate the Anti-Tumor Effect of Tyrosine Kinase Inhibitor in Preclinical Rat Model of Human Glioblastoma

    Science.gov (United States)

    Shaaban, S.; Alsulami, M.; Arbab, S.A.; Ara, R.; Shankar, A.; Iskander, A.; Angara, K.; Jain, M.; Bagher-Ebadian, H.; Achyut, B.R.; Arbab, A.S.

    2016-01-01

    Antiangiogenic agents caused paradoxical increase in pro-growth and pro-angiogenic factors and caused tumor growth in glioblastoma (GBM). It is hypothesized that paradoxical increase in pro-angiogenic factors would mobilize Bone Marrow Derived Cells (BMDCs) to the treated tumor and cause refractory tumor growth. The purposes of the studies were to determine whether whole body irradiation (WBIR) or a CXCR4 antagonist (AMD3100) will potentiate the effect of vatalanib (a VEGFR2 tyrosine kinase inhibitor) and prevent the refractory growth of GBM. Human GBM were grown orthotopically in three groups of rats (control, pretreated with WBIR and AMD3100) and randomly selected for vehicle or vatalanib treatments for 2 weeks. Then all animals underwent Magnetic Resonance Imaging (MRI) followed by euthanasia and histochemical analysis. Tumor volume and different vascular parameters (plasma volume (vp), forward transfer constant (Ktrans), back flow constant (kep), extravascular extracellular space volume (ve) were determined from MRI. In control group, vatalanib treatment increased the tumor growth significantly compared to that of vehicle treatment but by preventing the mobilization of BMDCs and interaction of CXCR4-SDF-1 using WBIR and ADM3100, respectively, paradoxical growth of tumor was controlled. Pretreatment with WBIR or AMD3100 also decreased tumor cell migration, despite the fact that ADM3100 increased the accumulation of M1 and M2 macrophages in the tumors. Vatalanib also increased Ktrans and ve in control animals but both of the vascular parameters were decreased when the animals were pretreated with WBIR and AMD3100. In conclusion, depleting bone marrow cells or CXCR4 interaction can potentiate the effect of vatalanib.

  19. Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells generated in vitro from murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Júlia Kurkó

    Full Text Available Myeloid-derived suppressor cells (MDSCs are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF of mice with proteoglycan (PG-induced arthritis (PGIA, a T cell-dependent autoimmune model of rheumatoid arthritis (RA. However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA.Murine bone marrow (BM cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF, interleukin-6 (IL-6, and granulocyte colony-stimulating factor (G-CSF. The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined.BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels.Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the

  20. Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    CHAI Wei; NI Ming; RUI Yun-feng; ZHANG Kai-yi; ZHANG Qiang; XU Liang-liang; CHAN Kai-ming

    2013-01-01

    Background Recent studies showed that bone marrow-derived mesenchymal stem cells (BMSCs) had risk of ectopic bone formation.In this study,we aimed to investigate the effect of growth and differentiation factor 6 (GDF-6) on the tenogenic differentiation of BMSCs in vitro,and then combined with small intestine submucous (SIS) to promote tendon regeneration in vivo.Methods The BMSCs were isolated from the green fluorescent protein (GFP) rats,and were characterized by multi-differentiation assays following our previous study protocol.BMSCs cultured with different concentrations of GDF-6,without growth factors served as control.After 2 weeks,mRNA expression and protein expression of tendon specific markers were examined by qRT-PCR and Western blotting to define an optimal concentration of GDF-6.Mann-Whitney U-test was used to compare the difference in relative mRNA expression among all groups; P ≤0.05 was regarded as statistically significant.The GDF-6 treated BMSCs combined with SIS were implanted in nude mice and SD rat acute patellar tendon injury model,the BMSCs combined with SIS served as control.After 12 and 4 weeks in nude mice and tendon injury model,the samples were collected for histology.Results After the BMSCs were treated with different concentration of GDF-6 for 2 weeks,the fold changes of the specific markers (Tenomodulin and Scleraxis) mRNA expression were significantly higher in GDF-6 (20 ng/ml) group (P ≤0.05),which was also confirmed by Western blotting result.The BMSCs became parallel in orientation after GDF-6 (20 ng/ml) treatment,but the BMSCs in control group were randomly oriented.The GDF-6 (20 ng/ml) treated BMSCs were combined with SIS,and were implanted in nude mice for 12 weeks,the histology showed neo-tendon formation.In the SD rat patellar tendon window injury model,the histology also indicated the GDF-6 (20 ng/ml) treated BMSCs combined with SIS could promote tendon regeneration.Conclusions GDF-6 has tenogenic effect on the tenogenic

  1. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    Science.gov (United States)

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. PMID:22370181

  2. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture.

    Science.gov (United States)

    Muir, Peter; Hans, Eric C; Racette, Molly; Volstad, Nicola; Sample, Susannah J; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L; Bloom, Debra D; Bleedorn, Jason A; Hao, Zhengling; Amene, Ermias; Suresh, M; Hematti, Peiman

    2016-01-01

    Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response

  3. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  4. Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart

    Institute of Scientific and Technical Information of China (English)

    王建安; 李长岭; 樊友启; 何红; 孙勇

    2004-01-01

    Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=l 7). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF Of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn I) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)].Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group,which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%),the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.

  5. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    International Nuclear Information System (INIS)

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) ± PbCl2. At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS ± Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-α levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway

  6. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Directory of Open Access Journals (Sweden)

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  7. Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart

    Institute of Scientific and Technical Information of China (English)

    王建安; 李长岭; 樊友启; 何红; 孙勇

    2004-01-01

    Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn Ⅰ) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21cm and 0.74±0.13cm, and remarkably lower than those of the model group, which were 1.64±0.14cm and 1.19±0.12cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.

  8. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells in a swine hemi-facial allotransplantation model.

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    Full Text Available BACKGROUND: In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs, combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA model. METHODOLOGY/PRINCIPAL FINDINGS: Outbred miniature swine underwent hemi-facial allotransplantation (day 0. Group-I (n = 5 consisted of untreated control animals. Group-II (n = 3 animals received MSCs alone (given on days -1, +1, +3, +7, +14, and +21. Group-III (n = 3 animals received CsA (days 0 to +28. Group-IV (n = 5 animals received CsA (days 0 to +28 and MSCs (days -1, +1, +3, +7, +14, and +21. The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001. Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3(+T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. CONCLUSIONS: These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not

  9. Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells

    OpenAIRE

    Noh, Hyangsoon; Hu, Jiemiao; Wang, Xiaohong; Xia, Xueqing; Satelli, Arun; Li, Shulin

    2015-01-01

    Background Expression of programmed cell death ligand 1 (PD-L1) is an important process by which tumor cells suppress antitumor immunity in the tumor microenvironment. Bone marrow (BM)–derived immune cells are an important component of the tumor microenvironment. However, the link between PD-L1 induction on tumor cells and communication with BM cells is unknown. Results This study demonstrates that BM cells have a direct effect in inducing PD-L1 expression on tumor cells, which contributes to...

  10. Long-Term Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Dextran Sulfate Sodium-Induced Murine Chronic Colitis

    OpenAIRE

    Lee, Hyun Jung; Oh, Sun-Hee; Jang, Hui Won; Kwon, Ji-Hee; Lee, Kyoung Jin; Kim, Chung Hee; Park, Soo Jung; Hong, Sung Pil; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2016-01-01

    Background/Aims Bone marrow-derived mesenchymal stem cells (BM-MSCs) have shown beneficial effects in experimental colitis models, but the underlying mechanisms are not fully understood. We investigated the long-term effects of BM-MSCs, particularly in mice with chronic colitis. Methods Chronic colitis was induced by administering 3% dextran sulfate sodium (DSS) in a series of three cycles. BM-MSCs were injected intravenously into DSS-treated mice three times during the first cycle. On day 33...

  11. Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Černohorská, Markéta; Sulimenko, Tetyana; Sládková, Vladimíra; Dráberová, Lubica; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 194, č. 9 (2015), s. 4099-4111. ISSN 0022-1767 R&D Projects: GA ČR GAP302/12/1673; GA ČR GPP302/11/P709; GA ČR(CZ) GA14-09807S; GA ČR GA15-22194S; GA MŠk(CZ) LD13015; GA MŠk LH12050; GA MZd NT14467 Institutional support: RVO:68378050 Keywords : Bone Marrow-Derived Mast Cells * Microtubule Nucleation * GIT1/beta PIX Proteins * Calcium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.922, year: 2014

  12. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    OpenAIRE

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated...

  13. Epigallocatechin-3-gallate Inhibits LPS-Induced NF-κB and MAPK Signaling Pathways in Bone Marrow-Derived Macrophages

    OpenAIRE

    Joo, So-Young; Song, Young-A; Park, Young-Lan; Myung, Eun; Chung, Cho-Yun; Park, Kang-Jin; Cho, Sung-Bum; Lee, Wan-Sik; Kim, Hyun-Soo; Rew, Jong-Sun; Kim, Nack-Sung; Joo, Young-Eun

    2012-01-01

    Background/Aims Epigallocatechin-3-gallate (EGCG), the primary catechin in green tea, has anti-inflammatory and anti-oxidative properties. The aim of the current study was to characterize the impact of EGCG on lipopolysaccharide (LPS)-induced innate signaling in bone marrow-derived macrophages (BMMs) isolated from ICR mice. Methods The effect of EGCG on LPS-induced pro-inflammatory gene expression and nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined...

  14. Intractable Diseases Treated with Intra-Bone Marrow-Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-09-01

    Full Text Available Bone marrow transplantation (BMT is used to treat hematological disorders, autoimmune diseases and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells but also mesenchymal stem cells (MSMCs. MSMCs are multi-potent stem cells that can be isolated from bone marrow, umbilical cord blood, and adipose tissue. MSMCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSMCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of bone marrow-derived- MSMCs, and the treatment of intractable diseases such as rheumatoid arthritis and malignant tumors with IBM-BMT.

  15. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  16. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    汤亭亭; 徐小良; 戴尅戎; 郁朝锋; 岳冰; 楼觉人

    2005-01-01

    Objective: To evaluate the osteogenic potential of bone morphogenetic protein (BMP)-2 gene transfected goat bone marrow-derived mesenchymal stem cells (MSCs). Methods: Goat bone marrow- derived MSCs were transfected by Adv-human bone morphogenetic protein (hBMP)-2 gene(Group 1), Adv-beta gal transfected MSCs (Group 2)and uninfected MSCs(Group 3). Western blot analysis, alkaline phosphatase staining, Von Kossa staining and transmission electron microscopy were adopted to determine the phenotype of MSCs. Then the cells were injected into thigh muscles of the nude mice. Radiographical and histological evaluations were performed at different intervals. Results: Only Adv-hBMP-2 transfected MSCs produced hBMP-2. These cells were positive for alkaline phosphatase staining at the 12th day and were positive for Von Kossa staining at the 16th day after gene transfer. Electron microscopic observation showed that there were more rough endoplasmic reticulum, mitochondria and lysosomes in Adv-hBMP-2 transfected MSCs compared to MSCs of other two groups. At the 3rd and 6th weeks after cell injection, ectopic bones were observed in muscles of nude mice of Group 1. Only fibrous tissue or a little bone was found in other two groups. Conclusions: BMP-2 gene transfected MSCs can differentiate into osteoblasts in vitro and induce bone formation in vivo.

  17. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts.

    Science.gov (United States)

    Chowdhury, Ridwana; Webber, Jason P; Gurney, Mark; Mason, Malcolm D; Tabi, Zsuzsanna; Clayton, Aled

    2015-01-20

    Stromal fibroblasts become altered in response to solid cancers, to exhibit myofibroblastic characteristics, with disease promoting influence. Infiltrating mesenchymal stem cells (MSC) may contribute towards these changes, but the factors secreted by cancer cells that impact MSC differentiation are poorly understood. We investigated the role of nano-metre sized vesicles (exosomes), secreted by prostate cancer cells, on the differentiation of bone-marrow MSC (BM-MSC), and the subsequent functional consequences of such changes. Purified exosomes impaired classical adipogenic differentiation, skewing differentiation towards alpha-smooth muscle actin (αSMA) positive myofibroblastic cells. A single exosomes treatment generated myofibroblasts secreting high levels of VEGF-A, HGF and matrix regulating factors (MMP-1, -3 and -13). Differentiated MSC had pro-angiogenic functions and enhanced tumour proliferation and invasivity assessed in a 3D co-culture model. Differentiation was dependent on exosomal-TGFβ, but soluble TGFβ at matched dose could not generate the same phenotype. Exosomes present in the cancer cell secretome were the principal factors driving this phenotype. Prostate cancer exosomes dominantly dictate a programme of MSC differentiation generating myofibroblasts with functional properties consistent with disease promotion. PMID:25596732

  18. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.

    Science.gov (United States)

    Ortega, M T; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2016-02-01

    We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells. PMID

  19. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs

  20. Increased stromal-cell-derived factor 1 enhances the homing of bone marrow derived mesenchymal stem cells in dilated cardiomyopathy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-li; Michael Fu; ZHANG Hai-feng; LI Xin-li; DI Ruo-min; YAO Wen-ming; LI Dian-fu; FENG Jian-lin; HUANG Jun; CAO Ke-jiang

    2010-01-01

    Background Stem cell transplantation has been shown to have beneficial effects on dilated cardiomyopathy. However,mechanism for stem cell homing to cardiac tissue in dilated cardiomyopathy has not yet been elucidated.Methods Mesenchymal stem cells were obtained from rat bone marrow, expanded in vitro, and labeled with 99mTc.Cardiomyopathy model was induced by doxorubicin in rats. 99mTc labeled cells were infused into the left ventricles in cardiomyopathy and control rats. Sixteen hours after injection, animals were sacrificed and different tissues were harvested to measure specific radioactivity. By use of real-time polymerase chain reaction and immunohistochemistry,Mrna and protein expressions for stromal-cell-derived factor 1 in cardiac tissue were measured.Results Labeling efficiency of mesenchymal stem cells was (70.0±11.2)%. Sixteen hours after mesenchymal stem cell transplantation, the heart-to-muscle radioactivity ratio was increased significantly in cardiomyopathy hearts as compared to control hearts. Both Mrna and rotein expressions of stromal-cell-derived factor 1 were up-regulated in cardiomyopathy hearts as compared with control hearts.Conclusion In dilated cardiomyopathy induced by doxorubicin up-regulated expression of stromal-cell-derived factor 1in heart may induce mesenchymal stem cells home to the heart.

  1. Effect of AGM and fetal liver-derived stromal cell lines on globin expression in adult baboon (P. anubis bone marrow-derived erythroid progenitors.

    Directory of Open Access Journals (Sweden)

    Donald Lavelle

    Full Text Available This study was performed to investigate the hypothesis that the erythroid micro-environment plays a role in regulation of globin gene expression during adult erythroid differentiation. Adult baboon bone marrow and human cord blood CD34+ progenitors were grown in methylcellulose, liquid media, and in co-culture with stromal cell lines derived from different developmental stages in identical media supporting erythroid differentiation to examine the effect of the micro-environment on globin gene expression. Adult progenitors express high levels of γ-globin in liquid and methylcellulose media but low, physiological levels in stromal cell co-cultures. In contrast, γ-globin expression remained high in cord blood progenitors in stromal cell line co-cultures. Differences in γ-globin gene expression between adult progenitors in stromal cell line co-cultures and liquid media required cell-cell contact and were associated with differences in rate of differentiation and γ-globin promoter DNA methylation. We conclude that γ-globin expression in adult-derived erythroid cells can be influenced by the micro-environment, suggesting new potential targets for HbF induction.

  2. What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells?

    Directory of Open Access Journals (Sweden)

    R. N. Bárcia

    2015-01-01

    Full Text Available MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs, the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2.

  3. Pelleted Bone Marrow Derived Mesenchymal Stem Cells Are Better Protected from the Deleterious Effects of Arthroscopic Heat Shock

    Science.gov (United States)

    Kalamegam, Gauthaman; Abbas, Mohammed; Gari, Mamdooh; Alsehli, Haneen; Kadam, Roaa; Alkaff, Mohammed; Chaudhary, Adeel; Al-Qahtani, Mohammed; Abuzenadah, Adel; Kafienah, Wael; Mobasheri, Ali

    2016-01-01

    Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs) respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs) from osteoarthritis (OA) patients, and evaluated the effect of arthroscopic heat on cells in suspension and pellet cultures. Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 × 106 cells) cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20, or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20, or 30 min for 72 h decreased metabolic activity of the cells in suspensions (63.27% at 30 min) and increased metabolic activity in cell pellets (62.86% at 10 min and 68.57% at 20 min). hBMMSCs exposed to 37, 45, and 55°C for 120 s demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage regeneration. PMID

  4. Cryopreservation of Rat Bone Marrow Derived Mesenchymal Stem Cells by Two Conventional and Open-pulled Straw Vitrification Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Bahadori

    2009-01-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs are obtained from a variety of sources, mainlythe bone marrow. These cells have a great potential for clinical research, however they cannotstay alive for long periods in culture. The aim of this study is to determine whether vitrificationcan be a useful freezing method for the storage of MSCs.Materials and Methods: Mesenchymal stem cells were isolated from rat bone marrow basedon their capacity to adhere to plastic culture surfaces. MSCs were cryopreserved using boththe vitrification method and open-pulled straw (OPS vitrification and stored in liquid nitrogenwith ethylene glycol ficoll (EFS as a cryoprotectant for two months. The morphology andviability of thawed MSCs were evaluated by trypan blue staining. Furthermore, pre and postcryopreserved MSCs were induced to osteocyte and adipocyte with corresponding osteogenicand adipogenic medium.Results: After thawing, the viability rates were 81.33% ± 6.83 for the vitrification method and80.83% ± 6.4 for OPS vitrification, while the values in the pre-vitrification control group were88.16% ± 6.3 (Mean ± SD, n = 6. Post-cryopreserved cells from both the vitrification methodand OPS vitrification also had a similar cellular morphology and colony-formation that wasindistinguishable from non-vitrified fresh MSCs. In addition, the resuscitated cells cultured ininduction medium showed osteogenesis. Mineral production and deposition was detectableby alizarine red S staining. Moreover, by applying an adipogenic differentiation condition,both pre and post cryopreserved cells differentiated into adipocyte and lipid vacuole accumulationthat was stained by oil red O.Conclusion: Vitrification is a reliable and effective method for the cryopreservation of MSCs.

  5. Vascular remodeling and mobilization of bone marrow-derived cells in cuff-induced vascular injury in LDL receptor knockout muce

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Vascular remodeling is an important pathologic process in vascular injury for various vascular disorders such as atherosclerosis,postangioplasty restenosis and transplant arteriopathy.Recently,pathologic change and the role of bone marrow derived cells were wildly studied in atherosclerosis and restenosis.But the manner of lesion formation in neointima and cell recruitment in vascular remodeling lesion in the present of hypercholesterolemia is not Vet fully understood. Methods Double-transgenic mice knockout of LDL receptor gene (LDL-/-) and expressing ubiquitously green fluorescent protein (GFP) were obtained by cross-breeding LDL-/-mice with the GFP-expressing transgenic mice. LDL-/- mice (22-24 weeks of age) fed high fat diet containing 1.25% (w/w) cholesterol were subjected to 9Gy irradiation and received bone marrow (BM) cells from the double-transgenic mice.Four weeks later,a nonconstrictive cuff was Dlaced around the right femoral artery.After another 2 weeks,both right and left femoral arteries were harvested and subjected to histochemical analysis.Apoptosis was analyzed in situ using TUNEL assay.Resuits Two weeks after cuff placement,atherosclerotic lesions developed in the intima consisting of a massive accumulation of foam cells, The tissue stained with anti-α smooth muscle actin (SMA) antibody,showed a number of SMA-positive cells in the intimal lesion area.They were also positive for GFP,indicating that BM-derived cells can differentiate to SMCs in the intima in cuff-induced vascular remodeling lesions.Numerous small vessels in the adventitia as well as the endothelial lining of the intima were positive both for CD31 and GFP.The intima and media showed a larae number of TUNEL-positive signals after 2 weeks cuff injury,indicating the presence of apoptosis in vascular remodelina.Conclusions Atherosclerotic lesions in mice can be developed in the intima after 2 weeks of cuff-induced vascular inJury under the hypercholesterolemic conditions

  6. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation

    Directory of Open Access Journals (Sweden)

    Hendrich Christian

    2005-03-01

    Full Text Available Abstract Background The human cysteine rich protein 61 (CYR61, CCN1 as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan. Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The

  7. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  8. Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Qin; Wang Han; Zhigang Yu

    2012-01-01

    A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.

  9. Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic cells.

    Science.gov (United States)

    Tung, Nguyen Huu; Quang, Tran Hong; Son, Jeong-Hyun; Koo, Jung-Eun; Hong, Hye-Jin; Koh, Young-Sang; Song, Gyu Yong; Kim, Young Ho

    2011-04-01

    Interleukin-12, a heterodimeric cytokine comprising p40 and p35 subunits, plays an essential role in the regulating the differentiation of Th cells, which establish and maximize the capabilities of the immune system. The aim of present study is to screen the effect of 21 ginsenosides from steamed ginseng-leaves and flowers on IL-12 production in bone marrow-derived dendritic cells induced by lipopolysaccharide. Noticeably, ginsenoside Rg(6) (12) and ginsenoside F(4) (13) exhibited particularly inhibitory effect on LPS-induced IL-12 production with the inhibition values of 80 and 82%; and ginsenoside ST(1) (4), ginsenoside SL(2) (8), ginsenoside SL(3) (9), ginsenoside Rh(3) (14), ginsenoside Rk(2) (15), and ginsenoside Rs(4) (18) showed moderate effects with inhibition rates of 63, 65, 67, 68, 71, 73, and 67%, respectively. These results warrant further studies concerning potential of saponin extracts of steamed ginseng-leaves and flowers for medicinal uses. PMID:21544734

  10. Effect of sodium butyrate treatment on the granule morphology, histamine level and elemental content of the bone marrow-derived mast cell

    International Nuclear Information System (INIS)

    Mast cells derived from the bone marrow of BALB/c mice (BMMC) were cultures and their growth ceased with sodium butyrate. Sodium butyrate treatment (1 mM, 4 days) caused maturation of the granules, and increased histamine content from approx. 1 pg/cell to 4 pg/cell. X-ray microanalysis revealed that maturation of the granules was accompanied by the increase in relative weight percent of sodium, phosphorus and sulphur, with concomitant decrease in chloride. The sulphur to potassium ratio increased three-fold in butyrate-treated mast cells. The existence of a different elemental composition during mast cell maturation may provide additional parameter for rapid discrimination of mast cell subpopulations. (author). 28 refs, 6 figs

  11. Effect of rTsP53 on the M1/M2 activation of bone-marrow derived macrophage in vitro

    OpenAIRE

    Chen, Zhibin; Li, Fan; Yang, Wen; Liang, Yanbing; Tang, Hao; Li, Zhenyu; Wu, Jingguo; Liang, Huaping; Ma, Zhongfu

    2015-01-01

    We investigated that if rTsP53 could be used to activate bone-marrow derived macrophage (BMDM) into M2 macrophage and stop M1 macrophage activation. After 72 h incubation in blank culture medium, cells with PE-CCR7 (-) and FITC-CD206 (-) was extracted and its mean proportion was 92.30 ± 0.22%. With the stimulation of 20 μg/ml IFN-γ for 72 h, cells with PE-CCR7 (+) was extracted and its mean proportion was 16.24 ± 0.82%. With the stimulation of IL-3/IL-14 (both 10 μg/ml) for 72 h, cells with F...

  12. Effects of histamine and its antagonists on murine T-cells and bone marrow-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Hu XF

    2015-08-01

    Full Text Available Xiufen Hu,1,* Mohammad Ishraq Zafar,2,* Feng Gao2 1Department of Paediatrics, Tongji Hospital, 2Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: We determined the effects of histamine and its antagonists on the surface marker expression of dendritic cells (DCs and the influence of lipopolysaccharide (LPS, histamine, and histamine receptor antagonists on DCs and T-cells. The bone marrow was extracted from the femurs and tibiae of 6- to 8-week-old female Balb/c mice and cultured in medium containing penicillin, streptomycin, L-glutamine, fetal calf serum, or granulocyte macrophage colony-stimulating factor (GM-CSF alone or with interleukin (IL-4. The cells received three different doses of LPS and histamine, plus three different doses of descarboethoxyloratadine (DCL. We assayed the supernatant for various cytokines. The spleen cells of DO11.10 mice were examined by flow cytometry, which included labeling and sorting CD4+ T-cells, as well as coculture of DCs and T-cells with ovalbumin (OVA323–339 peptide. Histamine or histamine plus DCL did not affect the expression of major histocompatibility complex class II, CD11c, CD11b, CD86, and CD80. However, GM-CSF increased the expression of all markers except CD80. Histamine increased interferon-γ production in GM-CSF + IL-4-cultured cells; it also enhanced IL-10 production, but suppressed IL-12 production in LPS-stimulated DCs with no DCL. Cimetidine inhibited IL-10 production and restored IL-12 secretion in LPS-treated DCs. LPS increased IL-10 and decreased IL-12 levels. GM-CSF + IL-4-generated DCs had a stronger stimulatory effect on DO11.10 T-cell proliferation than GM-CSF-generated DCs. Inducible costimulator ligand expression was higher in GM-CSF + IL-4- than in GM-CSF-generated DC groups after 2 days of coculture, but decreased 4 days

  13. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock

    Directory of Open Access Journals (Sweden)

    Gauthaman eKalamegam

    2016-05-01

    Full Text Available Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs from osteoarthritis (OA patients, and evaluated the effect of arthroscopic heat on cell viability in suspension and pellet cultures.Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 x 106 cells cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20 or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20 or 30 min for 72 h decreased cell proliferation in cell suspensions (63.27% at 30 min and increased cell proliferation in cell pellets (62.86% at 10 min and 68.57% at 20 min. hBMMSCs exposed to 37C, 45C and 55C for 120 seconds demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage

  14. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  15. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use. PMID:25777046

  16. Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells.

    Science.gov (United States)

    Pacini, Simone; Petrini, Iacopo

    2014-01-01

    Recent investigations have made considerable progress in the understanding of tissue regeneration driven by mesenchymal stromal cells (MSCs). Data indicate the anatomical location of MSC as residing in the "perivascular" space of blood vessels dispersed across the whole body. This histological localization suggests that MSCs contribute to the formation of new blood vessels in vivo. Indeed, MSCs can release angiogenic factors and protease to facilitate blood vessel formation and in vitro are able to promote/support angiogenesis. However, the direct differentiation of MCSs into endothelial cells is still matter of debate. Most of the conflicting data might arise from the presence of multiple subtypes of cells with heterogeneous morpho functional features within the MSC cultures. According to this scenario, we hypothesize that the presence of the recently described Mesodermal Progenitor Cells (MPCs) within the MSCs cultures is responsible for their variable angiogenic potential. Indeed, MPCs are Nestin-positive CD31-positive cells exhibiting angiogenic potential that differentiate in MSC upon proper stimuli. The ISCT criteria do not account for the presence of MPC within MSC culture generating confusion in the interpretation of MSC angiogenic potential. In conclusion, the discovery of MPC gives new insight in defining MSC ancestors in human bone marrow, and indicates the tunica intima as a further, and previously overlooked, possible additional source of MSC. PMID:25364727

  17. The effect of magnetic field during freezing and thawing of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Shikata, H; Kaku, M; Kojima, S-I; Sumi, H; Kojima, S-T; Yamamoto, T; Yashima, Y; Kawata, T; Tanne, K; Tanimoto, K

    2016-08-01

    Previous studies showed that a programmed freezer with magnetic field can maintain a high survival rate of mesenchymal stem cells (MSCs). The purpose of this study was to evaluate the influences of magnetic field during freezing and thawing on the survival of MSCs isolated from rat bone marrow. The cells were frozen by a normal programmed freezer or a programmed freezer with magnetic field (CAS-LAB1) and cryopreserved for 7 days at -150 °C. Then, the cells were thawed in the presence or absence of magnetic field. Immediately after thawing, the number of surviving or viable cells was counted. The cell proliferation was examined after 1-week culture. Cryopreserved MSCs which were frozen by a normal freezer or a CAS freezer were transplanted into bone defects artificially made in calvaria of 4-week-old rats. Non-cryopreserved MSCs were used as a control. The rats were sacrificed at 8, 16, or 24 weeks after transplantation and the bone regeneration area was measured. Proliferation rates of MSCs after 1 week were significantly higher in the CAS-freezing-thawing group than in the CAS-freezing group. The extent of new bone formation in the CAS-freezing-thawing group tended to be larger than in CAS-freezing group 24 weeks after transplantation. These results suggest that a magnetic field enhances cell survival during thawing as well as freezing. PMID:27346603

  18. Investigation of Telomerase/Telomeres system in Bone Marrow Mesenchymal Stem Cells derived from IPF and RA-UIP

    Directory of Open Access Journals (Sweden)

    Antoniou Katerina M

    2012-07-01

    Full Text Available Abstract Objective Idiopathic Pulmonary Fibrosis and Rheumatoid Arthritis associated usual interstitial pneumonia seem to have the same poor outcome as there is not an effective treatment. The aim of the study is to explore the reparative ability of bone marrow mesenchymal stem cells by evaluating the system telomerase/telomeres and propose a novel therapeutic approach. Methods BM-MSCs were studied in 6 IPF patients, 7 patients with RA-UIP and 6 healthy controls. We evaluated the telomere length as well as the mRNA expression of both components of telomerase (human telomerase reverse transcriptase, h-TERT and RNA template complementary to the telomeric loss DNA, h-TERC. Results We found that BM-MSCs from IPF, RA-UIP cases do not present smaller telomere length than the controls (p = 0.170. There was no significant difference regarding the expression of both h-TERT and h-TERC genes between patients and healthy controls (p = 0.107 and p = 0.634 respectively. Conclusions We demonstrated same telomere length and telomerase expression in BM-MSCs of both IPF and RA-UIP which could explain similarities in pathogenesis and prognosis. Maintenance of telomere length in these cells could have future implication in cell replacement treatment with stem cells of these devastating lung disorders.

  19. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis.

    Science.gov (United States)

    Lee, Rebecca; Perry, Beth; Heywood, Jonathan; Reese, Charles; Bonner, Michael; Hatfield, Corey M; Silver, Richard M; Visconti, Richard P; Hoffman, Stanley; Tourkina, Elena

    2014-01-01

    In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p 80% thinner. This effect is also blocked by CSD (p Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue. PMID:24966836

  20. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2012-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donors younger than 18 years of age (BMMSC 50). Changes of ultrastructure and energy metabolism during osteogenic differentiation in all hMSC types were studied in detail. Results show that despite similar surface antigen characteristics, the UCBMSCs had smaller cell surface area and possessed more abundant rough endoplasmic reticulum than BMMSC >50. BMMSC 50 and BMMSC 50 showed a lower level of mitochondrial maturation and differentiation capacity. UCBMSCs and BMMSCs also showed a different pattern of exocytosed proteins and glycoproteoglycansins. These results indicate that hMSCs with similar cell surface antigen expression have different mitochondrial and functional properties, suggesting different maturation levels and other significant biological variations of the hMSCs. Therefore, it appears that mitochondrial analysis presents useful characterization criteria for hMSCs intended for clinical use. PMID:21615273

  1. In Vitro Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Cardiomyocyte-like Cells

    Directory of Open Access Journals (Sweden)

    Reihaneh Motamedi

    2010-01-01

    Full Text Available Objective: Human mesenchymal stem cells (MSCs have been recognized as potentialcandidates for cell therapy. In the present study, the ability of human bone marrow mesenchymalstem cells (hBMSCs to differentiate into cells with characteristics of cardiomyocytesin vitro was investigated.Materials and Methods: hBMSCs cultured in enriched medium were treated with oxytocinand 5-azacytidin. The differentiation of hBMSCs into cells that expressed cardiacspecificgenes such as α3-actinin, alpha - myosin heavy chain (α-MHC, beta - myosinheavy chain (β-MHC, myosin light chain isoform 2a (MLC2a, myosin light chain isoform2v (MLC2v, artial natriuretic factor (ANF, GATA4 and oxytocin receptor (OTR was investigatedby reverse transcription-polymerase chain reaction (RT-PCR. Protein expressionsof β-actinin and troponin I-C in the cells were analyzed through immunofluorescencestaining.Results: MSCs are spindle-shaped with irregular processes. Cells treated with oxytocinand 5-azacytidin connected with adjoining cells to form myotube-like structures. Expressionsof a number of cardiac-specific genes were detected by RT-PCR. Immunofluorescencestaining analysis showed that the differentiated cells stained positively for β-actininand troponin I-C protein.Conclusion: These results indicate that adult hBMSCs can differentiate into cardiomyocytesin vitro by treatment with oxytocin and 5-azacytidin, and can be considered as asource of cells for cellular cardiomyoplasty.

  2. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  3. Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Fabian Duttenhoefer

    2015-01-01

    Full Text Available In bone tissue engineering (TE endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs are a rich source of mesenchymal stem cells (MSCs able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+ were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+ or medium containing platelet lysate (PL. MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs.

  4. Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice

    International Nuclear Information System (INIS)

    The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by at least three recessive loci, including one linked to the MHC. To determine whether any of these genetic loci exert their effects via the immune system, radiation bone marrow chimeras were constructed in which (NOD X B10)F1-irradiated recipients were reconstituted with NOD bone marrow cells. Unmanipulated (NOD X B10)F1 mice, or irradiated F1 mice reconstituted with F1 or B10 bone marrow, did not display insulitis or diabetes. In contrast, insulitis was observed in a majority of the NOD----F1 chimeras and diabetes developed in 21% of the mice. These data demonstrate that expression of the diabetic phenotype in the NOD mouse is dependent on NOD-derived hematopoietic stem cells. Diabetogenic genes in the NOD mouse do not appear to function at the level of the insulin-producing beta cells since NOD----F1 chimeras not only developed insulitis and diabetes but also rejected beta cells within pancreas transplants from newborn B10 mice. These data suggest that the beta cells of the NOD mouse do not express a unique antigenic determinant that is the target of the autoimmune response

  5. Transplantation of bone marrow stromal cell-derived neural precursor cells ameliorates deficits in a rat model of complete spinal cord transection.

    Science.gov (United States)

    Aizawa-Kohama, Misaki; Endo, Toshiki; Kitada, Masaaki; Wakao, Shohei; Sumiyoshi, Akira; Matsuse, Dai; Kuroda, Yasumasa; Morita, Takahiro; Riera, Jorge J; Kawashima, Ryuta; Tominaga, Teiji; Dezawa, Mari

    2013-01-01

    After severe spinal cord injury, spontaneous functional recovery is limited. Numerous studies have demonstrated cell transplantation as a reliable therapeutic approach. However, it remains unknown whether grafted neuronal cells could replace lost neurons and reconstruct neuronal networks in the injured spinal cord. To address this issue, we transplanted bone marrow stromal cell-derived neural progenitor cells (BM-NPCs) in a rat model of complete spinal cord transection 9 days after the injury. BM-NPCs were induced from bone marrow stromal cells (BMSCs) by gene transfer of the Notch-1 intracellular domain followed by culturing in the neurosphere method. As reported previously, BM-NPCs differentiated into neuronal cells in a highly selective manner in vitro. We assessed hind limb movements of the animals weekly for 7 weeks to monitor functional recovery after local injection of BM-NPCs to the transected site. To test the sensory recovery, we performed functional magnetic resonance imaging (fMRI) using electrical stimulation of the hind limbs. In the injured spinal cord, transplanted BM-NPCs were confirmed to express neuronal markers 7 weeks following the transplantation. Grafted cells successfully extended neurites beyond the transected portion of the spinal cord. Adjacent localization of synaptophysin and PSD-95 in the transplanted cells suggested synaptic formations. These results indicated survival and successful differentiation of BM-NPCs in the severely injured spinal cord. Importantly, rats that received BM-NPCs demonstrated significant motor recovery when compared to the vehicle injection group. Volumes of the fMRI signals in somatosensory cortex were larger in the BM-NPC-grafted animals. However, neuronal activity was diverse and not confined to the original hind limb territory in the somatosensory cortex. Therefore, reconstruction of neuronal networks was not clearly confirmed. Our results indicated BM-NPCs as an effective method to deliver neuronal lineage

  6. OXIDIZED HIGH-DENSITY LIPOPROTEIN PROMOTES MATURATION AND MIGRATION OF BONE MARROW DERIVED DENDRITIC CELLS FROM C57BL/6J MICE

    Institute of Scientific and Technical Information of China (English)

    Zeng-xiang Xu; Yong-zong Yang; Da-ming Feng; Shuang Wang; Ya-ling Tang; Fan He; Yan Xia; Fang Li

    2008-01-01

    Objective To explore the influence of oxidized high-density lipoprotein (oxHDL) on the maturation and migration of bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice.Methods The C57BL/6J mice bone marrow cell suspension was prepared and purified.Recombinant granulocyte-maerophage colony-stimulating factor (rmGM-CSF) and recombinant interleukin-4 (rmIL-4) were used to promote monocytes to differentiate and suppress lymphoeytes.Then 50 μg/mL oxHDL was added to stimulate BMDCs,using 50 μg/mL high-density lipoprotein (HDL) as homologous protein control,PBS as negative control,and 1 μg/mL lipopolysaccharide (LPS) as positive control.The CD86 and MHCII expression rates were detected with fluorescence-activated cell sorting (FACS).Liquid seintillatiun counting (LSC) was used in mixed lymphocyte reactions (MLRs) to reflect the ability of BMDCs in stimulating the proliferation of homologous T cells.Levels of eytokines IL-12 and IL-10 were detected by ELISA.The cell migration was evaluated with the transwell system.Results Compared with PBS group,the expressions of CD86 and MHCII,counts per minute of MLRs,secretion of IL-12 and IL-10,and number of migrated cells in oxHDL group and LPS group significantly increased (all P<0.05),while the increment was less in oxHDL group than LPS group.The number of migrated cells in oxHDL group was about twice of that in HDL group.Conclusion OxHDL may promote the maturation and migration of BMDCs in vitro.

  7. Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT

    Science.gov (United States)

    Jin, Yuan; Kong, Huafu; Stodilka, Rob Z.; Wells, R. Glenn; Zabel, Pamela; Merrifield, Peter A.; Sykes, Jane; Prato, Frank S.

    2005-10-01

    In this work, we determined the minimum number of detectable 111In-tropolone-labelled bone-marrow-derived stem cells from the maximum activity per cell which did not affect viability, proliferation and differentiation, and the minimum detectable activity (MDA) of 111In by SPECT. Canine bone marrow mesenchymal cells were isolated, cultured and expanded. A number of samples, each containing 5 × 106 cells, were labelled with 111In-tropolone from 0.1 to 18 MBq, and cell viability was measured afterwards for each sample for 2 weeks. To determine the MDA, the anthropomorphic torso phantom (DataSpectrum Corporation, Hillsborough, NC) was used. A point source of 202 kBq 111In was placed on the surface of the heart compartment, and the phantom and all compartments were then filled with water. Three 111In SPECT scans (duration: 16, 32 and 64 min; parameters: 128 × 128 matrix with 128 projections over 360°) were acquired every three days until the 111In radioactivity decayed to undetectable quantities. 111In SPECT images were reconstructed using OSEM with and without background, scatter or attenuation corrections. Contrast-to-noise ratio (CNR) in the reconstructed image was calculated, and MDA was set equal to the 111In activity corresponding to a CNR of 4. The cells had 100% viability when incubated with no more than 0.9 MBq of 111In (80% labelling efficiency), which corresponded to 0.14 Bq per cell. Background correction improved the detection limits for 111In-tropolone-labelled cells. The MDAs for 16, 32 and 64 min scans with background correction were observed to be 1.4 kBq, 700 Bq and 400 Bq, which implies that, in the case where the location of the transplantation is known and fixed, as few as 10 000, 5000 and 2900 cells respectively can be detected.

  8. Monosomy 7 in donor cell-derived leukemia after bone marrow transplantation for severe aplastic anemia: report of a new case and review of the literature

    Directory of Open Access Journals (Sweden)

    Luize Otero

    2012-01-01

    Full Text Available Monosomy 7 arises as a recurrent chromosome aberration in donor cell leukemia after hematopoietic stem cell transplantation. We report a new case of donor cell leukemia with monosomy 7 following HLA-identical allogenic bone marrow transplantation for severe aplastic anemia (SAA. The male patient received a bone marrow graft from his sister, and monosomy 7 was detected only in the XX donor cells, 34 months after transplantation. The patient's bone marrow microenvironment may have played a role in the leukemic transformation of the donor hematopoietic cells.

  9. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Zoleikha Golipoor

    2016-02-01

    Full Text Available Objective: Bone marrow (BM is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB in response to tissue injury. In this study we have attempted to investigate the ability of these cells to migrate toward an injured spinal cord after transplantation through the tail vein in a rat model. Materials and Methods: In this experimental study, VSELs were isolated from total BM cells using a fluorescent activated cell sorting (FACS system and sca1 and stage specific embryonic antigen (SSEA-1 antibodies. After isolation, VSELs were cultured for 7 days on C2C12 as the feeder layer. Then, VSELs were labeled with 1,1´-dioctadecyl-3,3,3´,3´- tetramethylindocarbocyanine perchlorate (DiI and transplanted into the rat spinal cord injury (SCI model via the tail vein. Finally, we sought to determine the presence of VSELs in the lesion site. Results: We isolated a high number of VSELs from the BM. After cultivation, the VSELs colonies were positive for SSEA-1, Oct4 and Sca1. At one month after transplantation, real-time polymerase chain reaction analysis confirmed a significantly increased expression level of Oct4 and SSEA-1 positive cells at the injury site. Conclusion: VSELs have the capability to migrate and localize in an injured spinal cord after transplantation.

  10. Caveolin-1 Regulates Chemokine Receptor 5-Mediated Contribution of Bone Marrow-Derived Cells to Dermal Fibrosis

    Directory of Open Access Journals (Sweden)

    ElenaTourkina

    2014-06-01

    Full Text Available In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model involving systemic bleomycin delivery that closely models scleroderma (SSc in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p 80 % thinner. This effect is also blocked by CSD (p < 0.001. Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue.

  11. Cross-talk between Bone Marrow and Tissue Injury : Novel Regenerative Therapy for Severely Damaged Tissues by Mobilizing Bone Marrow Mesenchymal Stem Cells in Vivo

    OpenAIRE

    Tamai, Katsuto; Kaneda, Yasufumi

    2013-01-01

    group box 1 (HMGB1), which mobilizes a sub-population of non-hematopoietic cells from bone marrow into the circulation to repair skin and restore Col 7 expression. These bone marrow-derived epithelial stem/progenitor cells are derived from a lineage-negative, platelet-derived growth factor alpha-positive mesenchymal stem cell pool in bone marrow, which represents less than 0.3% of the total bone marrow cell population. In addition, systemic administration of HMGB1 to wounded wild-type mice le...

  12. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  13. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia★

    OpenAIRE

    Wang, Dong; Zhang, Jianjun

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under no...

  14. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses.

    Science.gov (United States)

    Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten; Delling, Uta

    2016-01-01

    Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; -20 °C vs. -80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 10(6), 10 × 10(6), 20 × 10(6) MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and "transport" at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low

  15. Mac-1low early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration

    International Nuclear Information System (INIS)

    Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1low cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1high) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1low cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1low early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles

  16. HLA in bone marrow transplantation

    International Nuclear Information System (INIS)

    It has been well understood that human major histocompatibility antigen system, HLA is the most important role in the allo transplantation. Therefore, the structure of HLA genes was presented by the recent information (1987). Moreover, their functions in vitro and in vivo also were described. Finally, bone marrow transplantation and HLA network system in Japan against HLA mismatched case was proposed. It is eagerly expected that functional and clinical bone marrow transplantation in Japan could be succeeded. (author)

  17. Characterization of murine macrophages from bone marrow, spleen and peritoneum

    OpenAIRE

    Wang Changqi; Yu Xiao; Cao Qi; Wang Ya; Zheng Guoping; Tan Thian Kui; Zhao Hong; Zhao Ye; Wang Yiping; Harris David CH

    2013-01-01

    Abstract Background Macrophages have heterogeneous phenotypes and complex functions within both innate and adaptive immune responses. To date, most experimental studies have been performed on macrophages derived from bone marrow, spleen and peritoneum. However, differences among macrophages from these particular sources remain unclear. In this study, the features of murine macrophages from bone marrow, spleen and peritoneum were compared. Results We found that peritoneal macrophages (PMs) app...

  18. Comparative functional characterization of mouse bone marrow-derived mast cells and peritoneal mast cells in response to non-immunological stimuli.

    Science.gov (United States)

    Singh, R; Kumar, P; Gupta, P P

    2001-04-01

    The cultured mouse mast cells that are dependent on spleen-derived factor for their proliferation and maintenance and have been shown to be similar to mucosal mast cells in terms of their T-cell dependence and histochemical staining characteristics. Mast cell heterogeneity has been confirmed by functional characterization of mouse bone marrow-derived mast cells (MBMMC) and mouse peritoneal mast cells (MPMCs). MPMCs released around 30% of histamine when stimulated with compound 48/80 whereas MBMMC were almost unresponsive to the same stimulus. Calcium Ionophore A23187 on the other hand, released histamine in dose-dependent manner from MBMMC. The study was undertaken to investigate the effect of antiallergic drug, disodium cromoglycate (DSCG), a synthetic cromone and quercetin, a plant-derived flavonoid on Ca ionophore A23187 induced histamine release from MBMMC. MBMMCs were almost unresponsive to DSCG whereas Ca Ionophore induced histamine release was blocked by Quercetin. The results indicate that response of mast cells at one anatomic site to a given stimulus does not necessarily predict the response of mast cells at a different anatomic location to the same stimulus. It shows functional heterogeneity within a single species. So, it cannot be assumed that antiallergic compounds stabilizing mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites. PMID:11491575

  19. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway

    OpenAIRE

    Li, Xiao-Li; Li, Heng; Zhang, Min; Xu, Hua; Yue, Long-Tao; Zhang, Xin-Xin; Wang, Shan; Wang, Cong-Cong; Li, Yan-Bin; Dou, Ying-Chun; Duan, Rui-Sheng

    2016-01-01

    Background Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown. Methods Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry...

  20. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. PMID:26971678

  1. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, Rosa, E-mail: rosamaria.yanez@ciemat.es; Oviedo, Alberto, E-mail: alberto.oviedo@ciemat.es; Aldea, Montserrat, E-mail: montserrat.aldea@ciemat.es; Bueren, Juan A., E-mail: juan.bueren@ciemat.es; Lamana, Maria L., E-mail: maruja.lamana@ciemat.es

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  2. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  3. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion.

    Science.gov (United States)

    Fontanella, Raffaela; Pelagalli, Alessandra; Nardelli, Anna; D'Alterio, Crescenzo; Ieranò, Caterina; Cerchia, Laura; Lucarelli, Enrico; Scala, Stefania; Zannetti, Antonella

    2016-01-01

    Recent findings suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into the microenvironment of developing tumors, where they contribute to metastatic processes. The aim of this study was to investigate the role of BM-MSCs in promoting osteosarcoma and hepatocellular carcinoma cell progression in vitro and the possible mechanisms involved in these processes. U2OS and SNU-398 are osteosarcoma and hepatocellular carcinoma cell lines, respectively, that can be induced to proliferate when cultured in the presence of BM-MSCs. To determine the effect of BM-MSCs on U2OS and SNU-398 cells, the AKT and ERK signaling pathways were investigated, and increases were observed in active P-Akt and P-Erk forms. Moreover, BM-MSCs caused an increase in tumor cell migration and invasion that was derived from the enhancement of CXCR4 levels. Thus, when tumor cells were treated with the CXCR4 antagonist AMD3100, a reduction in their migration and invasion was observed. Furthermore, a new CXCR4 inhibitor, Peptide R, which was recently developed as an anticancer agent, was used to inhibit BM-MSC-mediated tumor invasion and to overcome AMD3100 toxicity. Taken together, these results suggest that inhibiting CXCR4 impairs the cross-talk between tumor cells and BM-MSCs, resulting in reduced metastatic potential in osteosarcoma and hepatocellular carcinoma cells. PMID:26517945

  4. Interleukin 10 Suppresses the Function of Mouse Bone Marrow-Derived Dendritic Cells Infected with Classical Swine Fever Virus C-Strain

    Directory of Open Access Journals (Sweden)

    Fu-Ying Zheng, Guo-Zhen Lin* and Zhi-Zhong Jing

    2013-07-01

    Full Text Available Interleukin (IL-10 inhibits the functions of antigen-presenting cells (APCs, including dendritic cells (DCs, however, the precise mechanism of action of IL-10 has not been fully elucidated. In this work, the effects of IL-10 on classical swine fever virus (CSFV C-strain-infected mouse bone marrow-derived immature DCs (BM-imDCs were studied. Additional IL-10 suppressed the maturation of the infected BM-imDCs by down-regulating the expression levels of the surface molecules CD80, CD86 and major histocompatibility complex (MHC classII, while the autocrine IL-10 had no significant effect on the maturation status of the cells. Both additional and autocrine IL-10 markedly inhibited the secretion production of IL-12P40 derived from the BM-imDCs infected with the C-strain, and reduced the capacity of DCs to promote allogeneic naive T cell proliferation. These results showed that IL-10 may play an important role in the DCs-dependent immune response induced by CSFV C-strain.

  5. Migration and differentiation of bone marrow-derived multipotent adult progenitor cells through tail vein injection in a rat model of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Lei; Ruixiang Zhou

    2009-01-01

    BACKGROUND: Multipotent adult progenitor cells (MAPCs) from the bone marrow have been shown to differentiate into neurons.OBJECTIVE: To observe migration, survival, and neuronal-like differentiation of MAPCs by tail vein injection.DESIGN, TIME AND SETTING: Randomized, controlled experiment of neural tissue engineering was performed at the Laboratory for Cardio-Cerebrovascular Disease, Hospital of Integrated Traditional and Western Medicine, Tongji Medical College of Huazhong University of Science and Technology between September 2006 and August 2007.MATERIALS: Eighty Sprague Dawley rats, 3-6 months old, underwent cerebral ischemia/reperfusion by thread technique, and were randomly divided into model and MAPCs groups (n = 40).METHODS: Mononuclear cells were harvested from bone marrow using the Ficoll-Paque density gradient centrifugation method. After removing CD45 and glycophorin A-positive cells (GLYA+) with immunomagnetic beads, CD45 GLYA adult progenitor cells were labeled with bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU). A total of 1 mL cell suspension, containing 5 ×106 MAPCs, was injected into the MAPCs group through the tail vein. A total of 1 mL normal saline was injected into the model rats.MAIN OUTCOME MEASURES: After 60 days, BrdU and neuron-specific enolase double-positive cells were observed using immunofluorescence. Cell morphology was observed under electron microscopy, and nerve growth factor mRNA was measured through RT-PCR. In addition, rat neurological functions were measured with behavioral tests.RESULTS: Immunofluorescence revealed that MAPCs positive for BrdU and neuron specific enolase were found surrounding the ischemic focus in the MAPCs group. Microscopic observation suggested that MAPCs-derived neuronal-like cells connected with other nerve cells to form synapses, Compared with the model animals, the level of nerve growth factor mRNA was significantly upregulated in rats injected with MAPCs (P < 0.05). In addition, rats in the MAPCs

  6. Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Post, S; Abdallah, B M; Bentzon, J F; Kassem, M

    2008-07-01

    Mesenchymal stem cells (MSC) are defined as plastic-adherent, clonal cells that are common progenitors for osteoblasts and adipocytes. An inverse relationship between bone and fat has been observed in several clinical conditions and has been suggested to be caused by re-directing MSC differentiation into one particular lineage. However, this inverse relationship between bone and fat is not consistent and under certain in vivo conditions, bone and fat can change independently suggesting separate precursor cell populations. In order to test for this hypothesis, we extensively characterized two plastic-adherent clonal MSC lines (mMSC1 and mMSC2) derived from murine bone marrow. The two cell lines grew readily in culture and have undergone more than 100 population doublings with no apparent differences in their growth rates. Both cell lines were positive for the murine MSC marker Sca-1 and mMSC1 was also positive for CD13. Both cell lines were exposed to in vitro culture induction of osteogenesis and adipogenesis. mMSC1 and not mMSC2 were only able to differentiate to adipocytes evidenced by the expression of adipocyte markers (aP2, adiponectin, adipsin, PPARgamma2 and C/EBPa) and the presence of mature adipocytes visualized by Oil Red O staining. On the other hand, mMSC2 and not mMSC1 differentiated to osteoblast lineage as demonstrated by up-regulation of osteoblastic makers (CBFA1/RUNX2, Osterix, alkaline phosphatase, bone sialoprotein and osteopontin) and formation of alizarin red stained mineralized matrix in vitro. Consistent with the in vitro results, mMSC2 and not mMSC1, were able to form bone in vivo after subcutaneous implantation in immune-deficient (NOD/SCID) mice. Our data suggest that contrary to the current belief, bone marrow contains clonal subpopulations of cells that are committed to either osteoblast or adipocyte lineage. These cell populations may undergo independent changes during aging and in bone diseases and thus represent important targets for

  7. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells Superior effects over original formula of Buyang Huanwu decoction

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Yi Wan; Jianhuai Chi; Dekai Shen; Tingting Wu; Weimin Li; Pengcheng Du

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula.

  8. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2

    Science.gov (United States)

    Chen, Biao; Li, Bin; Qi, Yong-Jian; Ni, Qu-Bo; Pan, Zheng-Qi; Wang, Hui; Chen, Liao-Bin

    2016-01-01

    Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy. PMID:27173013

  9. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  10. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture.

    Science.gov (United States)

    Miettinen, Johanna A; Pietilä, Mika; Salonen, Riikka J; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V; Lehenkari, Petri

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity. PMID:21182837

  11. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field.

    Science.gov (United States)

    Amin, Harsh D; Brady, Mariea Alice; St-Pierre, Jean-Philippe; Stevens, Molly M; Overby, Darryl R; Ethier, C Ross

    2014-06-01

    Tissue-engineering strategies for the treatment of osteoarthritis would benefit from the ability to induce chondrogenesis in precursor cells. One such cell source is bone marrow-derived stromal cells (BMSCs). Here, we examined the effects of moderate-strength static magnetic fields (SMFs) on chondrogenic differentiation in human BMSCs in vitro. Cells were cultured in pellet form and exposed to several strengths of SMFs for various durations. mRNA transcript levels of the early chondrogenic transcription factor SOX9 and the late marker genes ACAN and COL2A1 were determined by reverse transcription-polymerase chain reaction, and production of the cartilage-specific macromolecules sGAG, collage type 2 (Col2), and proteoglycans was determined both biochemically and histologically. The role of the transforming growth factor (TGF)-β signaling pathway was also examined. Results showed that a 0.4 T magnetic field applied for 14 days elicited a strong chondrogenic differentiation response in cultured BMSCs, so long as TGF-β3 was also present, that is, a synergistic response of a SMF and TGF-β3 on BMSC chondrogenic differentiation was observed. Further, SMF alone caused TGF-β secretion in culture, and the effects of SMF could be abrogated by the TGF-β receptor blocker SB-431542. These data show that moderate-strength magnetic fields can induce chondrogenesis in BMSCs through a TGF-β-dependent pathway. This finding has potentially important applications in cartilage tissue-engineering strategies. PMID:24506272

  12. Glucose-Dependent Insulinotropic Peptide Prevents Serum Deprivation-Induced Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells and Osteoblastic Cells.

    Science.gov (United States)

    Berlier, J L; Kharroubi, I; Zhang, J; Dalla Valle, A; Rigutto, S; Mathieu, M; Gangji, V; Rasschaert, J

    2015-12-01

    Human bone marrow-derived mesenchymal stem cells (hBMSC) are able to differentiate into cells of connective tissue lineages, including bone and cartilage. They are therefore considered as a promising tool for the treatment of bone degenerative diseases. One of the major issues in regenerative cell therapy is the biosafety of fetal bovine serum used for cell culture. Therefore, the development of a culture medium devoid of serum but preserving hBMSC viability will be of clinical value. The glucose-dependent insulinotropic peptide (GIP) has an anti-apoptotic action in insulin-producing cells. Interestingly, GIP also exerts beneficial effects on bone turnover by acting on osteoblasts and osteoclasts. We therefore evaluated the ability of GIP to prevent cell death in osteoblastic cells cultured in serum-free conditions. In hBMSC and SaOS-2 cells, activation of the GIP receptor increased intracellular cAMP levels. Serum deprivation induced apoptosis in SaOS-2 and hBMSC that was reduced by 30 and 50 %, respectively, in the presence of GIP. The protective effect of GIP involves activation of the adenylate cyclase pathway and inhibition of caspases 3/7 activation. These findings demonstrate that GIP exerts a protective action against apoptosis in hBMSC and suggest a novel approach to preserve viability of hBMSC cultured in the absence of serum. PMID:26254594

  13. 15-Deoxy-Δ12,14-Prostaglandin J2 Inhibits Homing of Bone Marrow-Derived Mesenchymal Stem Cells Triggered by Chronic Liver Injury via Redox Pathway

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-01-01

    Full Text Available It has been reported that bone marrow-derived mesenchymal stem cells (BMSCs have capacity to migrate to the damaged liver and contribute to fibrogenesis in chronic liver diseases. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARγ, is considered a new inhibitor of cell migration. However, the actions of 15d-PGJ2 on BMSC migration remain unknown. In this study, we investigated the effects of 15d-PGJ2 on the migration of BMSCs using a mouse model of chronic liver fibrosis and primary mouse BMSCs. Our results demonstrated that in vivo, 15d-PGJ2 administration inhibited the homing of BMSCs to injured liver by flow cytometric analysis and, in vitro, 15d-PGJ2 suppressed primary BMSC migration in a dose-dependent manner determined by Boyden chamber assay. Furthermore, the repressive effect of 15d-PGJ2 was blocked by reactive oxygen species (ROS inhibitor, but not PPARγ antagonist, and action of 15d-PGJ2 was not reproduced by PPARγ synthetic ligands. In addition, 15d-PGJ2 triggered a significant ROS production and cytoskeletal remodeling in BMSCs. In conclusion, our results suggest that 15d-PGJ2 plays a crucial role in homing of BMSCs to the injured liver dependent on ROS production, independently of PPARγ, which may represent a new strategy in the treatment of liver fibrosis.

  14. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    Directory of Open Access Journals (Sweden)

    Ali Mota

    2014-03-01

    Full Text Available Objective: We introduce an RGD (Arg-Gly-Asp-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electron microscopy (SEM and fourier transform infrared spectroscopy (FTIR. We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs. In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and 4',6-diamidino-2-phenylindole (DAPI staining, and the results compared with tissue culture plate, as the control. Results: FTIR results showed that the peptide successfully immobilized on the scaffold. MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.

  15. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  16. Cellular behaviour of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid).

    Science.gov (United States)

    Roh, Hyun; Yang, Dae Hyeok; Chun, Heung Jae; Khang, Gilson

    2015-07-01

    Previously, the galactosylation of poly(d,l-lactic-co-glycolic acid) (PLGA) surface was accomplished by grafting allylamine (AA), using inductively coupled plasma-assisted chemical vapour deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation for hepatic tissue-engineering purposes. As a continuation study, the cellular behaviour of hepatocyte-like cells (HLCs) on the surface of the galactosylated PLGA were investigated. Nude mouse bone marrow-derived mesenchymal stem cells (MSCs) were cultured under hepatogenic conditions and the differentiated cells were characterized by reverse-transcription polymerase chain reaction (RT-PCR), immunofluorescence and periodic acid-Schiff (PAS) staining. Galactosylated PLGA enhanced the proliferation rate of HLCs compared to the control; HLCs on the surface of the sample became aggregated and formed spheroids after 3 days of culture. A large number of cells on the surface of the sample exhibited increased liver-specific functional activities, such as albumin and urea secretions. In addition, multicellular spheroids in the sample strongly expressed phospholyated focal adhesion kinase (pFAK) (cell-matrix interactions), E-cadherin (cell-cell interactions) and connexin 32 (Cox32; gap junction). PMID:23784953

  17. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  18. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  19. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  20. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Daniela Belotti

    2015-01-01

    Full Text Available According to the European Medicine Agency (EMA regulatory frameworks, Advanced Therapy Medicinal Products (ATMP represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs. In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM, ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106, with a viability ranged between 96,03% and 99,97% (median 99,87% and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%. Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial.

  1. Effects of Line and Pillar Array Microengineered SiO2 Thin Films on the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Carvalho, Angela; Pelaez-Vargas, Alejandro; Hansford, Derek J; Fernandes, Maria H; Monteiro, Fernando J

    2016-02-01

    A primary goal in bone tissue engineering is the design of implants that induce controlled, guided, and rapid healing. The events that normally lead to the integration of an implant into bone and determine the performance of the device occur mainly at the tissue-implant interface. Topographical surface modification of a biomaterial might be an efficient tool for inducing stem cell osteogenic differentiation and replace the use of biochemical stimuli. The main goal of this work was to develop micropatterned bioactive silica thin films to induce the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) only through topographical stimuli. Line and pillar micropatterns were developed by a combination of sol-gel/soft lithography and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. hMSCs were cultured onto the microfabricated thin films and flat control for up to 21 days under basal conditions. The micropatterned groups induced levels of osteogenic differentiation and expression of osteoblast-associated markers higher than those of the flat controls. Via comparison of the micropatterns, the pillars caused a stronger response of the osteogenic differentiation of hMSCs with a higher level of expression of osteoblast-associated markers, ALP activity, and extracellular matrix mineralization after the cells had been cultured for 21 days. These findings suggest that specific microtopographic cues can direct hMSCs toward osteogenic differentiation. PMID:26771563

  2. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    Directory of Open Access Journals (Sweden)

    Fenxi Zhang

    2013-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (bmMSCs are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression.

  3. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    Science.gov (United States)

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  4. Evaluation of the role of autogenous bone-marrow-derived mesenchymal stem cell transplantation for the repair of mandibular bone defects in rabbits.

    Science.gov (United States)

    Saad, Khaled Abd-Elhamid; Abu-Shahba, Ahmed Gamal Taha; El-Drieny, Ezzat Abd-Elaziz; Khedr, Mohamed Saad

    2015-09-01

    The repair of craniofacial bony defects by traditional grafting techniques requires substantial time and effort, with associated morbidity. Tissue engineering has therefore become a novel approach targeting application for bone regeneration. This study used the rabbit model for radiographic and histological evaluation of bone bioengineering for mandibular defects reconstruction using only β-tricalcium phosphate (β-TCP) and, when loaded with autogenous; bone marrow-derived undifferentiated mesenchymal stem cells (BM-MSCs). Critical-sized defects (10 × 15 mm) were created unilaterally in the mandibular body region of each rabbit (n = 16), to be filled with the BM-MSCs/β-TCP constructs for the study group (group I) (n1 = 8) and with scaffold devoid of cells for the control group (group II) (n2 = 8). Two rabbits from each group were sacrificed after healing periods of 2, 4, 12, and 24 weeks. The results revealed that the BM-MSCs endowed β-TCP scaffold with a better and more rapid bone regenerating potential: since the first evaluation period of 2 weeks, the regenerated bone tissue in group I was more mature, denser and homogeneously distributed. From these findings we could infer that the bone regeneration process was jump-started within the study group cases, which led to better quality of regenerated bone. PMID:26048107

  5. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance.

    Science.gov (United States)

    Shao, Bingyi; Liao, Li; Yu, Yang; Shuai, Yi; Su, Xiaoxia; Jing, Huan; Yang, Deqin; Jin, Yan

    2015-09-01

    Estrogen protects bone loss by promoting Fas ligand (FasL) transcription in osteoclasts and osteoblasts to induce apoptosis of osteoclasts. Bone marrow-derived mesenchymal stem cells (BMMSCs) express FasL protein, which is necessary for BMMSCs to induce T-cell apoptosis in cell therapy. However, the physiologic function of FasL in BMMSCs is unknown. In this study, using an in vitro coculture system and an in vivo BMMSC transplantation assay, we found that BMMSCs potently induced apoptosis of osteoclasts through the FasL/Fas pathway. Estrogen was necessary for this process as a promoter of FasL protein accumulation in BMMSCs. Furthermore, estrogen elevated FasL protein accumulation, not by increasing FasL gene transcription, but through microRNA-mediated posttranscriptional regulation. In brief, estrogen down-regulated expression of miR-181a, a negative modulator of FasL targeting the 3'-UTR of FasL mRNA. Estrogen deficiency resulted in excessive miR-181a, which decreased FasL protein levels to suppress BMMSC-induced osteoclast apoptosis. Furthermore, knockdown of miR-181a recovered the BMMSC defect to induce osteoclast apoptosis during estrogen deficiency. Taken together, our results showed that estrogen preserves FasL protein accumulation by inhibiting miR-181a expression in BMMSCs to maintain bone remodeling balance, suggesting a novel mechanism by which estrogen preserves bone mass. PMID:26062603

  6. Dual transcriptome sequencing reveals resistance of TLR4 ligand-activated bone marrow-derived macrophages to inflammation mediated by the BET inhibitor JQ1

    Science.gov (United States)

    Das, Amitabh; Chai, Jin Choul; Yang, Chul-su; Lee, Young Seek; Das, Nando Dulal; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-01-01

    Persistent macrophage activation is associated with the expression of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify inflammatory disorders. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for JQ1 molecular targets has not been undertaken. The present study aimed at evaluating the anti-inflammatory function and underlying genes that are targeted by JQ1 in LPS-stimulated primary bone marrow-derived macrophages (BMDMs) using global transcriptomic RNA sequencing and quantitative real-time PCR. Among the annotated genes, transcriptional sequencing of BMDMs that were treated with JQ1 revealed a selective effect on LPS-induced gene expression in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent (transcription factors) TFs was suppressed. Additionally, we found that JQ1 reduced the expression of previously unidentified genes that are important in inflammation. Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced cytokines/chemokines in the supernatants of LPS treated BMDMs. Moreover, the biological pathways and gene ontology of the differentially expressed genes were determined in the JQ1 treatment of BMDMs. These unprecedented results suggest that the BET inhibitor JQ1 is a candidate for the prevention or therapeutic treatment of inflammatory disorders. PMID:26582142

  7. Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo

    Science.gov (United States)

    Qiao, Hongyu; Zhang, Ran; Gao, Lina; Guo, Yanjie; Wang, Jinda; Zhang, Rongqing; Li, Xiujuan; Li, Congye; Chen, Yundai; Cao, Feng

    2016-01-01

    Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc+ transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106 BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway. PMID:27419126

  8. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    International Nuclear Information System (INIS)

    Bone marrow-derived stromal cells (BMSCs) are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1). The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment

  9. Combined Effects of Mechanical Strain and Hydroxyapatite/Collagen Composite on Osteogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising source for bone repair and regeneration. Recent lines of evidence have shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that hydroxyapatite/collagen (HA/Col composite also played an important role in the osteogenic differentiation of MSCs. The aim of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone marrow derived MSCs (rBMSCs in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription polymerase chain reaction (RT-PCR, alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts, which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

  10. Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Naranjo, Maria C; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz

    2016-05-18

    Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on polarisation and inflammatory potential in bone marrow-derived macrophages (BMDMs) from niacin (NA)-treated Lep(ob/ob)LDLR(-/-) mice. Animals fed with HFLCD-SFAs had increased weight and serum triglycerides, and their BMDMs accumulated triglycerides over the animals fed with HFLCD-MUFAs or -PUFAs. Furthermore, BMDMs from animals fed with HFLCD-SFAs were polarised towards the M1 phenotype with functional competence to produce pro-inflammatory cytokines, whereas BMDMs from animals fed with HFLCD-MUFAs or -PUFAs were skewed to the anti-inflammatory M2 phenotype. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent development and progression of metabolic complications in the NA-treated MetS. PMID:27116638

  11. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation.

    Science.gov (United States)

    Kalaiyarasu, Semmannan; Bhatia, Sandeep; Mishra, Niranjan; Sood, Richa; Kumar, Manoj; SenthilKumar, D; Bhat, Sushant; Dass Prakash, M

    2016-09-01

    The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes. PMID:27344111

  12. [IL-33 promotes degranulation of mouse bone marrow-derived mast cells and release of cytokines IL-1β, IL-6 and TNF-α].

    Science.gov (United States)

    Zhou, Jia; Zhang, Chen; Shang, Jing

    2016-04-01

    Objective To investigate the effect of interleukin 33 (IL-33) on degranulation and cytokine release of mouse bone marrow-derived mast cells (BMMCs). Methods Mouse BMMCs were isolated and stimulated by 0, 10, 20, 50 ng/mL IL-33. The expression of c-Kit was assessed by Western blotting. Beta-hexosaminidase content in culture supernatant was evaluated indirectly through the absorbance value of the product of the reaction between chromogenix substrate and β-hexosaminidase. The levels of histamine and cytokines (IL-1β, IL-6 and TNF-α) in culture supernatant were examined by ELISA. Results IL-33 induced the expression of c-Kit in BMMCs. Treatments with different concentrations of IL-33 for 30 minutes induced the degranulation of BMMCs to release β-hexosaminidase and histamine in a dose-dependent manner. IL-33 induced the release of IL-1β, IL-6 and TNF-α in BMMCs after treatments for 24 hours; the peak values of the three kinds of cytokines were got respectively in 50, 50 and 20 ng/mL IL-33 treatment groups. Conclusion IL-33 could induce the degranulation of mast cells and the release of cytokines (IL-1β, IL-6 and TNF-α). PMID:27053610

  13. The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-01-01

    Full Text Available The α-chemokine stromal derived factor 1 (SDF-1, which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs to bone marrow (BM and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P and ceramide-1-phosphate (C1P, and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP and adenosine triphosphate (ATP. Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin as well as prostaglandin E2 (PGE2. Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.

  14. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Directory of Open Access Journals (Sweden)

    Chen X-C

    2008-10-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (BMSCs are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1. The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. Results BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. Conclusion We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.

  15. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid

    International Nuclear Information System (INIS)

    In this study, metal-based biomaterials were functionalized with ascorbic acid (LAA). Two types of substrates were used: austenitic steel 316L and titanium Ti6Al4V. Coatings were prepared with the sol–gel method and applied on metal surfaces using the dip-coating technique. Ascorbic acid was delivered with SiO2-coating at concentrations of 0.1 and 0.4 M. The morphology of the surfaces and coatings was determined using scanning electron microscope (SEM), whereas their elemental composition by SEM-EDX. Immobilization of ascorbic acid in the coatings was confirmed with Raman spectroscopy. The biocompatibility of the materials obtained was tested in vitro using both bone marrow- and adipose-derived mesenchymal stem cells (BMMSC and ADMSC, respectively). Proliferation rate and morphology of cells cultured in the presence of designed biomaterials were monitored after 24, 48, 120 and 168 h of propagation. The results obtained indicated that silica coatings doped with 0.4 M LAA had a positive effect on the proliferation rate of investigated cells, and in some cases on the growth pattern of culture. (paper)

  16. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study

    Directory of Open Access Journals (Sweden)

    Shan-zheng Wang

    2015-01-01

    Full Text Available The interests in platelet-rich plasma (PRP and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs. We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1, dexamethasone (DEX, and vitamin C (Vc was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  17. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold

    OpenAIRE

    Bornes, Troy D.; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B.

    2016-01-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seedin...

  18. Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration.

    Science.gov (United States)

    Shi, Haiyan; Gong, Yanpei; Qiang, Liang; Li, Xiaoli; Zhang, Shibo; Gao, Jiawen; Li, Kai; Ji, Ximeng; Tian, Ling; Gu, Xiaosong; Ding, Fei

    2016-05-01

    We have previously successfully enriched post-migratory neural crest cells (NCCs) from postnatal rat bone marrow (BM). These BM-NCCs possess glial and neuronal differentiating potential. Based on the neural crest origin of Schwann cells (SCs), in this study, we aimed at using a straightforward protocol to derive Schwann cell precursors (SCPs) from BM-NCCs. Several clonal subpopulations were isolated from BM-NCCs, displaying long-term proliferative capacity and maintaining the NCC identity. The BM-NCC clones could be induced to differentiate into SCs. In particular, clone N1 gave rise to a large and pure population of SCs. Clone N1-derived SCs demonstrated the myelinating capacity in their co-culture with primary dorsal root ganglion (DRG) neurons. The decreased expression of NCC-markers and increased expression of SC-markers were related to the differentiation state of clone N1-derived SCs. To investigate the repair-promoting effects of clone N1 on injured peripheral neurons in vitro and in vivo, on one hand, the oxygen glucose deprivation-injured DRG neurons were treated with clone N1-conditioned medium, improving the cell survival and axon growth of neurons; on the other hand, clone N1 or clone N1-derived SCs were respectively implanted to the crush sciatic nerve of rats, and clone N1 yielded the better outcome of nerve regeneration and function restoration than clone N1-derived SCs. Taken together, all the results collectively showed that clone N1 could be identified as SCPs, which might hold promise for cell therapy to improve peripheral nerve regeneration. PMID:26946403

  19. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Ruben Rene, E-mail: rgonzalez@msm.edu; Lanier, Viola; Newman, Gale [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW., Atlanta, GA 30310 (United States)

    2013-09-06

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.

  20. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  1. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gale Newman

    2013-09-01

    Full Text Available Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.

  2. Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice

    Directory of Open Access Journals (Sweden)

    Rothenberg Marc E

    2009-06-01

    Full Text Available Abstract Background Arginase is significantly upregulated in the lungs in murine models of asthma, as well as in human asthma, but its role in allergic airway inflammation has not been fully elucidated in mice. Results In order to test the hypothesis that arginase has a role in allergic airway inflammation we generated arginase I-deficient bone marrow (BM chimeric mice. Following transfer of arginase I-deficient BM into irradiated recipient mice, arginase I expression was not required for hematopoietic reconstitution and baseline immunity. Arginase I deficiency in bone marrow-derived cells decreased allergen-induced lung arginase by 85.8 ± 5.6%. In contrast, arginase II-deficient mice had increased lung arginase activity following allergen challenge to a similar level to wild type mice. BM-derived arginase I was not required for allergen-elicited sensitization, recruitment of inflammatory cells in the lung, and proliferation of cells. Furthermore, allergen-induced airway hyperresponsiveness and collagen deposition were similar in arginase-deficient and wild type mice. Additionally, arginase II-deficient mice respond similarly to their control wild type mice with allergen-induced inflammation, airway hyperresponsiveness, proliferation and collagen deposition. Conclusion Bone marrow cell derived arginase I is the predominant source of allergen-induced lung arginase but is not required for allergen-induced inflammation, airway hyperresponsiveness or collagen deposition.

  3. The effects of chloroquine and hydroxychloroquine on nitric oxide production in RAW 264.7 and bone marrow-derived macrophages.

    Science.gov (United States)

    Perečko, T; Kassab, R B; Vašíček, O; Pekarová, M; Jančinová, V; Lojek, A

    2014-01-01

    Chloroquine, an antimalarial drug, can also be used in the regulation of the immune system, e.g. it is used in the treatment of autoimmune diseases. In this study we investigated the effects of chloroquine and its hydroxy-derivative on nitric oxide (NO) production in two different cell types: (i) immortalized mouse macrophage cell line RAW 264.7 and (ii) mouse bone marrow-derived macrophages (BMDM). The cells were treated with different concentrations (1-100 μM) of chloroquine or hydroxychloroquine and stimulated with lipopolysaccharide for 24 h to induce NO production. Measurement of nitrites by the Griess reaction was used to evaluate the production of NO. Expression of inducible NO synthase was evaluated with Western blot and ATPcytotoxicity test was used to measure the viability of the cells. Our results showed that both chloroquine and its hydroxy-derivative inhibited NO production in both cell types. However, based on the results of LD50 these inhibitory effects of both derivatives were due to their cytotoxicity. The LD50 values for chloroquine were 24.77 μM (RAW 264.7) and 24.86 μM (BMDM), the LD50 for hydroxychloroquine were 13.28 μM (RAW 264.7) and 13.98 μM (BMDM). In conclusion, hydroxychloroquine was more cytotoxic than its parent molecule. Comparing the two cell types tested, our data suggest that there are no differences in cytotoxicity of chloroquine or hydroxychloroquine for primary cells (BMDM) or immortalized cell line (RAW 264.7). PMID:25369339

  4. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Cristina [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden); Raimondo, Stefania [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Haneef, Maryam S. [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Geuna, Stefano [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Terenghi, Giorgio [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Shawcross, Susan G., E-mail: sue.shawcross@manchester.ac.uk [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Wiberg, Mikael [Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden)

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.

  5. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    International Nuclear Information System (INIS)

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker® staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: ► Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. ► p53 expression does not appreciably influence the biology of Schwann or stem cells. ► Notch 2 expression was similar in cells derived from animals of different ages. ► Proliferation rates of dMSC varied little over time or with animal age.

  6. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    OpenAIRE

    Sabine Wislet-Gendebien; Emerence Laudet; Virginie Neirinckx; Bernard Rogister

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In th...

  7. Bone-marrow transplant - series (image)

    Science.gov (United States)

    Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...

  8. Bone Marrow Transplants: "Another Possibility at Life"

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer ... year, and, for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan ...

  9. Transplant Outcomes (Bone Marrow and Cord Blood)

    Science.gov (United States)

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  10. Bone marrow edema of the knee joint

    International Nuclear Information System (INIS)

    Bone marrow edema of the knee joint is a frequent clinical picture in MR diagnostics. It can be accompanied by symptoms and pain in the joint. Diseases that are associated with bone marrow edema can be classified into different groups. Group 1 includes vascular ischemic bone marrow edema with osteonecrosis (synonyms: SONK or Ahlbaeck's disease), osteochondrosis dissecans, and bone marrow edema syndrome. Group 2 comprises traumatic or mechanical bone marrow edema. Group 3 encompasses reactive bone marrow edemas such as those occurring in gonarthrosis, postoperative bone marrow edemas, and reactive edemas in tumors or tumorlike diseases. Evidence for bone marrow edema is effectively provided by MRI, but purely morphological MR information is often unspecific so that anamnestic and clinical details are necessary in most cases for definitive disease classification. (orig.)

  11. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms.

    Science.gov (United States)

    Bernardo, Maria Ester; Zaffaroni, Nadia; Novara, Francesca; Cometa, Angela Maria; Avanzini, Maria Antonietta; Moretta, Antonia; Montagna, Daniela; Maccario, Rita; Villa, Raffaella; Daidone, Maria Grazia; Zuffardi, Orsetta; Locatelli, Franco

    2007-10-01

    Significant improvement in the understanding of mesenchymal stem cell (MSC) biology has opened the way to their clinical use. However, concerns regarding the possibility that MSCs undergo malignant transformation have been raised. We investigated the susceptibility to transformation of human bone marrow (BM)-derived MSCs at different in vitro culture time points. MSCs were isolated from BM of 10 healthy donors and propagated in vitro until reaching either senescence or passage (P) 25. MSCs in the senescence phase were closely monitored for 8 to 12 weeks before interrupting the cultures. The genetic characterization of MSCs was investigated through array-comparative genomic hybridization (array-CGH), conventional karyotyping, and subtelomeric fluorescent in situ hybridization analysis both before and after prolonged culture. MSCs were tested for the expression of telomerase activity, human telomerase reverse transcriptase (hTERT) transcripts, and alternative lengthening of telomere (ALT) mechanism at different passages. A huge variability in terms of proliferative capacity and MSCs life span was noted between donors. In eight of 10 donors, MSCs displayed a progressive decrease in proliferative capacity until reaching senescence. In the remaining two MSC samples, the cultures were interrupted at P25 to pursue data analysis. Array-CGH and cytogenetic analyses showed that MSCs expanded in vitro did not show chromosomal abnormalities. Telomerase activity and hTERT transcripts were not expressed in any of the examined cultures and telomeres shortened during the culture period. ALT was not evidenced in the MSCs tested. BM-derived MSCs can be safely expanded in vitro and are not susceptible to malignant transformation, thus rendering these cells suitable for cell therapy approaches. PMID:17909019

  12. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle

    International Nuclear Information System (INIS)

    Objective: Bone marrow derived cell transplantation (BMDCT) has been recently suggested as a possible surgical technique to repair osteochondral lesions. To date, no qualitative MRI studies have evaluated its efficacy. The aim of our study is to investigate the validity of MRI T2-mapping sequence in characterizing the reparative tissue obtained and its ability to correlate with clinical results. Methods and materials: 20 patients with an osteochondral lesion of the talus underwent BMDCT and were evaluated at 2 years follow up using MRI T2-mapping sequence. 20 healthy volunteers were recruited as controls. MRI images were acquired using a protocol suggested by the International Cartilage Repair Society, MOCART scoring system and T2 mapping. Results were then correlated with AOFAS clinical score. Results: AOFAS score increased from 66.8 ± 14.5 pre-operatively to 91.2 ± 8.3 (p < 0.0005) at 2 years follow-up. T2-relaxation time value of 35-45 ms was derived from healthy ankles evaluation and assumed as normal hyaline cartilage value and used as a control. Regenerated tissue with a T2-relaxation time value comparable to hyaline cartilage was found in all the cases treated, covering a mean of 78% of the repaired lesion area. A high clinical score was related directly to isointense signal in DPFSE fat sat (p = 0.05), and percentage of regenerated hyaline cartilage (p = 0.05), inversely to the percentage of regenerated fibrocartilage. Lesion's depth negatively related to the integrity of the repaired tissue's surface (tau = -0.523, p = 0.007), and to the percentage of regenerated hyaline cartilage (rho = -0.546, p = 0.013). Conclusions: Because of its ability to detect cartilage's quality and to correlate to the clinical score, MRI T2-mapping sequence integrated with Mocart score represent a valid, non-invasive technique for qualitative cartilage assessment after regenerative surgical procedures.

  13. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M., E-mail: milva.battaglia@ior.it [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Rimondi, E. [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Monti, C. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Guaraldi, F. [Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD (United States); Sant' Andrea, A. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Buda, R.; Cavallo, M.; Giannini, S.; Vannini, F. [Clinical Orthopaedic and Traumatology Unit II, Rizzoli Orthopaedic Institute, Bologna (Italy)

    2011-11-15

    Objective: Bone marrow derived cell transplantation (BMDCT) has been recently suggested as a possible surgical technique to repair osteochondral lesions. To date, no qualitative MRI studies have evaluated its efficacy. The aim of our study is to investigate the validity of MRI T2-mapping sequence in characterizing the reparative tissue obtained and its ability to correlate with clinical results. Methods and materials: 20 patients with an osteochondral lesion of the talus underwent BMDCT and were evaluated at 2 years follow up using MRI T2-mapping sequence. 20 healthy volunteers were recruited as controls. MRI images were acquired using a protocol suggested by the International Cartilage Repair Society, MOCART scoring system and T2 mapping. Results were then correlated with AOFAS clinical score. Results: AOFAS score increased from 66.8 {+-} 14.5 pre-operatively to 91.2 {+-} 8.3 (p < 0.0005) at 2 years follow-up. T2-relaxation time value of 35-45 ms was derived from healthy ankles evaluation and assumed as normal hyaline cartilage value and used as a control. Regenerated tissue with a T2-relaxation time value comparable to hyaline cartilage was found in all the cases treated, covering a mean of 78% of the repaired lesion area. A high clinical score was related directly to isointense signal in DPFSE fat sat (p = 0.05), and percentage of regenerated hyaline cartilage (p = 0.05), inversely to the percentage of regenerated fibrocartilage. Lesion's depth negatively related to the integrity of the repaired tissue's surface (tau = -0.523, p = 0.007), and to the percentage of regenerated hyaline cartilage (rho = -0.546, p = 0.013). Conclusions: Because of its ability to detect cartilage's quality and to correlate to the clinical score, MRI T2-mapping sequence integrated with Mocart score represent a valid, non-invasive technique for qualitative cartilage assessment after regenerative surgical procedures.

  14. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases.

    Science.gov (United States)

    Wang, Yini; Yu, Xiaopeng; Chen, Ermei; Li, Lanuan

    2016-01-01

    Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases. PMID:27176654

  15. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Jae [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Hah, Young-Sool [Biomedical Research Institute, Gyeongsang National University Hospital, Jinju (Korea, Republic of); Ock, Sun-A. [Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon 441-706, Gyeonggi (Korea, Republic of); Lee, Jae-Hoon; Jeon, Ryong-Hoon; Park, Ji-Sung [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Lee, Sang-Il [Department of Internal Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju (Korea, Republic of); Rho, Na-Young [Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 4S7 (Canada); Rho, Gyu-Jin [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Lee, Sung-Lim, E-mail: sllee@gnu.ac.kr [College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Gyeongnam (Korea, Republic of)

    2015-05-01

    The in vitro differentiation and immunosuppressive capacity of mesenchymal stem cells (MSCs) derived from synovial fluid (SF-MSCs) and bone marrow extract (BM-MSCs) in an isogenic background of minipigs were comparatively analyzed in a collagen-induced arthritis (CIA) mouse model of rheumatoid arthritis (RA). The proliferation capacity and expression of pluripotent transcription factors (Oct3/4 and Sox2) were significantly (P<0.05) higher in SF-MSCs than in BM-MSCs. The differentiation capacity of SF-MSCs into adipocytes, osteocytes and neurocytes was significantly (P<0.05) lower than that of BM-MSCs, and the differentiation capacity of SF-MSCs into chondrocytes was significantly (P<0.05) higher than that of BM-MSCs. Systemic injection of BM- and SF-MSCs significantly (P<0.05) ameliorated the clinical symptoms of CIA mice, with SF-MSCs having significantly (P<0.05) higher clinical and histopathological recovery scores than BM-MSCs. Furthermore, the immunosuppressive properties of SF-MSCs in CIA mice were associated with increased levels of the anti-inflammatory cytokine interleukin (IL)-10, and decreased levels of the pro-inflammatory cytokine IL-1β and osteoclast-related sRANKL. In conclusion, SF-MSCs exhibited eminent pluripotency and differentiation capacity into chondrocytes, addition to substantial in vivo immunosuppressive capacity by elevating IL-10 and reducing IL-1β levels in CIA mice. - Highlights: • Immunosuppressive capacity of BM-, SM-, and SF-MSCs was evaluated in an RA model. • Proliferation, pluripotency and chondrogenic differentiation capacity were higher in SF-MSCs. • SF-MSCs exhibited improved therapeutic effects than BM-MSCs. • SF-MSCs may have applications as immunosuppressive therapy in autoimmune diseases.

  16. Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury.

    Science.gov (United States)

    Arai, Kiyotaka; Harada, Yasuji; Tomiyama, Hiroyuki; Michishita, Masaki; Kanno, Nobuo; Yogo, Takuya; Suzuki, Yoshihisa; Hara, Yasushi

    2016-08-01

    Intramedullary bone marrow-derived mononuclear cell (BM-MNC) transplantation has demonstrated neuroprotective effects in the chronic stage of spinal cord injury (SCI). However, no previous study has evaluated its effects in the acute stage, even though cell death occurs mainly within 1week after injury in all neuronal cells. Moreover, the mechanism underlying these effects remains unclear. We aimed to investigate the survival of intramedullary transplanted allogeneic BM-MNCs and the production of growth factors after transplantation to clarify the therapeutic potential of intramedullary transplanted BM-MNCs and their protective effects in acute SCI. Sprague-Dawley rats were subjected to traumatic SCI and received intramedullary transplantation of EGFP(+)BM-MNCs (n=6), BM-MNCs (n=10), or solvent (n=10) immediately after injury. To evaluate the transplanted BM-MNCs and their therapeutic effects, immunohistochemical evaluations were performed at 3 and 7days post-injury (DPI). BM-MNCs were observed at the injected site at both 3 (683±83 cells/mm(2)) and 7 DPI (395±64 cells/mm(2)). The expression of hepatocyte growth factor was observed in approximately 20% transplanted BM-MNCs. Some BM-MNCs also expressed monocyte chemotactic protein-1 or vascular endothelial growth factor. The demyelinated area and number of cleaved caspase-3-positive cells were significantly smaller in the BM-MNC-transplanted group at 3 DPI. Hindlimb locomotor function was significantly improved in the BM-MNC-transplanted group at 7 DPI. These results suggest that intramedullary transplantation of BM-MNCs is an efficient method for introducing a large number of growth factor-producing cells that can induce neuroprotective effects in the acute stage of SCI. PMID:27473980

  17. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    Science.gov (United States)

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis. PMID:26320250

  18. Comparison of the behavior of fibroblast and bone marrow-derived mesenchymal stem cell on nitrogen plasma-treated gelatin films

    International Nuclear Information System (INIS)

    The attachment and growth behavior of mouse fibroblast (L929) and rat bone marrow-derived mesenchymal stem cell (MSC) on nitrogen plasma-treated and untreated gelatin films was investigated and compared. The gelatin films were prepared by solution casting (0.05% w/v) and crosslinked using dehydrothermal treatment. The crosslinked gelatin films were treated with nitrogen alternating current (AC) 50 Hz plasma systems at various treatment time. The results on the attachment and growth of two cells; L929 and MSC, on plasma-treated gelatin film showed that the number of attached and proliferated cells on plasma-treated gelatin films was significantly increased compared to untreated samples. However, no significant difference between the number of attached L929 and MSC on plasma-treated gelatin was observed. The shorter population doubling time and higher growth rate of cells cultured on plasma-treated film indicated the greater growth of cells, compared to ones on untreated films. The greatest enhancement of cell attachment and growth were noticed when the film was treated with nitrogen plasma for 9 to 15 s. This suggested that the greater attachment and growth of both cells on gelatin films resulted from the change of surface properties, i.e. hydrophilicity, surface energy, and chemistry. The suitable water contact angle and oxygen/nitrogen ratio (O/N) of gelatin film for best L929 and MSC attachment were observed at 27–32° and 1.4, respectively. These conditions also provided the best proliferation of cells on plasma-treated gelatin films. - Highlights: • We compared the attachment and growth behavior of L929 and MSC. • The attachment of two cells on plasma-treated gelatin was significantly increased. • The shorter population doubling time and higher growth rate of cells were observed. • L929 fibroblast exhibited the greater proliferation, compared to MSC

  19. Efficacy and safety of autologous bone marrow derived hematopoietic stem cell transplantation in patients with type 2 DM: A 15 months follow-up study

    Directory of Open Access Journals (Sweden)

    Anil Bhansali

    2014-01-01

    Full Text Available Background: there are dearths of studies describing the effect of autologous bone marrow derived stem cell transplantation (ABMSCT through targeted approach in Type 2 Diabetes Mellitus.This study reports the efficacy and safety of super-selective injection of ABMSCT in T2DM. Materials and Methods: Ten patients (8 men and 2 women with T2DM, with duration of disease >5 years and with documented triple drug failure receiving insulin (0.7 U/Kg/day, metformin and pioglitazone underwent super-selective injection of stem cells into superior pancreaticoduodenal artery under fluoroscopic guidance. The primary outcome measure was decrease in insulin requirement by ≥50% (defined as responders, while secondary endpoints were improvement in glucagon stimulated C-peptide levels, changes in weight, HbA1c, lipid profile and quality of life (QOL at the end of 15 months. Results: Six patients (60% were ′responders′ at 15 months of follow-up showing a reduction in mean insulin requirement by 74% as compared to baseline and one patient was off-insulin till the end of the study. Mean HbA1c reduction in ′responders′ was 1.1% (8.1 ± 0.5% to 7.0 ± 0.6%, P = 0.03, accompanied with a significant improvement in glucagon stimulated C-peptide levels (P = 0.03, Homeostasis Model Assessment -β (P = 0.03 and QOL scores. However, ′non-responders′ did not show any significant alterations in these parameters. No serious adverse events were noted. Conclusion: Our observations indicate that ABMSCT is effective in management of T2DM and its efficacy is maintained over a period of 15 months without any adverse events. However, more number of patients and longer duration of follow-up are required to substantiate these observations.

  20. Evaluation of autologous bone marrow-derived mesenchymal stem cells on renal regeneration after experimentally induced acute kidney injury in dogs.

    Science.gov (United States)

    Lim, Chae-Young; Han, Jae-Ik; Kim, Seung-Gon; Lee, Chang-Min; Park, Hee-Myung

    2016-02-01

    OBJECTIVE To evaluate the usefulness of autologous bone marrow-derived mesenchymal stem cell (BM-MSC) therapy for the treatment of dogs with experimentally induced acute kidney injury. ANIMALS 6 healthy dogs. PROCEDURES After induction of kidney injury (day 0) with cisplatin (5 mg/kg, IV), dogs immediately received saline (0.9% NaCl) solution (10 mL; n = 3) or BM-MSCs (1 × 10(6) cells/kg in 10 mL of saline solution; 3) IV. A CBC, serum biochemical analysis, and urinalysis were performed for each dog before administration of cisplatin and on days 1 through 4. Glomerular filtration rate was determined for all dogs on days -7 and 2; BM-MSC tracking by MRI was performed on BM-MSC-treated dogs on days -14 and 4. After sample collection and BM-MSC tracking on day 4, all dogs were euthanized; kidney tissue samples underwent histologic evaluation, immunohistochemical analysis, and cytokine profiling via reverse transcriptase PCR assays. RESULTS Kidney tissue from both groups had mononuclear inflammatory cell infiltration, tubular necrosis, dilated tubules, and glomerular damage. However, there was less fibrotic change and increased proliferation of renal tubular epithelial cells in the BM-MSC-treated dogs, compared with findings for the control dogs. Expressions of tumor necrosis factor-α and transforming growth factor-β were lower in the BM-MSC-treated group, compared with findings for the control group. Laboratory data revealed no improvement in the renal function in BM-MSC-treated dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study suggested that autologous BM-MSCs may accelerate renal regeneration after experimentally induced acute kidney injury in dogs. (Am J Vet Res 2016;77:208-217). PMID:27027716

  1. TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis.

    Science.gov (United States)

    Liao, Li; Su, Xiaoxia; Yang, Xiaohong; Hu, Chenghu; Li, Bei; Lv, Yajie; Shuai, Yi; Jing, Huan; Deng, Zhihong; Jin, Yan

    2016-04-01

    Decline of antioxidant defense after estrogen deficiency leads to oxidative damage in bone marrow-derived mesenchymal stem cells (BMMSCs), resulting a defect of bone formation in osteoporosis. Forkhead box O1 (FoxO1) protein is crucial for defending physiological oxidative damage in bone. But whether FoxO1 is involved in the oxidative damage during osteoporosis is largely unknown. In this study, we found that FoxO1 protein accumulation was decreased in BMMSCs of ovariectomized mice. The decrease of FoxO1 resulted in the suppression of manganese superoxide dismutase (Sod2) and catalase (Cat) expression and accumulation of reactive oxygen species (ROS), inhibiting the osteogenic differentiation of BMMSCs. The decline of FoxO1 protein was caused by tumor necrosis factor-alpha (TNF-α) accumulated after estrogen deficiency. Mechanistically, TNF-α activated NF-κB pathway to promote microRNA-705 expression, which function as a repressor of FoxO1 through post-transcriptional regulation. Inhibition of NF-κB pathway or knockdown of miR-705 largely prevented the decline of FoxO1-mediated antioxidant defense caused by TNF-α and ameliorated the oxidative damage in osteoporotic BMMSCs. Moreover, the accumulated ROS further activated NF-κB pathway with TNF-α, which formed a feed-forward loop to persistently inhibiting FoxO1 protein accumulation in BMMSCs. In conclusion, our study revealed that the decline of FoxO1 is an important etiology factor of osteoporosis and unclosed a novel mechanism of FoxO1 regulation by TNF-α. These findings suggested a close correlation between inflammation and oxidative stress in stem cell dysfunction during degenerative bone diseases. Stem Cells 2016;34:1054-1067. PMID:26700816

  2. Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release.

    Science.gov (United States)

    Kim, Young Seo; Noh, Min Young; Cho, Kyung Ah; Kim, Hyemi; Kwon, Min-Soo; Kim, Kyung Suk; Kim, Juhan; Koh, Seong-Ho; Kim, Seung Hyun

    2015-08-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent a promising tool for stem cell-based therapies. However, the majority of MSCs fail to reach the injury site and have only minimal therapeutic effect. In this study, we assessed whether hypoxia/reoxygenation (H/R) preconditioning of human BM-MSCs could increase their functional capacity and beneficial effect on ischemic rat cortical neurons. Human BM-MSCs were cultured under hypoxia (1% O2) and with long-term reoxygenation for various times to identify the optimal conditions for increasing their viability and proliferation. The effects of H/R preconditioning on the BM-MSCs were assessed by analyzing the expression of prosurvival genes, trophic factors, and cell migration assays. The functionally improved BM-MSCs were cocultured with ischemic rat cortical neurons to compare with normoxic cultured BM-MSCs. Although the cell viability and proliferation of BM-MSCs were reduced after 1 day of hypoxic culture (1% O2), when this was followed by 5-day reoxygenation, the BM-MSCs recovered and multiplied extensively. The immunophenotype and trilineage differentiation of BM-MSCs were also maintained under this H/R preconditioning. In addition, the preconditioning enhanced the expression of prosurvival genes, the messenger RNA (mRNA) levels of various trophic factors and migration capacity. Finally, coculture with the H/R-preconditioned BM-MSCs promoted the survival of ischemic rat cortical neurons. H/R preconditioning of BM-MSCs increases prosurvival signals, trophic factor release, and cell migration and appears to increase their ability to rescue ischemic cortical neurons. This optimized H/R preconditioning procedure could provide the basis for a new strategy for stem cell therapy in ischemic stroke patients. PMID:25288154

  3. Comparison of the behavior of fibroblast and bone marrow-derived mesenchymal stem cell on nitrogen plasma-treated gelatin films

    Energy Technology Data Exchange (ETDEWEB)

    Prasertsung, I. [Chemical Engineering Program, Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Research Unit on Functionalized Material for Chemical, Biochemical and Biomedical Technology, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Kanokpanont, S. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Mongkolnavin, R. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330 (Thailand); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Panpranot, J. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Damrongsakkul, S., E-mail: siriporn.d@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330 (Thailand)

    2013-10-01

    The attachment and growth behavior of mouse fibroblast (L929) and rat bone marrow-derived mesenchymal stem cell (MSC) on nitrogen plasma-treated and untreated gelatin films was investigated and compared. The gelatin films were prepared by solution casting (0.05% w/v) and crosslinked using dehydrothermal treatment. The crosslinked gelatin films were treated with nitrogen alternating current (AC) 50 Hz plasma systems at various treatment time. The results on the attachment and growth of two cells; L929 and MSC, on plasma-treated gelatin film showed that the number of attached and proliferated cells on plasma-treated gelatin films was significantly increased compared to untreated samples. However, no significant difference between the number of attached L929 and MSC on plasma-treated gelatin was observed. The shorter population doubling time and higher growth rate of cells cultured on plasma-treated film indicated the greater growth of cells, compared to ones on untreated films. The greatest enhancement of cell attachment and growth were noticed when the film was treated with nitrogen plasma for 9 to 15 s. This suggested that the greater attachment and growth of both cells on gelatin films resulted from the change of surface properties, i.e. hydrophilicity, surface energy, and chemistry. The suitable water contact angle and oxygen/nitrogen ratio (O/N) of gelatin film for best L929 and MSC attachment were observed at 27–32° and 1.4, respectively. These conditions also provided the best proliferation of cells on plasma-treated gelatin films. - Highlights: • We compared the attachment and growth behavior of L929 and MSC. • The attachment of two cells on plasma-treated gelatin was significantly increased. • The shorter population doubling time and higher growth rate of cells were observed. • L929 fibroblast exhibited the greater proliferation, compared to MSC.

  4. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway.

    Science.gov (United States)

    Zhang, Zheng; Yang, Ming; Wang, Yabin; Wang, Le; Jin, Zhitao; Ding, Liping; Zhang, Lijuan; Zhang, Lina; Jiang, Wei; Gao, Guojie; Yang, Junke; Lu, Bingwei; Cao, Feng; Hu, Taohong

    2016-06-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been demonstrated as an ideal autologous stem cells source for cell-based therapy for myocardial infarction (MI). However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency, whereas the underlying mechanism is still poorly understood. Autophagy, a highly conserved process of cellular degradation, is required for maintaining homeostasis and normal function. Here, we investigated the potential role of autophagy on apoptosis in BM-MSCs induced by hypoxic injury. BM-MSCs, isolated from male C57BL/6 mice, were subjected to hypoxia and serum deprivation (H/SD) injury for 6, 12, and 24 h, respectively. The autophagy state was regulated by 3-methyladenine (3MA) and rapamycin administration. Furthermore, compound C was administrated to inhibit AMPK. The apoptosis induced by H/SD was determined by TUNEL assays. Meanwhile, autophagy was measured by GFP-LC3 plasmids transfection and transmission electron microscope. Moreover, protein expressions were evaluated by Western blot assay. In the present study, we found that hypoxic stress increased autophagy and apoptosis in BM-MSCs time dependently. Meanwhile, hypoxia increased the activity of AMPK/mTOR signal pathway. Moreover, increased apoptosis in BM-MSCs under hypoxia was abolished by 3-MA, whereas was aggravated by rapamycin. Furthermore, the increased autophagy and apoptosis in BM-MSCs induced by hypoxia were abolished by AMPK inhibitor compound C. These data provide evidence that hypoxia induced AMPK/mTOR signal pathway activation which regulated the apoptosis and autophagy in BM-MSCs. Furthermore, the apoptosis of BM-MSCs under hypoxic condition was regulated by autophagy via AMPK/mTOR pathway. PMID:27005844

  5. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets.

    Science.gov (United States)

    Gao, Li-Na; An, Ying; Lei, Ming; Li, Bei; Yang, Hao; Lu, Hong; Chen, Fa-Ming; Jin, Yan

    2013-12-01

    Cell sheet engineering is a scaffold-free delivery concept that has been shown to improve mesenchymal stem cell-mediated regeneration of injured or pathologically damaged periodontal tissues in preclinical studies and several clinical trials. However, the best strategy for cell sheet production remains to be identified. The aim of this study was to investigate the biological effects of osthole, a coumarin-like derivative extracted from Chinese herbs, on the cell sheet formation and osteogenic properties of human periodontal ligament stem cells (PDLSCs) and jaw bone marrow mesenchymal stem cells (JBMMSCs). Patient-matched PDLSCs and JBMMSCs were isolated, and an appropriate concentration of osthole for cell culture was screened for both cell types in terms of cell proliferation and alkaline phosphatase (ALP) activity. Next, the best mode of osthole stimulation for inducing the formation of sheets by each cell type was selected by evaluating the amount of their extracellular matrix (ECM) protein production as well as osteogenic-related gene expression. Furthermore, both PDLSC and JBMMSC sheets obtained from each optimized technique were transplanted subcutaneously into nude mice to evaluate their capacity for ectopic bone regeneration. The results revealed that 10(-5) m/L osthole significantly enhanced the proliferation of both PDLSCs and JBMMSCs (P osthole groups (P > 0.05). In addition, 10(-5) m/L osthole was the best concentration to promote the ALP activities of both cells (P osthole throughout the entire culture stage (10 days) for PDLSCs or at the early stage (first 3 days) for JBMMSCs was the most effective osthole administration mode for cell sheet formation (P osthole-mediated PDLSC and JBMMSC sheets formed more new bone than those obtained without osthole intervention (P osthole stimulation may enhance ECM production and positively affect cell behavior in cell sheet engineering. PMID:24095254

  6. Autophagy Plays a Protective Role in Tumor Necrosis Factor-α-Induced Apoptosis of Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Yang, Rui; Ouyang, Yi; Li, Weiping; Wang, Peng; Deng, Haiquan; Song, Bin; Hou, Jingyi; Chen, Zhong; Xie, Zhongyu; Liu, Zhenhua; Li, Jinteng; Cen, Shuizhong; Wu, Yanfeng; Shen, Huiyong

    2016-05-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) are being broadly investigated for treating numerous inflammatory diseases. However, the low survival rate of BMSCs during the transplantation process has limited their application. Autophagy can maintain cellular homeostasis and protect cells against environmental stresses. Tumor necrosis factor-α (TNF-α) is an important inflammatory cytokine that can induce both autophagy and apoptosis of BMSCs. However, the actual role of autophagy in TNF-α-induced apoptosis of BMSCs remains poorly understood. In the current study, BMSCs were treated with TNF-α/cycloheximide (CHX), and cell death was examined by the Cell Counting Kit-8, Hoechst 33342 staining, and flow cytometric analysis as well as by the level of caspase-3 and caspase-8. Meanwhile, autophagic flux was examined by analyzing the level of microtubule-associated protein light chain 3 B (LC3B)-II and SQSTEM1/p62 and by examining the amount of green fluorescent protein-LC3B by fluorescence microscopy. Then, the cell death and autophagic flux of BMSCs were examined after pretreatment and cotreatment with 3-methyladenine (3-MA, autophagy inhibitor) or rapamycin (Rap, autophagy activator) together with TNF-α/CHX. Moreover, BMSCs pretreated with lentiviruses encoding short hairpin RNA of beclin-1 (BECN1) were treated with TNF-α/CHX, and then cell death and autophagic flux were detected. We showed that BMSCs treated with TNF-α/CHX presented dramatically elevated autophagic flux and cell death. Furthermore, we showed that 3-MA and shBECN1 treatment accelerated TNF-α/CHX-induced apoptosis, but that Rap treatment ameliorated cell death. Our results demonstrate that autophagy protects BMSCs against TNF-α-induced apoptosis. Enhancing the autophagy of BMSCs may elevate cellular survival in an inflammatory microenvironment. PMID:26985709

  7. Sphingosine 1-Phosphate Receptor 2 and 3 Mediate Bone Marrow-Derived Monocyte/Macrophage Motility in Cholestatic Liver Injury in Mice.

    Science.gov (United States)

    Yang, Le; Han, Zhen; Tian, Lei; Mai, Ping; Zhang, Yuanyuan; Wang, Lin; Li, Liying

    2015-01-01

    Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) system has been implicated in the pathological process of liver injury. This study was designed to evaluate the effects of S1P/S1PR on bone marrow-derived monocyte/macrophage (BMM) migration in mouse models of cholestatic liver injury, and identify the signaling pathway underlying this process. S1PR1-3 expression in BMM was characterized by immunofluorescence, RT-PCR and Western blot. Cell migration was determined in Boyden chambers. In vivo, the chimera mice, which received BM transplants from EGFP-transgenic mice, received an operation of bile duct ligation (BDL) to induce liver injury with the administration of S1PR2/3 antagonists. The results showed that S1PR1-3 were all expressed in BMMs. S1P exerted a powerful migratory action on BMMs via S1PR2 and S1PR3. Furthermore, PTX and LY-294002 (PI3K inhibitor) prevented S1PR2/3-mediated BMM migration, and Rac1 activation by S1P was inhibited by JTE-013, CAY-10444 or LY294002. Administration of S1PR2/3 antagonists in vivo significantly reduced BMM recruitment in BDL-treated mice, and attenuated hepatic inflammation and fibrosis. In conclusion, S1P/S1PR2/3 system mediates BMM motility by PTX-PI3K-Rac1 signaling pathway, which provides new compelling information on the role of S1P/S1PR in liver injury and opens new perspectives for the pharmacological treatment of hepatic fibrosis. PMID:26324256

  8. Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line.

    Science.gov (United States)

    Rosa Santos, S C; Dumon, S; Mayeux, P; Gisselbrecht, S; Gouilleux, F

    2000-02-24

    Cytokine-dependent activation of distinct signaling pathways is a common scheme thought to be required for the subsequent programmation into cell proliferation and survival. The PI 3-kinase/Akt, Ras/MAP kinase, Ras/NFIL3 and JAK/STAT pathways have been shown to participate in cytokine mediated suppression of apoptosis in various cell types. However the relative importance of these signaling pathways seems to depend on the cellular context. In several cases, individual inhibition of each pathway is not sufficient to completely abrogate cytokine mediated cell survival suggesting that cooperation between these pathways is required. Here we showed that individual inhibition of STAT5, PI 3-kinase or MEK activities did not or weakly affected the IL-3 dependent survival of the bone marrow derived Ba/F3 cell line. However, the simultaneous inhibition of STAT5 and PI 3-kinase activities but not that of STAT5 and MEK reduced the IL-3 dependent survival of Ba/F3. Analysis of the expression of the Bcl-2 members indicated that phosphorylation of Bad and Bcl-x expression which are respectively regulated by the PI 3-kinase/Akt pathway and STAT5 probably explain this cooperation. Furthermore, we showed by co-immunoprecipitation studies and pull down experiments with fusion proteins encoding the GST-SH2 domains of p85 that STAT5 in its phosphorylated form interacts with the p85 subunit of the PI 3-kinase. These results indicate that the activations of STAT5 and the PI 3-kinase by IL-3 in Ba/F3 cells are tightly connected and cooperate to mediate IL-3-dependent suppression of apoptosis by modulating Bad phosphorylation and Bcl-x expression. PMID:10713704

  9. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats.

    Directory of Open Access Journals (Sweden)

    Luciana A Reis

    Full Text Available This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs or their conditioned medium (CM on the repair and prevention of Acute Kidney Injury (AKI induced by gentamicin (G. Animals received daily injections of G up to 20 days. On the 10(th day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5(th day of G treatment. Creatinine (Cr, urea (U, FENa and cytokines were quantified. The kidneys were evaluated using hematoxylin/eosin staining and immunohystochemistry. The levels of Cr, U and FENa increased during all the periods of G treatment. The BMSC transplantation, its CM or exosome injections inhibited the increase in Cr, U, FENa, necrosis, apoptosis and also increased cell proliferation. The pro-inflammatory cytokines decreased while the anti-inflammatory cytokines increased compared to G. When the CM or its exosomes were incubated with RNase (but not trypsin, these effects were blunted. The Y chromosome was not observed in the 24-h prevention group, but it persisted in the kidney for all of the periods analyzed, suggesting that the injury is necessary for the docking and maintenance of BMSCs in the kidney. In conclusion, the BMSCs and CM minimized the G-induced renal damage through paracrine effects, most likely through the RNA carried by the exosome-like microvesicles. The use of the CM from BMSCs can be a potential therapeutic tool for this type of nephrotoxicity, allowing for the avoidance of cell transplantations.

  10. Periostin: A Downstream Mediator of EphB4-Induced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Erythropoietin-producing hepatocyte B4 (EphB4 has been reported to be a key molecular switch in the regulation of bone homeostasis, but the underlying mechanism remains poorly understood. In this study, we investigated the role of EphB4 in regulating the expression of periostin (POSTN within bone marrow-derived mesenchymal stem cells (MSCs and assessed its effect and molecular mechanism of osteogenic induction in vitro. Treatment with ephrinB2-FC significantly increased the expression of POSTN in MSCs, and the inhibition of EphB4 could abrogate this effect. In addition, osteogenic markers were upregulated especially in MSCs overexpressing EphB4. To elucidate the underlying mechanism of cross talk between EphB4 and the Wnt pathway, we detected the change in protein expression of phosphorylated-glycogen synthase kinase 3β-serine 9 (p-GSK-3β-Ser9 and β-catenin, as well as the osteogenic markers Runx2 and COL1. The results showed that GSK-3β activation and osteogenic marker expression levels were downregulated by ephrinB2-FC treatment, but these effects were inhibited by blocking integrin αvβ3 in MSCs. Our findings demonstrate that EphB4 can promote osteogenic differentiation of MSCs via upregulation of POSTN expression. It not only helps to reveal the interaction mechanism between EphB4 and Wnt pathway but also brings a better understanding of EphB4/ephrinB2 signaling in bone homeostasis.

  11. Differential gene expression of bone marrow-derived CD34+ cells is associated with survival of patients suffering from myelodysplastic syndrome.

    Science.gov (United States)

    Prall, Wolf C; Czibere, Akos; Grall, Franck; Spentzos, Dimitrios; Steidl, Ulrich; Giagounidis, Aristoteles Achilles Nikolaus; Kuendgen, Andrea; Otu, Hasan; Rong, Astrid; Libermann, Towia A; Germing, Ulrich; Gattermann, Norbert; Haas, Rainer; Aivado, Manuel

    2009-03-01

    One feature of the molecular pathology of myelodysplastic syndromes (MDS) is aberrant gene expression. Such aberrations may be related to patient survival, and may indicate to novel diagnostic and therapeutic targets. Therefore, we aimed at identifying aberrant gene expression that is associated with MDS and patient survival. Bone marrow-derived CD34+ hematopoietic progenitor cells from six healthy persons and 16 patients with MDS were analyzed on cDNA macroarrays comprising 1,185 genes. Thereafter, our patients were followed-up for 54 months. We found differential expression of genes that were hitherto unrecognized in the context of MDS. Differential expression of 10 genes was confirmed by quantitative real-time RT-PCR. Hierarchical cluster analysis facilitated the separation of CD34+ cells of normal donors from patients with MDS. More importantly, it also distinguished MDS-patients with short and long survival. Scrutinizing our cDNA macroarray data for genes that are associated with short survival, we found, among others, increased expression of six different genes that encode the proteasome subunits. On the other hand, the most differentially down-regulated gene was IEX-1, which encodes an anti-apoptotic protein. We confirmed its decreased expression on RNA and protein level in an independent validation set of patient samples. The presented data broadens our notion about the molecular pathology of MDS and may lend itself to better identify patients with short survival. Furthermore, our findings may help to define new molecular targets for drug development and therapeutic approaches for patients with poor prognosis. PMID:19152102

  12. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    International Nuclear Information System (INIS)

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO–PEG–COOH-labeled cells

  13. Neural Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells Treated with Sex Steroid Hormones and Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Kazem Parivar

    2015-04-01

    Full Text Available Objective: There are several factors, like environmental agents, neurotrophic factors, serotonin and some hormones such as estrogen, affecting neurogenesis and neural differentiation. Regarding to importance of proliferation and regeneration in central nervous system, and a progressive increase in neurodegenerative diseases, cell therapy is an attractive approach in neuroscience. The aim of the present study was to investigate the effects of sex steroid hormones and basic fibroblast growth factor (bFGF on neuronal differentiation of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs. Materials and Methods: This experimental study was established in Kharazmi University. BM was isolated from the bones of femur and tibia of 4-6-week old Naval Medical Research Institute (NMRI mice, and the cells were cultured. The cells were divided into following 4 groups based on the applied treatments: I. control (no treatment, II. steroid hormones (β-estradiol, progesterone and testosterone, III. bFGF and IV. combination of steroid hormones and bFGF. Immunocytochemistry and flow cytometery analyses were applied for beta III-tubulin (β-III tubulin and microtubule-associated proteins-2 (MAP-2 in 4 days of treatment for all groups. Results: The cells treated with combination of bFGF and steroid hormones represented more expressions of neural markers as compared to control and to other two groups treated with either bFGF or steroid hormones. Conclusion: This study showed that BM-MSCs can express specific neural markers after receiving bFGF pretreatment that was followed by sex steroid hormones treatment. More investigations are necessary to specify whether steroid hormones and bFGF can be considered for treatment of CNS diseases and disorders.

  14. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs

    International Nuclear Information System (INIS)

    The in vitro differentiation and immunosuppressive capacity of mesenchymal stem cells (MSCs) derived from synovial fluid (SF-MSCs) and bone marrow extract (BM-MSCs) in an isogenic background of minipigs were comparatively analyzed in a collagen-induced arthritis (CIA) mouse model of rheumatoid arthritis (RA). The proliferation capacity and expression of pluripotent transcription factors (Oct3/4 and Sox2) were significantly (P<0.05) higher in SF-MSCs than in BM-MSCs. The differentiation capacity of SF-MSCs into adipocytes, osteocytes and neurocytes was significantly (P<0.05) lower than that of BM-MSCs, and the differentiation capacity of SF-MSCs into chondrocytes was significantly (P<0.05) higher than that of BM-MSCs. Systemic injection of BM- and SF-MSCs significantly (P<0.05) ameliorated the clinical symptoms of CIA mice, with SF-MSCs having significantly (P<0.05) higher clinical and histopathological recovery scores than BM-MSCs. Furthermore, the immunosuppressive properties of SF-MSCs in CIA mice were associated with increased levels of the anti-inflammatory cytokine interleukin (IL)-10, and decreased levels of the pro-inflammatory cytokine IL-1β and osteoclast-related sRANKL. In conclusion, SF-MSCs exhibited eminent pluripotency and differentiation capacity into chondrocytes, addition to substantial in vivo immunosuppressive capacity by elevating IL-10 and reducing IL-1β levels in CIA mice. - Highlights: • Immunosuppressive capacity of BM-, SM-, and SF-MSCs was evaluated in an RA model. • Proliferation, pluripotency and chondrogenic differentiation capacity were higher in SF-MSCs. • SF-MSCs exhibited improved therapeutic effects than BM-MSCs. • SF-MSCs may have applications as immunosuppressive therapy in autoimmune diseases

  15. Aspiration and Biopsy: Bone Marrow

    Science.gov (United States)

    ... The person performing the bone marrow aspiration and biopsy will know your medical history, but might ask additional questions, such as what medicines you're taking or whether you have any allergies. Be sure to ... on the aspiration and biopsy site about 30 minutes before the procedure. You ...

  16. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  17. Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis

    OpenAIRE

    Xiaofang Wang; Erin A. Kimbrel; Kumiko Ijichi; Debayon Paul; Adam S. Lazorchak; Jianlin Chu; Nicholas A. Kouris; Gregory J. Yavanian; Shi-Jiang Lu; Joel S. Pachter; Crocker, Stephen J.; Robert Lanza; Ren-He Xu

    2014-01-01

    Summary Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stem cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs) may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs sign...

  18. Chondrogenic potential of bone marrow-derived mesenchymal stem cells on a novel, auricular-shaped, nanocomposite scaffold.

    OpenAIRE

    Patel, K H; Nayyer, L.; Seifalian, A. M.

    2013-01-01

    Reconstruction of the human auricle remains a challenge to plastic surgeons, and current approaches are not ideal. Tissue engineering provides a promising alternative. This study aims to evaluate the chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped polymer. The proposed polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonate)urethane/urea nanocomposite polymer has already been transplanted in patients as the world’s first syn...

  19. Functional recovery after rhesus monkey spinal cord injury by transplantation of bone marrow mesenchymal-stem cell-derived neurons

    Institute of Scientific and Technical Information of China (English)

    DENG Yu-bin; YUAN Qing-tao; LIU Xiao-gang; LIU Xiao-lin; LIU Yu; LIU Zu-guo; ZHANG Cheng

    2005-01-01

    Background The treatment of spinal cord injury is still a challenge. This study aimed at evaluating the therapeutical effectiveness of neurons derived form mesenchymal stem cells (MSCs) for spinal cord injury.Methods In this study, rhesus MSCs were isolated and induced by cryptotanshinone in vitro and then a process of RT-PCR was used to detect the expression of glutamic acid decarboxylase (GAD) gene. The induced MSCs were tagged with Hoechst 33342 and injected into the injury site of rhesus spinal cord made by the modified Allen method. Following that, behavior analysis was made after 1 week, 1 month, 2 months and 3 months. After 3 months, true blue chloride retrograde tracing study was also used to evaluate the re-establishment of axons pathway and the hematoxylin-eosin (HE) staining and immunohistochemistry were performed after the animals had been killed.Results In this study, the expression of mRNA of GAD gene could be found in the induced MSCs but not in primitive MSCs and immunohistochemistry could also confirm that rhesus MSCs could be induced and differentiated into neurons. Behavior analysis showed that the experimental animals restored the function of spinal cord up to grade 2-3 of Tarlov classification. Retrograde tracing study showed that true blue chollide could be found in the rostral thoracic spinal cords, red nucleus and sensory-motor cortex.Conclusions These results suggest that the transplantation is safe and effective.

  20. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Science.gov (United States)

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  1. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    Directory of Open Access Journals (Sweden)

    Morteza Abouzaripour

    2016-02-01

    Full Text Available Objective: Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone marrow have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1 positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods: This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS followed by characterization with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR, immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results: The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4 detected by immunocytochemistry and C-X-C chemokine receptor type 4 (CXCR4 and stem cell antigen-1 (SCA-1 detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors, Ngn3 (endocrine progenitor marker, Insulin1 and Insulin2 (pancreaticβ-cell markers. Additionally, our results demonstrate expression of PDX1 and GLUT2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion: Our study clearly demonstrates the potential of SSEA-1

  2. Propagation and titration of murine cytomegalovirus in a continuous bone marrow-derived stromal cell line (M2-10B4)

    OpenAIRE

    Lutarewych, M A; Quirk, M R; Kringstad, B A; Lin, Wei; Verfaillie, Catherine; Jordan, M C

    1997-01-01

    Murine cytomegalovirus (MCMV) can only be propagated effectively in mouse embryo fibroblast (MEF) cells. We demonstrate that MCMV replicates significantly better in M2-10B4 cells, a continuous line of murine bone marrow stromal cells. M2-10B4 cells were also comparable to MEF cells for detection of small amounts of MCMV reactivating from latently infected spleen explants. M2-10B4 cells will be very useful for studies of MCMV pathogenesis.

  3. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes

    OpenAIRE

    Masako Nakano; Kanna Nagaishi; Naoto Konari; Yuki Saito; Takako Chikenji; Yuka Mizue; Mineko Fujimiya

    2016-01-01

    The incidence of dementia is higher in diabetic patients, but no effective treatment has been developed. This study showed that rat bone marrow mesenchymal stem cells (BM-MSCs) can improve the cognitive impairments of STZ-diabetic mice by repairing damaged neurons and astrocytes. The Morris water maze test demonstrated that cognitive impairments induced by diabetes were significantly improved by intravenous injection of BM-MSCs. In the CA1 region of the hippocampus, degeneration of neurons an...

  4. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    NARCIS (Netherlands)

    S. James (Sally); J. Fox (James); F. Afsari (Farinaz); J. Lee (Jennifer); S. Clough (Sally); C. Knight (Charlotte); J. Ashmore (James); P. Ashton (Peter); O. Preham (Olivier); M.J. Hoogduijn (Martin); R.D.A.R. Ponzoni (Raquel De Almeida Rocha); Y. Hancock; M. Coles (Mark); P.G. Genever (Paul)

    2015-01-01

    textabstractBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis

  5. Gillick, bone marrow and teenagers.

    Science.gov (United States)

    Cherkassky, Lisa

    2015-09-01

    The Human Tissue Authority can authorise a bone marrow harvest on a child of any age if a person with parental responsibility consents to the procedure. Older children have the legal capacity to consent to medical procedures under Gillick, but it is unclear if Gillick can be applied to non-therapeutic medical procedures. The relevant donation guidelines state that the High Court shall be consulted in the event of a disagreement, but what is in the best interests of the teenage donor under s.1 of the Children Act 1989? There are no legal authorities on child bone marrow harvests in the United Kingdom. This article considers the best interests of the older saviour sibling and questions whether, for the purposes of welfare, the speculative benefits could outweigh the physical burdens. PMID:25911618

  6. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi [Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang 453003 (China); Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China); Wang, Congrui [Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Xinxiang 453003 (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang 453003 (China); Li, Yonghai; Cao, Yulin [Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China); Lin, Juntang, E-mail: juntang.lin@googlemail.com [Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China)

    2013-04-15

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs and which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.

  7. hTERT- and hCTLA4Ig-expressing human bone marrow-derived mesenchymal stem cells: in vitro and in vivo characterization and osteogenic differentiation.

    Science.gov (United States)

    Dai, Fei; Yang, Sisi; Zhang, Fei; Shi, Dongwen; Zhang, Zehua; Wu, Jun; Xu, Jianzhong

    2014-07-22

    Multipotent mesenchymal stem cells (MSCs) are commonly used as seed cells in studies of tissue engineering and regenerative medicine but their clinical application is limited, due to insufficient numbers of autogeneic MSCs, immune rejection of allogeneic MSCs and replicative senescence. We constructed two gene expression vectors for transfection of the human telomerase reverse transcriptase (hTERT) and cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4Ig) genes into human bone marrow-derived stem cells (hBMSCs). Successful transfection of both genes generated hTERT-CTLA4Ig hBMSCs that expressed both telomerase (shown by immunohistochemistry and a TRAPeze assay) and CTLA4Ig (demonstrated by immunocytochemistry and western blotting) without apparent mutual interference. Both hTERT BMSCs (92 population doublings) and hTERT-CTLA4Ig hBMSCs (60 population doublings) had an extended lifespan compared with hBMSCs (18 population doublings). Cell cycle analysis revealed that, compared with hBMSCs, a lower proportion of hTERT hBMSCs were in G0 /G1 phase but a higher proportion were in S phase; compared with hTERT hBMSCs, a higher proportion of hTERT-CTLA4Ig hBMSCs were in G0 /G1 phase, while a lower proportion were in S and G2 /M phases. hTERT-CTLA4Ig hBMSCs retained their capacity for osteogenic differentiation in vitro, shown by the detection of hydroxyapatite mineral deposition (labelled tetracycline fluorescence staining), calcareous nodules (alizarin red S staining), alkaline phosphatase (calcium-cobalt method) and osteocalcin (immunocytochemistry). Furthermore, subcutaneous transplantation of hTERT-CTLA4Ig hBMSCs in a rat xenotransplantation model resulted in the successful generation of bone-like tissue, confirmed using radiography and histological assessment. We propose that allogeneic hTERT-CTLA4Ig hBMSCs may be ideal seed cells for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25047146

  8. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord

    Directory of Open Access Journals (Sweden)

    Van Tendeloo Viggo FI

    2007-12-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (MSC are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (hMSC with enhanced green fluorescent protein (EGFP and neurotrophin (NT3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. Results First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. Conclusion In this study, we

  9. Cell Therapy Using Bone Marrow-Derived Stem Cell Overexpressing BMP-7 for Degenerative Discs in a Rat Tail Disc Model

    Directory of Open Access Journals (Sweden)

    Jen-Chung Liao

    2016-01-01

    Full Text Available Degenerative discs can cause low back pain. Cell-based transplantation or growth factors therapy have been suggested as a strategy to stimulate disc regeneration. Bone marrow-derived mesenchymal stem cells (BMDMSC containing bone morphogenetic protein-7 (BMP-7 gene were constructed. We evaluated the effectiveness of these BMP-7 overexpressing cells on degenerative discs in rat tails. In vitro and in vivo studies were designed. In the first stage, the rats were divided into two group according to discs punctured by different needle gauges (18 gauge and 22 gauge. In the second stage, the ideal size of needle was used to induce rat tail disc degeneration. These animals are divided into three groups according to timing of treatment (zero-week, two-week, four-week. Each group was divided into three treating subgroups: control group, BMDMSC group, and Baculo-BMP-7-BMDMSC group. Each rat undergoes radiography examination every two weeks. After eight weeks, the discs were histologically examined with hematoxylin and eosin stain and Alcian blue stain. The 18-gauge group exhibited significant decrease in disc height index (% than 22-gauge group at eight weeks at both Co6-7 (58.1% ± 2.8% vs. 63.7% ± 1.0%, p = 0.020 and Co8-9 discs (62.7% ± 2.8% vs. 62.8% ± 1.5%, p = 0.010. Baculo-BMP-7-BMDMSCs group showed significant difference in disc height index compared to the BMDMSCs group at both Co6-7 (93.7% ± 1.5% vs. 84.8% ± 1.0%, p = 0.011 and Co8-9 (86.0% ± 2.1% vs. 81.8% ± 1.7%, p = 0.012. In Baculo-BMP-7-BMDMSCs group, the zero-week treatment subgroup showed significant better in disc height index compared to two-week treatment group (p = 0.044, and four-week treatment group (p = 0.011. The zero-week treatment subgroup in Baculo-BMP-7-BMDMSCs group also had significant lower histology score than two-week treatment (4.3 vs. 5.7, p = 0.045 and four-week treatment (4.3 vs. 6.0, p = 0.031. In conclusion, Baculo-BMP-7-BMDMSC can slow down the progression

  10. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis.

    Science.gov (United States)

    Felix, Alyne Souza; Monteiro, Nemesis; Rocha, Vinícius Novaes; Oliveira, Genilza; Nascimento, Ana Lucia; de Carvalho, Laís; Thole, Alessandra; Carvalho, Jorge

    2015-08-01

    Stem cells are characterized by their ability to differentiate into multiple cell lineages and display the paracrine effect. The aim of this work was to evaluate the effect of therapy with bone marrow-derived cells (BMCs) on glucose, lipid metabolism, and aortic wall remodeling in mice through the administration of a high-fat diet and subsequent BMCs transplantation. C57BL/6 mice were fed a control diet (CO group) or an atherogenic diet (AT group). After 16 weeks, the AT group was divided into 4 subgroups: an AT 14 days group and AT 21 days group that were given an injection of vehicle and sacrificed after 14 and 21 days, respectively, and an AT-BMC 14 days group and AT-BMC 21 days group that were given an injection of BMCs and sacrificed after 14 and 21 days, respectively. The BMCs transplant had reduced blood glucose, triglycerides, and total cholesterol. There was no significant difference in relation to body mass between the transplanted groups and non-transplanted groups, and all were different than CO. There was no significant difference in the glycemic curve among AT 14 days, AT-BMC 14 days, and AT 21 days, and these were different than the CO and the AT-BMC 21 days groups. The increased thickness of the aortic wall was observed in all atherogenic groups, but was significantly smaller in group AT-BMC 21 days compared to AT 14 days and AT 21 days. Vacuoles in the media tunic, delamination and the thinning of the elastic lamellae were observed in AT 14 days and AT 21 days. The smallest number of these was displayed on the AT-BMC 14 days and AT-BMC 21 days. Marking to CD105, CD133, and CD68 were observed in AT 14 days and AT 21 days. These markings were not observed in AT-BMC 14 days or in AT-BMC 21 days. Electron micrographs show the beneficial remodeling in AT-BMC 14 days and AT-BMC 21 days, and the structural organization was similar to the CO group. Vesicles of pinocytosis, projection of smooth muscle cells, and delamination of the internal elastic lamina

  11. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their

  12. Cell Therapy Using Bone Marrow-Derived Stem Cell Overexpressing BMP-7 for Degenerative Discs in a Rat Tail Disc Model.

    Science.gov (United States)

    Liao, Jen-Chung

    2016-01-01

    Degenerative discs can cause low back pain. Cell-based transplantation or growth factors therapy have been suggested as a strategy to stimulate disc regeneration. Bone marrow-derived mesenchymal stem cells (BMDMSC) containing bone morphogenetic protein-7 (BMP-7) gene were constructed. We evaluated the effectiveness of these BMP-7 overexpressing cells on degenerative discs in rat tails. In vitro and in vivo studies were designed. In the first stage, the rats were divided into two group according to discs punctured by different needle gauges (18 gauge and 22 gauge). In the second stage, the ideal size of needle was used to induce rat tail disc degeneration. These animals are divided into three groups according to timing of treatment (zero-week, two-week, four-week). Each group was divided into three treating subgroups: control group, BMDMSC group, and Baculo-BMP-7-BMDMSC group. Each rat undergoes radiography examination every two weeks. After eight weeks, the discs were histologically examined with hematoxylin and eosin stain and Alcian blue stain. The 18-gauge group exhibited significant decrease in disc height index (%) than 22-gauge group at eight weeks at both Co6-7 (58.1% ± 2.8% vs. 63.7% ± 1.0%, p = 0.020) and Co8-9 discs (62.7% ± 2.8% vs. 62.8% ± 1.5%, p = 0.010). Baculo-BMP-7-BMDMSCs group showed significant difference in disc height index compared to the BMDMSCs group at both Co6-7 (93.7% ± 1.5% vs. 84.8% ± 1.0%, p = 0.011) and Co8-9 (86.0% ± 2.1% vs. 81.8% ± 1.7%, p = 0.012). In Baculo-BMP-7-BMDMSCs group, the zero-week treatment subgroup showed significant better in disc height index compared to two-week treatment group (p = 0.044), and four-week treatment group (p = 0.011). The zero-week treatment subgroup in Baculo-BMP-7-BMDMSCs group also had significant lower histology score than two-week treatment (4.3 vs. 5.7, p = 0.045) and four-week treatment (4.3 vs. 6.0, p = 0.031). In conclusion, Baculo-BMP-7-BMDMSC can slow down the progression of disc

  13. Bone marrow edema in sports: General concepts

    International Nuclear Information System (INIS)

    This paper will discuss the value of medical imaging in the detection and follow-up of bone marrow edema (BME), resulting from acute and chronic trauma in sports. MR imaging is the only imaging technique that allows direct evaluation of bone marrow edema in sports medicine. The use of fat suppressed T2-weighted or STIR images is particularly appropriate to detect bone marrow edema. The extent of bone marrow edema reflects the biomechanics of trauma. Compressive forces between two bony structures will result in extensive areas of bone marrow edema, whereas distraction forces provoke more subtle areas of bone marrow edema at the insertion of supporting structures of joints. In most clinical situations, a combination of compression and distraction forces is present, causing a complex pattern of bone marrow edema. A meticulous pattern approach of the distribution of these bone marrow changes around a joint can reveal in most instances the underlying mechanism of trauma. This may be helpful to analyze which joint supporting structures may be at risk. In the acute setting, plain radiography and CT scan may have an additional role in the detection of small avulsion fractures occurring at the site of minor areas of bone marrow edema. The clinical significance and natural history of bone marrow edema is still a matter of debate

  14. Bone marrow edema in sports: General concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoenacker, F.M. [AZ Sint-Maarten Duffel-Mechelen, Department of Radiology, Rooienberg 25, B-2570 Duffel (Belgium) and University Hospital Antwerp, Department of Radiology, Wilrijkstraat 10, B-2650 Edegem (Belgium)]. E-mail: filip.vanhoenacker@telenet.be; Snoeckx, A. [AZ Sint-Maarten Duffel-Mechelen, Department of Radiology, Rooienberg 25, B-2570 Duffel (Belgium); University Hospital Antwerp, Department of Radiology, Wilrijkstraat 10, B-2650 Edegem (Belgium)

    2007-04-15

    This paper will discuss the value of medical imaging in the detection and follow-up of bone marrow edema (BME), resulting from acute and chronic trauma in sports. MR imaging is the only imaging technique that allows direct evaluation of bone marrow edema in sports medicine. The use of fat suppressed T2-weighted or STIR images is particularly appropriate to detect bone marrow edema. The extent of bone marrow edema reflects the biomechanics of trauma. Compressive forces between two bony structures will result in extensive areas of bone marrow edema, whereas distraction forces provoke more subtle areas of bone marrow edema at the insertion of supporting structures of joints. In most clinical situations, a combination of compression and distraction forces is present, causing a complex pattern of bone marrow edema. A meticulous pattern approach of the distribution of these bone marrow changes around a joint can reveal in most instances the underlying mechanism of trauma. This may be helpful to analyze which joint supporting structures may be at risk. In the acute setting, plain radiography and CT scan may have an additional role in the detection of small avulsion fractures occurring at the site of minor areas of bone marrow edema. The clinical significance and natural history of bone marrow edema is still a matter of debate.

  15. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1–dependent mechanism that is up-regulated by interleukin-13

    OpenAIRE

    Highfill, Steven L.; Rodriguez, Paulo C.; Zhou, Qing; Goetz, Christine A.; Koehn, Brent H; Veenstra, Rachelle; Taylor, Patricia A.; Panoskaltsis-Mortari, Angela; Serody, Jonathan S.; Munn, David H.; Tolar, Jakub; Ochoa, Augusto C.; Blazar, Bruce R.

    2010-01-01

    Myeloid-derived suppressor cells (MDSCs) are a well-defined population of cells that accumulate in the tissue of tumor-bearing animals and are known to inhibit immune responses. Within 4 days, bone marrow cells cultured in granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor resulted in the generation of CD11b+Ly6GloLy6C+ MDSCs, the majority of which are interleukin-4Rα (IL-4Rα+) and F4/80+. Such MDSCs potently inhibited in vitro allogeneic T-cell respons...

  16. Bone marrow-derived immature dendritic cells prime in vivo alloreactive T cells for interleukin-4-dependent rejection of major histocompatibility complex class II antigen-disparate cardiac allograft.

    OpenAIRE

    Buonocore, Sofia; Flamand, Véronique; Goldman, Michel; Braun, Michel Y

    2003-01-01

    BACKGROUND: Dendritic cells (DC) at the immature state express low levels of major histocompatibility complex and costimulatory molecules and are poor stimulators of primary T-cell response in vitro. Injection of immature bone marrow-derived DC, however, was shown to prime in vivo alloreactive CD4 T lymphocytes toward type 2 cytokine-producing cells in the absence of CD8 T-cell activation. METHODS: We undertook the present study to determine whether Th2-immunization by immature DC could lead ...

  17. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  18. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Science.gov (United States)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal; Foldager, Casper Bindzus; Lysdahl, Helle; Kraft, David Christian Evar; Chen, Muwan; Baas, Jorgen; Le, Dang Quang Svend; Bünger, Cody Eric

    2016-01-01

    Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering. PMID:27163105

  19. MR appearances of bone marrow in children following bone marrow transplantation

    International Nuclear Information System (INIS)

    Two cases are presented of children who demonstrated complete absence of bone marrow signal on MR imaging of the spine following bone marrow transplantation. The possible causes for these appearances are discussed. (orig.)

  20. Preservation of Bone Marrow for Clinical Use

    International Nuclear Information System (INIS)

    The author describes the results of many years' research into the problems of obtaining and preserving bone marrow in the quantities required for clinical use. Particular attention is paid to the preservation and long-term storage of bone marrow at ultra- low temperatures (-196°C), its separation from the protective medium and methods of determining whether the biological functions of thawed bone marrow have been impaired. (author)

  1. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    International Nuclear Information System (INIS)

    Research highlights: → BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. → Co-culture decreases proliferation by cellular self-regulatory mechanisms. → Co-cultured cells present an activated proangiogenic phenotype. → qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  2. Diabetes mellitus induces bone marrow microangiopathy

    OpenAIRE

    Oikawa, Atsuhiko; Siragusa, Mauro; Quaini, Federico; Mangialardi, Giuseppe; Katare, Rajesh G.; Caporali, Andrea; van Buul, Jaap D.; van Alphen, Floris P. J.; Graiani, Gallia; Spinetti, Gaia; Kraenkel, Nicolle; Prezioso, Lucia; Emanueli, Costanza; Madeddu, Paolo

    2009-01-01

    The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis.

  3. Differential Expression of Insulin-Like Growth Factor-I Receptor on Human Bone Marrow-Derived Mesenchymal Stem Cells Induced by Tumor Necrosis Factor-α

    OpenAIRE

    Sahraean, Z.; Ayatollahi, M.; Yaghobi, R.; Ziaei, R.

    2014-01-01

    Background: Cell-based therapy has been implicated in the treatment of liver diseases. Mesenchymal stem cells from various sources such as bone marrow are available. These cells are one of the major candidates in cell therapy. The production of insulin-like growth factor-I increases in the regenerating organ. The insulin-like growth factor-I in liver regeneration is effective after binding to insulin-like growth factor-I receptor. Objective: To test our hypothesis that tumor necrosis factor-α...

  4. Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury

    OpenAIRE

    Peggy Stock; Sandra Brückner; Sandra Winkler; Dollinger, Matthias M.; Bruno Christ

    2014-01-01

    Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) and transplanted into livers of immunodeficient Pfp/Rag2−/− mice treated with a sublethal dose of acetaminophen (APAP) to induce acute liver injury. APAP induced a time- and dose-depen...

  5. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  6. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  7. Bridging sciatic nerve gap using tissue-engineered nerves constructed with neural tissue-committed stem cells derived from bone marrow

    Institute of Scientific and Technical Information of China (English)

    Zhiying Zhang; Congli Ren; Chuansen Zhang; Fang Liu; Liang Li

    2009-01-01

    BACKGROUND: Schwann cells are the most commonly used cells for tissue-engineered nerves. However, autologous Schwann cells are of limited use in a clinical context, and allogeneic Schwann cells induce immunological rejections. Cells that do not induce immunological rejections and that are relatively easy to acquire are urgently needed for transplantation.OBJECTIVE: To bridge sciatic nerve defects using tissue engineered nerves constructed with neural tissue-committed stem cells (NTCSCs) derived from bone marrow; to observe morphology and function of rat nerves following bridging; to determine the effect of autologous nerve transplantation, which serves as the gold standard for evaluating efficacy of tissue-engineered nerves.DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed in the Anatomical laboratory and Biomedical Institute of the Second Military Medical University of Chinese PLA between September 2004 and April 2006.MATERIALS: Five Sprague Dawley rats, aged 1 month and weighing 100-150 g, were used for cell culture. Sixty Sprague Dawiey rats aged 3 months and weighing 220-250 g, were used to establish neurological defect models. Nestin, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), and S-100 antibodies were provided by Santa Cruz Biotechnology, Inc., USA. Acellular nerve grafts were derived from dogs.METHODS: All rats, each with 1-cm gap created in the right sciatic nerve, were randomly assigned to three groups. Each group comprised 20 rats. Autograft nerve transplantation group: the severed 1-cm length nerve segment was reverted, but with the two ends exchanged; the proximal segment was sutured to the distal sciatic nerve stump and the distal segment to the proximal stump. Blank nerve scaffold transplantation group: a 1-cm length acellular nerve graft was used to bridge the sciatic nerve gap. NTCSC engineered nerve transplantation group: a 1-cm length acellular nerve graft, in which NTCSCs were

  8. Impaired function of bone marrow stromal cells in systemic mastocytosis

    Directory of Open Access Journals (Sweden)

    Krisztian Nemeth

    2015-07-01

    Full Text Available Patients with systemic mastocytosis (SM have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34+ hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients.

  9. Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing

    Directory of Open Access Journals (Sweden)

    H Worch

    2011-01-01

    Full Text Available The communication of bone-forming osteoblasts and bone-resorbing osteoclasts is a fundamental requirement for balanced bone remodelling. For biomaterial research, development of in vitro models is necessary to investigate this communication. In the present study human bone marrow stromal cells and human monocytes were cultivated in order to differentiate into osteoblasts and osteoclasts, respectively. Finally, a cultivation regime was identified which firstly induces the differentiation of the human bone marrow stromal cells followed by the induction of osteoclastogenesis through the osteoblasts formed – without the external addition of the factors RANKL and M-CSF. As a feedback on osteoblasts enhanced gene expression of BSP II was detected for modifications which facilitated the formation of large multinuclear osteoclasts. Phenotype characterization was performed by biochemical methods (DNA, LDH, ALP, TRAP 5b, gene expression analysis (ALP, BSP II, RANKL, IL-6, VTNR, CTSK, TRAP, OSCAR, CALCR as well as light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. After establishing this model on polystyrene, similar positive results were obtained for cultivation on a relevant bone substitution material – a composite xerogel of silica, collagen, and calcium phosphate.

  10. Glial cell-derived neurotrophic factor mRNA expression in a rat model of spinal cord injury following bone marrow stromal cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Lei Li; Gang Lü; Yanfeng Wang; Hong Gao; Xin Xu; Lunhao Bai; Huan Wang

    2008-01-01

    BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression.OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR).DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007.MATERIALS: Sixty healthy Wistar rats aged 2--4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection ofT9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by PerkinElmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension through two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites.MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model

  11. Ex vivo expansion of Primate CD34+ Cells isolated from Bone Marrow and Human Bone Marrow Mononuclear Cells using a Novel Scaffold

    Directory of Open Access Journals (Sweden)

    Devaprasad D

    2009-01-01

    Full Text Available Bone marrow derived CD34+ cells have been in clinical application in patients with haematological malignancies. One of the major problems with this treatment is the non-availability of matched donors or the necessity of multiple transfusions depending upon the pathology. Recently evidences have been accumulating to prove the safety and efficacy of autologous CD34+ cells in diseases such as myocardial dysfunction, peripheral vascular diseases and neurological certain conditions. However there are only a few reports in the literature on ex vivo expansion of the bone marrow derived CD34+ cells. We have in two different studies proven that isolated CD34+ cells from baboon bone marrow and non-isolated BMMNCs from human bone marrow could be expanded with increase in percentage of CD34+ cells using a novel scaffold.

  12. Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells

    OpenAIRE

    Xiaoying Zhou; Barsky, Lora W.; Adams, Gregor B

    2013-01-01

    Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow suppor...

  13. Functional bone marrow scintigraphy in psoriatics

    International Nuclear Information System (INIS)

    24 psoriatics as well as 24 normal healthy adults were studied by functional bone marrow scintigraphy using Tc-99m-labeled human serum albumin millimicrospheres (Tc-99m-HSA-MM). Functional bone marrow scintigraphy is an in vivo test system for the assessment of various functional properties of fixed macrophages. 58% of psoriatics who had no systemic drug treatment demonstrated peripheral extension of the bone marrow space indicating hyperplasia of bone marrow macrophages. This phenomenon could be observed only in one normal subject who was a high-performance sportsman. 83% (n=6) of psoriatics with cirrhosis of liver demonstrated bone marrow extension. The 'capacity' of bone marrow macrophages to engulf Tc-99m-HSA-MM ('uptake ratio') was diminished in 42% of non-treated as well as 66% of psoriatics treated with aromatic retinoid. The phagocytic and proteolytic turnover of Tc-99m-HSA-MM in bone marrow, spleen, and liver was found to be accelerated in 66% of non-treated psoriatics, normal, accelerated or delayed in psoriatics treated with aromatic retinoid as well as considerably delayed in all of the psoriatics with cirrhosis of liver. Functional bone marrow scintigraphy proved to be an appropriate in vivo test system to reveal abnormalities of fixed macrophages in psoriatics. Furthermore, theratpeutic effects as well as influences of pre-existing disorders on different macrophage populations can be assessed. (Author)

  14. Magnetic resonance imaging of the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Baur-Melnyk, Andrea (ed.) [Klinikum der Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2013-08-01

    The first book devoted to MRI of the bone marrow. Describes the MRI appearances of normal bone marrows and the full range of bone marrow disorders. Discusses the role of advanced MRI techniques and contrast enhancement. On account of its unrivalled imaging capabilities and sensitivity, magnetic resonance imaging (MRI) is considered the modality of choice for the investigation of physiologic and pathologic processes affecting the bone marrow. This book describes the MRI appearances of both the normal bone marrow, including variants, and the full range of bone marrow disorders. Detailed discussion is devoted to malignancies, including multiple myeloma, lymphoma, chronic myeloproliferative disorders, leukemia, and bone metastases. Among the other conditions covered are benign and malignant compression fractures, osteonecrosis, hemolytic anemia, Gaucher's disease, bone marrow edema syndrome, trauma, and infective and non-infective inflammatory disease. Further chapters address the role of MRI in assessing treatment response, the use of contrast media, and advanced MRI techniques. Magnetic Resonance Imaging of the Bone Marrow represents an ideal reference for both novice and experienced practitioners.

  15. Legal issues in bone marrow transplantation.

    OpenAIRE

    Holder, A. R.

    1990-01-01

    The article discusses some of the more common legal issues involved in bone marrow transplantation. These include malpractice claims, testing prospective donors for AIDS, sale of bone marrow, informed consent for both donor and recipient, and questions that arise when the donor is a child.

  16. Magnetic resonance imaging of the bone marrow

    International Nuclear Information System (INIS)

    The first book devoted to MRI of the bone marrow. Describes the MRI appearances of normal bone marrows and the full range of bone marrow disorders. Discusses the role of advanced MRI techniques and contrast enhancement. On account of its unrivalled imaging capabilities and sensitivity, magnetic resonance imaging (MRI) is considered the modality of choice for the investigation of physiologic and pathologic processes affecting the bone marrow. This book describes the MRI appearances of both the normal bone marrow, including variants, and the full range of bone marrow disorders. Detailed discussion is devoted to malignancies, including multiple myeloma, lymphoma, chronic myeloproliferative disorders, leukemia, and bone metastases. Among the other conditions covered are benign and malignant compression fractures, osteonecrosis, hemolytic anemia, Gaucher's disease, bone marrow edema syndrome, trauma, and infective and non-infective inflammatory disease. Further chapters address the role of MRI in assessing treatment response, the use of contrast media, and advanced MRI techniques. Magnetic Resonance Imaging of the Bone Marrow represents an ideal reference for both novice and experienced practitioners.

  17. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Science.gov (United States)

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  18. How to exhaust your bone marrow

    DEFF Research Database (Denmark)

    Salomo, Louise; Salomo, Morten; Andersen, Steven A W;

    2013-01-01

    at work and in his spare time, and kept a very thorough training and weight diary. Owing to a high intake of energy and protein drinks he tried to optimise his physical performance and kept a normal body mass index  at 23.7. A bone marrow biopsy showed gelatinous bone marrow transformation, normally...

  19. 骨髓源干细胞参与的血管内皮更新%Bone marrow-derived stem cells involved in the renewal of vascular endothelium

    Institute of Scientific and Technical Information of China (English)

    许翼麟; 何向辉; 魏伟; 章志翔; 朱理玮

    2011-01-01

    BACKGROUND: Bone marrow-derived stem cells have strong plasticity, but the mechanism that they participate in regeneration and renewal of tissue is still conflicting between transdifferentiation and cell fusion.OBJECTIVE: To investigate the possibility and possible mechanism of bone marrow-derived stem cells involvement in the renewal of vascular endothelial cells in different organs through sex crossing bone marrow transplantation using mouse models of sexual mosaic.METHODS: Female C57BL/6-green fluorescent protein (GFP) mice were used as donor mice, and male C57BL/6 mice were used as the recipient to establish bone marrow transplanted chimeric mice. The chimerism of bone marrow was assessed by flow cytometry. Twenty weeks after transplantation, frozen slide of the brain, kidney, liver, spleen, and heart were prepared and fluorescence in situ hybridization was applied to label the Y chromosome, then GFP expression and Y chromosome were observed using fluorescence microscope.RESULTS AND CONCLUSION: The percent of GFP+ cell of bone marrow cells in the recipient was (7.48±1.38)% and (73.92±5.57)% at week 1 and week 4 respectively, indicating the success of sex crossing bone marrow transplantation model. In week 20, GFP expression was detected in vascular endothelial cells in the brain, kidney, liver, and spleen, and some cells also showed Y chromosome expression, indicating cell fusion occurred. No GFP expression was observed within the parenchyma of the brain and heart. Results have indicated that bone marrow-derived stem cells might have participated in the renewal of vascular endothelial cells in different organs through cell fusion.%背景:研究表明骨髓源干细胞可塑性强,但其参与组织更新及修复的机制在转分化及细胞融合间尚存在争议.目的:通过性别交叉骨髓移植建立雌雄嵌合体小鼠模型,观察骨髓源性干细胞是否参与内皮细胞的更新并探讨其可能的机制.方法:采用雌性C57BL/6-GFP

  20. 骨髓源性EPCs对脊髓源性NSCs增殖分化的影响%The effects of bone marrow-derived endothelial progenitor cells on the proliferation and differentiation of spinal cord-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    张硕; 杜怡斌; 杜公文; 张辉; 余涛; 方家刘; 高维陆; 尹宗生

    2015-01-01

    目的:观察骨髓源性内皮祖细胞( EPCs)对脊髓源性神经干细胞( NSCs)增殖分化的影响。方法通过密度梯度离心法获取骨髓血单个核细胞,以 EBM-2进行诱导培养EPCs并进行免疫细胞化学染色鉴定,成熟的方法获取及鉴定SD大鼠的脊髓NSCs,1×105/ml第3代NSCs置于Tran-swell小室下层与1×105/ml上层原代EPCs进行体外1∶1共培养,以单纯第3代的NSCs培养为对照,培养7 d,双盲法分别计数各组在相差显微镜下神经球形成的数目,并用目镜测微尺测量神经球的平均直径,通过5%血清诱导培养NSCs 7 d后,行β-微管蛋白-Ⅲ免疫荧光染色,Hoechst细胞核染色后在显微镜下计算神经元/细胞总数得出百分率。结果骨髓源性EPCs与脊髓源性NSCs共培养组神经球平均数目为(22.27±3.85)个,平均直径为(61.70±7.21)μm,诱导培养后分化为神经元的平均百分率为(46.10±3.70)%,与对照组比较差异均有统计学意义( P<0.01)。结论骨髓源性EPCs能促进脊髓源性NSCs增殖及其向神经元分化。%Objective To investigate the effects of bone marrow-derived endothelial progenitor cells( EPCs) on the proliferation and differentiation of spinal cord-derived neural stem cells( NSCs) . Methods Bone marrow mononu-clear cells were isolated by density gradient centrifugation methods and EPCs were cultured by EBM-2 basal medi-um, identified by fluorescent immunocytochemistry. Spinal cord-derived NSCs were isolated, cultured and identi-fied by the mature methods. 1 × 105/ml tertiary NSCs were plated on the base of culture wells, the upper transwell compartment was seeded with 1 × 105/ml primary EPCs, EPCs and NSCs (1 ∶ 1) were co-cultured in vitro, set the untreated tertiary NSCs as a control group. 7 days after co-culture, the number and diameter of neurospheres were calculated and measured with the double blind method. After that, NSCs were maintained for 7 days in DMEM/F12+ 5 % serum medium, and

  1. Value of SPIO for MRI of the bone marrow before and after total body irradiation (TBI) - initial investigations in an animal model

    International Nuclear Information System (INIS)

    Evaluation of the value of superparamagnetic iron oxides (SPIO; Endorem trademark) for MRI-derived quantifications of the permeability of the blood-bone marrow barrier and the phagocytic activity of reticuloendothelial system (RES) bone marrow cells before and after TBI. Methods: 12 New Zealand white rabbits underwent MRI of the lumbar spine and os sacrum using T1-weighted spinecho (SE) and T2-weighted Turbo-SE (TSE) sequences before and after injection of SPIO (Endorem trademark). Four animals each were examined without irradiation, after 4 Gy total body irradiation (TBI), and after 12 Gy TBI. Changes in bone marrow signal intensities (SI) after contrast agent injection were quantified as Δ SI(%) = vertical stroke ((SIpost-SIpre)/SIpre) x 100% vertical stroke and these data were correlated with bone marrow histopathology. Results: Histopathology of the bone marrow revealed a radiation-induced decline of all hematopoetic cell lines. SPIO were phagocytosed by bone marrow RES cells and caused a significant bone marrow signal decline on postcontrast T2-weighted images (p 2-weighted images were significantly higher for the irradiated bone marrow as compared to non-irradiated controls (p 1-weighted images directly after contrast medium injection were not able to characterize the permeability of the blood-bone marrow barrier. Conclusion: Hematopoetic bone marrow can be labelled with SPIO. Irradiation does not impair the phagocytic activity of bone marrow RES cells. However, the bone marrow enhancement with SPIO is smaller as compared to previous results obtained by our group with USPIO. (orig.)

  2. Bone-Marrow Storage and Transplantation

    International Nuclear Information System (INIS)

    The authors present some results from their experiments on bone-marrow storage and transplantation. The main problems with preservation of stored bone marrow are the duration, temperature, adjuvant substances and the significance of viability tests during the conservation processes. The results showed that: • Storage of bone marrow at +4eC produces a progressive decrease in its restoring capacity versus storage time. • While bone marrow stored for 24 h is able to restore 100% of dogs lethally irradiated with 600 rad, after 10 days of storage only 20% of the animals can be restored. • No correlation exists between the actual survival of dogs and that calculated by dye exclusion tests, which indicate a rather high (70%) viability, even after 10 days bone-marrow storage at +4°C. • DNA degradation (depolymerization) measurements of the bone marrow may be used as a supplementary test for checking the viability or restoration potency of bone-marrow cells after storage. • In the freezing process, the optimum contact time between glycerol and the bone-marrow cells is 15 min. Results of experiments regarding certain bone-marrow transplantation problems showed that: • The best time to administer bone marrow is between 24 and 48 h after irradiation. • No survivors were obtained with dogs lethally irradiated with 600 rad by administering autogenic or allogenic DNA extracted from bone marrow, spleen or liver. • Histocompatibility related to sex may play an important role in the bone-marrow graft. The lowest survival of C57BL mice was obtained when the donors were males and the recipients females. • In radioprotection with foetal haemocytopoietic tissues, the donor's age represents one of the main factors. The best results were obtained in experiments on rats, with 19- to 20-day foetal liver (period of complete and maximum haemocytopoietic activity). The tissues mentioned below may be connected with the appearance of certain typical signs of secondary syndrome

  3. Bone-marrow-derived mesenchymal stem cells as a target for cytomegalovirus infection: Implications for hematopoiesis, self-renewal and differentiation potential

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs and hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases

  4. Bone marrow transplantation after irradiation

    International Nuclear Information System (INIS)

    Bone marrow transplantation after irradiation is successful in only a part of the affected patients. The Chernobyl accident added to our knowledge: BMT can save life after whole-body irradiation with a dose exceeding 7-8 Gy. A timely decision on transplantation after a nuclear accident is difficult to make (rapid determination of homogeneity and type of radiation and the total dose. HL-A typing in lymphopenia, precise identification of radiation damage to other target organs, etc.). Further attention is to be paid to the treatment. Transplantations in case of malignities (especially hematologic ones) and other diseases will add to our knowledge and will lead to more simple procedures. (author). 3 figs., 1 tab., 12 refs

  5. Nasopharyngeal carcinoma with bone marrow metastasis.

    Science.gov (United States)

    Zen, H G; Jame, J M; Chang, A Y; Li, W Y; Law, C K; Chen, K Y; Lin, C Z

    1991-02-01

    Five of 23 patients with recurrent nasopharyngeal carcinoma (NPC) were diagnosed to have bone marrow metastasis. They all had advanced local-regional disease, and were treated with neoadjuvant chemotherapy and definitive radiotherapy after the initial diagnosis. Bone marrow metastasis developed 4-24 months later. The clinical features were anemia (5 of 5), leukopenia (3 of 5), thrombocytopenia (4 of 5), sepsis (3 of 5), tenderness of the sternum (3 of 5), and fever (4 of 5). Patients frequently had elevation of serum lactic dehydrogenase (LDH), alkaline phosphatase (ALK-P), and IgG and IgA antibody titers to Epstein-Barr viral capsid antigen when bone marrow involvement was diagnosed. However, clinical manifestations and laboratory tests were not specific. It is important that three patients had normal bone scans. All five patients had a rapid downhill course; four patients died within 23 days, and the fifth 3 months after the diagnosis of bone marrow metastasis. We concluded that bone marrow was a common metastatic site in NPC patients. Bone marrow metastasis adversely affected patients' survival and required a high index of suspicion for diagnosis. We suggested that bone marrow biopsy should be considered as a routine staging procedure in NPC patients and indicated especially when patients presented with abnormal blood counts, sepsis, bone pain, or tenderness of the sternum. It may be positive in the face of a normal bone scan. PMID:1987743

  6. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter;

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and...... prospective isolation of mouse bone marrow osteoprogenitors.......