WorldWideScience

Sample records for bone tissue regeneration

  1. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  2. Nanomechanical mapping of bone tissue regenerated by magnetic scaffolds.

    Science.gov (United States)

    Bianchi, Michele; Boi, Marco; Sartori, Maria; Giavaresi, Gianluca; Lopomo, Nicola; Fini, Milena; Dediu, Alek; Tampieri, Anna; Marcacci, Maurilio; Russo, Alessandro

    2015-01-01

    Nanoindentation can provide new insights on the maturity stage of regenerating bone. The aim of the present study was the evaluation of the nanomechanical properties of newly-formed bone tissue at 4 weeks from the implantation of permanent magnets and magnetic scaffolds in the trabecular bone of rabbit femoral condyles. Three different groups have been investigated: MAG-A (NdFeB magnet + apatite/collagen scaffold with magnetic nanoparticles directly nucleated on the collagen fibers during scaffold synthesis); MAG-B (NdFeB magnet + apatite/collagen scaffold later infiltrated with magnetic nanoparticles) and MAG (NdFeB magnet). The mechanical properties of different-maturity bone tissues, i.e. newly-formed immature, newly-formed mature and native trabecular bone have been evaluated for the three groups. Contingent correlations between elastic modulus and hardness of immature, mature and native bone have been examined and discussed, as well as the efficacy of the adopted regeneration method in terms of "mechanical gap" between newly-formed and native bone tissue. The results showed that MAG-B group provided regenerated bone tissue with mechanical properties closer to that of native bone compared to MAG-A or MAG groups after 4 weeks from implantation. Further, whereas the mechanical properties of newly-formed immature and mature bone were found to be fairly good correlated, no correlation was detected between immature or mature bone and native bone. The reported results evidence the efficacy of nanoindentation tests for the investigation of the maturity of newly-formed bone not accessible through conventional analyses.

  3. Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal

    Directory of Open Access Journals (Sweden)

    Cindy Cahaya

    2015-06-01

    kombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal.   Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is

  4. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    Science.gov (United States)

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  5. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  6. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  7. Bone Tissue Engineering and Regeneration: From Discovery to the Clinic—An Overview

    OpenAIRE

    O'Keefe, Regis J.; Mao, Jeremy

    2011-01-01

    A National Institutes of Health sponsored workshop “Bone Tissue Engineering and Regeneration: From Discovery to the Clinic” gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineerin...

  8. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  9. Enhanced bioactive scaffolds for bone tissue regeneration

    Science.gov (United States)

    Karnik, Sonali

    Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]. The field of tissue engineering and regenerative medicine involves the use of cells to form a new tissue on bio-absorbable or inert scaffolds. [2, 32] One of the applications of this field is to regenerate the damaged or lost bone by using stem cells or osteoprogenitor cells on scaffolds that can integrate in the host tissue without causing any harmful side effects. [2, 32] A variety of natural, synthetic materials and their combinations have been used to regenerate the damaged bone tissue. [2, 19, 30, 32, 43]. Growth factors have been supplied to progenitor cells to trigger a sequence of metabolic pathways leading to cellular proliferation, differentiation and to enhance their functionality. [56, 57] The challenge persists to supply these proteins, in the range of nano or even picograms, and in a sustained fashion over a period of time. A delivery system has yet to be developed that would mimic the body's inherent mechanism of delivering the growth factor molecules in the required amount to the target organ or tissue. Titanium is the most preferred metal for orthopedic and orthodontic implants. [28, 46, 48] Even though it has better osteogenic properties as compared to other metals and alloys, it still has drawbacks like poor integration into the surrounding host tissue leading to bone resorption and implant failure. [20, 28, 35] It also faces the problem of postsurgical infections that contributes to the implant failure. [26, 37

  10. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  11. ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Yong Fu

    2018-03-01

    Full Text Available Optimization of nanofiber surface properties can lead to enhanced tissue regeneration outcomes in the context of bone tissue engineering. Herein, we developed a facile strategy to decorate elctrospun nanofibers using extracellular matrix (ECM in order to improve their performance for bone tissue engineering. Electrospun PLLA nanofibers (PLLA NF were seeded with MC3T3-E1 cells and allowed to grow for two weeks in order to harvest a layer of ECM on nanofiber surface. After decellularization, we found that ECM was successfully preserved on nanofiber surface while maintaining the nanostructure of electrospun fibers. ECM decorated on PLLA NF is biologically active, as evidenced by its ability to enhance mouse bone marrow stromal cells (mBMSCs adhesion, support cell proliferation and promote early stage osteogenic differentiation of mBMSCs. Compared to PLLA NF without ECM, mBMSCs grown on ECM/PLLA NF exhibited a healthier morphology, faster proliferation profile, and more robust osteogenic differentiation. Therefore, our study suggests that ECM decoration on electrospun nanofibers could serve as an efficient approach to improving their performance for bone tissue engineering.

  12. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  13. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  14. A short review: Recent advances in electrospinning for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Song-Hee Shin

    2012-12-01

    Full Text Available Nanofibrous structures developed by electrospinning technology provide attractive extracellular matrix conditions for the anchorage, migration, and differentiation of tissue cells, including those responsible for the regeneration of hard tissues. Together with the ease of set up and cost-effectiveness, the possibility to produce nanofibers with a wide range of compositions and morphologies is the merit of electrospinning. Significant efforts have exploited the development of bone regenerative nanofibers, which includes tailoring of composite/hybrid compositions that are bone mimicking and the surface functionalization such as mineralization. Moreover, by utilizing bioactive molecules such as adhesive proteins, growth factors, and chemical drugs, in concert with the nanofibrous matrices, it is possible to provide artificial materials with improved cellular responses and therapeutic efficacy. These studies have mainly focused on the regulation of stem cell behaviors for use in regenerative medicine and tissue engineering. While there are some challenges in achieving controllable delivery of bioactive molecules and complex-shaped three-dimensional scaffolds for tissue engineering, the electrospun nanofibrous matrices can still have a beneficial impact in the area of hard-tissue regeneration.

  15. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    Science.gov (United States)

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  16. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  17. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J., E-mail: icorreia@ubi.pt

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays.

  18. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    International Nuclear Information System (INIS)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J.

    2015-01-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays

  19. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R. [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal); Silva, A.P. [CAST-UBI — Centre for Aerospace Science and Technologies, University of Beira Interior, Calçada Fonte do Lameiro, 6201-001 Covilhã (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal)

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine.

  20. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    International Nuclear Information System (INIS)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R.; Silva, A.P.; Correia, I.J.

    2013-01-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine

  1. [Guided bone regeneration: general survey].

    Science.gov (United States)

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  2. Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.

    Science.gov (United States)

    Schmidt-Bleek, Katharina; Kwee, Brian J; Mooney, David J; Duda, Georg N

    2015-08-01

    Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.

  3. A Comparative Study of Bio artificial Bone Tissue Poly-L-lactic Acid/Polycaprolactone and PLLA Scaffolds Applied in Bone Regeneration

    International Nuclear Information System (INIS)

    Weng, W.; Song, Sh.; Cao, L.; Chen, X.; Cai, Y.; Li, H.; Zhou, Q.; Zhang, J.; Su, J.

    2014-01-01

    Bio artificial bone tissue engineering is an increasingly popular technique to repair bone defect caused by injury or disease. This study aimed to investigate the feasibility of PLLA/PCL (poly-L-lactic acid/polycaprolactone) by a comparison study of PLLA/PCL and PLLA scaffolds applied in bone regeneration. Thirty healthy mature New Zealand rabbits on which 15 mm distal ulna defect model had been established were selected and then were divided into three groups randomly: group A (repaired with PLLA scaffold), group B (repaired with PLLA/PCL scaffold), and group C (no scaffold) to evaluate the bone-remodeling ability of the implants. Micro-CT examination revealed the prime bone regeneration ability of group B in three groups. Bone mineral density of surgical site in group B was higher than group A but lower than group C. Meanwhile, the bone regeneration in both groups A and B proceeded with signs of inflammation for the initial fast degradation of scaffolds. As a whole, PLLA/PCL scaffolds in vivo initially degrade fast and were better suited to repair bone defect than PLLA in New Zealand rabbits. Furthermore, for the low mineral density of new bone and rapid degradation of the scaffolds, more researches were necessary to optimize the composite for bone regeneration.

  4. ALVEOLAR BONE REGENERATION AFTER DEMINERALIZED FREEZE DRIED BONE ALOGRAFT (DFDBA BONE GRAFTING

    Directory of Open Access Journals (Sweden)

    Sri Oktawati

    2006-04-01

    Full Text Available Periodontal treatment by conventional way will result in healing repair, which easily cause recurrence. Modification of treatment should be done to get an effective result, that is the regeneration of alveolar bone and to reduce inflammation. The objective of this study is to determine the alveolar bone regeneration after using DFDBA (Demineralized Freeze Dried Bone Allograft. Quasi experimental designs with pre and post test method was used in this study. From 13 patients, 26 defects got conventional or regenerative treatment. The indicator of alveolar bone regenaration in bone height in radiographic appearance and level of osteocalsin in gingival crevicular fluid (GCF were checked before and after the treatment, then the changes that occurred were analyzed. The result of the research showed that alveolar bone regeneration only occurred to the group of regenerative treatment using DFDBA. The conclusion is the effective periodontal tissue regeneration occurred at regenerative treatment by using DFDBA, and the osteocalsin in GCF can be used as indicator of bone growth.

  5. Bone tissue engineering and regeneration: from discovery to the clinic--an overview.

    Science.gov (United States)

    O'Keefe, Regis J; Mao, Jeremy

    2011-12-01

    A National Institutes of Health sponsored workshop "Bone Tissue Engineering and Regeneration: From Discovery to the Clinic" gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineering, similar to that for other tissues and organs, requires integration of multiple disciplines such as cell biology, stem cells, developmental and molecular biology, biomechanics, biomaterials science, and immunology and transplantation science. Although each of the research areas has undergone enormous advances in last decade, the translation to clinical care and the development of tissue engineering composites to replace human tissues has been limited. Bone, similar to other tissue and organs, has complex structure and functions and requires exquisite interactions between cells, matrices, biomechanical forces, and gene and protein regulatory factors for sustained function. The process of engineering bone, thus, requires a comprehensive approach with broad expertise. Although in vitro and preclinical animal studies have been pursued with a large and diverse collection of scaffolds, cells, and biomolecules, the field of bone tissue engineering remains fragmented up to the point that a clear translational roadmap has yet to emerge. Translation is particularly important for unmet clinical needs such as large segmental defects and medically compromised conditions such as tumor removal and infection sites. Collectively, manuscripts in this volume provide luminary examples toward identification of barriers and strategies for translation of fundamental discoveries into clinical therapeutics. © Mary Ann Liebert, Inc.

  6. Bone Tissue Engineering and Regeneration: From Discovery to the Clinic—An Overview

    Science.gov (United States)

    2011-01-01

    A National Institutes of Health sponsored workshop “Bone Tissue Engineering and Regeneration: From Discovery to the Clinic” gathered thought leaders from medicine, science, and industry to determine the state of art in the field and to define the barriers to translating new technologies to novel therapies to treat bone defects. Tissue engineering holds enormous promise to improve human health through prevention of disease and the restoration of healthy tissue functions. Bone tissue engineering, similar to that for other tissues and organs, requires integration of multiple disciplines such as cell biology, stem cells, developmental and molecular biology, biomechanics, biomaterials science, and immunology and transplantation science. Although each of the research areas has undergone enormous advances in last decade, the translation to clinical care and the development of tissue engineering composites to replace human tissues has been limited. Bone, similar to other tissue and organs, has complex structure and functions and requires exquisite interactions between cells, matrices, biomechanical forces, and gene and protein regulatory factors for sustained function. The process of engineering bone, thus, requires a comprehensive approach with broad expertise. Although in vitro and preclinical animal studies have been pursued with a large and diverse collection of scaffolds, cells, and biomolecules, the field of bone tissue engineering remains fragmented up to the point that a clear translational roadmap has yet to emerge. Translation is particularly important for unmet clinical needs such as large segmental defects and medically compromised conditions such as tumor removal and infection sites. Collectively, manuscripts in this volume provide luminary examples toward identification of barriers and strategies for translation of fundamental discoveries into clinical therapeutics. PMID:21902614

  7. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: tkasai@den.hokudai.ac.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  8. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    Science.gov (United States)

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity. © 2015 Wiley Periodicals, Inc.

  9. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.......This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...

  10. Bone regeneration and stem cells

    Science.gov (United States)

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  11. Polymeric membranes for guided bone regeneration.

    Science.gov (United States)

    Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca

    2011-10-01

    In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  13. In vivo bone regeneration using a novel porous bioactive composite

    International Nuclear Information System (INIS)

    Xie En; Hu Yunyu; Chen Xiaofeng; Bai Xuedong; Li Dan; Ren Li; Zhang Ziru

    2008-01-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications

  14. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.

    Science.gov (United States)

    Zaky, S H; Lee, K W; Gao, J; Jensen, A; Verdelis, K; Wang, Y; Almarza, A J; Sfeir, C

    2017-05-01

    Mechanical load influences bone structure and mass. Arguing the importance of load-transduction, we investigated the mechanisms inducing bone formation using an elastomeric substrate. We characterized Poly (glycerol sebacate) (PGS) in vitro for its mechanical properties, compatibility with osteoprogenitor cells regarding adhesion, proliferation, differentiation under compression versus static cultures and in vivo for the regeneration of a rabbit ulna critical size defect. The load-transducing properties of PGS were compared in vitro to a stiffer poly lactic-co-glycolic-acid (PLA/PGA) scaffold of similar porosity and interconnectivity. Under cyclic compression for 7days, we report focal adhesion kinase overexpression on the less stiff PGS and upregulation of the transcription factor Runx2 and late osteogenic markers osteocalcin and bone sialoprotein (1.7, 4.0 and 10.0 folds increase respectively). Upon implanting PGS in the rabbit ulna defect, histology and micro-computed tomography analysis showed complete gap bridging with new bone by the PGS elastomer by 8weeks while minimal bone formation was seen in empty controls. Immunohistochemical analysis demonstrated the new bone to be primarily regenerated by recruited osteoprogenitors cells expressing periostin protein during early phase of maturation similar to physiological endochondral bone development. This study confirms PGS to be osteoconductive contributing to bone regeneration by recruiting host progenitor/stem cell populations and as a load-transducing substrate, transmits mechanical signals to the populated cells promoting differentiation and matrix maturation toward proper bone remodeling. We hence conclude that the material properties of PGS being closer to osteoid tissue rather than to mineralized bone, allows bone maturation on a substrate mechanically closer to where osteoprogenitor/stem cells differentiate to develop mature load-bearing bone. The development of effective therapies for bone and

  15. Regenerate augmentation with bone marrow concentrate after traumatic bone loss

    Directory of Open Access Journals (Sweden)

    Jan Gessmann

    2012-03-01

    Full Text Available Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64 with an average posttraumatic bone defect of 82.4 mm and concomitant risk factors (nicotine abuse, soft-tissue defects, obesity and/or circulatory disorders were treated with a modified Ilizarov external frame using an intramedullary cable transportation system. At the end of the distraction phase, each patient was treated with a percutaneously injection of autologous BMAC into the centre of the regenerate. The concentration factor was analysed using flow cytometry. The mean follow up after frame removal was 10 (4-15 months. With a mean healing index (HI of 36.9 d/cm, bony consolidation of the regenerate was achieved in all eight cases. The mean concentration factor of the bone marrow aspirate was 4.6 (SD 1.23. No further operations concerning the regenerate were needed and no adverse effects were observed with the BMAC procedure. This procedure can be used for augmentation of the regenerate in cases of segmental bone transport. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regenerate healing.

  16. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis.

    Science.gov (United States)

    Haze, Amir; Taylor, Angela L; Haegewald, Stefan; Leiser, Yoav; Shay, Boaz; Rosenfeld, Eli; Gruenbaum-Cohen, Yael; Dafni, Leah; Zimmermann, Bernd; Heikinheimo, Kristiina; Gibson, Carolyn W; Fisher, Larry W; Young, Marian F; Blumenfeld, Anat; Bernimoulin, Jean P; Deutsch, Dan

    2009-06-01

    Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM(+)), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM(+) induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM(+).

  17. Guided bone regeneration : the influence of barrier membranes on bone grafts and bone defects

    NARCIS (Netherlands)

    Gielkens, Pepijn Frans Marie

    2008-01-01

    Guided bone regeneration (GBR) can be described as the use of a barrier membrane to provide a space available for new bone formation in a bony defect. The barrier membrane protects the defect from in-growth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot

  18. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.

    Science.gov (United States)

    Boga, João C; Miguel, Sónia P; de Melo-Diogo, Duarte; Mendonça, António G; Louro, Ricardo O; Correia, Ilídio J

    2018-05-01

    The incidence of fractures and bone-related diseases like osteoporosis has been increasing due to aging of the world's population. Up to now, grafts and titanium implants have been the principal therapeutic approaches used for bone repair/regeneration. However, these types of treatment have several shortcomings, like limited availability, risk of donor-to-recipient infection and tissue morbidity. To overcome these handicaps, new 3D templates, capable of replicating the features of the native tissue, are currently being developed by researchers from the area of tissue engineering. These 3D constructs are able to provide a temporary matrix on which host cells can adhere, proliferate and differentiate. Herein, 3D cylindrical scaffolds were designed to mimic the natural architecture of hollow bones, and to allow nutrient exchange and bone neovascularization. 3D scaffolds were produced with tricalcium phosphate (TCP)/alginic acid (AA) using a Fab@home 3D printer. Furthermore, graphene oxide (GO) was incorporated into the structure of some scaffolds to further enhance their mechanical properties. The results revealed that the scaffolds incorporating GO displayed greater porosity, without impairing their mechanical properties. These scaffolds also presented a controlled swelling profile, enhanced biomineralization capacity and were able to increase the Alkaline Phosphatase (ALP) activity. Such characteristics make TCP/AA scaffolds functionalized with GO promising 3D constructs for bone tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    OpenAIRE

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival sof...

  1. The Components of Bone and What They Can Teach Us about Regeneration

    Directory of Open Access Journals (Sweden)

    Bach Quang Le

    2017-12-01

    Full Text Available The problem of bone regeneration has engaged both physicians and scientists since the beginning of medicine. Not only can bone heal itself following most injuries, but when it does, the regenerated tissue is often indistinguishable from healthy bone. Problems arise, however, when bone does not heal properly, or when new tissue is needed, such as when two vertebrae are required to fuse to stabilize adjacent spine segments. Despite centuries of research, such procedures still require improved therapeutic methods to be devised. Autologous bone harvesting and grafting is currently still the accepted benchmark, despite drawbacks for clinicians and patients that include limited amounts, donor site morbidity, and variable quality. The necessity for an alternative to this “gold standard” has given rise to a bone-graft and substitute industry, with its central conundrum: what is the best way to regenerate bone? In this review, we dissect bone anatomy to summarize our current understanding of its constituents. We then look at how various components have been employed to improve bone regeneration. Evolving strategies for bone regeneration are then considered.

  2. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.

    2017-01-01

    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  3. Calcium phosphate coatings for bone regeneration

    NARCIS (Netherlands)

    Yang, Liang

    2010-01-01

    As a novel approach to repair and regenerate damaged and degraded bone tissue, tissue engineering has recorded tremendous growth for the last thirty years. This is an emerging interdisciplinary field applying the principles of biology and engineering to the development of viable substitutes that

  4. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.

    Science.gov (United States)

    Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun

    2016-10-15

    Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (Mg

  5. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.

    Science.gov (United States)

    Zhang, Jian; Jia, Jinpeng; Kim, Jimin P; Shen, Hong; Yang, Fei; Zhang, Qiang; Xu, Meng; Bi, Wenzhi; Wang, Xing; Yang, Jian; Wu, Decheng

    2017-05-01

    Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation and Characterization of an Advanced Medical Device for Bone Regeneration

    OpenAIRE

    Dorati, Rossella; Colonna, Claudia; Genta, Ida; Bruni, Giovanna; Visai, Livia; Conti, Bice

    2013-01-01

    Tridimensional scaffolds can promote bone regeneration as a framework supporting the migration of cells from the surrounding tissue into the damaged tissue and as delivery systems for the controlled or prolonged release of cells, genes, and growth factors. The goal of the work was to obtain an advanced medical device for bone regeneration through coating a decellularized and deproteinized bone matrix of bovine origin with a biodegradable, biocompatible polymer, to improve the cell engraftment...

  7. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  8. Characteristic features of bone tissue regeneration in the vertebral bodies in the experiment with osteograft

    Science.gov (United States)

    Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.

    2017-09-01

    In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.

  9. Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang.

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    Full Text Available Danggui Buxue Tang (DBT is a traditional Chinese herbal decoction containing Radix Astragali and Radix Angelicae sinensis. Pharmacological results indicate that DBT can stimulate bone cell proliferation and differentiation. The aim of the study was to investigate the efficacy of adding DBT to bone substitutes on bone regeneration following bone injury. DBT was incorporated into porous composites (GGT made from genipin-crosslinked gelatin and β-triclacium phosphates as bone substitutes (GGTDBT. The biological response of mouse calvarial bone to these composites was evaluated by in vivo imaging systems (IVIS, micro-computed tomography (micro-CT, and histology analysis. IVIS images revealed a stronger fluorescent signal in GGTDBT-treated defect than in GGT-treated defect at 8 weeks after implantation. Micro-CT analysis demonstrated that the level of repair from week 4 to 8 increased from 42.1% to 71.2% at the sites treated with GGTDBT, while that increased from 33.2% to 54.1% at GGT-treated sites. These findings suggest that the GGTDBT stimulates the innate regenerative capacity of bone, supporting their use in bone tissue regeneration.

  10. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    Science.gov (United States)

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Tissue Engineering Strategies in Ligament Regeneration

    OpenAIRE

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2011-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue eng...

  12. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    Science.gov (United States)

    2013-01-01

    Original Articles Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane Teja Guda, PhD,1,2 John...Joint Surg Br 90-B, 1617, 2008. 6. Carlo Reis, E.C., Borges AaPB, Araujo, M.V.F., Mendes, V.C., Guan, L., and Davies, J.E. Periodontal regeneration...Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a

  13. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  14. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.

    Science.gov (United States)

    Li, Jianqing; Wang, Qiuke; Gu, Yebo; Zhu, Yu; Chen, Liang; Chen, Yunfeng

    2017-11-08

    BACKGROUND Bone tissue engineering, a powerful tool to treat bone defects, is highly dependent on use of scaffolds. Both silk fibroin (SF) and chitosan (Cs) are biocompatible and actively studied for reconstruction of tissue engineering. Gelatin (Gel) is also widely applied in the biomedical field due to its low antigenicity and physicochemical stability. MATERIAL AND METHODS In this study, 4 different types of scaffolds were constructed - SF, SF/Cs, SF/Gel, and SF/Cs/Gel - and we compared their physical and chemical properties as well as biological characterization of these scaffolds to determine the most suitable scaffold for use in bone regeneration. First, these scaffolds were produced via chemical cross-linking method and freeze-drying technique. Next, the characterization of internal structure was studied using scanning electron microscopy and the porosity was evaluated by liquid displacement method. Then, we compared physicochemical properties such as water absorption rate and degradation property. Finally, MC3T3-E1 cells were inoculated on the scaffolds to study the biocompatibility and osteogenesis of the three-dimensional (3D) scaffolds in vitro. RESULTS The composite scaffold formed by all 3 components was the best for use in bone regeneration. CONCLUSIONS We conclude that the best scaffold among the 4 studied for MC3T3-E1 cells is our SF/Cs/Gel scaffold, suggesting a new choice for bone regeneration that can be used to treat bone defects or fractures in clinical practice.

  15. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    National Research Council Canada - National Science Library

    Baylink, David

    2003-01-01

    The primary goal of the project funded by the U.S. Army is to identify genes which play an anabolic role in bone tissue and soft tissue function, particularly during regeneration, and to clarify the function of these genes...

  16. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review.

    NARCIS (Netherlands)

    Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A.

    2008-01-01

    Collagen barrier membranes are frequently used in both guided tissue regeneration (GTR) and guided bone regeneration (GBR). Collagen used for these devices is available from different species and is often processed to alter the properties of the final product. This is necessary because unprocessed

  17. Biomimetic approaches with smart interfaces for bone regeneration.

    Science.gov (United States)

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  18. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration.

    Science.gov (United States)

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K 0.5 Na 0.5 NbO 3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials.

  19. Perfluorodecalin and bone regeneration

    Directory of Open Access Journals (Sweden)

    F Tamimi

    2013-01-01

    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  20. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  1. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes.

    Science.gov (United States)

    Abdel Meguid, Eiman; Ke, Yuehai; Ji, Junfeng; El-Hashash, Ahmed H K

    2018-03-01

    The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering. © 2017 Wiley Periodicals, Inc.

  2. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  3. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    International Nuclear Information System (INIS)

    Mateus, Christiano Pavan; Chierice, Gilberto Orivaldo; Okamoto, Tetuo

    2011-01-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  4. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  5. A novel osteogenesis technique: The expansible guided bone regeneration

    Directory of Open Access Journals (Sweden)

    Osama Zakaria

    2012-12-01

    Full Text Available Guided bone regeneration is a unique osteogenesis technique that requires a barrier membrane under periosteum to create space for bone regeneration. However, creating sizeable spaces is clinically not commonly feasible. A titanium plate and a thin silicone membrane were surgically layered on each calvaria of eight rabbits. Then, the periphery of the silicone membrane was fixed by a plastic ring to the underlying bone using titanium micro screws. After 1 week, a 5-mm-length titanium screw was used to elevate the titanium plate, which in turn elevated the silicone membrane together with overlying soft tissue in a rate of 1 mm/day for 5 days to create a secluded space. Animals were killed at 2 months (n = 4, group 1 and 4 months (n = 4, group 2 after the elevation. Histological and microradiographical analyses demonstrated creation of an amount of de novo bone formation (68.2 ± 22 mm3 in group 1 and 70.3 ± 14 mm3 in group 2 in the sizeable created spaces (207.1 ± 31 mm3 in group 1 and 202 ± 21 mm3 in group 2 without exposure of the device. This novel osteogenesis technique, “expansible guided bone regeneration,” created a substantial in vivo incubator without applying growth factors or osteoprogenitor cells. Creating a growing space over the secluded surface allowed the development of normal biological healing process occurring on the bone surface into a regenerative process, generating bone outside the genetically determined skeletal bone. This technique is a new tissue engineering approach stimulating endogenous tissue repair without applying cells or factors exogenously.

  6. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    Science.gov (United States)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  7. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    Science.gov (United States)

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  8. Osseointegration of subperiosteal implant via guided tissue regeneration. A pilot study

    DEFF Research Database (Denmark)

    Hjørting-Hansen, E; Helbo, M; Aaboe, M

    1995-01-01

    The principle of guided tissue regeneration was applied in an attempt to generate bone to cover a subperiosteal implant. Titanium frame works, casted on individual impressions of the anterior surface of the tibia of 4 Copenhagen White rabbits, were stabilized to the tibia by microscrews, and half...... of them were covered by an expanded polytetrafluoroethylene augmentation membrane. The observation period was 12 weeks. Guided bone regeneration partly covering the implants was seen at all experimental sides; on the control sides the implants were mainly embedded in fibrous tissue. Studies...... are in progress with the aim of reducing marked marrow space formation observed in all the regenerated areas....

  9. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

    Science.gov (United States)

    Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912

  10. The role of vasculature in bone development, regeneration and proper systemic functioning.

    Science.gov (United States)

    Filipowska, Joanna; Tomaszewski, Krzysztof A; Niedźwiedzki, Łukasz; Walocha, Jerzy A; Niedźwiedzki, Tadeusz

    2017-08-01

    Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.

  11. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    Science.gov (United States)

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  12. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  13. Pullulan microcarriers for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Aydogdu, Hazal [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Keskin, Dilek [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Middle East Technical University, Department of Engineering Sciences, Ankara 06800 (Turkey); METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey); Baran, Erkan Turker, E-mail: erkanturkerbaran@gmail.com [METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey); Tezcaner, Aysen, E-mail: tezcaner@metu.edu.tr [Middle East Technical University, Department of Biomedical Engineering, Ankara 06800 (Turkey); Middle East Technical University, Department of Engineering Sciences, Ankara 06800 (Turkey); METU BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800 (Turkey)

    2016-06-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. - Highlights: • Porous PULL microspheres were prepared as cell carrier for the first time. • Mineralization on the microspheres improved their mechanical properties. • Mineralization and SF coating enhanced cell proliferation on PULL microspheres.

  14. Pullulan microcarriers for bone tissue regeneration

    International Nuclear Information System (INIS)

    Aydogdu, Hazal; Keskin, Dilek; Baran, Erkan Turker; Tezcaner, Aysen

    2016-01-01

    Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering. - Highlights: • Porous PULL microspheres were prepared as cell carrier for the first time. • Mineralization on the microspheres improved their mechanical properties. • Mineralization and SF coating enhanced cell proliferation on PULL microspheres.

  15. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow‐derived human mesenchymal stem cells for bone tissue regeneration

    Science.gov (United States)

    El Haj, Alicia J.

    2017-01-01

    Abstract Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow‐derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non‐stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up‐regulation of Collagen‐I, ALP, and Runx‐2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629–640, 2018. PMID:28984025

  16. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  17. JAW CYSTS AND GUIDED BONE REGENERATION (a late complication after enucleation

    Directory of Open Access Journals (Sweden)

    Hristina Lalabonova

    2013-10-01

    Full Text Available Maxillary jaw bone possesses a high regenerative capacity. Yet sometimes the defects enucleation of jaw cysts leaves may regenerate only partially or not at all. For this reason some researchers advise treatment of the residual cavities after cystectomy using bone regeneration stimulation methods. We report a case of an atypical complication after enucleation of a maxillary cyst manifesting itself eight years after the initial treatment. The symptoms the patient reported were at first periodic sweating on the left sides of face and head. This was followed by a piercing pain in the left palpebral fissure radiating to the middle of the palate and felt in the left cheekbone, left eye and left supraorbital ridge. The patient has a history of maxillary cysts recurring three times and of three operations she had 20, 12 and 8 years previously. The multiple recurrences of the cysts after their enucleation indicates poor regenerative capacity of the body which resulted in the formation of cicatricial tissue. It is most probably this tissue that was responsible for the disruption of the nerve conduction capacity which can account for the reported symptoms. We filled the cavity with bone graft material which boosted the bone structure regeneration. Although maxillary jaws possess high regenerative capacity we advise the use of guided bone regeneration in cases of large bone defects that usually occur after enucleation of jaw cysts.

  18. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    Science.gov (United States)

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  19. Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits

    Directory of Open Access Journals (Sweden)

    Živadinović Milka

    2016-01-01

    Full Text Available Background/Aim. The mechanism of impaired bone healing in diabetes mellitus includes different tissue and cellular level activities due to micro- and macrovascular changes. As a chronic metabolic disease with vascular complications, diabetes affects a process of bone regeneration as well. The therapeutic approach in bone regeneration is based on the use of osteoinductive autogenous grafts as well as osteoconductive synthetic material, like a β-tricalcium phosphate. The aim of the study was to determine the quality and quantity of new bone formation after the use of autogenous bone and β-tricalcium phosphate in the model of calvarial critical-sized defect in rabbits with induced diabetes mellitus type I. Methods. The study included eight 4-month-old Chincilla rabbits with alloxan-induced diabetes mellitus type I. In all animals, there were surgically created two calvarial bilateral defects (diameter 12 mm, which were grafted with autogenous bone and β-tricalcium phosphate (n = 4 or served as unfilled controls (n = 4. After 4 weeks of healing, animals were sacrificed and calvarial bone blocks were taken for histologic and histomorphometric analysis. Beside descriptive histologic evaluation, the percentage of new bone formation, connective tissue and residual graft were calculated. All parameters were statistically evaluated by Friedman Test and post hock Wilcoxon Singed Ranks Test with a significance of p < 0.05. Results. Histology revealed active new bone formation peripherally with centrally located connective tissue, newly formed woven bone and well incorporated residual grafts in all treated defects. Control samples showed no bone bridging of defects. There was a significantly more new bone in autogeonous graft (53% compared with β-tricalcium phosphate (30%, (p < 0.030 and control (7%, (p < 0.000 groups. A significant difference was also recorded between β-tricalcium phosphate and control groups (p < 0.008. Conclusion. In the present

  20. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  1. Printing bone : the application of 3D fiber deposition for bone tissue engineering

    NARCIS (Netherlands)

    Fedorovich, N.E.

    2011-01-01

    Bone chips are used by orthopaedic surgeons for treating spinal trauma and to augment large bone defects. A potential alternative to autologous bone is regeneration of bone tissue in the lab by developing hybrid implants consisting of osteogenic (stem) cells seeded on supportive matrices.

  2. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Harrison T. Pajovich

    2017-09-01

    Full Text Available Fucoidan (Fuc, a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc–Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc–Gel–MTN assemblies were incubated in simulated body fluid (SBF to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp. The formed Fuc–Gel–MTN–beta–TCP/HAP scaffolds were found to display an average Young’s Modulus value of 0.32 GPa (n = 5 with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc–Gel–MTN–beta–TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering.

  3. Chitosan based nanofibers in bone tissue engineering.

    Science.gov (United States)

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  6. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  7. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Science.gov (United States)

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  8. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration.

    Science.gov (United States)

    Reinwald, Yvonne; El Haj, Alicia J

    2018-03-01

    Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  9. Silk scaffolds in bone tissue engineering: An overview.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide

  10. Tissue-engineering strategies for the tendon/ligament-to-bone insertion.

    Science.gov (United States)

    Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros

    2012-01-01

    Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.

  11. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  12. Histological evolution of the regenerate during bone transport: an experimental study in sheep.

    Science.gov (United States)

    López-Pliego, Esperanza Macarena; Giráldez-Sánchez, Miguel Ángel; Mora-Macías, Juan; Reina-Romo, Esther; Domínguez, Jaime

    2016-09-01

    Bone transport (BT) for segmentary bone defects is a well-known technique as it enables correction with new bone formation, which is similar to the previous bone. Despite the high number of experimental studies of distraction osteogenesis in bone lengthening, the types of ossification and histological changes that occur in the regenerate of the bone transport process remain controversial. The aim of this study is to provide the complete evolution of tissues and the types of ossification in the regenerate during the different phases of bone formation after BT until the end of the remodelling period. A histological study was performed using ten adult sheep that were submitted to BT. The types of ossification as well as the evolution of different tissues in the regenerate were determined using histomorphometry and inmunohistochemical studies. The evolution of trabeculae thickness, osteoblast and osteoclast densities, relationship between collagen types and changes in vascularization were also studied. Ossification was primarily intramembranous, with some focus of endochondral ossification in isolated animals. The cell counts showed a progression of cellular activity from the periphery to the centre, presenting the same progression as the growth of bone trabeculae, whose trabeculae thickness was quadrupled at the end of remodelling. Inmunohistochemical studies confirmed the prevalence of type I collagen and the ratio of the Type I/Type II collagen ratio was found to be 2.48. The percentages of the vascularized areas were proximally higher than distally in all animals, but distal zone obtained higher rates than the central region. Bone transport regenerate exhibits a centripetal ossification model and a mixed pattern with predominance of intramembranous over endochondral ossification. The data obtained resemble partially to those found in models of bone lengthening applied to large animals. This study provides a detailed structural characterization of the newly formed

  13. Reduced graphene oxide aerogel networks with soft interfacial template for applications in bone tissue regeneration

    Science.gov (United States)

    Asha, S.; Ananth, A. Nimrodh; Jose, Sujin P.; Rajan, M. A. Jothi

    2018-05-01

    Reduced Graphene Oxide aerogels (A-RGO), functionalized with chitosan, were found to induce and/or accelerate the mineralization of hydroxyapatite. The functionalized chitosan acts as a soft interfacial template on the surface of A-RGO assisting the growth of hydroxyapatite particles. The mineralization on these soft aerogel networks was performed by soaking the aerogels in simulated body fluid, relative to time. Polymer-induced mineralization exhibited an ordered arrangement of hydroxyapatite particles on reduced graphene oxide aerogel networks with a higher crystalline index (IC) of 1.7, which mimics the natural bone formation indicating the importance of the polymeric interfacial template. These mineralized aerogels which mimic the structure and composition of natural bone exhibit relatively higher rate of cell proliferation, osteogenic differentiation and osteoid matrix formation proving it to be a potential scaffold for bone tissue regeneration.

  14. Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Giannitelli, S.M. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Basoli, F. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Rome (Italy); Mozetic, P. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Piva, P.; Bartuli, F.N.; Luciani, F. [University of Rome “Tor Vergata”, Rome (Italy); Arcuri, C. [Department of Periodontics, University of Rome “Tor Vergata”, Rome (Italy); U.O.C.C. Odontostomatology, “S. Giovanni Calibita, Fatebenefratelli” Hospital, Rome (Italy); Trombetta, M. [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Rainer, A., E-mail: a.rainer@unicampus.it [Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome (Italy); Licoccia, S. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Rome (Italy)

    2015-06-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material—characterized by a dense shell and a porous core—for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. - Highlights: • Graded porous polyurethane foams were synthesized via a one-pot foaming reaction. • The inner porous core might act as a scaffold for guided bone regeneration. • A dense outer shell was introduced to act as a barrier to gingival tissue ingrowth. • The synthesized foams were non-toxic and supportive of hBMSC adhesion.

  15. Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration

    International Nuclear Information System (INIS)

    Giannitelli, S.M.; Basoli, F.; Mozetic, P.; Piva, P.; Bartuli, F.N.; Luciani, F.; Arcuri, C.; Trombetta, M.; Rainer, A.; Licoccia, S.

    2015-01-01

    Bone tissue engineering applications demand for biomaterials offering a substrate for cell adhesion, migration, and proliferation, while inferring suitable mechanical properties to the construct. In the present study, polyurethane (PU) foams were synthesized to develop a graded porous material—characterized by a dense shell and a porous core—for the treatment of oro-maxillary bone defects. Foam was synthesized via a one-pot reaction starting from a polyisocyanate and a biocompatible polyester diol, using water as a foaming agent. Different foaming conditions were examined, with the aim of creating a dense/porous functional graded material that would perform at the same time as an osteoconductive scaffold for bone defect regeneration and as a membrane-barrier to gingival tissue ingrowth. The obtained PU was characterized in terms of morphological and mechanical properties. Biocompatibility assessment was performed in combination with bone-marrow-derived human mesenchymal stromal cells (hBMSCs). Our findings confirm that the material is potentially suitable for guided bone regeneration applications. - Highlights: • Graded porous polyurethane foams were synthesized via a one-pot foaming reaction. • The inner porous core might act as a scaffold for guided bone regeneration. • A dense outer shell was introduced to act as a barrier to gingival tissue ingrowth. • The synthesized foams were non-toxic and supportive of hBMSC adhesion

  16. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping.

    Science.gov (United States)

    Fradique, R; Correia, T R; Miguel, S P; de Sá, K D; Figueira, D R; Mendonça, A G; Correia, I J

    2016-04-01

    The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.

  17. Electrospun three dimensional scaffolds for bone tissue regeneration

    OpenAIRE

    Paşcu, Elena Irina

    2013-01-01

    Bone is a complex and highly specialized form of connective tissue which acts as the main supporting organ of the body. It is hard and dynamic by its nature, with a unique combination of organic and inorganic elements embedded in a fibrous extracellular matrix (ECM), onto which cells attach, proliferate and differentiate. When bone repair mechanisms fail, due to infection or defect magnitude, bone formation can be stimulated with the use of autologous bone grafts or donor allografts. However,...

  18. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  19. Effect of local administration of platelet-rich plasma and guided tissue regeneration on the level of bone resorption in early dental implant insertion

    Directory of Open Access Journals (Sweden)

    Duka Miloš

    2008-01-01

    Full Text Available Background/Aim. Osseointegration is a result of cellular migration, differentiation, bone formation, and bone remodeling on the surface of an implant. Each of these processes depends on platelets and blood coagulum. Platelet-rich plasma (PRP is used to improve osseointegration and stability of implants. The aim of the research was to test the influence that PRP and guided tissue regeneration in bone defects have on bone defect filling and the level of bone resorption in early implant insertion. Methods. This experimental study included 10 dogs. A total of 40 BCT implants were inserted, 4 in each dog (two on the left side and two on the right side, with guided tissue regeneration. Radiologic analyses were done immediately after the insertion and 10 weeks after the insertion. Bone defect filling was measured by a graduated probe 10 weeks after the implant insertion. The following protocols were tested: I - PRP in combination with bovine deproteinized bone (BDB and resorptive membrane of bovine origin (RBDM, II - BDB + RBDM, III - PRP + RBDM and IV - RBDM. Results. The applied protocols affected differently the bone defect filling and the level of bone resorption. Significantly better results (the lowest bone resorption were achieved with protocol I (PRP + BDB + RBDM in comparison with protocols III (PRP + RBDM and IV (RBDM, but not with protocol II (BDB + RBDM. On the other hand, no significant difference was found among protocols II (BDB + RBDM, III (PRP + RBDM and IV (RBDM in the level of bone tissue resorption. Conslusion. The bone defect filling was largest and the level of bone resorption was lowest in the protocol with PRP applied in combination with BDB and RBDM.

  20. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  2. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  3. Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration

    NARCIS (Netherlands)

    Di Luca, Andrea; Klein Gunnewiek, Michel; Vancso, Julius; van Blitterswijk, Clemens; Benetti, Edmondo Maria; Moroni, Lorenzo

    2017-01-01

    Engineering the osteochondral tissue presents some challenges mainly relying in its function of transition from the subchondral bone to articular cartilage and the gradual variation in several biological, mechanical, and structural features. A possible solution for osteochondral regeneration might

  4. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  5. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    Science.gov (United States)

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  7. Nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Vieira, Sílvia; Vial, Stephanie; Reis, Rui L; Oliveira, J Miguel

    2017-05-01

    Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches - such as drug delivery and cell labeling - within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590-611, 2017. © 2017 American Institute of Chemical Engineers.

  8. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.

    Directory of Open Access Journals (Sweden)

    Junjie Guan

    Full Text Available Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP, and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.

  9. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Beatriz Hernández-Monjaraz

    2018-03-01

    Full Text Available Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.

  10. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  12. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Directory of Open Access Journals (Sweden)

    Hiroe Ohnishi, Yasuaki Oda and Hajime Ohgushi

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells. A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  13. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei [Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China); Ningbo Medical Science Research Institute, Ningbo, Zhejiang 315020 (China); Zhang, Chi; Cheng, Mengjie; Gu, Qiaoqiao [Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China); Zhao, Jiyuan, E-mail: zhaojiyuan@nbu.edu.cn [Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2017-06-01

    SIS is an acellular, naturally occurring collagenous extracellular matrix (ECM) material with various bioactive factors, which broadly applied in tissue engineering in clinic. Several studies have applied SIS in bone tissue engineering to enhance bone regeneration in animal models. However, the mechanism was rarely investigated. The aim of the current study was to investigate the osteoconductivity and osteoinductivity of SIS scaffold to bone regeneration systematically and the potential mechanism. Our results showed that SIS scaffold with excellent biocompatibility was beneficial for cell attachment, proliferation, migration and osteogenic differentiation of various cells contributing to bone repair. In mouse calvarial defect model, bone regeneration was significantly enhanced in the defects implanted with SIS scaffolds, along with the up-regulation of BMP-2 and CD31 expression. Accordingly, ID-1, the downstream target gene of BMPs, was increased in BMSCs cultured on SIS scaffolds. The results of this study suggest that SIS scaffold is a potential osteoconductive and osteoinductive biomaterial which plays multiple roles to various cells during process of bone regeneration. - Highlights: • SIS facilitates cell adhesion of BMSCs, osteoblasts and fibroblasts. • SIS promotes cell proliferation of osteoblasts and fibroblasts. • SIS promotes osteogenic differentiation of BMSCs and osteoblasts via BMP-2 pathway. • Synergistic effects of SIS to multiple cells enhance bone regeneration in vivo.

  14. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering

    International Nuclear Information System (INIS)

    Li, Mei; Zhang, Chi; Cheng, Mengjie; Gu, Qiaoqiao; Zhao, Jiyuan

    2017-01-01

    SIS is an acellular, naturally occurring collagenous extracellular matrix (ECM) material with various bioactive factors, which broadly applied in tissue engineering in clinic. Several studies have applied SIS in bone tissue engineering to enhance bone regeneration in animal models. However, the mechanism was rarely investigated. The aim of the current study was to investigate the osteoconductivity and osteoinductivity of SIS scaffold to bone regeneration systematically and the potential mechanism. Our results showed that SIS scaffold with excellent biocompatibility was beneficial for cell attachment, proliferation, migration and osteogenic differentiation of various cells contributing to bone repair. In mouse calvarial defect model, bone regeneration was significantly enhanced in the defects implanted with SIS scaffolds, along with the up-regulation of BMP-2 and CD31 expression. Accordingly, ID-1, the downstream target gene of BMPs, was increased in BMSCs cultured on SIS scaffolds. The results of this study suggest that SIS scaffold is a potential osteoconductive and osteoinductive biomaterial which plays multiple roles to various cells during process of bone regeneration. - Highlights: • SIS facilitates cell adhesion of BMSCs, osteoblasts and fibroblasts. • SIS promotes cell proliferation of osteoblasts and fibroblasts. • SIS promotes osteogenic differentiation of BMSCs and osteoblasts via BMP-2 pathway. • Synergistic effects of SIS to multiple cells enhance bone regeneration in vivo.

  15. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  16. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  17. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Science.gov (United States)

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  18. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Mukherjee, Jayanta [Institute of Animal Health and Veterinary Biologicals, Kolkata (India); Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-04-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations.

  19. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    International Nuclear Information System (INIS)

    Nandi, Samit K.; Kundu, Biswanath; Mukherjee, Jayanta; Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna

    2015-01-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations

  20. Effect of Ankaferd Blood Stopper on Early Bone Tissue Healing in ...

    African Journals Online (AJOL)

    Keywords: Ankaferd blood stopper, Wound healing, Mineralized bone tissue, Inflammatory cell infiltration ... protein network formation with blood cells covers the primary and .... bone repair and regeneration, antibiotics and antimicrobial ...

  1. Evaluating the Bone Tissue Regeneration Capability of the Chinese Herbal Decoction Danggui Buxue Tang from a Molecular Biology Perspective

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    2014-01-01

    Full Text Available Large bone defects are a considerable challenge to reconstructive surgeons. Numerous traditional Chinese herbal medicines have been used to repair and regenerate bone tissue. This study investigated the bone regeneration potential of Danggui Buxue Tang (DBT, a Chinese herbal decoction prepared from Radix Astragali (RA and Radix Angelicae Sinensis (RAS, from a molecular biology perspective. The optimal ratio of RA and RAS used in DBT for osteoblast culture was obtained by colorimetric and alkaline phosphatase (ALP activity assays. Moreover, the optimal concentration of DBT for bone cell culture was also determined by colorimetric, ALP activity, nodule formation, Western blotting, wound-healing, and tartrate-resistant acid phosphatase activity assays. Consequently, the most appropriate weight ratio of RA to RAS for the proliferation and differentiation of osteoblasts was 5 : 1. Moreover, the most effective concentration of DBT was 1,000 μg/mL, which significantly increased the number of osteoblasts, intracellular ALP levels, and nodule numbers, while inhibiting osteoclast activity. Additionally, 1,000 μg/mL of DBT was able to stimulate p-ERK and p-JNK signal pathway. Therefore, DBT is highly promising for use in accelerating fracture healing in the middle or late healing periods.

  2. Bioactivity evaluation of commercial calcium phosphate-based bioceramics for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Borrós, S.; Mas, A.

    2016-11-01

    Calcium phosphate-based bioceramics constitute a great promise for bone tissue engineering as they chemically resemble to mammalian bone and teeth. Their use is a viable alternative for bone regeneration as it avoids the use of autografts and allografts, which usually involves immunogenic reactions and patient’s discomfort. This work evolves around the study of the bioactivity potential of different commercially available bone substitutes based in calcium phosphate through the characterization of their ionic exchangeability when immersed in simulated body fluid (SBF). (Author)

  3. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    Science.gov (United States)

    Hu, Wei-Wen; Wang, Zhuo; Krebsbach, Paul H

    2016-02-01

    To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin-biotin-material (VBABM) arrangement. The tethered viral particles were stably maintained within scaffolds and SEM images illustrated that viral particles were evenly distributed in three-dimensional (3D) gelatin sponges. An in vivo study demonstrated that transgene expression was restricted to the implant sites only and transduction efficiency was improved using this conjugation method. For an orthotopic bone regeneration model, adenovirus encoding BMP-2 (AdBMP2) was immobilized to gelatin sponges before implanting into critical-sized bone defects in rat calvaria. Compared to gelatin sponges with AdBMP2 loaded in a freely suspended form, the VBABM method enhanced gene transfer and bone regeneration was significantly improved. These results suggest that biotin-avidin immobilization of viral vectors to biomaterial scaffolds may be an effective strategy to facilitate tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  5. Clinical comparison of guided tissue regeneration, with collagen membrane and bone graft, versus connective tissue graft in the treatment of gingival recessions

    Directory of Open Access Journals (Sweden)

    Haghighati F

    2006-06-01

    Full Text Available Background and Aim: Increasing patient demands for esthetic, put the root coverage procedures in particular attention. Periodontal regeneration with GTR based root coverage methods is the most common treatment used. The purpose of this study was to compare guided tissue regeneration (GTR with collagen membrane and a bone graft, with sub-epithelial connective tissue graft (SCTG, in treatment of gingival recession. Materials and Methods: In this randomized clinical trial study, eleven healthy patients with no systemic diseases who had miller’s class I or II recession defects (gingival recession  2mm were treated with SCTG or GTR using a collagen membrane and a bone graft. Clinical measurements were obtained at baseline and 6 months after surgery. These clinical measurements included recession depth (RD, recession width (RW, probing depth (PD, and clinical attachment level (CAL. Data were analyzed using independent t test with p<0.05 as the limit of significance. Results: Both treatment methods resulted in a statistically significant reduction of recession depth (SCTG=2.3mm, GTR=2.1mm; P<0.0001. CAL gain after 6 months was also improved in both groups (SCG= 2.5mm, GTR=2.1mm, compared to baseline (P<0.0001. No statistical differences were observed in RD, RW, CAL between test and control groups. Root coverage was similar in both methods (SCTG= 74.2%, GTR= 62.6%, P=0.87. Conclusion: Based on the results of this study, the two techniques are clinically comparable. Therefore the use of collagen membrane and a bovine derived xenograft may alleviate the need for connective tissue graft.

  6. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2018-02-01

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  7. Effect of concentrated growth factor combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2017-10-01

    Full Text Available Objective: To study the effect of concentrated growth factor (CGF combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis. Methods: Patients with severe periodontitis who were treated in Stomatology Department of Shenmu Hospital between May 2014 and February 2017 were selected as the research subjects and randomly divided into two groups, surgery + CGF group received concentrated growth factor combined with guided bone regeneration, and pure surgery group received guided bone regeneration. The contents of inflammatory response, cell proliferation and bone resorption markers in gingival crevicular fluid were determined 1 week after treatment. Results: 1 week after treatment, HMGB1, ICAM1, E-selectin, Smac, FasL, Caspase-8, Caspase-9, Caspase-3, RANKL and NTX contents in gingival crevicular fluid of surgery + CGF group were significantly lower than those of pure surgery group while PD-L1, hBD-3, Wnt3a, BGP and OPG contents were significantly higher than those of pure surgery group. Conclusion: Concentrated growth factor combined with guided bone regeneration for severe periodontitis can inhibit inflammatory response, apoptosis and bone resorption, which is beneficial to the reconstruction of periodontal tissue.

  8. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  10. MINIMALLY INVASIVE SINGLE FLAP APPROACH WITH CONNECTIVE TISSUE WALL FOR PERIODONTAL REGENERATION

    Directory of Open Access Journals (Sweden)

    Kamen Kotsilkov

    2017-09-01

    Full Text Available INTRODUCTION: The destructive periodontal diseases are among the most prevalent in the human population. In some cases, bony defects are formed during the disease progression, thus sustaining deep periodontal pockets. The reconstruction of these defects is usually done with the classical techniques of bone substitutes placement and guided tissue regeneration. The clinical and histological data from the recent years, however, demonstrate the relatively low regenerative potential of these techniques. The contemporary approaches for periodontal regeneration rely on minimally invasive surgical protocols, aimed at complete tissue preservation in order to achieve and maintain primary closure and at stimulating the natural regenerative potential of the periodontal tissues. AIM: This presentation demonstrates the application of a new, minimally invasive, single flap surgical technique for periodontal regeneration in a clinical case with periodontitis and a residual deep intrabony defect. MATERIALS AND METHODS: A 37 years old patient presented with chronic generalised periodontitis. The initial therapy led to good control of the periodontal infection with a single residual deep periodontal pocket medially at 11 due to a deep intrabony defect. A single flap approach with an enamel matrix derivate application and a connective tissue wall technique were performed. The proper primary closure was obtained. RESULT: One month after surgery an initial mineralisation process in the defect was detected. At the third month, a complete clinical healing was observed. The radiographic control showed finished bone mineralisation and periodontal space recreation. CONCLUSION: In the limitation of the presented case, the minimally invasive surgical approach led to complete clinical healing and new bone formation, which could be proof for periodontal regeneration.

  11. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration.

    Science.gov (United States)

    Kawai, Takamasa; Katagiri, Wataru; Osugi, Masashi; Sugimura, Yukiko; Hibi, Hideharu; Ueda, Minoru

    2015-04-01

    Periodontal tissue regeneration with the use of mesenchymal stromal cells (MSCs) has been regarded as a future cell-based therapy. However, low survival rates and the potential tumorigenicity of implanted MSCs could undermine the efficacy of cell-based therapy. The use of conditioned media from MSCs (MSC-CM) may be a feasible approach to overcome these limitations. The aim of this study was to confirm the effect of MSC-CM on periodontal regeneration. MSC-CM were collected during their cultivation. The concentrations of the growth factors in MSC-CM were measured with the use of enzyme-linked immunoassay. Rat MSCs (rMSCs) and human umbilical vein endothelial cells cultured in MSC-CM were assessed on wound-healing and angiogenesis. The expressions of osteogenetic- and angiogenic-related genes of rMSCs cultured in MSC-CM were quantified by means of real-time reverse transcriptase-polymerase chain reaction analysis. In vivo, periodontal defects were prepared in the rat models and the collagen sponges with MSC-CM were implanted. MSC-CM includes insulin-like growth factor-1, vascular endothelial growth factor, transforming growth factor-β1 and hepatocyte growth factor. In vitro, wound-healing and angiogenesis increased significantly in MSC-CM. The levels of expression of osteogenetic- and angiogenic-related genes were significantly upregulated in rMSCs cultured with MSC-CM. In vivo, in the MSC-CM group, 2 weeks after implantation, immunohistochemical analysis showed several CD31-, CD105-or FLK-1-positive cells occurring frequently. At 4 weeks after implantation, regenerated periodontal tissue was observed in MSC-CM groups. The use of MSC-CM may be an alternative therapy for periodontal tissue regeneration because several cytokines included in MSC-CM will contribute to many processes of complicated periodontal tissue regeneration. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration.

    Science.gov (United States)

    Bicho, Diana; Pina, Sandra; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.

  13. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  14. Rapid prototyping technology and its application in bone tissue engineering*

    Science.gov (United States)

    YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng

    2017-01-01

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568

  15. Engineering bone tissue from human embryonic stem cells

    OpenAIRE

    Marolt, Darja; Campos, Iván Marcos; Bhumiratana, Sarindr; Koren, Ana; Petridis, Petros; Zhang, Geping; Spitalnik, Patrice F.; Grayson, Warren L.; Vunjak-Novakovic, Gordana

    2012-01-01

    In extensive bone defects, tissue damage and hypoxia lead to cell death, resulting in slow and incomplete healing. Human embryonic stem cells (hESC) can give rise to all specialized lineages found in healthy bone and are therefore uniquely suited to aid regeneration of damaged bone. We show that the cultivation of hESC-derived mesenchymal progenitors on 3D osteoconductive scaffolds in bioreactors with medium perfusion leads to the formation of large and compact bone constructs. Notably, the i...

  16. [Ultrasound scanning of the distraction regenerate in case of multilocus elongation of the fragments in patients with defects of long bones].

    Science.gov (United States)

    Menshikova, T I; Borzunov, D Iu; Dolganova, T I

    2014-01-01

    It was done ultrasound examination of distraction regenerates in patients with defect of bone tissue. The first group included 4 patients who had the size of congenital bone tissue defect 15.8±8.1 cm; the second group (3 patients) included posttraumatic defects with defect size 11.75±3.6 cm; the third group (4 patients) included posttraumatic defects with defect size 11±5.3 cm. It was discovered the particularities of distraction regenerate structural condition in case of low level of reparative osteogenesis. In the first group "ischemic" regenerate was characterized by slow formation of bone trabecules. In the second group "ischemic" regenerate had one or two hypo-echogenic cystic-like formations in the intermediate regenerate area. All patients of the third group had organotypic remodeling of the regenerate according to terms of distraction and fixation.

  17. Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2017-01-01

    Full Text Available Background. Bovine pericardium collagen membrane (BPCM had been widely used in guided bone regeneration (GBR whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective. This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods. Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat’s subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result. DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion. Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.

  18. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhang, Chi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Ping, E-mail: dentistping@gmail.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Lin [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011 (China); Bao, Chunyun [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Weir, Michael D.; Reynolds, Mark A. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Ren, Ke [Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland, Baltimore, MD 21201 (United States); Zhao, Liang, E-mail: lzhaonf@126.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 (China); and others

    2017-06-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  19. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    International Nuclear Information System (INIS)

    Song, Yang; Zhang, Chi; Wang, Ping; Wang, Lin; Bao, Chunyun; Weir, Michael D.; Reynolds, Mark A.; Ren, Ke; Zhao, Liang

    2017-01-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  20. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    Science.gov (United States)

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    Science.gov (United States)

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  2. Potential of Osteoblastic Cells Derived from Bone Marrow and Adipose Tissue Associated with a Polymer/Ceramic Composite to Repair Bone Tissue.

    Science.gov (United States)

    Freitas, Gileade P; Lopes, Helena B; Almeida, Adriana L G; Abuna, Rodrigo P F; Gimenes, Rossano; Souza, Lucas E B; Covas, Dimas T; Beloti, Marcio M; Rosa, Adalberto L

    2017-09-01

    One of the tissue engineering strategies to promote bone regeneration is the association of cells and biomaterials. In this context, the aim of this study was to evaluate if cell source, either from bone marrow or adipose tissue, affects bone repair induced by osteoblastic cells associated with a membrane of poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT). Mesenchymal stem cells (MSC) were isolated from rat bone marrow and adipose tissue and characterized by detection of several surface markers. Also, both cell populations were cultured under osteogenic conditions and it was observed that MSC from bone marrow were more osteogenic than MSC from adipose tissue. The bone repair was evaluated in rat calvarial defects implanted with PVDF-TrFE/BT membrane and locally injected with (1) osteoblastic cells differentiated from MSC from bone marrow, (2) osteoblastic cells differentiated from MSC from adipose tissue or (3) phosphate-buffered saline. Luciferase-expressing osteoblastic cells derived from bone marrow and adipose tissue were detected in bone defects after cell injection during 25 days without difference in luciferin signal between cells from both sources. Corroborating the in vitro findings, osteoblastic cells from bone marrow combined with the PVDF-TrFE/BT membrane increased the bone formation, whereas osteoblastic cells from adipose tissue did not enhance the bone repair induced by the membrane itself. Based on these findings, it is possible to conclude that, by combining a membrane with cells in this rat model, cell source matters and that bone marrow could be a more suitable source of cells for therapies to engineer bone.

  3. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment.

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan

    2017-06-01

    Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  5. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  6. Post-irradiation thymocyte regeneration after bone marrow transplantation

    International Nuclear Information System (INIS)

    Boersma, W.; Betel, I.; Daculsi, R.; Westen, G. van der

    1981-01-01

    Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. The second slow phase is observed only when low numbers of bone marrow cells (2.5 x 10 4 ) are transplanted. The decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 x 10 6 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum. (author)

  7. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  8. Bioactive Sr(II/Chitosan/Poly(ε-caprolactone Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior

    Directory of Open Access Journals (Sweden)

    Itzia Rodríguez-Méndez

    2018-03-01

    Full Text Available In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone (PCL. These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63 and human bone marrow mesenchymal stem cells (hBMSCs for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245% of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.

  9. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.

    Science.gov (United States)

    Nivedhitha Sundaram, M; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R

    2016-05-01

    Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL. © 2015 Wiley Periodicals, Inc.

  10. Nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    Directory of Open Access Journals (Sweden)

    Dyondi D

    2012-12-01

    Full Text Available Deepti Dyondi,1 Thomas J Webster,2 Rinti Banerjee11Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; 2Nanomedicine Laboratories, Division of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF, and bone morphogenetic protein 7 (BMP7 were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.Keywords: bone tissue engineering, bone morphogenetic protein 7 (BMP7, basic fibroblast growth factor (bFGF, hydrogel, nanoparticles, osteoblasts

  12. A histopathologic investigation on the effects of electrical stimulation on periodontal tissue regeneration in experimental bony defects in dogs.

    Science.gov (United States)

    Kaynak, Deniz; Meffert, Roland; Günhan, Meral; Günhan, Omer

    2005-12-01

    One endpoint of periodontal therapy is to regenerate the structure lost due to periodontal disease. In the periodontium, gingival epithelium is regenerated by oral epithelium. Underlying connective tissue, periodontal ligament, bone, and cementum are derived from connective tissue. Primitive connective tissue cells may develop into osteoblasts and cementoblasts, which form bone and cementum. Several procedural advances may support these regenerations; however, the regeneration of alveolar bone does not always occur. Therefore, bone stimulating factors are a main topic for periodontal reconstructive research. The present study was designed to examine histopathologically whether the application of an electrical field could demonstrate enhanced alveolar and cementum regeneration and modify tissue factors. Seven beagle dogs were used for this experiment. Mandibular left and right sides served as control and experimental sides, respectively, and 4-walled intrabony defects were created bilaterally between the third and fourth premolars. The experimental side was treated with a capacitively coupled electrical field (CCEF) (sinusoidal wave, 60 kHz, and 5 V peak-to-peak), applied for 14 hours per day. The following measurements were performed on the microphotographs: 1) the distance from the cemento-enamel junction to the apical notch (CEJ-AN) and from the crest of newly formed bone (alveolar ridge) to the apical notch (AR-AN); 2) the thickness of new cementum in the apical notch region; and 3) the length of junctional epithelium. The following histopathologic parameters were assessed by a semiquantitative subjective method: 1) inflammatory cell infiltration (ICI); 2) cellular activity of the periodontal ligament; 3) number and morphology of osteoclasts; 4) resorption lacunae; and 5) osteoblastic activity. The results showed that the quantity of new bone fill and the mean value of the thickness of the cementum were significantly higher for the experimental side (P 0

  13. Global MicroRNA Profiling in Human Bone Marrow Skeletal—Stromal or Mesenchymal–Stem Cells Identified Candidates for Bone Regeneration

    DEFF Research Database (Denmark)

    Chang, Chi Chih; Venø, Morten T.; Chen, Li

    2018-01-01

    Bone remodeling and regeneration are highly regulated multistep processes involving posttranscriptional regulation by microRNAs (miRNAs). Here, we performed a global profiling of differentially expressed miRNAs in bone-marrow-derived skeletal cells (BMSCs; also known as stromal or mesenchymal stem......RNAs for enhancing bone tissue regeneration. Scaffolds functionalized with miRNA nano-carriers enhanced osteoblastogenesis in 3D culture and retained this ability at least 2 weeks after storage. Additionally, anti-miR-222 enhanced in vivo ectopic bone formation through targeting the cell-cycle inhibitor CDKN1B...... cells) during in vitro osteoblast differentiation. We functionally validated the regulatory effects of several miRNAs on osteoblast differentiation and identified 15 miRNAs, most significantly miR-222 and miR-423, as regulators of osteoblastogenesis. In addition, we tested the possible targeting of mi...

  14. Utilization of d-PTFE Barriers for Post-Extraction Bone Regeneration in Preparation for Dental Implants.

    Science.gov (United States)

    Greenstein, Gary; Carpentieri, Joseph R

    2015-01-01

    Guided bone regeneration (GBR) can be used to restore a defective alveolar ridge after extractions before or in combination with implant placement. It may also be employed after extractions to reduce crestal bone resorption and maximize bone fill of sockets. Resorbable or nonresorbable barriers (eg, expanded polytetrafluoroethylene [e-PTFE]) can be used when performing GBR procedures, but they need to be completely submerged to attain optimal results. Dense polytetrafluoroethylene (d-PTFE) is a type of nonresorbable barrier that circumvents the necessity to attain primary closure after placement of bone grafts, thereby reducing patient morbidity. This article addresses topics pertaining to d-PTFE utilization, including characteristics and advantages of d-PTFE barriers, time needed for osteoid tissue to become impervious to penetration by flap connective tissue, relevant clinical studies, and limitations of available data. Clinical photographs and radiographs of successfully treated cases are presented to illustrate the efficacy of d-PTFE barriers in regenerating defective bony plates after extractions.

  15. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration].

    Science.gov (United States)

    Schaefer, D J; Klemt, C; Zhang, X H; Stark, G B

    2000-09-01

    Tissue engineering offers the possibility to fabricate living substitutes for tissues and organs by combining histogenic cells and biocompatible carrier materials. Pluripotent mesenchymal stem cells are isolated and subcultured ex vivo and then their histogenic differentiation is induced by external factors. The fabrication of bone and cartilage constructs, their combinations and gene therapeutic approaches are demonstrated. Advantages and disadvantages of these methods are described by in vitro and in vitro testing. The proof of histotypical function after implantation in vivo is essential. The use of autologous cells and tissue engineering methods offers the possibility to overcome the disadvantages of classical tissue reconstruction--donor site morbidity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Furthermore, tissue engineering widens the spectrum of surgical indications in bone and cartilage reconstruction.

  17. Using radionuclide imaging for monitoring repairment of bone defect with tissue-engineered bone graft in rabbits

    International Nuclear Information System (INIS)

    Xia Changsuo; Ye Fagang; Zou Yunwen; Ji Shixiang; Wang Dengchun

    2004-01-01

    Objective: To observe the effect of tissue-engineered bone grafts in repairing bone defect in rabbits, and assess the value of radionuclide for monitoring the therapeutic effect of this approach. Methods: Bilateral radial defects of 15 mm in length in 24 rabbits were made. The tissue-engineered bone grafts (composite graft) contained bone marrow stromal cells (BMSCs) of rabbits and calcium phosphate cement (CPC) were grafted in left side defects, CPC only grafts (artificial bone graft) in right defects. After the operation, radionuclide was used to monitor the therapeutic effects at 4, 8 and 12 weeks. Results: 99 Tc m -methylene diphosphonic acid (MDP) radionuclide bone imaging indicated that there was more radionuclide accumulation in grafting region of composite than that of CPC. There was significant difference between 99 Tc m -MDP uptake of the region of interest (ROI) and scintillant counts of composite bone and the artificial bone (P<0.01). Conclusion: Tissue-engineered bone grafts is eligible for repairing radial bone defects, and radionuclide imaging may accurately monitor the revascularization and bone regeneration after the bone graft implantation. (authors)

  18. Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Elham Zomorodian

    2012-01-01

    Full Text Available While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs, adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs, as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.

  19. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    Science.gov (United States)

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-05-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.

  20. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  1. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.

    Science.gov (United States)

    Pina, S; Canadas, R F; Jiménez, G; Perán, M; Marchal, J A; Reis, R L; Oliveira, J M

    2017-01-01

    The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration. © 2017 S. Karger AG, Basel.

  2. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    Science.gov (United States)

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  3. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Directory of Open Access Journals (Sweden)

    Tomasz Gredes

    2016-01-01

    Full Text Available The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen and unmodified (PLA-wt, PCL-wt, were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  4. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Science.gov (United States)

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  5. Biomechanical, microvascular, and cellular factors promote muscle and bone regeneration.

    Science.gov (United States)

    Duda, Georg N; Taylor, William R; Winkler, Tobias; Matziolis, Georg; Heller, Markus O; Haas, Norbert P; Perka, Carsten; Schaser, Klaus-D

    2008-04-01

    It is becoming clear that the long-term outcome of complex bone injuries benefits from approaches that selectively target biomechanical, vascular, and cellular pathways. The typically held view of either biological or mechanical aspects of healing is oversimplified and does not correspond to clinical reality. The fundamental mechanisms of soft tissue regeneration most likely hold the key to understanding healing response.

  6. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.

    Science.gov (United States)

    Lee, Dae Hoon; Tripathy, Nirmalya; Shin, Jae Hun; Song, Jeong Eun; Cha, Jae Geun; Min, Kyung Dan; Park, Chan Hum; Khang, Gilson

    2017-02-01

    Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  7. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process.

    Science.gov (United States)

    Sinibaldi, R; Conti, A; Sinjari, B; Spadone, S; Pecci, R; Palombo, M; Komlev, V S; Ortore, M G; Tromba, G; Capuani, S; Guidotti, R; De Luca, F; Caputi, S; Traini, T; Della Penna, S

    2018-03-01

    Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    Science.gov (United States)

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-03-22

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.

  9. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties.

    Science.gov (United States)

    Martin, Victor; Bettencourt, Ana

    2018-01-01

    Bone is a mineralized conjunctive tissue, with a unique trauma healing capability. However, the replacement or regeneration of lost bone is not always successful and becomes more difficult the wider the bone defect. A significant growth in the demand for orthopedic and maxillofacial surgical procedures as a result of population aging and increase in chronic diseases as diabetes is a fact and successful approaches for bone regeneration are still needed. Until today, autogenous bone graft continues to be the best solution even with important limitations, as quantity and the requirement of a donator area. Alternatively, local delivery systems combining an osteoconductive biomaterial with osteoinductive compounds as hormones, growth factors or drugs is a popular approach aiming to replace the need for autogenous bone grafts. Nevertheless, in spite of the intense research in the area, presently there is no system that can mimic all the biological functions of the autogenous bone grafts. In this context, the present work provides an overview of the most recent advances in the field of synthetic bone grafts. The opportunities and limitations are detailed along with the remaining gaps in the research that are still preventing the successful translation of more products into the market able to be a valuable option in comparison to the autogenous bone grafts. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Particulate bioglass in the regeneration of alveolar bone in dogs: clinical, surgical and radiographic evaluations

    Directory of Open Access Journals (Sweden)

    Alexandre Couto Tsiomis

    2011-04-01

    Full Text Available Bone loss, either by trauma or other diseases, generates an increasing need for substitutes of this tissue. This study evaluated Bioglass as a bone substitute in the regeneration of the alveolar bone in mandibles of dogs by clinical, surgical and radiological analysis. Twenty-eight adult dogs were randomly separated into two equal groups. In each animal, a bone defect was created on the vestibular surface of the alveolar bone between the roots of the fourth right premolar tooth. In the treated group, the defect was immediately filled with bioglass, while in the control, it remained unfilled. Clinical evaluations were performed daily for a week, as well as x-rays immediately after surgery and at 8, 14, 21, 42, 60, 90 and 120 days post-operative. Most animals in both groups showed no signs of inflammation and wound healing was similar. Radiographic examination revealed a gradual increase of radiopacity in the region of the defect in the control group. In the treated group, initial radiopacity was higher than that of adjacent bone, decreasing until 21 days after surgery. Then it gradually increased until 120 days after surgery, when the defect became undetectable. The results showed that Bioglass integrates into bone tissue, is biocompatible and reduced the period for complete bone regeneration.

  11. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Bruce Milthorpe

    2013-04-01

    Full Text Available A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP and transforming growth factor beta (TGF-β exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use.

  13. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    Science.gov (United States)

    Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim

    2013-01-01

    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983

  14. Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2.

    Science.gov (United States)

    Li, Qi; Reed, David A; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G H

    2014-05-14

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold±0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold±0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (pfibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.

  15. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies-where are we now?

    DEFF Research Database (Denmark)

    Dawson, Jonathan I; Kanczler, Janos; Kassem, Moustapha

    2014-01-01

    Skeletal stem cells confer to bone its innate capacity for regeneration and repair. Bone regeneration strategies seek to harness and enhance this regenerative capacity for the replacement of tissue damaged or lost through congenital defects, trauma, functional/esthetic problems, and a broad range...... for musculoskeletal regeneration. Stem Cells 2014;32:35-44...... of diseases associated with an increasingly aged population. This review describes the state of the field and current steps to translate and apply skeletal stem cell biology in the clinic and the problems therein. Challenges are described along with key strategies including the isolation and ex vivo expansion...

  16. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model

    International Nuclear Information System (INIS)

    Kim, Jinku; McBride, Sean; Donovan, Amy; Hollinger, Jeffrey O; Darr, Aniq; Magno, Maria Hanshella R

    2015-01-01

    The aim of the study was to determine bone regeneration in a rabbit radius critical-size defect (CSD) model using a specific polymer composition (E1001(1k)) from a library of tyrosine-derived polycarbonate scaffolds coated with a calcium phosphate (CP) formulation (E1001(1k) + CP) supplemented with recombinant human bone morphogenetic protein-2 (rhBMP-2). Specific doses of rhBMP-2 (0, 17, and 35 μg/scaffold) were used. E1001(1k) + CP scaffolds were implanted in unilateral segmental defects (15 mm length) in the radial diaphyses of New Zealand White rabbits. At 4 and 8 weeks post-implantation, bone regeneration was determined using micro-computed tomography (µCT), histology, and histomorphometry. The quantitative outcome data suggest that E1001(1k) + CP scaffolds with rhBMP-2 were biocompatible and promoted bone regeneration in segmental bone defects. Histological examination of the implant sites showed that scaffolds made of E1001(1k) + CP did not elicit adverse cellular or tissue responses throughout test periods up to 8 weeks. Noteworthy is that the incorporation of a very small amount of rhBMP-2 into the scaffolds (as low as 17 μg/defect site) promoted significant bone regeneration compared to scaffolds consisting of E1001(1k) + CP alone. This finding indicates that E1001(1k) + CP may be an effective platform for bone regeneration in a critical size rabbit radius segmental defect model, requiring only a minimal dose of rhBMP-2. (paper)

  17. Immobilization of Murine Anti-BMP-2 Monoclonal Antibody on Various Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sahar Ansari

    2014-01-01

    Full Text Available Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR. The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks, de novo bone formation was assessed using micro-CT and histomorphometric analyses. Results showed de novo bone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffolds via AMOR.

  18. PREDICTION OF THE DURATION OF DISTRACTION REGENERATED BONE MATURATION

    Directory of Open Access Journals (Sweden)

    N. V. Tushina

    2012-01-01

    Full Text Available Aim of the study the characteristics of changes of serum biochemical parameters in dogs with delayed maturation of the distraction regenerate after surgical lengthening the leg bones by Ilizarov. The comparative analysis of biochemical changes in blood serum of animals with delayed regenerated bone osteogenesis after surgical leg bone lengthening according to Ilizarov has been made in the work. The development of persistent and marked hypocalcemia, significant accumulation of blood serum nonoxidized degradation products during limb bone surgical lengthening according to Ilizarov have been revealed to be adverse signs evidencing of the high probability of the disorder of further formation of the regenerated bone and its subsequent maturation at the stage of fixation.

  19. In Vitro and In Vivo Study of a Novel Porcine Collagen Membrane for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2016-11-01

    Full Text Available For years, in order to improve bone regeneration and prevent the need of a second stage surgery to remove non-resorbable membranes, biological absorbable membranes have gradually been developed and applied in guided tissue regeneration (GTR. The present study’s main objective was to achieve space maintenance and bone regeneration using a new freeze-dried developed porcine collagen membrane, and compare it with an already commercial collagen membrane, when both were used with a bovine xenograft in prepared alveolar ridge bone defects. Prior to surgery, the membrane’s vitality analysis showed statistically significant higher cell proliferation in the test membrane over the commercial one. In six beagle dogs, commercial bone xenograft was packed in lateral ridge bone defects prepared in the left and right side and then covered with test porcine collagen membrane or commercial collagen membrane. Alveolar height changes were measured. Histomorphometric results, in vitro and in vivo properties indicated that the new porcine collagen membrane is biocompatible, enhances bone xenograft osteoconduction, and reduces the alveolar ridge height reabsorption rate.

  20. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    Science.gov (United States)

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  1. Treatment strategy for guided tissue regeneration in various class II furcation defect: Case series

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Periodontal regeneration is a main aspect in the treatment of teeth affected by periodontitis. Periodontal regeneration in furcation areas is quite challenging, especially when it is in interproximal region. There are several techniques used alone or in combination considered to achieve periodontal regeneration, including the bone grafts or substitutes, guided tissue regeneration (GTR, root surface modification, and biological mediators. Many factors may account for variability in response to regenerative therapy in class II furcation. This case series describes the management of class II furcation defect in a mesial interproximal region of a maxillary tooth and other with a buccal class II furcation of mandibular tooth, with the help of surgical intervention including the GTR membrane and bone graft materials. This combined treatment resulted in healthy periodontium with a radiographic evidence of alveolar bone gain in both cases. This case series demonstrates that proper diagnosis, followed by removal of etiological factors and utilizing the combined treatment modalities will restore health and function of the tooth with the severe attachment loss.

  2. Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model.

    Science.gov (United States)

    Chantarawaratit, P; Sangvanich, P; Banlunara, W; Soontornvipart, K; Thunyakitpisal, P

    2014-04-01

    Periodontal disease is a common infectious disease, found worldwide, causing the destruction of the periodontium. The periodontium is a complex structure composed of both soft and hard tissues, thus an agent applied to regenerate the periodontium must be able to stimulate periodontal ligament, cementum and alveolar bone regeneration. Recent studies demonstrated that acemannan, a polysaccharide extracted from Aloe vera gel, stimulated both soft and hard tissue healing. This study investigated effect of acemannan as a bioactive molecule and scaffold for periodontal tissue regeneration. Primary human periodontal ligament cells were treated with acemannan in vitro. New DNA synthesis, expression of growth/differentiation factor 5 and runt-related transcription factor 2, expression of vascular endothelial growth factor, bone morphogenetic protein-2 and type I collagen, alkaline phosphatase activity, and mineralized nodule formation were determined using [(3)H]-thymidine incorporation, reverse transcription-polymerase chain reaction, enzyme-linked immunoabsorbent assay, biochemical assay and alizarin red staining, respectively. In our in vivo study, premolar class II furcation defects were made in four mongrel dogs. Acemannan sponges were applied into the defects. Untreated defects were used as a negative control group. The amount of new bone, cementum and periodontal ligament formation were evaluated 30 and 60 d after the operation. Acemannan significantly increased periodontal ligament cell proliferation, upregulation of growth/differentiation factor 5, runt-related transcription factor 2, vascular endothelial growth factor, bone morphogenetic protein 2, type I collagen and alkaline phosphatase activity, and mineral deposition as compared with the untreated control group in vitro. Moreover, acemannan significantly accelerated new alveolar bone, cementum and periodontal ligament formation in class II furcation defects. Our data suggest that acemannan could be a candidate

  3. Strontium borate glass: potential biomaterial for bone regeneration.

    Science.gov (United States)

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  4. The Axolotl Fibula as a Model for the Induction of Regeneration across Large Segment Defects in Long Bones of the Extremities

    Science.gov (United States)

    Chen, Xiaoping; Song, Fengyu; Jhamb, Deepali; Li, Jiliang; Bottino, Marco C.; Palakal, Mathew J.; Stocum, David L.

    2015-01-01

    We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process. PMID:26098852

  5. DENTAL PULP STEM CELLS AND HUMAN PERIAPICAL CYST MESENCHYMAL STEM CELLS IN BONE TISSUE REGENERATION: COMPARISON OF BASAL AND OSTEOGENIC DIFFERENTIATED GENE EXPRESSION OF A NEWLY DISCOVERED MESENCHYMAL STEM CELL LINEAGE.

    Science.gov (United States)

    Tatullo, M; Falisi, G; Amantea, M; Rastelli, C; Paduano, F; Marrelli, M

    2015-01-01

    Bone regeneration is an interesting field of biomedicine. The most recent studies are aimed to achieve a bone regeneration using mesenchymal stem cells (MSCs) taken from more accessible sites: oral and dental tissues have been widely investigated as a rich accessible source of MSCs. Dental Pulp Stem Cells (DPSCs) and human Periapical Cysts Mesenchymal Stem Cells (hPCy-MSCs) represent the new generation MSCs. The aim of this study is to compare the gene expression of these two innovative cell types to highlight the advantages of their use in bone regeneration. The harvesting, culturing and differentiating of cells isolated from dental pulp as well as from periapical cystic tissue were carried out as described in previously published reports. qRT-PCR analyses were performed on osteogenic genes in undifferentiated and osteogenic differentiated cells of DPSC and hPCy-MSC lineage. Real-time RT-PCR data suggested that both DPSCs and hPCy-MSCs cultured in osteogenic media are able to differentiate into osteoblast/odontoblast-like cells: however, some differences indicated that DPSCs seem to be directed more towards dentinogenesis, while hPCy-MSCs seem to be directed more towards osteogenesis.

  6. Mesenchymal Stem Cells in Bone Tissue Regeneration and Application to Bone Healing

    Czech Academy of Sciences Publication Activity Database

    Crha, M.; Nečas, A.; Srnec, R.; Janovec, J.; Raušer, P.; Urbanová, L.; Plánka, L.; Jančář, J.; Amler, Evžen

    2009-01-01

    Roč. 78, č. 4 (2009), s. 635-642 ISSN 0001-7213 R&D Projects: GA MŠk 2B06130; GA AV ČR IAA500390702 Institutional research plan: CEZ:AV0Z50390703 Keywords : tissue engineering * biomaterials * segmental bone lesion Subject RIV: BO - Biophysics Impact factor: 0.403, year: 2009

  7. Root cementum modulates periodontal regeneration in Class III furcation defects treated by the guided tissue regeneration technique: a histometric study in dogs.

    Science.gov (United States)

    Gonçalves, Patricia F; Gurgel, Bruno C V; Pimentel, Suzana P; Sallum, Enilson A; Sallum, Antonio W; Casati, Márcio Z; Nociti, Francisco H

    2006-06-01

    Because the possibility of root cementum preservation as an alternative approach for the treatment of periodontal disease has been demonstrated, this study aimed to histometrically evaluate the effect of root cementum on periodontal regeneration. Bilateral Class III furcation defects were created in dogs, and each dog was randomly assigned to receive one of the following treatments: control (group A): scaling and root planing with the removal of root cementum; or test (group B): removal of soft microbial deposits by polishing the root surface with rubber cups and polishing paste, aiming at maximum cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Four months after treatment, a superior length of new cementum (3.59 +/- 1.67 mm versus 6.20 +/- 2.26 mm; P = 0.008) and new bone (1.86 +/- 1.76 mm versus 4.62 +/- 3.01 mm; P = 0.002) and less soft tissue along the root surface (2.77 +/- 0.79 mm versus 1.10 +/- 1.48 mm; P = 0.020) was observed for group B. Additionally, group B presented a larger area of new bone (P = 0.004) and a smaller area of soft tissue (P = 0.008). Within the limits of this study, root cementum may modulate the healing pattern obtained by guided tissue regeneration in Class III furcation defects.

  8. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  9. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Iandolo, Donata; Ravichandran, Akhilandeshwari; Liu, Xianjie; Wen, Feng; Chan, Jerry K Y; Berggren, Magnus; Teoh, Swee-Hin; Simon, Daniel T

    2016-06-01

    Bones have been shown to exhibit piezoelectric properties, generating electrical potential upon mechanical deformation and responding to electrical stimulation with the generation of mechanical stress. Thus, the effects of electrical stimulation on bone tissue engineering have been extensively studied. However, in bone regeneration applications, only few studies have focused on the use of electroactive 3D biodegradable scaffolds at the interphase with stem cells. Here a method is described to combine the bone regeneration capabilities of 3D-printed macroporous medical grade polycaprolactone (PCL) scaffolds with the electrical and electrochemical capabilities of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). PCL scaffolds have been highly effective in vivo as bone regeneration grafts, and PEDOT is a leading material in the field of organic bioelectronics, due to its stability, conformability, and biocompatibility. A protocol is reported for scaffolds functionalization with PEDOT, using vapor-phase polymerization, resulting in a conformal conducting layer. Scaffolds' porosity and mechanical stability, important for in vivo bone regeneration applications, are retained. Human fetal mesenchymal stem cells proliferation is assessed on the functionalized scaffolds, showing the cytocompatibility of the polymeric coating. Altogether, these results show the feasibility of the proposed approach to obtain electroactive scaffolds for electrical stimulation of stem cells for regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration.

    Science.gov (United States)

    Albanese, Antonino; Licata, Maria E; Polizzi, Bianca; Campisi, Giuseppina

    2013-06-13

    Platelet-rich plasma (PRP) is a new approach to tissue regeneration and it is becoming a valuable adjunct to promote healing in many procedures in dental and oral surgery, especially in aging patients. PRP derives from the centrifugation of the patient's own blood and it contains growth factors that influence wound healing, thereby playing an important role in tissue repairing mechanisms. The use of PRP in surgical practice could have beneficial outcomes, reducing bleeding and enhancing soft tissue healing and bone regeneration. Studies conducted on humans have yielded promising results regarding the application of PRP to many dental and oral surgical procedures (i.e. tooth extractions, periodontal surgery, implant surgery). The use of PRP has also been proposed in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with the aim of enhancing wound healing and bone maturation. The aims of this narrative review are: i) to describe the different uses of PRP in dental surgery (tooth extractions and periodontal surgery) and oral surgery (soft tissues and bone tissue surgery, implant surgery and BRONJ surgery); and ii) to discuss its efficacy, efficiency and risk/benefit ratio. This review suggests that the use of PRP in the alveolar socket after tooth extractions is certainly capable of improving soft tissue healing and positively influencing bone regeneration but the latter effect seems to decrease a few days after the extraction. PRP has produced better results in periodontal therapy in association with other materials than when it is used alone. Promising results have also been obtained in implant surgery, when PRP was used in isolation as a coating material. The combination of necrotic bone curettage and PRP application seem to be encouraging for the treatment of refractory BRONJ, as it has proven successful outcomes with minimal invasivity. Since PRP is free from potential risks for patients, not difficult to obtain and use, it can be employed

  11. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration

    Science.gov (United States)

    2013-01-01

    Platelet-rich plasma (PRP) is a new approach to tissue regeneration and it is becoming a valuable adjunct to promote healing in many procedures in dental and oral surgery, especially in aging patients. PRP derives from the centrifugation of the patient's own blood and it contains growth factors that influence wound healing, thereby playing an important role in tissue repairing mechanisms. The use of PRP in surgical practice could have beneficial outcomes, reducing bleeding and enhancing soft tissue healing and bone regeneration. Studies conducted on humans have yielded promising results regarding the application of PRP to many dental and oral surgical procedures (i.e. tooth extractions, periodontal surgery, implant surgery). The use of PRP has also been proposed in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with the aim of enhancing wound healing and bone maturation. The aims of this narrative review are: i) to describe the different uses of PRP in dental surgery (tooth extractions and periodontal surgery) and oral surgery (soft tissues and bone tissue surgery, implant surgery and BRONJ surgery); and ii) to discuss its efficacy, efficiency and risk/benefit ratio. This review suggests that the use of PRP in the alveolar socket after tooth extractions is certainly capable of improving soft tissue healing and positively influencing bone regeneration but the latter effect seems to decrease a few days after the extraction. PRP has produced better results in periodontal therapy in association with other materials than when it is used alone. Promising results have also been obtained in implant surgery, when PRP was used in isolation as a coating material. The combination of necrotic bone curettage and PRP application seem to be encouraging for the treatment of refractory BRONJ, as it has proven successful outcomes with minimal invasivity. Since PRP is free from potential risks for patients, not difficult to obtain and use, it can be employed

  12. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.

    Science.gov (United States)

    Ma, Hongshi; Luo, Jian; Sun, Zhe; Xia, Lunguo; Shi, Mengchao; Liu, Mingyao; Chang, Jiang; Wu, Chengtie

    2016-12-01

    Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface. Taking advantage of biocompatibility, biodegradability and the excellent photothermal effect of polydopamine, the bifunctional scaffolds with mussel-inspired nanostructures could be used as a satisfactory and controllable photothermal agent, which effectively induced tumor cell death in vitro, and significantly inhibited tumor growth in mice. In addition, owing to the nanostructured surface, the prepared polydopamine-modified bioceramic scaffolds could support the attachment and proliferation of rabbit bone mesenchymal stem cells (rBMSCs), and significantly promoted the formation of new bone tissues in rabbit bone defects even under photothermal treatment. Therefore, the mussel-inspired nanostructures in 3D-printed bioceramic exhibited a remarkable capability for both cancer therapy and bone regeneration, offering a promising strategy to construct bifunctional biomaterials which could be widely used for therapy of tumor-induced tissue defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bioceramics of apatites: an option for bone regeneration

    International Nuclear Information System (INIS)

    Arxer, Eliana Alves; Almeida Filho, Edson de; Guastaldi, Antonio Carlos

    2011-01-01

    The bioceramics of calcium phosphate called apatite, are widely used as material for bone replacement and regeneration, due to its similarity to the mineral component of bones and teeth. The apatites are biocompatible, bioactive and integrate with living tissue by the same active process of physiological bone remodeling. These bioceramics may be used in medical, dental and orthopedic applications. In this research, it was used the wet method for the synthesis of the powder and biomimetic method for coating the surface. The Solubility study was performed in the layer deposited, apatite, for possible application as a platform for inorganic drug delivery. The bioceramics were characterized by MEV, DRX, and EDS. The curves of solubility of apatite in coatings showed that the OCP phase had a higher rate of release in the short term (4 days) while the HA phase showed a gradual release throughout the experiment (16 days). (author)

  14. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  15. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.

    Science.gov (United States)

    Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming

    2017-07-01

    Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  17. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  18. An update on the Application of Nanotechnology in Bone Tissue Engineering.

    Science.gov (United States)

    Griffin, M F; Kalaskar, D M; Seifalian, A; Butler, P E

    2016-01-01

    Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Future studies to improve the application of nanomaterials for bone tissue engineering are needed.

  19. Role of pore size and morphology in musculo-skeletal tissue regeneration

    International Nuclear Information System (INIS)

    Perez, Roman A.; Mestres, Gemma

    2016-01-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  20. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  1. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation.

    Science.gov (United States)

    Lopes, Noella; Vachon, Hortense; Marie, Julien; Irla, Magali

    2017-06-01

    Cytoablative treatments lead to severe damages on thymic epithelial cells (TECs), which result in delayed de novo thymopoiesis and a prolonged period of T-cell immunodeficiency. Understanding the mechanisms that govern thymic regeneration is of paramount interest for the recovery of a functional immune system notably after bone marrow transplantation (BMT). Here, we show that RANK ligand (RANKL) is upregulated in CD4 + thymocytes and lymphoid tissue inducer (LTi) cells during the early phase of thymic regeneration. Importantly, whereas RANKL neutralization alters TEC recovery after irradiation, ex vivo RANKL administration during BMT boosts the regeneration of TEC subsets including thymic epithelial progenitor-enriched cells, thymus homing of lymphoid progenitors, and de novo thymopoiesis. RANKL increases specifically in LTi cells, lymphotoxin α, which is critical for thymic regeneration. RANKL treatment, dependent on lymphotoxin α, is beneficial upon BMT in young and aged individuals. This study thus indicates that RANKL may be clinically useful to improve T-cell function recovery after BMT by controlling multiple facets of thymic regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Novel Therapy for Bone Regeneration in Large Segmental Defects

    Science.gov (United States)

    2017-12-01

    Nanohydrox- yapatite- coated electrospun poly(L-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation... Bone Regeneration in a Large Animal Critical Sized Defect Model, Second Annual Symposium on Cell Therapy and Regenerative Medicine, 2016 4...osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property

  3. PATHOHISTOLOGICAL INVESTIGATION ON THE INFLUENCE OF INTRACANAL MEDICATION ON THE REGENERATION OF JAW BONE

    Directory of Open Access Journals (Sweden)

    Anatoliy Borysenko

    2012-12-01

    Full Text Available The results of histological investigation on the influence of the proposed drug composition (metronidazole, enterosgel (Sigma, alflutop (Biotehnos S.A., Romania for experimental mandible bone defect regeneration in rats were presented. The high efficiency and osteoregenerative properties of this paste were shown, and its significant clinical efficiency for temporary placement into the root canals in the treatment of chronic apical periodontitis, for stimulating regeneration of the damaged periapical tissues, was assessed.

  4. Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Guo H

    2012-07-01

    incorporation of WNFs into CPC improved the biological properties for wnf-CPC. Following the implantation of wnf-CPC into bone defects of rabbits, histological evaluation showed that wnf-CPC enhanced the efficiency of new bone formation in comparison with CPC, indicating excellent biocompatibility and osteogenesis of wnf-CPC. In conclusion, wnf-CPC exhibited promising prospects in bone regeneration.Keywords: calcium phosphate cement, degradability, cell and tissue responses, biocompatibility

  5. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications

    Directory of Open Access Journals (Sweden)

    Hui Xie

    2016-05-01

    Full Text Available One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering.

  6. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie

    2015-11-04

    Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.

  7. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

    Directory of Open Access Journals (Sweden)

    Gu W

    2013-06-01

    Full Text Available Wenyi Gu,1,2 Chengtie Wu,3 Jiezhong Chen,1 Yin Xiao1 1Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; 2Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia; 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China Abstract: Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. Keywords: nanoparticles, nanostructured scaffold, cancer bone metastasis, bone diseases, target drug delivery, bone regeneration

  8. The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues

    Directory of Open Access Journals (Sweden)

    Naosuke Kamei

    2017-01-01

    Full Text Available Endothelial progenitor cells (EPCs derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+ cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

  9. Unbiased stereological methods used for the quantitative evaluation of guided bone regeneration

    DEFF Research Database (Denmark)

    Aaboe, Else Merete; Pinholt, E M; Schou, S

    1998-01-01

    The present study describes the use of unbiased stereological methods for the quantitative evaluation of the amount of regenerated bone. Using the principle of guided bone regeneration the amount of regenerated bone after placement of degradable or non-degradable membranes covering defects...

  10. Novel Therapy for Bone Regeneration in Large Segmental Defects

    Science.gov (United States)

    2017-12-01

    can maintain bone length and allow successfully regeneration in segmental defects. r 2006 Elsevier Ltd. All rights reserved. Keywords: Bone...pre- formed endothelial networks, as the MSCs can act as pericytes to the newly formed blood vessels. Pirraco et al. [159] also cultured ECs and...AWARD NUMBER: W81XWH-13-1-0407 TITLE: Novel Therapy for Bone Regeneration in Large Segmental Defects PRINCIPAL INVESTIGATOR: Melissa Kacena

  11. Immediate placement and provisionalization of maxillary anterior single implant with guided bone regeneration, connective tissue graft, and coronally positioned flap procedures.

    Science.gov (United States)

    Waki, Tomonori; Kan, Joseph Y K

    2016-01-01

    Immediate implant placement and provisionalization in the esthetic zone have been documented with success. The benefit of immediate implant placement and provisionalization is the preservation of papillary mucosa. However, in cases with osseous defects presenting on the facial bony plate, immediate implant placement procedures have resulted in facial gingival recession. Subepithelial connective tissue grafts for immediate implant placement and provisionalization procedures have been reported with a good esthetic outcome. Biotype conversion around implants with subepithelial connective tissue grafts have been advocated, and the resulting tissues appear to be more resistant to recession. The dimensions of peri-implant mucosa in a thick biotype were significantly greater than in a thin biotype. Connective tissue graft with coronally positioned flap procedures on natural teeth has also been documented with success. This article describes a technique combining immediate implant placement, provisionalization, guided bone regeneration (GBR), connective tissue graft, and a coronally positioned flap in order to achieve more stable peri-implant tissue in facial osseous defect situations.

  12. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  13. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Amirsalar Khandan

    2014-01-01

    Full Text Available Introduction: Bone tissue engineering proposes a suitable way to regenerate lost bones. Different materials have been considered for use in bone tissue engineering. Hydroxyapatite (HA is a significant success of bioceramics as a bone tissue repairing biomaterial. Among different bioceramic materials, recent interest has been risen on fluorinated hydroxyapatites, (FHA, Ca 10 (PO 4 6 F x (OH 2−x . Fluorine ions can promote apatite formation and improve the stability of HA in the biological environments. Therefore, they have been developed for bone tissue engineering. The aim of this study was to synthesize and characterize the FHA nanopowder via mechanochemical (MC methods. Materials and Methods: Natural hydroxyapatite (NHA 95.7 wt.% and calcium fluoride (CaF 2 powder 4.3 wt.% were used for synthesis of FHA. MC reaction was performed in the planetary milling balls using a porcelain cup and alumina balls. Ratio of balls to reactant materials was 15:1 at 400 rpm rotation speed. The structures of the powdered particles formed at different milling times were evaluated by X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. Results: Fabrication of FHA from natural sources like bovine bone achieved after 8 h ball milling with pure nanopowder. Conclusion: F− ion enhances the crystallization and mechanical properties of HA in formation of bone. The produced FHA was in nano-scale, and its crystal size was about 80-90 nm with sphere distribution in shape and size. FHA powder is a suitable biomaterial for bone tissue engineering.

  14. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    Science.gov (United States)

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  15. The Axolotl Fibula as a Model for the Induction of Regeneration across Large Segment Defects in Long Bones of the Extremities.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available We tested the ability of the axolotl (Ambystoma mexicanum fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process.

  16. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application.

    Science.gov (United States)

    Masoudi Rad, Maryam; Nouri Khorasani, Saied; Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Foroughi, Mohammad Reza; Kharaziha, Mahshid; Saadatkish, Niloufar; Ramakrishna, Seeram

    2017-11-01

    Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (β-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of β-TCP nanoparticles in the structure of nanofibers containing 15% β-TCP. Moreover by addition of β-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of β-TCP in the structure of nanofibers, while addition of 15% of β-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% β-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% β-TCP could be selected as the optimum GBR membrane

  17. Application of VEGFA and FGF-9 enhances angiogenesis, osteogenesis and bone remodeling in type 2 diabetic long bone regeneration.

    Directory of Open Access Journals (Sweden)

    Christoph Wallner

    Full Text Available Although bone regeneration is typically a reliable process, type 2 diabetes is associated with impaired or delayed healing processes. In addition, angiogenesis, a crucial step in bone regeneration, is often altered in the diabetic state. In this study, different stages of bone regeneration were characterized in an unicortical bone defect model comparing transgenic type 2 diabetic (db-/db- and wild type (WT mice in vivo. We investigated angiogenesis, callus formation and bone remodeling at early, intermediate and late time points by means of histomorphometry as well as protein level analyses. In order to enhance bone regeneration, defects were locally treated with recombinant FGF-9 or VEGFA. Histomorphometry of aniline blue stained sections indicated that bone regeneration is significantly decreased in db-/db- as opposed to WT mice at intermediate (5 days post operation and late stages (7 days post operation of bone regeneration. Moreover, immunohistochemical analysis revealed significantly decreased levels of RUNX-2, PCNA, Osteocalcin and PECAM-1 in db-/db- defects. In addition, osteoclastogenesis is impaired in db-/db- indicating altered bone remodeling. These results indicate significant impairments in angiogenesis and osteogenesis in type 2 diabetic bones. Importantly, angiogenesis, osteogenesis and bone remodeling could be reconstituted by application of recombinant FGF-9 and, in part, by VEGFA application. In conclusion, our study demonstrates that type 2 diabetes affects angiogenesis, osteogenesis and subsequently bone remodeling, which in turn leads to decreased bone regeneration. These effects could be reversed by local application of FGF-9 and to a lesser degree VEGFA. These data could serve as a basis for future therapeutic applications aiming at improving bone regeneration in the type 2 diabetic patient population.

  18. In vivo evaluation of a simvastatin-loaded nanostructured lipid carrier for bone tissue regeneration

    International Nuclear Information System (INIS)

    Yue, Xinxin; Niu, Mao; Zhang, Te; Wang, Cheng; Wu, Wangxi; Zhang, Qi; Lai, Chunhua; Zhou, Lei; Wang, Zhonglei

    2016-01-01

    Alveolar bone loss has long been a challenge in clinical dental implant therapy. Simvastatin (SV) has been demonstrated to exert excellent anabolic effects on bone. However, the successful use of SV to increase bone formation in vivo largely depends on the local concentration of SV at the site of action, and there have been continuing efforts to develop an appropriate delivery system. Specifically, nanostructured lipid carrier (NLC) systems have become a popular type of encapsulation carrier system. Therefore, SV-loaded NLCs (SNs) (179.4 nm in diameter) were fabricated in this study, and the osteogenic effect of the SNs was evaluated in a critical-sized rabbit calvarial defect. Our results revealed that the SNs significantly enhanced bone formation in vivo, as evaluated by hematoxylin and eosin (HE) staining, immunohistochemistry, and a fluorescence analysis. Thus, this novel nanostructured carrier system could be a potential encapsulation carrier system for SV in bone regeneration applications. (paper)

  19. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Isaac A. Rodriguez

    2014-01-01

    Full Text Available Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP. PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use.

  20. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair.

    Science.gov (United States)

    Oshiro, Joao Augusto; Sato, Mariana Rillo; Scardueli, Cassio Rocha; Lopes de Oliveira, Guilherme Jose Pimentel; Abucafy, Marina Paiva; Chorilli, Marlus

    2017-01-01

    Bioactive molecules such as peptides and proteins can optimize the repair of bone tissue; however, the results are often unpredictable when administered alone, owing to their short biological half-life and instability. Thus, the development of bioactive molecule-loaded drug delivery systems (DDS) to repair bone tissue has been the subject of intense research. DDS can optimize the repair of bone tissue owing to their physicochemical properties, which improve cellular interactions and enable the incorporation and prolonged release of bioactive molecules. These characteristics are fundamental to favor bone tissue homeostasis, since the biological activity of these factors depends on how accessible they are to the cell. Considering the importance of these DDS, this review aims to present relevant information on DDS when loaded with osteogenic growth peptide and bone morphogenetic protein. These are bioactive molecules that are capable of modulating the differentiation and proliferation of mesenchymal cells in bone tissue cells. Moreover, we will present different approaches using these peptide and protein-loaded DDS, such as synthetic membranes and scaffolds for bone regeneration, synthetic grafts, bone cements, liposomes, and micelles, which aim at improving the therapeutic effectiveness, and we will compare their advantages with commercial systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

    Science.gov (United States)

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. PMID:23836972

  2. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.

    Science.gov (United States)

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

  3. Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized ε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion

    Directory of Open Access Journals (Sweden)

    Marion Strub

    2018-01-01

    Full Text Available Current approaches of regenerative therapies constitute strategies for bone tissue reparation and engineering, especially in the context of genetical diseases with skeletal defects. Bone regeneration using electrospun nanofibers’ implant has the following objectives: bone neoformation induction with rapid healing, reduced postoperative complications, and improvement of bone tissue quality. In vivo implantation of polycaprolactone (PCL biomembrane functionalized with BMP-2/Ibuprofen in mouse maxillary defects was followed by bone neoformation kinetics evaluation using microcomputed tomography. Wild-Type (WT and Tabby (Ta mice were used to compare effects on a normal phenotype and on a mutant model of ectodermal dysplasia (ED. After 21 days, no effect on bone neoformation was observed in Ta treated lesion (4% neoformation compared to 13% in the control lesion. Between the 21st and the 30th days, the use of biomembrane functionalized with BMP-2/Ibuprofen in maxillary bone lesions allowed a significant increase in bone neoformation peaks (resp., +8% in mutant Ta and +13% in WT. Histological analyses revealed a neoformed bone with regular trabecular structure, areas of mineralized bone inside the membrane, and an improved neovascularization in the treated lesion with bifunctionalized membrane. In conclusion, PCL functionalized biomembrane promoted bone neoformation, this effect being modulated by the Ta bone phenotype responsible for an alteration of bone response.

  4. Mechanical Properties of 3d Scaffolds for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Deividas Mizeras

    2017-01-01

    Full Text Available One of the biggest challenges in modern tissue engineering is a creation 3D scaffolds for bone tissue regeneration. Until now, in order to restore bone defects are used various bone substitutes (autologous and allogeneic, however, their usage is limited because is required additional surgery, possible complications, also limited their use is associated with ethical point of view. In this work we aim to determine the mechanical properties of 3D printed PLA objects having various orientation woodpile microarchitectures. In this work we chose three different 3D microarchitectures: woodpile BCC (each layer consists of parallel logs which are rotated 90 deg every next layer, woodpile FCC (every layer is additionally shifted half of the period in respect to the previous parallel log layer and a rotating woodpile 60 deg (each layer is rotated 60 deg in respect to the previous one. Compressive and bending tests were carried out with TIRAtest2300 universal testing machine. We found that 60 deg rotating woodpile geometry had the highest mechanical values which were approximately about 3 times higher than the BCC or FCC microstructures.

  5. In vitro evaluation of electrospun chitosan mats crosslinked with genipin as guided tissue regeneration barrier membranes

    Science.gov (United States)

    Norowski, Peter Andrew, Jr.

    Guided tissue regeneration (GTR) is a surgical technique commonly used to exclude bacteria and soft tissues from bone graft sites in oral/maxillofacial bone graft sites by using a barrier membrane to maintain the graft contour and space. Current clinical barrier membrane materials based on expanded polytetrafluoroethylene (ePTFE) and bovine type 1 collagen are non-ideal and experience a number of disadvantages including membrane exposure, bacterial colonization/biofilm formation and premature degradation, all of which result in increased surgical intervention and poor bone regeneration. These materials do not actively participate in tissue regeneration, however bioactive materials, such as chitosan, may provide advantages such as the ability to stimulate wound healing and de novo bone formation. Our hypothesis is that electrospun chitosan GTR membranes will support cell attachment and growth but prevent cell infiltration/penetration of membrane, demonstrate in vitro degradation predictive of 4--6 month in vivo functionality, and will deliver antibiotics locally to prevent/inhibit periopathogenic complications. To test this hypothesis a series of chitosan membranes were electrospun, in the presence or absence of genipin, a natural crosslinking agent, at concentrations of 5 and 10 mM. These membranes were characterized by scanning electron microscopy, tensile testing, suture pullout testing, Fourier transform infrared spectroscopy, X-ray diffraction, and gel permeation chromatography, and in vitro biodegradation for diameter/morphology of fibers, membrane strengths, degree of crosslinking, crystallinity, molecular weight, and degradation kinetics, respectively. Cytocompability of membranes was evaluated in osteoblastic, fibroblastic and monocyte cultures. The activity of minocycline loaded and released from the membranes was determined in zone of inhibition tests using P. gingivalis microbe. The results demonstrated that genipin crosslinking extended the in vitro

  6. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  7. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  8. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  9. Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    2014-02-01

    Full Text Available The aim of this study was to examine the bone regeneration properties of beta-tricalcium phosphate hydrothermally converted from foraminifera carbonate exoskeleton in the repair of rat calvarial defect. These natural materials possess unique interconnected porous network with uniform pore size distribution, which can be potentially advantageous. In total, 20 adult male Wistar rats received full-thickness calvarial defect with a diameter of 5 mm. The rate of newly formed bone was measured radiologically by X-ray and micro-computed tomography and by histologic examination. After 2 weeks, the beta-tricalcium phosphate group exhibited full closure of the defect site, while control group remained unrestored at the end of the 6-week experimentation. It was observed that the newly regenerated bone thickened over the course of the experiment in the beta-tricalcium phosphate group. No soft tissue reaction was observed around the beta-tricalcium phosphate implant and the rats remained healthy. These results showed that repair of the calvarial defect can be achieved by biomimetic beta-tricalcium phosphate macrospheres, which hold potential for application as bone grafts for bone augmentation surgeries.

  10. In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.

    Science.gov (United States)

    Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni

    2017-05-23

    Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor-host cell dynamics, tumor tropism, and hematopoietic cell transplantation.

  11. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.; Barradas, A.M.C.; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP),

  12. Instructive function of surface structure of calcium phosphate ceramics in bone regeneration

    NARCIS (Netherlands)

    Zhang, Jingwei

    2016-01-01

    The incidence of patients which require spinal fusion or bone regeneration in large bone defects caused by trauma, tumors, tumor resection, infections or abnormal skeletal development, is on the rise. Traditionally, in both spinal fusion surgery and other bone regeneration approaches, bone grafts

  13. Lyophilized Platelet-Rich Fibrin (PRF Promotes Craniofacial Bone Regeneration through Runx2

    Directory of Open Access Journals (Sweden)

    Qi Li

    2014-05-01

    Full Text Available Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF. LPRF caused a 4.8-fold ± 0.4-fold elevation in Runt-related transcription factor 2 (Runx2 expression in alveolar bone cells, compared to a 3.6-fold ± 0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p < 0.001 when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.

  14. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.

    Science.gov (United States)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong; Li, Hongmin; Chen, Fulin

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone.

    Science.gov (United States)

    Rivera, César; Monsalve, Francisco; Salas, Juan; Morán, Andrea; Suazo, Iván

    2013-12-01

    Platelet preparations promote bone regeneration by inducing cell migration, proliferation and differentiation in the area of the injury, which are essential processes for regeneration. In addition, several studies have indicated that simvastatin (SIMV), widely used for the treatment of hypercholesterolemia, stimulates osteogenesis. The objective of this study was to evaluate the effects of treatment with either platelet-rich plasma (PRP) or plasma rich in growth factors (PRGF) in combination with SIMV in the regeneration and repair of alveolar bone. The jaws of Sprague Dawley rats (n=18) were subjected to rotary instrument-induced bone damage (BD). Animals were divided into six groups: BD/H 2 O (n=3), distilled water without the drug and alveolar bone damage; BD/H 2 O/PRP (n=3), BD and PRP; BD/H 2 O/PRGF (n=3), BD and PRGF; BD/SIMV (n=3), BD and water with SIMV; BD/SIMV/PRP (n=3), BD, PRP and SIMV; and BD/SIMV/PRGF (n=3), BD, PRGF and SIMV. Conventional histological analysis (hematoxylin and eosin staining) revealed that the BD/SIMV group showed indicators for mature bone tissue, while the BD/SIMV/PRP and BD/SIMV/PRGF groups showed the coexistence of indicators for mature and immature bone tissue, with no statistical differences between the platelet preparations. Simvastatin did not improve the effect of platelet-rich plasma and plasma rich in growth factors. It was not possible to determine which platelet preparation produced superior effects.

  16. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures.

    Directory of Open Access Journals (Sweden)

    Chiara Gardin

    Full Text Available The combination of bone grafting materials with guided bone regeneration (GBR membranes seems to provide promising results to restore bone defects in dental clinical practice. In the first part of this work, a novel protocol for decellularization and delipidation of bovine bone, based on multiple steps of thermal shock, washes with detergent and dehydration with alcohol, is described. This protocol is more effective in removal of cellular materials, and shows superior biocompatibility compared to other three methods tested in this study. Furthermore, histological and morphological analyses confirm the maintenance of an intact bone extracellular matrix (ECM. In vitro and in vivo experiments evidence osteoinductive and osteoconductive properties of the produced scaffold, respectively. In the second part of this study, two methods of bovine pericardium decellularization are compared. The osmotic shock-based protocol gives better results in terms of removal of cell components, biocompatibility, maintenance of native ECM structure, and host tissue reaction, in respect to the freeze/thaw method. Overall, the results of this study demonstrate the characterization of a novel protocol for the decellularization of bovine bone to be used as bone graft, and the acquisition of a method to produce a pericardium membrane suitable for GBR applications.

  17. Articular Cartilage Increases Transition Zone Regeneration in Bone-tendon Junction Healing

    Science.gov (United States)

    Qin, Ling; Lee, Kwong Man; Leung, Kwok Sui

    2008-01-01

    The fibrocartilage transition zone in the direct bone-tendon junction reduces stress concentration and protects the junction from failure. Unfortunately, bone-tendon junctions often heal without fibrocartilage transition zone regeneration. We hypothesized articular cartilage grafts could increase fibrocartilage transition zone regeneration. Using a goat partial patellectomy repair model, autologous articular cartilage was harvested from the excised distal third patella and interposed between the residual proximal two-thirds bone fragment and tendon during repair in 36 knees. We evaluated fibrocartilage transition zone regeneration, bone formation, and mechanical strength after repair at 6, 12, and 24 weeks and compared them with direct repair. Autologous articular cartilage interposition resulted in more fibrocartilage transition zone regeneration (69.10% ± 14.11% [mean ± standard deviation] versus 8.67% ± 7.01% at 24 weeks) than direct repair at all times. There was no difference in the amount of bone formation and mechanical strength achieved. Autologous articular cartilage interposition increases fibrocartilage transition zone regeneration in bone-tendon junction healing, but additional research is required to ascertain the mechanism of stimulation and to establish the clinical applicability. PMID:18987921

  18. The influence of environmental factors on bone tissue engineering.

    Science.gov (United States)

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  19. Efficacy of Connective Tissue with and without Periosteum in Regeneration of Intrabony Defects

    Directory of Open Access Journals (Sweden)

    Vahid Esfahanian

    2014-12-01

    Full Text Available Background and aims. Connective tissue grafts with and without periosteum is used in regenerative treatments of bone and has demonstrated successful outcomes in previous investigations. The aim of present study was to evaluate the effec-tiveness of connective tissue graft with and without periosteum in regeneration of intrabony defects. Materials and methods. In this single-blind randomized split-mouth clinical trial, 15 pairs of intrabony defects in 15 pa-tients with moderate to advanced periodontitis were treated by periosteal connective tissue graft + ABBM (test group or non-periosteal connective tissue graft + ABBM (control group. Probing pocket depth, clinical attachment level, free gingi-val margin position, bone crestal position, crest defect depth and defect depth to stent were measured at baseline and after six months by surgical re-entry. Data was analyzed by Student’s t-test and paired t-tests (α=0.05. Results. Changes in clinical parameters after 6 months in the test and control groups were as follows: mean of PPD reduc-tion: 3.1±0.6 (P<0.0001; 2.5±1.0 mm (P<0.0001, CAL gain: 2.3±0.9 (P<0.0001; 2.2±1.0 mm (P<0.0001, bone fill: 2.2±0.7 mm (P<0.0001; 2.2±0.7 mm (P<0.0001, respectively. No significant differences in the position of free gingival margin were observed during 6 months compared to baseline in both groups. Conclusion. Combinations of periosteal connective tissue graft + ABBM and non-periosteal connective tissue graft + ABBM were similarly effective in treating intrabony defects without any favor for any group. Connective tissue and perio-steum can be equally effective in regeneration of intrabony defects.

  20. Perspectives on the role of nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Saiz, Eduardo; Zimmermann, Elizabeth A; Lee, Janice S; Wegst, Ulrike G K; Tomsia, Antoni P

    2013-01-01

    This review surveys new developments in bone tissue engineering, specifically focusing on the promising role of nanotechnology and describes future avenues of research. The review first reinforces the need to fabricate scaffolds with multi-dimensional hierarchies for improved mechanical integrity. Next, new advances to promote bioactivity by manipulating the nanolevel internal surfaces of scaffolds are examined followed by an evaluation of techniques using scaffolds as a vehicle for local drug delivery to promote bone regeneration/integration and methods of seeding cells into the scaffold. Through a review of the state of the field, critical questions are posed to guide future research toward producing materials and therapies to bring state-of-the-art technology to clinical settings. The development of scaffolds for bone regeneration requires a material able to promote rapid bone formation while possessing sufficient strength to prevent fracture under physiological loads. Success in simultaneously achieving mechanical integrity and sufficient bioactivity with a single material has been limited. However, the use of new tools to manipulate and characterize matter down to the nano-scale may enable a new generation of bone scaffolds that will surpass the performance of autologous bone implants. Published by Elsevier Ltd.

  1. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  2. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  3. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  4. The combined use of rhBMP-2/ACS, autogenous bone graft, a bovine bone mineral biomaterial, platelet-rich plasma, and guided bone regeneration at nonsubmerged implant placement for supracrestal bone augmentation. A case report.

    Science.gov (United States)

    Sclar, Anthony G; Best, Steven P

    2013-01-01

    This case report presents the clinical application and outcomes of the use of a combined approach to treat a patient with a severe alveolar defect. Recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge carrier, along with autogenous bone graft, bovine bone mineral, platelet-rich plasma, and guided bone regeneration, were used simultaneous with nonsubmerged implant placement. At 1 year postsurgery, healthy peri-implant soft tissues and radiographically stable peri-implant crestal bone levels were observed along with locally increased radiographic bone density. In addition, a cone beam computed tomography (CBCT) scan demonstrated apparent supracrestal peri-implant bone augmentation with the appearance of normal alveolar ridge contours, including the facial bone wall.

  5. In vitro aging of mineralized collagen-based composite as guided tissue regeneration membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pan, S.X. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China)]. E-mail: sx_pan@sina.com; Li, Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, H.L. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China); Bai, W. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China); Gu, Y.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2006-05-15

    The technique of guided tissue regeneration (GTR) has been developed for the regeneration of periodontal tissues, bone around natural teeth and dental implants. The aim of this study is to investigate the biodegradability and mechanic behavior of a novel mineralized nano-hydroxyapatite/collagen/poly (lactic acid) (nHAC/PLA) composite as GTR membrane in vitro. The elastic modulus and maximum tensile strength of GTR film samples with different nHAC/PLA ratio were measured to get an optimal nHAC/PLA ratio. Thermogravimetric analysis was conducted to evaluate the change of the inorganic component in the samples during the process of in vitro aging. Morphology of samples was checked by using scanning electron microscopy. On the basis of the above results, it can be concluded that the GTR membranes maintained integrity and the original appearance throughout the 1-month in vitro aging. There is an active dissolution and deposition process of crystals which is propitious to the bone formation on the surface of the composite membrane. The optimal nHAC/PLA ratio of the novel membrane is 0.4:1. For a longer period of bone repair, PLA with higher molecular weight should be chosen as the scaffold for the GTR membrane.

  6. Scaffold of chitosan-sodium alginate and hydroxyapatite with application potential for bone regeneration

    International Nuclear Information System (INIS)

    Rebelo, Marcia de A.; Alves, Thais F.R.; Lopes, Francielly C.C.N; Oliveira Junior, Jose Martins de; Pontes, Katiusca S.; Fogaca, Bruna A.C.; Chaud, Marco V.

    2015-01-01

    Scaffold for organic tissue regeneration are architectural, three-dimensional, porous, biocompatible and biodegradable devices. The first challenges to be met in the development of these devices to mimic the biomechanical properties of the target tissue. The aim of this study was to develop and to characterize scaffolds composed of chitosan (Ch), sodium alginate (SA), hydroxyapatite (HA). The scaffolds were obtained by lyophilization. HA has been incorporated into the polymer dispersion in Ch-AS concentration of 20 and 60%. The mechanical properties of the scaffold were determined by tensile and compression tests. Swelling capacity was assessed in the presence of simulated saliva, purified water, HCl 0.01M, NaOH 0.01M. The calcium content was quantified using fluorescence X-rays. Analysis of the results indicates that the Qt-AS-HA-60% scaffold obtained by lyophilization meets promising properties for bone tissue regeneration. (author)

  7. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    International Nuclear Information System (INIS)

    Cai, Yurong; Yu, Juhong; Kundu, Subhas C.; Yao, Juming

    2016-01-01

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  8. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  9. Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration.

    Science.gov (United States)

    Gredes, Tomasz; Gedrange, Tomasz; Hinüber, Claudia; Gelinsky, Michael; Kunert-Keil, Christiane

    2015-05-01

    Tissue engineered cell-seeded constructs with poly(3)hydroxybutyrate (PHB) induced ectopic bone formation after implantation into the back muscle of rats. The objective of our in vivo study was to evaluate the osteogenic potential of pure PHB patches in surgically created cranial defects. For this, PHB patches were analyzed after implantation in surgically created defects on the cranium of adult male rats. After healing periods of 4, 8 and 12 weeks, the bone tissue specimens containing PHB patches were processed and analyzed histologically as well as molecular-biologically. After 4 weeks, the PHB patches were completely embedded in connective tissue. Eight weeks after PHB insertion, bone regeneration proceeding from bearing bone was found in 50% of all treated animals, whereas all PHB treated cavities showed both bone formation and embedding of the patches in bone 12 weeks after surgery. Furthermore, all slices showed pronounced development of blood vessels. Histomorphometric analysis presented a regenerated bone mean value between 46.4 ± 16.1% and 54.2 ± 19.3% after 4-12 weeks of healing. Caveolin-1 staining in capillary-like structures showed a 1.16-1.38 fold increased expression in PHB treated defects compared to controls. Real-time RT-PCR analyses showed significantly lower expressions of Alpl, Col1a1 and VEGFA in cranium defects after treatment with PHB patches compared to untreated bony defects of the same cranium. Within the limits of the presented animal investigation, it could conclude that the tested PHB patches featured a good biocompatibility and an osteoconductive character. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  12. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  13. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  14. Efficacy of Platelet-Rich-Plasma (PRP and Highly Purified Bovine Xenograft (Laddec® Combination in Bone Regeneration after Cyst Enucleation: Radiological and Histological Evaluation

    Directory of Open Access Journals (Sweden)

    Sabrina Pappalardo

    2013-10-01

    Full Text Available Objectives: The purpose of the present study was to evaluate the efficacy of adding platelet-rich plasma (PRP to a new highly purified bovine allograft (Laddec® in the bone regeneration of cystic bony defects augmented following cystectomy.Material and Methods: Study sample included 20 patients undergoing cystectomy in which the bone defect was filled with PRP and Laddec®. All patients were examined with periapical radiographs before operation and at follow-up. After 3 months, at re-entry surgery for implant placement, bone core was taken for histological and histomorphometric analysis.Results: The postoperative successive radiographs showed a good regeneration of bone in the height of bony defects with application of PRP to bone graft. By the first postoperative month, about 48% of the defect was filled, which gradually increased in each month and showed about 90% of defect-fill by 6 months. Histological and histomorphometric analysis, showed a significant presence of bone tissue and vessels, with newly formed bone in contact with anorganic bone particles. The mean volume of vital bone was 68 ± 1.6% and the mean percentage of vital bone was 48 ± 2.4%. The mean percentage of inorganic particles in tissues was 20 ± 1.2% of the total volume. All the samples analyzed did not evidence the presence of inflammatory cells.Conclusions: The results of this study showed how the use of Laddec® in association with platelet-rich plasma allows bone regeneration and has a potential for routine clinical use for regeneration of cystic bony defects.

  15. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Castilla Bolaños, Maria Alejandra, E-mail: ma.castilla964@uniandes.edu.co; Buttigieg, Josef; Briceño Triana, Juan Carlos

    2017-03-01

    The fabricated small intestine submucosa (SIS) – hydroxyapatite (HAp) sponges can act as biomimetic scaffolds to be utilized in tissue engineering and regeneration. Here we developed SIS-HAp sponges and investigated their mechanical, physical and chemical characteristics using scanning electron microscopy, Fourier transformed infrared spectroscopy, uniaxial compression, porosity, and swelling testing techniques. The results demonstrated mechanical properties superior to comparable bone substitutes fabricated with similar methods. SIS-HAp scaffolds possess an interconnected macroporosity, similar to that of trabecular bone, hence presenting a novel biomaterial that may serve as a superior bone substitute and tissue scaffold. - Highlights: • Small intestine submucosa (SIS) – hydroxyapatite (HAp) scaffolds were developed. • SIS-HAp scaffolds possess a trabecular bone-like structure. • FTIR indicated a molecular interaction between the organic groups of SIS and HAp. • SIS-HAp sponges presented a superior Young modulus to comparable bone substitutes.

  16. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Castilla Bolaños, Maria Alejandra; Buttigieg, Josef; Briceño Triana, Juan Carlos

    2017-01-01

    The fabricated small intestine submucosa (SIS) – hydroxyapatite (HAp) sponges can act as biomimetic scaffolds to be utilized in tissue engineering and regeneration. Here we developed SIS-HAp sponges and investigated their mechanical, physical and chemical characteristics using scanning electron microscopy, Fourier transformed infrared spectroscopy, uniaxial compression, porosity, and swelling testing techniques. The results demonstrated mechanical properties superior to comparable bone substitutes fabricated with similar methods. SIS-HAp scaffolds possess an interconnected macroporosity, similar to that of trabecular bone, hence presenting a novel biomaterial that may serve as a superior bone substitute and tissue scaffold. - Highlights: • Small intestine submucosa (SIS) – hydroxyapatite (HAp) scaffolds were developed. • SIS-HAp scaffolds possess a trabecular bone-like structure. • FTIR indicated a molecular interaction between the organic groups of SIS and HAp. • SIS-HAp sponges presented a superior Young modulus to comparable bone substitutes.

  17. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Kuppevelt, T.H. van; Gonzales, V.K.; Buma, P.; Hout, J. in't; Vries, R.B.M. de; Daamen, W.F.

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline

  18. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    Directory of Open Access Journals (Sweden)

    Éva Korpos

    2015-01-01

    Full Text Available The extracellular matrix (ECM performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2 in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth.

  19. Manufacture of degradable polymeric scaffolds for bone regeneration.

    Science.gov (United States)

    Ge, Zigang; Jin, Zhaoxia; Cao, Tong

    2008-06-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques.

  20. Manufacture of degradable polymeric scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Ge Zigang; Jin Zhaoxia; Cao Tong

    2008-01-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques. (topical review)

  1. A review of fibrin and fibrin composites for bone tissue engineering.

    Science.gov (United States)

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the

  2. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    International Nuclear Information System (INIS)

    Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M.

    2013-01-01

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  3. Tissue-Engineered Tendon for Enthesis Regeneration in a Rat Rotator Cuff Model

    Directory of Open Access Journals (Sweden)

    Michael J. Smietana

    2017-06-01

    Full Text Available Healing of rotator cuff (RC injuries with current suture or augmented scaffold techniques fails to regenerate the enthesis and instead forms a weaker fibrovascular scar that is prone to subsequent failure. Regeneration of the enthesis is the key to improving clinical outcomes for RC injuries. We hypothesized that the utilization of our tissue-engineered tendon to repair either an acute or a chronic full-thickness supraspinatus tear would regenerate a functional enthesis and return the biomechanics of the tendon back to that found in native tissue. Engineered tendons were fabricated from bone marrow-derived mesenchymal stem cells utilizing our well-described fabrication technology. Forty-three rats underwent unilateral detachment of the supraspinatus tendon followed by acute (immediate or chronic (4 weeks retracted repair by using either our engineered tendon or a trans-osseous suture technique. Animals were sacrificed at 8 weeks. Biomechanical and histological analyses of the regenerated enthesis and tendon were performed. Statistical analysis was performed by using a one-way analysis of variance with significance set at p < 0.05. Acute repairs using engineered tendon had improved enthesis structure and lower biomechanical failures compared with suture repairs. Chronic repairs with engineered tendon had a more native-like enthesis with increased fibrocartilage formation, reduced scar formation, and lower biomechanical failure compared with suture repair. Thus, the utilization of our tissue-engineered tendon showed improve enthesis regeneration and improved function in chronic RC repairs compared with suture repair. Clinical Significance: Our engineered tendon construct shows promise as a clinically relevant method for repair of RC injuries.

  4. The application of nanomaterials in controlled drug delivery for bone regeneration.

    Science.gov (United States)

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  5. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  6. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  7. Evaluation of the effect of a gamma irradiated DBM-pluronic F127 composite on bone regeneration in Wistar rat.

    Directory of Open Access Journals (Sweden)

    Tamer Al Kayal

    Full Text Available Demineralized bone matrix (DBM is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling. In this study we evaluated the effect of gamma irradiation on the physical-chemical properties of Pluronic and on bone morphogenetic proteins (BMPs amount in DBM samples. In vivo studies were carried out to investigate the effect on bone regeneration of a gamma irradiated DBM-Pluronic F127 (DBM-PF127 composite implanted in the femur of rats. Gamma irradiation effects (25 kGy on physical-chemical properties of Pluronic F127 were investigated by rheological and infrared analysis. The BMP-2/BMP-7 amount after DBM irradiation was evaluated by ELISA. Bone regeneration capacity of DBM-PF127 containing 40% (w/w of DBM was investigated in transcortical holes created in the femoral diaphysis of Wistar rat. Bone porosity, repaired bone volume and tissue organization were evaluated at 15, 30 and 90 days by Micro-CT and histological analysis. The results showed that gamma irradiation did not induce significant modification on physical-chemical properties of Pluronic, while a decrease in BMP-2/BMP-7 amount was evidenced in sterilized DBM. Micro-CT and histological evaluation at day 15 post-implantation revealed an interconnected trabeculae network in medullar cavity and cellular infiltration and vascularization of DBM-PF127 residue. In contrast a large rate of not connected trabeculae was observed in Pluronic filled and unfilled defects. At 30 and 90 days the DBM-PF127 samples shown comparable results in term of density and thickness of the new formed tissue respect to unfilled defect. In conclusion a gamma irradiated DBM-PF127 composite, although it may have undergone a significant decrease in the concentration of BMPs, was able to maintains bone regeneration capability.

  8. Aesthetic Surgical Approach for Bone Dehiscence Treatment by Means of Single Implant and Interdental Tissue Regeneration: A Case Report with Five Years of Follow-Up

    Directory of Open Access Journals (Sweden)

    Giorgio Lombardo

    2016-01-01

    Full Text Available The replacement of single anterior teeth by means of endosseous implants implies the achievement of success in restoring both aesthetic and function. However, the presence of wide endoperiodontal lesions can lead to horizontal hard and soft tissues defects after tooth extraction, making it impossible to correctly place an implant in the compromised alveolar socket. Vertical augmentation procedures have been proposed to solve these clinical situations, but the amount of new regenerated bone is still not predictable. Furthermore, bone augmentation can be complicated by the presence of adjacent teeth, especially if they bring with them periodontal defects. Therefore, it is used to restore periodontal health of adjacent teeth before making any augmentation procedures and to wait a certain healing period before placing an implant in vertically augmented sites, otherwise risking to obtain a nonsatisfactory aesthetic result. All of these procedures, however, lead to an expansion of treatment time which should affect patient compliance. For this reason, this case report suggests a surgical technique to perform vertical bone augmentation at a single gap left by a central upper incisor while placing an implant and simultaneously to regenerate the periodontal attachment of an adjacent lateral incisor, without compromising the aesthetic result.

  9. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges

    International Nuclear Information System (INIS)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-01-01

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group. (paper)

  10. Periodontal tissue regeneration with PRP incorporated gelatin hydrogel sponges.

    Science.gov (United States)

    Nakajima, Dai; Tabata, Yasuhiko; Sato, Soh

    2015-10-20

    Gelatin hydrogels have been designed and prepared for the controlled release of the transforming growth factor (TGF-b1) and the platelet-derived growth factor (PDGF-BB). PRP (Platelet rich plasma) contains many growth factors including the PDGF and TGF-b1. The objective of this study was to evaluate the regeneration of periodontal tissue following the controlled release of growth factors in PRP. For the periodontal ligament cells and osteoblast, PRP of different concentrations was added. The assessment of DNA, mitochondrial activity and ALP activity were measured. To evaluate the TGF-β1 release from PRP incorporated gelatin sponge, amounts of TGF-β1 in each supernatant sample were determined by the ELISA. Transplantation experiments to prepare a bone defect in a rat alveolar bone were an implanted gelatin sponge incorporated with different concentration PRP. In DNA assay and MTT assay, after the addition of PRP to the periodontal ligament cells and osteoblast, the cell count and mitochondrial activity had increased the most in the group with the addition of 5  ×  PRP. In the ALP assay, after the addition of PRP to the periodontal ligament cells, the cell activity had increased the most in the group with the addition of 3  ×  PRP. In the transplantation, the size of the bone regenerated in the defect with 3  ×  PRP incorporated gelatin sponge was larger than that of the other group.

  11. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    Science.gov (United States)

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Denry, Isabelle; Kuhn, Liisa T

    2016-01-01

    Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration

    Science.gov (United States)

    Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L.; Muneoka, Ken

    2013-01-01

    A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue

  14. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    Full Text Available A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3 leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2, fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3 and incompetent (P2 levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of

  15. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach.

    Science.gov (United States)

    Yu, Xiaohua; Wang, Liping; Xia, Zengmin; Chen, Li; Jiang, Xi; Rowe, David; Wei, Mei

    2014-02-01

    Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.

  16. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. 3D-Printed Bioactive Ca3SiO5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration.

    Science.gov (United States)

    Yang, Chen; Wang, Xiaoya; Ma, Bing; Zhu, Haibo; Huan, Zhiguang; Ma, Nan; Wu, Chengtie; Chang, Jiang

    2017-02-22

    Silicate bioactive materials have been widely studied for bone regeneration because of their eminent physicochemical properties and outstanding osteogenic bioactivity, and different methods have been developed to prepare porous silicate bioactive ceramics scaffolds for bone-tissue engineering applications. Among all of these methods, the 3D-printing technique is obviously the most efficient way to control the porous structure. However, 3D-printed bioceramic porous scaffolds need high-temperature sintering, which will cause volume shrinkage and reduce the controllability of the pore structure accuracy. Unlike silicate bioceramic, bioactive silicate cements such as tricalcium silicate (Ca 3 SiO 5 and C 3 S) can be self-set in water to obtain high mechanical strength under mild conditions. Another advantage of using C 3 S to prepare 3D scaffolds is the possibility of simultaneous drug loading. Herein, we, for the first time, demonstrated successful preparation of uniform 3D-printed C 3 S bone cement scaffolds with controllable 3D structure at room temperature. The scaffolds were loaded with two model drugs and showed a loading location controllable drug-release profile. In addition, we developed a surface modification process to create controllable nanotopography on the surface of pore wall of the scaffolds, which showed activity to enhance rat bone-marrow stem cells (rBMSCs) attachment, spreading, and ALP activities. The in vivo experiments revealed that the 3D-printed C 3 S bone cement scaffolds with nanoneedle-structured surfaces significantly improved bone regeneration, as compared to pure C 3 S bone cement scaffolds, suggesting that 3D-printed C 3 S bone cement scaffolds with controllable nanotopography surface are bioactive implantable biomaterials for bone repair.

  18. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. Bone atrophy after tooth loss may leave insufficient bone for implant placement. We compared volumetric changes after autogenous ramus block bone grafting (RBG or guided bone regeneration (GBR in horizontally deficient maxilla before implant placement. Materials and Methods. In this retrospective study, volumetric changes at RBG or GBR graft sites were evaluated using cone-beam computed tomography. The primary outcome variable was the volumetric resorption rate. Secondary outcomes were bone gain, graft success, and implant insertion torque. Results. Twenty-four patients (28 grafted sites were included (GBR, 15; RBG, 13. One patient (RBG suffered mucosal dehiscence at the recipient site 6 weeks after surgery, which healed spontaneously. Mean volume reduction in the GBR and RBG groups was 12.48 ± 2.67% and 7.20 ± 1.40%, respectively. GBR resulted in significantly more bone resorption than RBG (P0.05. Conclusions. Both RBG and GBR hard-tissue augmentation techniques provide adequate bone graft volume and stability for implant insertion. However, GBR causes greater resorption at maxillary augmented sites than RBG, which clinicians should consider during treatment planning.

  19. Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?

    Directory of Open Access Journals (Sweden)

    Boris Michael Holzapfel

    2013-01-01

    Full Text Available Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.

  20. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, M. [Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna (Italy); Pagani, S., E-mail: stefania.pagani@ior.it [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna (Italy); Ferrari, A. [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna (Italy); Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna (Italy); Costa, V.; Carina, V. [Innovative Technology Platform for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo (Italy); Figallo, E. [Fin-Ceramica Faenza SpA, Faenza, Ravenna (Italy); Maltarello, M.C. [Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna (Italy); Martini, L.; Fini, M. [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna (Italy); Giavaresi, G. [Innovative Technology Platform for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo (Italy)

    2017-01-01

    Current treatments for acute or degenerative chondral and osteochondral lesions are in need of improvement, as these types of injuries lead to disability and worsen the quality of life in a high percentage of patients. The aim of this study was to develop a new bi-layered scaffold for osteochondral tissue regeneration through a “biomimetic” and “bioinspired” approach. For chondral regeneration, the scaffold was realized with an organic compound (type I collagen), while for the regeneration of the subchondral layer, bioactive magnesium-doped hydroxyapatite (Mg/HA) crystals were co-precipitated with the organic component of the scaffold. The entire scaffold structure was stabilized with a cross-linking agent, highly reactive bis-epoxyde (1,4-butanediol diglycidyl ether – BDDGE 1 wt%). The developed scaffold was then characterized for its physico-chemical characteristics. Its structure and adhesion strength between the integrated layers were investigated. At the same time, in vitro cell culture studies were carried out to examine the ability of chondral and bone scaffold layers to separately support adhesion, proliferation and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts, respectively. Moreover, an in vivo study with nude mice, transplanted with osteochondral scaffolds plain or engineered with undifferentiated hMSCs, was also set up with 4 and 8-week time points. The results showed that chondral and bone scaffold layers represented biocompatible scaffolds able to sustain hMSCs attachment and proliferation. Moreover, the association of scaffold stimuli and differentiation medium, induced hMSCs chondrogenic and osteogenic differentiation and deposition of extracellular matrix (ECM). The ectopic implantation of the engineered osteochondral scaffolds indicated that hMSCs were able to colonize the osteochondral scaffold in depth. The scaffold appeared permissive to tissue growth and penetration, ensuring the diffusion

  1. The paradoxes in patterns and mechanism of bone marrow regeneration after irradiation. 1

    International Nuclear Information System (INIS)

    Scarantino, C.W.; Rubin, P.; Constine, L.S. III

    1984-01-01

    Bone marrow regeneration following irradiation has been largely studied as a dose-effect phenomenon, however, a large literature has simultaneously developed utilizing a wide variety of volumes, both in clinical studies and in experimental studies. Volume factors, more than dose, determine patterns of suppression and regeneration which have been documented by a variety of assay systems. Experimental evidence is presented which indicates that high dose irradiation to large volumes of bone marrow does not completely suppress bone marrow regeneration but results in a rapid compensatory response. Comparisons are made between the small and larger volumes at similar doses and indicate a greater overall compensatory response after the larger field irradiation, being more rapid in onset particularly after the 1000 rad dose. Although in-field regeneration of bone marrow occurs after single dose radiation to different volumes of bone marrow, experimental and clinical evidence from protracted conventional doses of irradiation to different volumes of bone marrow indicate significantly different response mechanisms. (Auth.)

  2. Bone regeneration performance of surface-treated porous titanium.

    Science.gov (United States)

    Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas

    2014-08-01

    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone

  3. The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: a histologic and histomorphometric study.

    Science.gov (United States)

    Anitua, Eduardo; Orive, Gorka; Pla, Rafael; Roman, Pedro; Serrano, Victoriano; Andía, Isabel

    2009-10-01

    The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained from venous blood of three goats and applied either as a 3D fibrin scaffold (scaffold-like PRGF) in the regeneration of artificial defects or as liquid PRGF via humidifying the implants before their insertion. Initially, 12 defects were filled with scaffold-like PRGF and another 12 were used as controls. The histological analysis at 8 weeks revealed mature bone trabeculae when PRGF was used, whereas the control samples showed mainly connective tissue with incipient signs of bone formation. For the second set of experiments, 26 implants (13 humidified with liquid PRGF) were placed in the tibiae of goats. Histological and histomorphometric results demonstrated that application of liquid PRGF increased the percentage of bone-implant contact in 84.7%. The whole surface of the PRGF-treated implants was covered by newly formed bone, whereas only the upper half was surrounded in control implants. In summary, PRGF can accelerate bone regeneration in artificial defects and improve the osseointegration of titanium dental implants.

  4. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    Science.gov (United States)

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  6. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.

    Science.gov (United States)

    Emilov-Velev, K; Clemente-de-Arriba, C; Alobera-García, M Á; Moreno-Sansalvador, E M; Campo-Loarte, J

    2015-01-01

    Many substances (growth factors and hormones) have osteoinduction properties and when added to some osteoconduction biomaterial they accelerate bone neoformation properties. The materials included 15 New Zealand rabbits, calcium phosphate cement (Calcibon(®)), human growth hormone (GH), and plasma rich in platelets (PRP). Each animal was operated on in both proximal tibias and a critical size bone defect of 6mm of diameter was made. The animals were separated into the following study groups: Control (regeneration only by Calcibon®), PRP (regeneration by Calcibon® and PRP), GH (regeneration by Calcibon® and GH). All the animals were sacrificed at 28 days. An evaluation was made of the appearance of the proximal extreme of rabbit tibiae in all the animals, and to check the filling of the critical size defect. A histological assessment was made of the tissue response, the presence of new bone formation, and the appearance of the biomaterial. Morphometry was performed using the MIP 45 image analyser. ANOVA statistical analysis was performed using the Statgraphics software application. The macroscopic appearance of the critical defect was better in the PRP and the GH group than in the control group. Histologically greater new bone formation was found in the PRP and GH groups. No statistically significant differences were detected in the morphometric study between bone formation observed in the PRP group and the control group. Significant differences in increased bone formation were found in the GH group (p=0.03) compared to the other two groups. GH facilitates bone regeneration in critical defects filled with calcium phosphate cement in the time period studied in New Zealand rabbits. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  7. Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs.

    Science.gov (United States)

    Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio

    2015-06-01

    The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P  0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.

  8. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  9. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends.

    Science.gov (United States)

    Rezvani, Zahra; Venugopal, Jayarama R; Urbanska, Aleksandra M; Mills, David K; Ramakrishna, Seeram; Mozafari, Masoud

    2016-10-01

    Tissue engineering aims to develop therapeutic products that utilize a combination of scaffolds with viable cell systems or responsive biomolecules derived from such cells, for the repair, restoration/regeneration of tissues. Here, the main goal is to enable the body to heal itself by the introduction of electrospun scaffolds, such that the body recognizes them as its own and in turn uses them to regenerate "neo-native" functional tissues. During the last decade, innovative nanofibrous scaffolds have attracted substantial interest in bone tissue engineering. The electrospinning process makes it possible to fabricate appropriate scaffolds for bone tissue engineering from different categories of nanobiomaterials having the ability of controlled delivery of drugs in the defective tissues. It is expected that with the progress in science and technology, better bone constructs will be proposed in the future. This review discusses the innovative approaches into electrospinning techniques for the fabrication of nanofibrous scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  11. Antibody-Mediated Osseous Regeneration for Bone Tissue Engineering in Canine Segmental Defects

    Directory of Open Access Journals (Sweden)

    A. Khojasteh

    2018-01-01

    Full Text Available Among many applications of therapeutic monoclonal antibodies (mAbs, a unique approach for regenerative medicine has entailed antibody-mediated osseous regeneration (AMOR. In an effort to identify a clinically relevant model of craniofacial defect, the present study investigated the efficacy of mAb specific for bone morphogenetic protein- (BMP- 2 to repair canine segmental mandibular continuity defect model. Accordingly, a 15 mm unilateral segmental defect was created in mandible and fixated with a titanium plate. Anorganic bovine bone mineral with 10% collagen (ABBM-C was functionalized with 25 μg/mL of either chimeric anti-BMP-2 mAb or isotype-matched mAb (negative control. Recombinant human (rh BMP-2 served as positive control. Morphometric analyses were performed on computed tomography (CT and histologic images. Bone densities within healed defect sites at 12 weeks after surgery were 1360.81 ± 10.52 Hounsfield Unit (HU, 1044.27 ± 141.16 HU, and 839.45 ± 179.41 HU, in sites with implanted anti-BMP-2 mAb, rhBMP-2, and isotype mAb groups, respectively. Osteoid bone formation in anti-BMP-2 mAb (42.99% ± 8.67 and rhBMP-2 (48.97% ± 2.96 groups was not significantly different but was higher (p<0.05 than in sites with isotype control mAb (26.8% ± 5.35. In view of the long-term objective of translational application of AMOR in humans, the results of the present study demonstrated the feasibility of AMOR in a large clinically relevant animal model.

  12. Histone deacetylases and their roles in mineralized tissue regeneration

    Directory of Open Access Journals (Sweden)

    Nam Cong-Nhat Huynh

    2017-12-01

    Full Text Available Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs and histone deacetylases (HDACs. HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin.

  13. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India); Kumar, Ritesh [Center for Computational Biology, University of Kansas, Kansas 66045 (United States); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India)

    2017-02-01

    In the present study, goat-lung scaffold was fabricated by decellularization of lung tissue and verified for complete cell removal by DNA quantification, DAPI and H&E staining. The scaffold was then modified by crosslinking with quercetin and nanohydroxyapatite (nHAp), and characterized to evaluate the suitability of quercetin-crosslinked nHAp-modified scaffold for regeneration of bone tissue. The crosslinking chemistry between quercetin and decellularized scaffold was established theoretically by AutoDock Vina program (in silico docking study), which predicted multiple intermolecular hydrogen bonding interactions between quercetin and decellularized scaffold, and FTIR spectroscopy analysis also proved the same. From MTT assay and SEM studies, it was found that the quercetin-crosslinked nHAp-modified decellularized scaffold encouraged better growth and proliferation of bone-marrow derived mesenchymal stem cells (BMMSCs) in comparison to unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold. Alkaline Phosphatase (ALP) assay results showed highest expression of ALP over quercetin-crosslinked nHAp-modified scaffold among all the tested scaffolds (unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold) − indicating that quercetin and nHAp is very much efficient in stimulating the differentiation of BMMSCs into osteoblast cells. Alizarin red test quantified in vitro mineralization (calcium deposits), and increased expression of alizarin red over quercetin-crosslinked nHAp-modified scaffold indicating better stimulation of osteogenesis in BMMSCs. The above findings suggest that quercetin-crosslinked nHAp-modified decellularized goat-lung scaffold provides biomimetic bone-like microenvironment for BMMSCs to differentiate into osteoblast and could be applied as a potential promising biomaterial for bone regeneration. - Highlights:

  14. Adjunctive Systemic Antimicrobial Therapy vs Asepsis in Conjunction with Guided Tissue Regeneration: A Randomized, Controlled Clinical Trial.

    Science.gov (United States)

    Abu-Ta'a, Mahmoud

    2016-01-01

    This randomized clinical trial compares the usefulness of adjunctive antibiotics, while strict asepsis was followed during periodontal surgery involving guided tissue regeneration. Two groups of 20 consecutive patients each with advanced periodontal disease were randomly assigned to treatment. They displayed one angular defect each with an intrabony component ≥3 mm, probing pocket depth and probing attachment level (PAL) ≥7 mm. Test group included 13 males, mean age 60 years, treated with enamel matrix derivative (EMD) and demineralized freeze-dried bone allograft with modified papilla preservation technique, received oral amoxicillin 1 gm, 1 hour preoperatively and 2 gm for 2 days postoperatively. Control group included 10 males, mean age 57 years, treated with EMD and demineralized freeze-dried bone allograft with modified papilla preservation technique, received no antibiotics. Outcome measures were clinical attachment level (CAL) gain, residual periodontal pocket depth (res. PD), gingival recession (GR), bleeding on probing (BOP), adverse events and postoperative complications. Patients were followed up to 12 months after periodontal surgery involving guided tissue regeneration. There were no significant differences between both groups for CAL gain, res. PD, GR, BOP nor other clinical parameters, though patients' subjective perception of postoperative discomfort was significantly smaller in the group receiving antibiotics. Antibiotics do not provide significant advantages concerning clinical periodontal parameters nor concerning postoperative infections in case of proper asepsis. It does, on the contrary, reduce postoperative discomfort. Regarding the results of this study, adjunc-tive systemic antibiotics in combination with guided tissue regeneration may be useful in reducing postoperative discomfort but may not be helpful for improving periodontal regeneration outcomes.

  15. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M., E-mail: milva.battaglia@ior.it [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Rimondi, E. [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Monti, C. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Guaraldi, F. [Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD (United States); Sant' Andrea, A. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Buda, R.; Cavallo, M.; Giannini, S.; Vannini, F. [Clinical Orthopaedic and Traumatology Unit II, Rizzoli Orthopaedic Institute, Bologna (Italy)

    2011-11-15

    Objective: Bone marrow derived cell transplantation (BMDCT) has been recently suggested as a possible surgical technique to repair osteochondral lesions. To date, no qualitative MRI studies have evaluated its efficacy. The aim of our study is to investigate the validity of MRI T2-mapping sequence in characterizing the reparative tissue obtained and its ability to correlate with clinical results. Methods and materials: 20 patients with an osteochondral lesion of the talus underwent BMDCT and were evaluated at 2 years follow up using MRI T2-mapping sequence. 20 healthy volunteers were recruited as controls. MRI images were acquired using a protocol suggested by the International Cartilage Repair Society, MOCART scoring system and T2 mapping. Results were then correlated with AOFAS clinical score. Results: AOFAS score increased from 66.8 {+-} 14.5 pre-operatively to 91.2 {+-} 8.3 (p < 0.0005) at 2 years follow-up. T2-relaxation time value of 35-45 ms was derived from healthy ankles evaluation and assumed as normal hyaline cartilage value and used as a control. Regenerated tissue with a T2-relaxation time value comparable to hyaline cartilage was found in all the cases treated, covering a mean of 78% of the repaired lesion area. A high clinical score was related directly to isointense signal in DPFSE fat sat (p = 0.05), and percentage of regenerated hyaline cartilage (p = 0.05), inversely to the percentage of regenerated fibrocartilage. Lesion's depth negatively related to the integrity of the repaired tissue's surface (tau = -0.523, p = 0.007), and to the percentage of regenerated hyaline cartilage (rho = -0.546, p = 0.013). Conclusions: Because of its ability to detect cartilage's quality and to correlate to the clinical score, MRI T2-mapping sequence integrated with Mocart score represent a valid, non-invasive technique for qualitative cartilage assessment after regenerative surgical procedures.

  16. Strontium-rich injectable hybrid system for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Nuno, E-mail: nsmneves@gmail.com [Instituto de Investigação e Inovação em Saúde, Universidade do Porto (Portugal); INEB — Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); FMUP — Faculdade de Medicina da Universidade do Porto, Departamento de Cirurgia, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Campos, Bruno B. [FCUP — Faculdade de Ciências da Universidade do Porto, Centro de Investigação em Química, Departamento de Química e Bioquímica, Rua do Campo Alegre 1021/1055, 4169-007 Porto (Portugal); Almeida, Isabel F.; Costa, Paulo C. [FFUP — Faculdade de Farmácia da Universidade do Porto, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); Cabral, Abel Trigo [FMUP — Faculdade de Medicina da Universidade do Porto, Departamento de Cirurgia, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); and others

    2016-02-01

    Current challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cell migration and tissue ingrowth. The objective of the present work was to develop and characterize a hybrid polymer–ceramic injectable system that consists of an alginate matrix crosslinked in situ in the presence of strontium (Sr), incorporating a ceramic reinforcement in the form of Sr-rich microspheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μm were prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35% w of microspheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N. Micro CT analysis revealed a homogeneous distribution of the microspheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is dominant over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation. - Highlights: • We developed a Sr rich viscoelastic hybrid system (alginate matrix crosslinked in

  17. Calcium phosphate coated Keratin-PCL scaffolds for potential bone tissue regeneration.

    Science.gov (United States)

    Zhao, Xinxin; Lui, Yuan Siang; Choo, Caleb Kai Chuen; Sow, Wan Ting; Huang, Charlotte Liwen; Ng, Kee Woei; Tan, Lay Poh; Loo, Joachim Say Chye

    2015-04-01

    The incorporation of hydroxyapatite (HA) nanoparticles within or on the surface of electrospun polymeric scaffolds is a popular approach for bone tissue engineering. However, the fabrication of osteoconductive composite scaffolds via benign processing conditions still remains a major challenge to date. In this work, a new method was developed to achieve a uniform coating of calcium phosphate (CaP) onto electrospun keratin-polycaprolactone composites (Keratin-PCL). Keratin within PCL was crosslinked to decrease its solubility, before coating of CaP. A homogeneous coating was achieved within a short time frame (~10min) by immersing the scaffolds into Ca(2+) and (PO4)(3-) solutions separately. Results showed that the incorporation of keratin into PCL scaffolds not only provided nucleation sites for Ca(2+) adsorption and subsequent homogeneous CaP surface deposition, but also facilitated cell-matrix interactions. An improvement in the mechanical strength of the resultant composite scaffold, as compared to other conventional coating methods, was also observed. This approach of developing a biocompatible bone tissue engineering scaffold would be adopted for further in vitro osteogenic differentiation studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations.

    Science.gov (United States)

    Janardhanan, Sathyanarayana; Wang, Martha O; Fisher, John P

    2012-08-01

    The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.

  19. On factors modifying reparative regeneration of epithelial tissue of small intestine in the presence of intestinal syndrome

    International Nuclear Information System (INIS)

    Kudryavtsev, V.D.

    1980-01-01

    In experiments on Wistar rats irradiated in dosages of 1000 and 1200 rad, the possibility of reparative regeneration of cryptae was demonstrated in the case when ''intestinal death'' was prevented by therapeutic means (kanamycin mixed with Ringer-Lock's solution). Shielding of part of the abdomen and extensive bone marrow region, and transplantation of homologous bone marrow elicit a stimulatory effect on postradiation recovery of small intestine epithelial tissue. When radiation dose increases up to 1400 rad reepithelization of the exposed region occurs only with the protection of 50-60% of the abdomen. The regenerating cryptae do not appear after irradiation of the whole body or whole abdomen though life expectancy of rats increases up to 6-7 days due to the therapeutic cure

  20. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Jiyeon Roh

    2016-02-01

    Full Text Available The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA; silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP in the ratios 100:0 (S100T0, 70:30 (S70T30, 60:40 (S60T40, and 50:50 (S50T50. The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm. The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05. In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05. In conclusion, Si-HA/TCP showed potential as a bone graft material.

  1. Comparative effectiveness of using resorbable membranes of polylactic acid and collagen in regeneration of bone defects in patients with periimplantitis

    Directory of Open Access Journals (Sweden)

    Gudaryan A.A.

    2014-03-01

    Full Text Available The article presents the results of comparative study of effectiveness of usage of separation membranes from polylactic acid (PLA and collagen in carrying out targeted regeneration of bone tissue in 22 patients with periimplantitis. Purpose: To conduct a comparative clinico-radiological efficiency of PLA membrane and collagen membranes in removing bone defects of the alveolar bone in patients with periimplantitis in clinic. It was found that depending on the type of membrane, bone tissue growth occurs not in the same way. Surgery in treatment of periimplantitis using osteo-inducing agent «Bio-Oss» and PLA membranes allows to reach full recovery of bone in bone defects in 90.9 % of patients versus 63.63 % of cases with collagen membranes. Thus, reconstitution of bone in bone defects in periimplantitis is more of full value in using PLA membranes than with membranes from collagen.

  2. Functionalized D-form self-assembling peptide hydrogels for bone regeneration

    Directory of Open Access Journals (Sweden)

    He B

    2016-04-01

    Full Text Available Bin He,1 Yunsheng Ou,1 Ao Zhou,1 Shuo Chen,1 Weikang Zhao,1 Jinqiu Zhao,2 Hong Li,3 Yong Zhu,1 Zenghui Zhao,1 Dianming Jiang1 1Department of Orthopedics, 2Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China Abstract: Bone defects are very common in orthopedics, and there is great need to develop suitable bone grafts for transplantation in vivo. However, current bone grafts still encounter some limitations, including limited availability, immune rejection, poor osteoinduction and osteoconduction, poor biocompatibility and degradation properties, etc. Self-assembling peptide nanofiber scaffolds have emerged as an important substrate for cell culture and bone regeneration. We report on the structural features (eg, Congo red staining, circular dichroism spectroscopy, transmission electron microscopy, and rheometry assays and osteogenic ability of D-RADA16-RGD peptide hydrogels (with or without basic fibroblast growth factor due to the better stability of peptide bonds formed by these peptides compared with those formed by L-form peptides, and use them to fill the femoral condyle defect of Sprague Dawley rat model. The bone morphology change, two-dimensional reconstructions using microcomputed tomography, quantification of the microcomputed tomography analyses as well as histological analyses have demonstrated that RGD-modified D-form peptide scaffolds are able to enhance extensive bone regeneration. Keywords: bone defect, functionalized D-form self-assembling peptide, D-RADA16-RGD, peptide hydrogel, bone regeneration

  3. Silicate Bioceramics for Bone Tissue Regeneration%硅酸盐生物活性陶瓷用于骨组织修复及再生的研究

    Institute of Scientific and Technical Information of China (English)

    吴成铁; 常江

    2013-01-01

    近年来,硅酸盐生物活性陶瓷越来越受到研究人员的重视,其主要原因在于硅酸盐生物陶瓷能够通过释放硅(Si)离子等生物活性离子,显著地促进骨组织细胞的增殖、分化及骨组织修复.硅酸盐生物活性陶瓷有望作为新的陶瓷体系广泛应用于骨缺损修复和再生.本文将结合本课题组在过去十年的研究,重点介绍目前硅酸盐生物活性陶瓷用于骨组织修复及再生的研究进展.同时,通过与传统磷酸钙类生物陶瓷进行比较,对硅酸盐生物活性陶瓷的优缺点进行分析和归纳,最后对硅酸盐陶瓷作为新的生物陶瓷体系用于骨组织修复的前景做了展望.%Silicate bioceramics have received significant attention in the past several years. The main reason is that silicate bioceramics can efficiently stimulate the proliferation, differentiation and gene expression of tissue cells as well as the regeneration of bone tissue by release of Si-containing ionic products. Due to this significant advantage, silicate bioceramics, as a novel bioceramic system, have great potential to be widely used for repairing and regenerating bone tissues. In this paper, our researches in the past ten years are combined and the research advancements of silicate bioceramics are reviewed. The advantages and disadvantages of silicate bioceramics are summarized by comparing with conventional calcium phosphate bioceramics. Finally, a forward-looking perspective for silicate bioceramics on the applications of bone regeneration is also discussed.

  4. Periodontal regeneration around natural teeth.

    Science.gov (United States)

    Garrett, S

    1996-11-01

    1. Evidence is conclusive (Table 2) that periodontal regeneration in humans is possible following the use of bone grafts, guided tissue regeneration procedures, both without and in combination with bone grafts, and root demineralization procedures. 2. Clinically guided tissue regeneration procedures have demonstrated significant positive clinical change beyond that achieved with debridement alone in treating mandibular and maxillary (buccal only) Class II furcations. Similar data exist for intraosseous defects. Evidence suggests that the use of bone grafts or GTR procedures produce equal clinical benefit in treating intraosseous defects. Further research is necessary to evaluate GTR procedures compared to, or combined with, bone grafts in treating intraosseous defects. 3. Although there are some data suggesting hopeful results in Class II furcations, the clinical advantage of procedures combining present regenerative techniques remains to be demonstrated. Additional randomized controlled trials with sufficient power are needed to demonstrate the potential usefulness of these techniques. 4. Outcomes following regenerative attempts remain somewhat variable with differences in results between studies and individual subjects. Some of this variability is likely patient related in terms of compliance with plaque control and maintenance procedures, as well as personal habits; e.g., smoking. Variations in the defects selected for study may also affect predictability of outcomes along with other factors. 5. There is evidence to suggest that present regenerative techniques lead to significant amounts of regeneration at localized sites on specific teeth. However, if complete regeneration is to become a reality, additional stimuli to enhance the regenerative process are likely needed. Perhaps this will be accomplished in the future, with combined procedures that include appropriate polypeptide growth factors or tissue factors to provide additional stimulus.

  5. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    Science.gov (United States)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  6. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    Science.gov (United States)

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  7. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous {beta}-TCP ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Kulbatski, Iris [Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8 (Canada); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Wang Hong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Xiao Baojun [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China)

    2006-09-15

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous {beta} tricalcium phosphate ({beta}-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new

  8. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous β-TCP ceramic scaffolds

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Kulbatski, Iris; Yuan Quan; Yang Shuhua; Shao Zengwu; Wang Hong; Xiao Baojun; Pan Zhengqi; Tang Shuo

    2006-01-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous β tricalcium phosphate (β-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  9. Bone regeneration potential of sub-microfibrous membranes with ...

    African Journals Online (AJOL)

    electrospinning. Cell viability, biocompatibility, and bone regeneration were measured. ... human mesenchymal stem cells (hMSCs) were grown on the ... In vivo biocompatibility test ..... biodegradability and drug release behavior of aliphatic.

  10. Results of bone regenerate study after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants in experimental femoral neck fractures (experimental study

    Directory of Open Access Journals (Sweden)

    K. S. Kazanin

    2015-01-01

    Full Text Available Objective - to analyze the results of X-ray, cytomorphometric and immunohistochemistry experimental studies of bone regenerates after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants. Material and methods. The study was conducted on experimental femoral neck fractures in rabbit males. Reparative osteogenesis processes were studied in groups of bioinert titanium implant osteosynthesis and calcium phosphate-coated bioactive titanium implant osteosynthesis. The animals were clinically followed-up during the postoperative period. X-ray, cytomorphometric and immunohistochemistry studies of samples extracted from femoral bones were conducted over time on days 1, 7, 14, 30 and 60. The animal experiments were kept and treated according to recommendations of international standards, Helsinki Declaration on animal welfare and approved by the local ethics committee. All surgeries were performed under anesthesia, and all efforts were made to minimize the suffering of the animals. Results. In the animal group without femoral neck fracture osteosynthesis, femoral neck pseudoarthrosis was observed at the end of the experiment. The results of cytomorphometric and immunohistochemistry studies conducted on day 60 of the experiment confirmed that the cellular composition of the bone regenerate in the group of calcium phosphate-coated bioactive titanium implants corresponded to a more mature bone tissue than in the group of bioinert titanium implants. Conclusion. The results of the statistical analysis of cytomorphometric and immunohistochemistry data show that the use of calcium phosphate-coated bioactive titanium implants allows to achieve significantly earlier bone tissue regeneration.

  11. Successful surgical management of palatogingival groove using platelet-rich fibrin and guided tissue regeneration: A novel approach

    Directory of Open Access Journals (Sweden)

    J V Karunakaran

    2017-01-01

    Full Text Available Palatogingival groove also known as radicularlingual groove is a developmental anomaly involving the lingual surface of the maxillary incisors. They are inconspicuous, funnel-shaped, extend for varying distances on root surface and occur due to infolding of the hertwigs epithelial root sheath. This encourages adherence of microorganisms and plaque to levels significant for pathological changes resulting in endodontic and periodontal lesions. The variations in anatomy of the tooth as a cause of pulp necrosis in teeth of anterior maxillary segment should be considered by the clinician when other etiological factors are ruled out. Recognition of palatogingival groove is critical, especially because of its diagnostic complexity and the problems that may arise if it is not properly interpreted and treated. Regeneration is a new emerging approach in endodontics. Choukroun et al. were among the pioneers for using platelet-rich fibrin (PRF to improve bone healing. PRF is rich in platelet cytokines and growth factors. Numerous techniques have been used to eliminate or seal the groove and regenerate endodontic and periodontal tissues. In this case report of two cases, a novel combination therapy involving ultrasonics, blend of PRF with bone graft, guided tissue regeneration membrane was used in the treatment of a palatogingival groove with an endoperio lesion to ensure arrest of disease progression and promote regeneration. The groove was cleaned and prepared ultrasonically and sealed with a bioactive dentin substitute.

  12. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.

    Science.gov (United States)

    Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn

    2017-08-01

    Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.

  13. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Arianna De Mori

    2018-03-01

    Full Text Available Injuries of bone and cartilage constitute important health issues costing the National Health Service billions of pounds annually, in the UK only. Moreover, these damages can become cause of disability and loss of function for the patients with associated social costs and diminished quality of life. The biomechanical properties of these two tissues are massively different from each other and they are not uniform within the same tissue due to the specific anatomic location and function. In this perspective, tissue engineering (TE has emerged as a promising approach to address the complexities associated with bone and cartilage regeneration. Tissue engineering aims at developing temporary three-dimensional multicomponent constructs to promote the natural healing process. Biomaterials, such as hydrogels, are currently extensively studied for their ability to reproduce both the ideal 3D extracellular environment for tissue growth and to have adequate mechanical properties for load bearing. This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications.

  14. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material.

    Science.gov (United States)

    Kinoshita, Kazuhiko; Hibi, Hideharu; Yamada, Yoichi; Ueda, Minoru

    2008-01-01

    Bilateral maxillary distraction was performed at a higher rate in rabbits to determine whether locally applied tissue-engineered osteogenic material (TEOM) enhances bone regeneration. The material was an injectable gel composed of autologous mesenchymal stem cells, which were cultured then induced to be osteogenic in character, and platelet-rich plasma (PRP). After a 5-day latency period, distraction devices were activated at a rate of 2.0 mm once daily for 4 days. Twelve rabbits were divided into 2 groups. At the end of distraction, the experimental group of rabbits received an injection of TEOM into the distracted tissue on one side, whereas, saline solution was injected into the distracted tissue on the contralateral side as the internal control. An additional control group received an injection of PRP or saline solution into the distracted tissue in the same way as the experimental group. The distraction regenerates were assessed by radiological and histomorphometric analyses. The radiodensity of the distraction gap injected with TEOM was significantly higher than that injected with PRP or saline solution at 2, 3, and 4 weeks postdistraction. The histomorphometric analysis also showed that both new bone zone and bony content in the distraction gap injected with TEOM were significantly increased when compared with PRP or saline solution. Our results demonstrated that the distraction gap injected with TEOM showed significant new bone formation. Therefore, injections of TEOM may be able to compensate for insufficient distraction gaps.

  15. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model.

    Science.gov (United States)

    Chow, Dick Ho Kiu; Suen, Pui Kit; Huang, Le; Cheung, Wing-Hoi; Leung, Kwok-Sui; Ng, Chun; Shi, San Qiang; Wong, Margaret Wan Nar; Qin, Ling

    2014-04-01

    Fibrous tissue is often formed in delayed healing of tendon bone insertion (TBI) instead of fibrocartilage. Extracorporeal shockwave (ESW) provides mechanical cues and upregulates expression of fibrocartilage-related makers and cytokines. We hypothesized that ESW would accelerate fibrocartilage regeneration at the healing interface in a delayed TBI healing model. Partial patellectomy with shielding at the TBI interface was performed on 32 female New Zealand White Rabbits for establishing this delayed TBI healing model. The rabbits were separated into the control and ESW group for evaluations at postoperative week 8 and 12. Shielding was removed at week 4 and a single ESW treatment was applied at week 6. Fibrocartilage regeneration was evaluated histomorphologically and immunohistochemically. Vickers hardness of the TBI matrix was measured by micro-indentation. ESW group showed higher fibrocartilage area, thickness, and proteoglycan deposition than the control in week 8 and 12. ESW increased expression of SOX9 and collagen II significantly in week 8 and 12, respectively. ESW group showed a gradual transition of hardness from bone to fibrocartilage to tendon, and had a higher Vickers hardness than the control group at week 12. In conclusion, ESW enhanced fibrocartilage regeneration at the healing interface in a delayed TBI healing model. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption.

    Science.gov (United States)

    Limmer, Andreas; Wirtz, Dieter C

    2017-06-01

    Background Stimulating bone regeneration is a central aim in orthopaedic and trauma surgery. Although the replacement of bone with artificial materials like cement or apatite helps to keep up bone stability, new bone often cannot be regenerated. Increasing research efforts have led to the clinical application of growth factors stimulating bone growth (e.g. bone morphogenic protein, BMP) and inhibitors preventing bone consumption (e.g. RANKL blocking antibodies). These factors mostly concentrate on stimulating osteoblast or preventing osteoclast activity. Current Situation It is widely accepted that osteoblasts and osteoclasts are central players in bone regeneration. This concept assumes that osteoblasts are responsible for bone growth while osteoclasts cause bone consumption by secreting matrix-degrading enzymes such as cathepsin K and matrix metalloproteinases (MMP). However, according to new research results, bone growth or consumption are not regulated by single cell types. It is rather the interaction of various cell types that regulates bone metabolism. While factors secreted by osteoblasts are essential for osteoclast differentiation and activation, factors secreted by activated osteoclasts are essential for osteoblast activity. In addition, recent research results imply that the influence of the immune system on bone metabolism has long been neglected. Factors secreted by macrophages or T cells strongly influence bone growth or degradation, depending on the bone microenvironment. Infections, sterile inflammation or tumour metastases not only affect bone cells directly, but also influence immune cells such as T cells indirectly. Furthermore, immune cells and bone are mechanistically regulated by similar factors such as cytokines, chemokines and transcription factors, suggesting that the definition of bone and immune cells has to be thought over. Outlook Bone and the immune system are regulated by similar mechanisms. These newly identified similarities

  17. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.

    Science.gov (United States)

    Castillo-Dalí, Gabriel; Castillo-Oyagüe, Raquel; Terriza, Antonia; Saffar, Jean-Louis; Batista-Cruzado, Antonio; Lynch, Christopher D; Sloan, Alastair J; Gutiérrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2016-04-01

    Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. The functionalised membranes showed the best efficacy for bone regeneration. The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

    Directory of Open Access Journals (Sweden)

    Marco A. Velasco

    2016-10-01

    Full Text Available Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

  19. Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration.

    Science.gov (United States)

    Cho, Young-Dan; Ryoo, Hyun-Mo

    2018-02-01

    In regenerative medicine, growing cells or tissues in the laboratory is necessary when damaged cells can not heal by themselves. Acquisition of the required cells from the patient's own cells or tissues is an ideal option without additive side effects. In this context, cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) and trans-differentiation, have been widely studied in regenerative research. Both approaches have advantages and disadvantages, and the possibility of de-differentiation because of the epigenetic memory of iPSCs has strengthened the need for controlling the epigenetic background for successful cell reprogramming. Therefore, interest in epigenetics has increased in the field of regenerative medicine. Herein, we outline in detail the cell trans-differentiation method using epigenetic modification for bone regeneration in comparison to the use of iPSCs.

  20. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kumbar, S G; Toti, U S; Deng, M; James, R; Laurencin, C T; Aravamudhan, A; Harmon, M; Ramos, D M

    2011-01-01

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  1. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    Science.gov (United States)

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  2. Biomaterial-mediated strategies targeting vascularization for bone repair.

    Science.gov (United States)

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  3. Epimorphic regeneration approach to tissue replacement in adult mammals

    Science.gov (United States)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  4. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  5. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Bai, Xiaowen; Alt, Eckhard

    2010-01-01

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  6. Drug-Loadable Calcium Alginate Hydrogel System for Use in Oral Bone Tissue Repair.

    Science.gov (United States)

    Chen, Luyuan; Shen, Renze; Komasa, Satoshi; Xue, Yanxiang; Jin, Bingyu; Hou, Yepo; Okazaki, Joji; Gao, Jie

    2017-05-06

    This study developed a drug-loadable hydrogel system with high plasticity and favorable biological properties to enhance oral bone tissue regeneration. Hydrogels of different calcium alginate concentrations were prepared. Their swelling ratio, degradation time, and bovine serum albumin (BSA) release rate were measured. Human periodontal ligament cells (hPDLCs) and bone marrow stromal cells (BMSCs) were cultured with both calcium alginate hydrogels and polylactic acid (PLA), and then we examined the proliferation of cells. Inflammatory-related factor gene expressions of hPDLCs and osteogenesis-related gene expressions of BMSCs were observed. Materials were implanted into the subcutaneous tissue of rabbits to determine the biosecurity properties of the materials. The materials were also implanted in mandibular bone defects and then scanned using micro-CT. The calcium alginate hydrogels caused less inflammation than the PLA. The number of mineralized nodules and the expression of osteoblast-related genes were significantly higher in the hydrogel group compared with the control group. When the materials were implanted in subcutaneous tissue, materials showed favorable biocompatibility. The calcium alginate hydrogels had superior osteoinductive bone ability to the PLA. The drug-loadable calcium alginate hydrogel system is a potential bone defect reparation material for clinical dental application.

  7. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model.

    Science.gov (United States)

    Sivashanmugam, A; Charoenlarp, Pornkawee; Deepthi, S; Rajendran, Arunkumar; Nair, Shantikumar V; Iseki, Sachiko; Jayakumar, R

    2017-12-13

    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin-poly(lactide-co-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO 4 and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO 4 -incorporated chitin-PLGA hydrogels as compared to the chitin-PLGA hydrogel. Shear-thinning Herschel-Bulkley fluid nature was observed for both hydrogels. Chitin-PLGA/CaSO 4 gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin-PLGA/CaSO 4 gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin-PLGA/CaSO 4 showed early and almost complete bone healing in comparison with chitin-PLGA/CaSO 4 , chitin-PLGA/FGF-18, chitin-PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings

  8. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    Science.gov (United States)

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. © 2016 Wiley Periodicals, Inc.

  9. Development of a Novel Degradation-Controlled Magnesium-Based Regeneration Membrane for Future Guided Bone Regeneration (GBR Therapy

    Directory of Open Access Journals (Sweden)

    Da-Jun Lin

    2017-11-01

    Full Text Available This study aimed to develop and evaluate the ECO-friendly Mg-5Zn-0.5Zr (ECO505 alloy for application in dental-guided bone regeneration (GBR. The microstructure and surface properties of biomedical Mg materials greatly influence anti-corrosion performance and biocompatibility. Accordingly, for the purpose of microstructure and surface modification, heat treatments and surface coatings were chosen to provide varied functional characteristics. We developed and integrated both an optimized solution heat-treatment condition and surface fluoride coating technique to fabricate a Mg-based regeneration membrane. The heat-treated Mg regeneration membrane (ARRm-H380 and duplex-treated regeneration membrane group (ARRm-H380-F24 h were thoroughly investigated to characterize the mechanical properties, as well as the in vitro corrosion and in vivo degradation behaviors. Significant enhancement in ductility and corrosion resistance for the ARRm-H380 was obtained through the optimized solid-solution heat treatment; meanwhile, the corrosion resistance of ARRm-H380-F24 h showed further improvement, resulting in superior substrate integrity. In addition, the ARRm-H380 provided the proper amount of Mg-ion concentration to accelerate bone growth in the early stage (more than 80% new bone formation. From a specific biomedical application point of view, these research results point out a successful manufacturing route and suggest that the heat treatment and duplex treatment could be employed to offer custom functional regeneration membranes for different clinical patients.

  10. Biology and augmentation of tendon-bone insertion repair

    Directory of Open Access Journals (Sweden)

    Lui PPY

    2010-08-01

    Full Text Available Abstract Surgical reattachment of tendon and bone such as in rotator cuff repair, patellar-patella tendon repair and anterior cruciate ligament (ACL reconstruction often fails due to the failure of regeneration of the specialized tissue ("enthesis" which connects tendon to bone. Tendon-to-bone healing taking place between inhomogenous tissues is a slow process compared to healing within homogenous tissue, such as tendon to tendon or bone to bone healing. Therefore special attention must be paid to augment tendon to bone insertion (TBI healing. Apart from surgical fixation, biological and biophysical interventions have been studied aiming at regeneration of TBI healing complex, especially the regeneration of interpositioned fibrocartilage and new bone at the healing junction. This paper described the biology and the factors influencing TBI healing using patella-patellar tendon (PPT healing and tendon graft to bone tunnel healing in ACL reconstruction as examples. Recent development in the improvement of TBI healing and directions for future studies were also reviewed and discussed.

  11. Individual differences in post radiation regeneration of the bone marrow in nonuniform irradiation (experimental investigation)

    International Nuclear Information System (INIS)

    Kalandarova, M.P.

    1980-01-01

    Reparative regeneration in bone marrow of sternum and iliac bone in each of 20 dogs was studied after single and two-time total X-ray irradiation. Extreme dose rates in bodies differed 5 and 8 times. It was shown that bone marrow repair did not depend on its composition before irradiation. Dogs whose bone narrow was rich of cellular elements before irradiation had both active and sharply reduced bone marrow regeneration after single and two-time irradiation in 0.75-1.45 Gy doses (sternum). Animals with a poor total cellular composition of bone marrow of sternum before irradiation also had differences in the course of reparative processes: in some of them they were considerably pronoUnced and in others bone marrow aplasia lasted for one month. IndiVidual differences in the bone marrow (iliac bone) irradiated with 1.85-3.2 Gy doses were less marked during the reparative regeneration

  12. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit.

    Science.gov (United States)

    Wu, Xiaowei; Zheng, Shang; Ye, Yuanzhou; Wu, Yuchen; Lin, Kaili; Su, Jiansheng

    2018-05-01

    The reconstruction of bone defects by guiding autologous bone tissue regeneration with artificial biomaterials is a potential strategy in the area of bone tissue engineering. The development of new polymers with good biocompatibility, favorable mechanical properties, and osteoinductivity is of vital importance. Graphene and its derivatives have attracted extensive interests due to the exceptional physiochemical and biological properties of graphene. In this study, poly(lactic-co-glycolic acid) (PLGA) films incorporated by graphene nanoplates were fabricated. The results indicated that the incorporation of proper graphene nanoplates into poly(lactic-co-glycolic acid) film could enhance the adhesion and proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). The augmentation of alkaline phosphatase activity, calcium mineral deposition, and the expression level of osteogenic-related genes of rBMSCs on the composite films were observed. Moreover, the incorporation of graphene might activate the PI3K/Akt/GSK-3β/β-catenin signaling pathway, which appeared to be the mechanism behind the osteoinductive properties of graphene. Moreover, the in vivo furcation defect implantation results revealed better guiding bone regeneration properties in the graphene-incorporated group. Thus, we highlight this graphene-incorporated film as a promising platform for the growth and osteogenic differentiation of BMSCs that can achieve application in bone regeneration.

  13. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2008-01-01

    Given the inherent shortcomings of autografts and allografts, donor-site morbidity and risk of disease transmission, respectively, alternatives to traditional bone grafting options are warranted. To this end, poly(lactide-co-glycolide) (PLAGA) and in situ-synthesized amorphous hydroxyapatite (HA) were used to construct three-dimensional microsphere-based composite scaffolds of varying HA content for bone regeneration. In the current study, the effect of adding amorphous HA to the PLAGA scaffolds on their physical characteristics and in vitro degradation mechanism was investigated. Porosimetry and uniaxial compression testing were used to analyze the internal structure and elastic modulus of the scaffolds, respectively. Additionally, gel permeation chromatography (GPC) was performed to assess the polymer molecular weight over the course of an 8-week degradation study. HA content (17% or 27%) of the composite scaffolds was found to increase scaffold pore volume from 33.86% for pure polymer scaffolds, to 40.49% or 46.29%, depending on the amount of incorporated HA. This increased pore volume provided the composite scaffolds with a greater surface area and a corresponding decrease in elastic modulus. Scaffold degradation studies conducted over 8 weeks showed PLAGA to degrade in a first-order mechanism, with the rate of polymer degradation for the 27% HA composite scaffold being significantly slower than that of the pure PLAGA scaffold (degradation constants of 0.0324 and 0.0232 week(-1), respectively). These results suggest that the addition of amorphous HA to PLAGA microspheres resulted in porous, bioactive scaffolds that offer potential as alternative bone grafting materials for the field of regenerative medicine. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  14. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Doğan, Ayşegül; Demirci, Selami [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey); Bayir, Yasin [Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Halici, Zekai [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum (Turkey); Aydin, Ali [Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Cadirci, Elif [Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Albayrak, Abdulmecit [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Demirci, Elif [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karaman, Adem [Department of Radiology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Ayan, Arif Kursat [Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Gundogdu, Cemal [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Şahin, Fikrettin, E-mail: fsahin@yeditepe.edu.tr [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey)

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing.

  15. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Şahin, Fikrettin

    2014-01-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing

  16. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    Science.gov (United States)

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  18. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  19. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    OpenAIRE

    Abdalla Abdal-hay; Khalil Abdelrazek Khalil; Abdel Salam Hamdy; Fawzi F. Al-Jassir

    2017-01-01

    Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles ...

  20. The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect

    Directory of Open Access Journals (Sweden)

    So-Hyoun Lee

    2017-01-01

    Full Text Available The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS- PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR. The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %, the bone-to-implant contact (BIC, %, distance from the new bone to the old bone (NB-OB, %, and distance from the osseointegration to the old bone (OI-OB, % were significantly higher in the 3D-PFTM group than the CM group (p<.001. It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration.

  1. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects.

    Science.gov (United States)

    Hermenean, Anca; Codreanu, Ada; Herman, Hildegard; Balta, Cornel; Rosu, Marcel; Mihali, Ciprian Valentin; Ivan, Alexandra; Dinescu, Sorina; Ionita, Mariana; Costache, Marieta

    2017-11-30

    Limited self-regenerating capacity of human skeleton makes the reconstruction of critical size bone defect a significant challenge for clinical practice. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation, along with bone repair capacity of 3D chitosan (CHT) scaffolds enriched with graphene oxide (GO) in critical-sized mouse calvarial defect. Histopathological/histomorphometry and scanning electron microscopy(SEM) analysis of the implants revealed larger amount of new bone in the CHT/GO-filled defects compared with CHT alone (p < 0.001). When combined with GO, CHT scaffolds synergistically promoted the increase of alkaline phosphatase activity both in vitro and in vivo experiments. This enhanced osteogenesis was corroborated with increased expression of bone morphogenetic protein (BMP) and Runx-2 up to week 4 post-implantation, which showed that GO facilitates the differentiation of osteoprogenitor cells. Meanwhile, osteogenesis was promoted by GO at the late stage as well, as indicated by the up-regulation of osteopontin and osteocalcin at week 8 and overexpressed at week 18, for both markers. Our data suggest that CHT/GO biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.

  2. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  3. Ovalbumin-BasedPorous Scaffolds for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Gabrielle Farrar

    2010-01-01

    Full Text Available Cell differentiation on glutaraldehyde cross-linked ovalbumin scaffolds was the main focus of this research. Salt leaching and freeze drying were used to create a three-dimensional porous structure. Average pore size was 147.84±40.36 μm and 111.79±30.71 μm for surface and cross sectional area, respectively. Wet compressive strength and elastic modulus were 6.8±3.6 kPa. Average glass transition temperature was 320.1±1.4°C. Scaffolds were sterilized with ethylene oxide prior to seeding MC3T3-E1 cells. Cells were stained with DAPI and Texas red to determine morphology and proliferation. Average cell numbers increased between 4-hour- and 96-hour-cultured scaffolds. Alkaline phosphatase and osteocalcin levels were measured at 3, 7, 14, and 21 days. Differentiation studies showed an increase in osteocalcin at 21 days and alkaline phosphatase levels at 14 days, both indicating differentiation occurred. This work demonstrated the use of ovalbumin scaffolds for a bone tissue engineering application.

  4. Hybrid Scaffolds for Tissue Regeneration: Chemotaxis and Physical Confinement as Sources of Biomimesis

    Directory of Open Access Journals (Sweden)

    Simone Sprio

    2012-01-01

    Full Text Available Biomineralization is a complex ensemble of concomitant phenomena, driving the development of vertebrate and invertebrate organisms, particularly the formation of human bone tissue. In such a process collagen molecules assemble and organize in a complex 3-D structure and simultaneously mineralize with nearly amorphous apatite nanoparticles, whose heterogeneous nucleation, growth, and specific orientation are mediated by various chemical, physical, morphological, and structural control mechanisms, activated by the organic matrix at different size levels. The present work investigates on in-lab biomineralization processes, performed to synthesize hybrid hydroxyapatite/collagen scaffolds for bone and osteochondral regeneration. The synthesis processes are carried out by soft-chemistry procedures, with the purpose to activate all the different control mechanisms at the basis of new bone formation in vivo, so as to achieve scaffolds with high biomimesis, that is, physical, chemical, morphological, and ultrastructural properties very close to the newly formed human bone. Deep analysis of cell behaviour in contact with such hybrid scaffolds confirms their strong affinity with human bone, which in turn determines high regenerative properties in vivo.

  5. A review of fibrin and fibrin composites for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Noori A

    2017-07-01

    Full Text Available Alireza Noori,1 Seyed Jamal Ashrafi,2 Roza Vaez-Ghaemi,3 Ashraf Hatamian-Zaremi,4 Thomas J Webster5 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 2School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; 3Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; 4Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels, there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient’s own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the

  6. Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF

    Science.gov (United States)

    Zhou, Bo O.; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J.; Naveiras, Olaia; Morrison, Sean J.

    2017-01-01

    Endothelial cells and Leptin Receptor+ (LepR+) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including Stem Cell Factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER+ progenitors, which represent ~5% of LepR+ cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited hematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR+ cells, but not endothelial, hematopoietic, or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 ‘fatless” mice exhibited delayed hematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes hematopoietic regeneration. PMID:28714970

  7. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    -caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  8. Repair of radiation injury by transplantation of hemopoietic tissue

    International Nuclear Information System (INIS)

    Smith, L.H.

    1978-01-01

    The following topics are discussed: endogenous repair of tissue by surviving cells; exogenous repair by transplantation of tissue from unirradiated donor; repair of hematopoietic tissue following sublethal exposure or exposure in the LD 1 to LD 100 range; early studies on regeneration of hematopoietic tissue in x-irradiated dogs by giving bone marrow; hypotheses as to how bone marrow injections result in regeneration of blood-forming tissue; effects of rat bone marrow transplants on survival of lethally irradiated mice; and effect of tissue transplants on dose-response curve

  9. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    Science.gov (United States)

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  10. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration.

    Science.gov (United States)

    Mao, Daoyong; Li, Qing; Bai, Ningning; Dong, Hongzhou; Li, Daikun

    2018-01-15

    A major challenge in bone tissue engineering is the development of biomimetic scaffolds which should simultaneously meet mechanical strength and pore structure requirements. Herein, we combined technologies of high concentration solvent casting, particulate leaching, and room temperature compression molding to prepare a novel poly(lactic acid)/ethyl cellulose/hydroxyapatite (PLA/EC/HA) scaffold. The functional, structural and mechanical properties of the obtained porous scaffolds were characterized. The results indicated that the PLA/EC/HA scaffolds at the 20wt% HA loading level showed optimal mechanical properties and desired porous structure. Its porosity, contact angle, compressive yield strength and weight loss after 56days were 84.28±7.04%, 45.13±2.40°, 1.57±0.09MPa and 4.77±0.32%, respectively, which could satisfy the physiological demands to guide bone regeneration. Thus, the developed scaffolds have potential to be used as a bone substitute material for bone tissue engineering application. Copyright © 2017. Published by Elsevier Ltd.

  11. Interplay of thymus and bone marrow regeneration in x-irradiated mice

    International Nuclear Information System (INIS)

    Hiesche, K.-D.

    1975-01-01

    aim of the prepresent investigation was to study the modifying effects of bone marrow cells on regeneration, after X-irradiation, of thymus and bone marrow cell populations. Data are presented which indicate that the cellular composition of the thymus and, in particular, the frequency of the stem cells in the organ at the time of radiation exposure determines thymic regeneration for about two weeks after irradiation. After this period, regeneration depends on new precursors from the bone marrow which have previously seeded the thymus. In contrast to the thymus, cellular restoration of the bone marrow is already initially dependent on the number of protected or transplanted marrow cells. Two phases in the recovery of thymic PHA-reactivity after irradiation were observed: one initial phase which is independent on the number of the available bone marrow cells, and a subsequent phase during which PHA-reactivity is slightly increased in mice irradiated with partly protected bone marrow in comparison to in total body irradiated animals. During the entire observation period, PHA-reactivity remains at a low level not exeeding 50 % of that in untreated mice. In contrast the thymus is fully repopulated with regard to the number of nonreactive cells. Alternative pathways of thymocyte development within the thymus are discussed. Bone marrow X cells were shown to be as sensitive to in vitro treatment with a specific H-2 antiserum as were lymphocytes from normal bone marrow. This finding was teken to indicate that the X cells represent a particular lymphoid cell type. A xenogeneic rabbit-anti-mouse embryo antiserum was more toxic to pre-irradiated bone marrow, with high proportion of X cells, than to bone marrow from untreated mice, using in vitro cytotoxicity test. A possible embryonic character of the X cells is discussed. (author)

  12. Interplay of thymus and bone marrow regeneration in x-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hiesche, K D

    1975-01-01

    The aim of the present investigation was to study the modifying effects of bone marrow cells on regeneration, after X-irradiation, of thymus and bone marrow cell populations. Data are presented which indicate that the cellular composition of the thymus and, in particular, the frequency of the stem cells in the organ at the time of radiation exposure determines thymic regeneration for about two weeks after irradiation. After this period, regeneration depends on new precursors from the bone marrow which have previously seeded the thymus. In contrast to the thymus, cellular restoration of the bone marrow is already initially dependent on the number of protected or transplanted marrow cells. Two phases in the recovery of thymic PHA-reactivity after irradiation were observed: one initial phase which is independent on the number of the available bone marrow cells, and a subsequent phase during which PHA-reactivity is slightly increased in mice irradiated with partly protected bone marrow in comparison to in total body irradiated animals. During the entire observation period, PHA-reactivity remains at a low level not exeeding 50 % of that in untreated mice. In contrast the thymus is fully repopulated with regard to the number of nonreactive cells. Alternative pathways of thymocyte development within the thymus are discussed. Bone marrow X cells were shown to be as sensitive to in vitro treatment with a specific H-2 antiserum as were lymphocytes from normal bone marrow. This finding was teken to indicate that the X cells represent a particular lymphoid cell type. A xenogeneic rabbit-anti-mouse embryo antiserum was more toxic to pre-irradiated bone marrow, with high proportion of X cells, than to bone marrow from untreated mice, using in vitro cytotoxicity test. A possible embryonic character of the X cells is discussed.

  13. Locally delivered ethyl-2,5-dihydroxybenzoate using 3D printed bone implant for promotion of bone regeneration in a osteoporotic animal model

    Directory of Open Access Journals (Sweden)

    B-J Kwon

    2018-01-01

    Full Text Available Osteoporosis is a disease characterized by low bone mass, most commonly caused by an increase in bone resorption that is not matched by sufficient bone formation. The most common complications of postmenopausal osteoporosis are bone-related defects and fractures. Fracture healing is a multifactorial bone regeneration process, influenced by both biological and mechanical factors related to age, osteoporosis and stability of the osteosynthesis. During the treatment of bone defects in osteoporotic conditions, imbalanced bone remodeling is the leading cause for implant failure. To overcome these problems, ethyl-2,5-dihydroxybenzoate (E-2,5-DHB, a drug that promotes bone formation and inhibits bone resorption, was used. E-2,5-DHB-incorporating titanium (Ti implants using poly(lactic-co-glycolic acid (PLGA coating for local delivery of E-2,5-DHB were developed and the effects on bone healing of femoral defects were evaluated in an osteoporotic model. The release of E-2,5-DHB resulted in decreased bone resorption and increased bone formation around the implant. Thus, it was confirmed that, in the osteoporotic model, bone healing was increased and implant fixation was enhanced. These results suggested that E-2,5-DHB-coated Ti implants have great potential as an ultimate local drug delivery system for bone tissue scaffolds.

  14. Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration

    Science.gov (United States)

    Nowicki, Margaret; Castro, Nathan J.; Rao, Raj; Plesniak, Michael; Zhang, Lijie Grace

    2017-09-01

    The field of tissue engineering is advancing steadily, partly due to advancements in rapid prototyping technology. Even with increasing focus, successful complex tissue regeneration of vascularized bone, cartilage and the osteochondral interface remains largely illusive. This review examines current three-dimensional printing techniques and their application towards bone, cartilage and osteochondral regeneration. The importance of, and benefit to, nanomaterial integration is also highlighted with recent published examples. Early-stage successes and challenges of recent studies are discussed, with an outlook to future research in the related areas.

  15. Biocompatibility of single-walled carbon nanotube composites for bone regeneration.

    Science.gov (United States)

    Gupta, A; Liberati, T A; Verhulst, S J; Main, B J; Roberts, M H; Potty, A G R; Pylawka, T K; El-Amin Iii, S F

    2015-05-01

    The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70-7. ©2015 The British Editorial

  16. Clinical and Radiographic Assessment of Peri-Implant Tissue in Posterior Areas with and Without the Need for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Seyed Reza Arabi

    2016-07-01

    Full Text Available Background Dental implants are increasingly used in resorbed alveolar ridges, and the success of implants inserted concomitantly with guided bone regeneration (GBR needs to be evaluated. Objectives This study aimed to clinically and radiographically assess the peri-implant tissues in the posterior maxilla and mandible in cases in which dehiscence or fenestration occurred at the time of implant surgery and treated with GBR (simultaneously with implant placement in one session. A comparison was also made between the above-mentioned patients and controls in which implants were placed in intact bone (entire length of implant in bone. Patients and Methods This study was conducted on 12 patients as cases who received 17 standard implants (dehiscence or fenestration occurred after placement of 4 mm diameter standard implants and GBR was performed and 10 patients as the control group (those who received 17 standard implants, 4 mm in diameter and 10 mm in length, in adequate bone. Periapical (PA radiographs were obtained in the first 24 hours post-surgery. Radiographs were repeated at one month, at the time of loading (two months post-surgery, and at three and six months after loading to assess marginal bone loss. To assess the peri-implant soft tissue, thickness and width of the keratinized gingiva were evaluated. Data were analyzed using t-test and repeated measures analysis of variance. The level of significance was set to P = 0.05. Results The difference in distance from the bone crest to the implant shoulder between the two groups of cases and controls was significant at the following time points: baseline and 2 months post-surgery (P = 0.000, baseline and 6 months after loading (P = 0.01, 2 months post-surgery and 3 months after loading (P = 0.00, and 2 months post-surgery and 6 months after loading (P = 0.00. Changes in the width of the keratinized gingiva were not significant in the two groups of cases and controls at 2 months post-surgery (P = 0

  17. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    Science.gov (United States)

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  18. Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets

    Science.gov (United States)

    JANG, SEOK JIN; KIM, SE EUN; HAN, TAE SUNG; SON, JUN SIK; KANG, SEONG SOO; CHOI, SEOK HWA

    2017-01-01

    This study was undertaken to assess bone regeneration using hydroxyapatite (HA). The primary focus was comparison of bone regeneration between granular HA (gHA) forms and porous HA (pHA) scaffold. The extracted canine alveolar sockets were divided with three groups: control, gHA and pHA. Osteogenic effect in the gHA and pHA groups showed bone-specific surface and bone mineral density to be significantly higher than that of the control group (psocket healing. For new bone formation during 8 weeks' post-implantation, HA with porous scaffold was superior to the granular form of HA. PMID:28438860

  19. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    Science.gov (United States)

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds. © 2013 S. Karger AG, Basel

  20. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.

    Science.gov (United States)

    Font Tellado, Sònia; Chiera, Silvia; Bonani, Walter; Poh, Patrina S P; Migliaresi, Claudio; Motta, Antonella; Balmayor, Elizabeth R; van Griensven, Martijn

    2018-05-01

    The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor β2 (TGF-β2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-β2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and

  1. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Directory of Open Access Journals (Sweden)

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  2. Dental Pulp Stem Cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2015-10-01

    Full Text Available Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.

  3. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    Directory of Open Access Journals (Sweden)

    Im O

    2012-04-01

    Full Text Available Owen Im1, Jian Li2, Mian Wang2, Lijie Grace Zhang2,3, Michael Keidar2,31Department of Biomedical Engineering, Duke University, Durham, NC; 2Department of Mechanical and Aerospace Engineering, 3Institute for Biomedical Engineering and Institute for Nanotechnology, The George Washington University, Washington, DC, USABackground: Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT, biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan. Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels.Methods: Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT and without a magnetic field (N-SWCNT for improving bone regeneration.Results: Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment.Conclusion: This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite

  4. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.

    Science.gov (United States)

    Toskas, Georgios; Cherif, Chokri; Hund, Rolf-Dieter; Laourine, Ezzeddine; Mahltig, Boris; Fahmi, Amir; Heinemann, Christiane; Hanke, Thomas

    2013-05-15

    New hybrid nanofibers prepared with chitosan (CTS), containing a total amount of polyethylene oxide (PEO) down to 3.6wt.%, and silica precursors were produced by electrospinning. The solution of modified sol-gel particles contained tetraethoxysilane (TEOS) and the organosilane 3-glycidyloxypropyltriethoxysilane (GPTEOS). This is rending stable solution toward gelation and contributing in covalent bonding with chitosan. The fibers encompass advantages of biocompatible polymer template silicate components to form self-assembled core-shell structure of the polymer CTS/PEO encapsulated by the silica. Potential applicability of this hybrid material to bone tissue engineering was studied examining its cellular compatibility and bioactivity. The nanofiber matrices were proved cytocompatible when seeded with bone-forming 7F2-cells, promoting attachment and proliferation over 7 days. These found to enhance a fast apatite formation by incorporation of Ca(2+) ions and subsequent immersion in modified simulated body fluid (m-SBF). The tunable properties of these hybrid nanofibers can find applications as active biomaterials in bone repair and regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  6. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration.

    Science.gov (United States)

    Tamburaci, Sedef; Tihminlioglu, Funda

    2017-11-01

    In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of diatomite to the chitosan matrix increased the surface roughness, swelling capacity and tensile modulus of membranes. An increase of about 52% in Young's modulus was achieved for 10wt% diatomite composite membranes compared with chitosan membranes. High cell viability results were obtained with indirect extraction method. Besides, in vitro cell proliferation and ALP activity results showed that diatom incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. The novel composite membranes prepared in the present study with tunable properties can be considered as a potential candidate as a scaffold in view of its enhanced physical & chemical properties as well as biological activities for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L

    2016-11-01

    Despite the biocompatibility and osteoinductive properties of calcium phosphate (CaP) cements their low biodegradability hampers full bone regeneration. Herein the incorporation of CaP cement with hyaluronic acid (HAc) microparticles loaded with platelet lysate (PL) to improve the degradability and biological performance of the cements is proposed. Cement formulations incorporating increasing weight ratios of either empty HAc microparticles or microparticles loaded with PL (10 and 20 wt%) are developed as well as cements directly incorporating PL. The direct incorporation of PL improves the mechanical properties of the plain cement, reaching values similar to native bone. Morphological analysis shows homogeneous particle distribution and high interconnectivity between the HAc microparticles. The cements incorporating PL (with or without the HAc microparticles) present a sustained release of PL proteins for up to 8 d. The sustained release of PL modulates the expression of osteogenic markers in seeded human adipose tissue derived stem cells, thus suggesting the stimulatory role of this hybrid system toward osteogenic commitment and bone regeneration applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.

    Science.gov (United States)

    Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J

    2017-08-01

    Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.

  9. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang J

    2017-12-01

    Full Text Available Jiayu Zhang,1 Shiqing Ma,1 Zihao Liu,1 Hongjuan Geng,1 Xin Lu,1 Xi Zhang,1 Hongjie Li,1 Chenyuan Gao,2 Xu Zhang,1 Ping Gao1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, 2Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People’s Republic of China Introduction: Membranes allowing the sustained release of drugs that can achieve cell adhesion are very promising for guided bone regeneration. Previous studies have suggested that aspirin has the potential to promote bone regeneration. The purpose of this study was to prepare a local drug delivery system with aspirin-loaded chitosan nanoparticles (ACS contained in an asymmetric collagen-chitosan membrane (CCM. Methods: In this study, the ACS were fabricated using different concentrations of aspirin (5 mg, 25 mg, 50 mg, and 75 mg. The drug release behavior of ACS was studied. Transmission electron microscopy (TEM and scanning electron microscopy (SEM were used to examine the micromorphology of ACS and aspirin-loaded chitosan nanoparticles contained in chitosan-collagen membranes (ACS-CCM. In vitro bone mesenchymal stem cells (BMSCs were cultured and critical-sized cranial defects on Sprague-Dawley rats were made to evaluate the effect of the ACS-CCM on bone regeneration.Results: Drug release behavior results of ACS showed that the nanoparticles fabricated in this study could successfully sustain the release of the drug. TEM showed the morphology of the nanoparticles. SEM images indicated that the asymmetric membrane comprised a loose collagen layer and a dense chitosan layer. In vitro studies showed that ACS-CCM could promote the proliferation of BMSCs, and that the degree of differentiated BMSCs seeded on CCMs containing 50 mg of ACS was higher than that of other membranes. Micro-computed tomography showed that 50 mg of ACS-CCM resulted in enhanced bone regeneration compared with the control group.Conclusion: This

  10. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

    Science.gov (United States)

    Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-09-01

    Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    Science.gov (United States)

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  12. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Osch, G.J.V.M. van; Dolder, J. van den; Jansen, J.A.

    2008-01-01

    The aim of this study was to compare the ability of hard tissue regeneration of four types of stem cells or precursors under both in vitro and in vivo situations. Primary cultures of rat bone marrow, rat dental pulp, human bone marrow, and human dental pulp cells were seeded onto a porous ceramic

  13. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  14. Contemporary guided bone regeneration therapy for unaesthetic anterior peri-implantitis case

    Directory of Open Access Journals (Sweden)

    Benso Sulijaya

    2016-12-01

    Full Text Available Background: Dental implant is one of an alternative solutions reconstruction therapy for missing teeth. Complication of dental implant could occurs and leading to implant failure. In order to restore the complication, surgical treatment with guided bone regeneration (GBR is indicated. The potential use of bone substitutes is widely known to be able to regenerate the bone surrounding the implant and maintain bone volume. Purpose: The study aimed to demonstrate the effectiveness of implant-bone fully coverage by using sandwich technique of biphasic calcium phosphate (BCP and demineralized freeze-dried bone allografts (DFDBA bone substitutes combined with collagen resorbable membrane. Case: A 24-year-old male came with diagnosis of peri-implantitis on implant #11. Clinical finding indicated that implant thread was exposed on the labial aspect. Case management: After initial therapy including oral hygiene improvement performed, an operator did a contemporary GBR to correct the defect. Bone graft materials used were 40% β-tri calcium phosphate (β-TCP-60% hydroxyapatite (HA on the outer layer and DFDBA on the inner layer of the defect. Resorbable collagen membrane was used to cover the graft. Conclusion: GBR with sandwich technique could serve as one of the treatment choices for correcting an exposed anterior implant that would enhance the successful aesthetic outcome.

  15. Safety profile and long-term engraftment of human CD31+ blood progenitors in bone tissue engineering.

    Science.gov (United States)

    Zigdon-Giladi, Hadar; Elimelech, Rina; Michaeli-Geller, Gal; Rudich, Utai; Machtei, Eli E

    2017-07-01

    Endothelial progenitor cells (EPCs) participate in angiogenesis and induce favorable micro-environments for tissue regeneration. The efficacy of EPCs in regenerative medicine is extensively studied; however, their safety profile remains unknown. Therefore, our aims were to evaluate the safety profile of human peripheral blood-derived EPCs (hEPCs) and to assess the long-term efficacy of hEPCs in bone tissue engineering. hEPCs were isolated from peripheral blood, cultured and characterized. β tricalcium phosphate scaffold (βTCP, control) or 10 6 hEPCs loaded onto βTCP were transplanted in a nude rat calvaria model. New bone formation and blood vessel density were analyzed using histomorphometry and micro-computed tomography (CT). Safety of hEPCs using karyotype analysis, tumorigenecity and biodistribution to target organs was evaluated. On the cellular level, hEPCs retained their karyotype during cell expansion (seven passages). Five months following local hEPC transplantation, on the tissue and organ level, no inflammatory reaction or dysplastic change was evident at the transplanted site or in distant organs. Direct engraftment was evident as CD31 human antigens were detected lining vessel walls in the transplanted site. In distant organs human antigens were absent, negating biodistribution. Bone area fraction and bone height were doubled by hEPC transplantation without affecting mineral density and bone architecture. Additionally, local transplantation of hEPCs increased blood vessel density by nine-fold. Local transplantation of hEPCs showed a positive safety profile. Furthermore, enhanced angiogenesis and osteogenesis without mineral density change was found. These results bring us one step closer to first-in-human trials using hEPCs for bone regeneration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. New perspectives in cell delivery systems for tissue regeneration: natural-derived injectable hydrogels.

    Science.gov (United States)

    Munarin, Fabiola; Petrini, Paola; Bozzini, Sabrina; Tanzi, Maria Cristina

    2012-09-27

    Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.

  17. Extracellular matrix scaffolds for cartilage and bone regeneration

    NARCIS (Netherlands)

    Benders, K.E.M.; van Weeren, P.R.; Badylak, S.F.; Saris, Daniël B.F.; Dhert, W.J.A.; Malda, J.

    2013-01-01

    Regenerative medicine approaches based on decellularized extracellular matrix (ECM) scaffolds and tissues are rapidly expanding. The rationale for using ECM as a natural biomaterial is the presence of bioactive molecules that drive tissue homeostasis and regeneration. Moreover, appropriately

  18. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography.

    Science.gov (United States)

    Wang, Yunji; Chai, Zhaowu; Zhang, Yuanyuan; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-08-01

    This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues. Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery+low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement. Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (pperiodontal flap surgery group. LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Science.gov (United States)

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  20. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    Science.gov (United States)

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable

  1. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  2. The role of allofibroblasts transplantation in cartilaginous tissue regeneration process

    OpenAIRE

    Khadjibaev Аbdukhakim Muminovich; Tilyakov Akbar Buriyevich; Magrupov Bokhodir Asadullaevich; Urazmetova Maisa Dmitriyevna; Ubaydullaev Bobur Sabirovich

    2017-01-01

    Aim of investigation. Ground of embryonal allofibroblasts in the process of cartilaginous tissue regeneration. Material and methods. Investigation is based on the study the results of stimulation cartilaginous tissue regeneration process in the conditions of embryonal allofibroblasts application in 24 experimental sexually mature rabbits in which the model of symphysis pubis rupture with its following recovery have been used. Pieces of cartilaginous tissue have been fixed in 10% neutral forma...

  3. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  4. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  5. Biofabrication of soft tissue templates for engineering the bone-ligament interface.

    Science.gov (United States)

    Harris, Ella; Liu, Yurong; Cunniffe, Grainne; Morrissey, David; Carroll, Simon; Mulhall, Kevin; Kelly, Daniel J

    2017-10-01

    Regenerating damaged tissue interfaces remains a significant clinical challenge, requiring recapitulation of the structure, composition, and function of the native enthesis. In the ligament-to-bone interface, this region transitions from ligament to fibrocartilage, to calcified cartilage and then to bone. This gradation in tissue types facilitates the transfer of load between soft and hard structures while minimizing stress concentrations at the interface. Previous attempts to engineer the ligament-bone interface have utilized various scaffold materials with an array of various cell types and/or biological cues. The primary goal of this study was to engineer a multiphased construct mimicking the ligament-bone interface by driving differentiation of a single population of mesenchymal stem cells (MSCs), seeded within blended fibrin-alginate hydrogels, down an endochondral, fibrocartilaginous, or ligamentous pathway through spatial presentation of growth factors along the length of the construct within a custom-developed, dual-chamber culture system. MSCs within these engineered constructs demonstrated spatially distinct regions of differentiation, adopting either a cartilaginous or ligamentous phenotype depending on their local environment. Furthermore, there was also evidence of spatially defined progression toward an endochondral phenotype when chondrogenically primed MSCs within this construct were additionally exposed to hypertrophic cues. The study demonstrates the feasibility of engineering spatially complex soft tissues within a single MSC laden hydrogel through the defined presentation of biochemical cues. This novel approach represents a new strategy for engineering the ligament-bone interface. Biotechnol. Bioeng. 2017;114: 2400-2411. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Icariin: does it have an osteoinductive potential for bone tissue engineering?

    Science.gov (United States)

    Zhang, Xin; Liu, Tie; Huang, Yuanliang; Wismeijer, Daniel; Liu, Yuelian

    2014-04-01

    Traditional Chinese medicines have been recommended for bone regeneration and repair for thousands of years. Currently, the Herba Epimedii and its multi-component formulation are the attractive native herbs for the treatment of osteoporosis. Icariin, a typical flavonol glycoside, is considered to be the main active ingredient of the Herba Epimedii from which icariin has been successfully extracted. Most interestingly, it has been reported that icariin can be delivered locally by biomaterials and that it has an osteoinductive potential for bone tissue engineering. This review focuses on the performance of icariin in bone tissue engineering and on blending the information from icariin with the current knowledge relevant to molecular mechanisms and signal pathways. The osteoinductive potential of icariin could be attributed to its multiple functions in the musculoskeletal system which is involved in the regulation of multiple signaling pathways in anti-osteoporosis, osteogenesis, anti-osteoclastogenesis, chondrogenesis, angiogenesis, and anti-inflammation. The osteoinductive potential and the low price of icariin make it a very attractive candidate as a substitute of osteoinductive protein-bone morphogenetic proteins (BMPs), or as a promoter for enhancing the therapeutic effects of BMPs. However, the effectiveness of the local delivery of icariin needs to be investigated further. Copyright © 2013 John Wiley & Sons, Ltd.

  7. A review of the effects of dietary silicon intake on bone homeostasis and regeneration.

    Science.gov (United States)

    Rodella, L F; Bonazza, V; Labanca, M; Lonati, C; Rezzani, R

    2014-11-01

    Increasing evidences suggest that dietary Silicon (Si) intake, is positively correlated with bone homeostasis and regeneration, representing a potential and valid support for the prevention and improvement of bone diseases, like osteoporosis. This review, aims to provide the state of art of the studies performed until today, in order to investigate and clarify the beneficial properties and effects of silicates, on bone metabolism. We conducted a systematic literature search up to March 2013, using two medical databases (Pubmed and the Cochrane Library), to review the studies about Si consumption and bone metabolism. We found 45 articles, but 38 were specifically focused on Si studies. RESULTS showed a positive relationship between dietary Si intake and bone regeneration.

  8. Co-cultures and cell sheet engineering as relevant tools to improve the outcome of bone tissue engineering strategies

    OpenAIRE

    Pirraco, Rogério

    2011-01-01

    Taking into consideration the complex biology of bone tissue it is quite clear that the understanding of the cellular interactions that regulate the homeostasis and regeneration of this remarkable tissue is essential for a successful Tissue Engineering strategy. The in vitro study of these cellular interactions relies on co-culture systems, a tremendously useful methodology where two or more cell types are cultured at the same time. Such strategy increases the complexity of typ...

  9. Mechanical properties of a biodegradable bone regeneration scaffold

    Science.gov (United States)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  10. Xerogel Interfaced Nanofibers Stimulate Bone Regeneration Through the Activation of Integrin and Bone Morphogenetic Protein Pathways.

    Science.gov (United States)

    Lee, Yoo-Mi; Yun, Hyung-Mun; Lee, Hye-Young; Lim, Hyun-Chang; Lee, Hae-Hyoung; Kim, Hae-Won; Kim, Eun-Cheol

    2017-02-01

    A xerogel was interfaced onto biopolymer nanofibers though a core–shell electrospinning design for bone regeneration. The xerogel-interfaced biopolymer nanofibrous matrix was bioactive and highly hydrophilic, with a significant decrease in the water contact angle. The matrix showed excellent in vitro responses of primary osteoblasts in terms of adhesion, proliferation, and migration. Furthermore, the osteoblastic differentiation of cells, including alkaline phosphatase activity, mineralization, and gene expression, was significantly upregulated by the xerogel interface. In vivo animal tests in a critical-sized calvarial defect confirmed the new bone formation ability of the xerogel-surfaced nanofiber matrices. The underlying signaling mechanisms of the stimulation were implied to be integrin and bone morphogenetic protein (BMP) pathways, as demonstrated by the activation of integrin (α2β1) and downstream signaling molecules (FAK, paxillin, RhoA, MAPK, and NF-κB), as well as the BMPs and the downstream transcription factor Smad1/5/8. Taking these findings together, the xerogel-surfaced biopolymer nanofibers are proposed to be a promising scaffold candidate for bone regeneration.

  11. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  12. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    Science.gov (United States)

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  13. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  14. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    Science.gov (United States)

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  15. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pcell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  16. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    Science.gov (United States)

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Bone regeneration potential of sub-microfibrous membranes with ...

    African Journals Online (AJOL)

    Conclusion: The results indicate that biodegradable PCL sub-microfibrous membrane produced by electrospinning process seems to have excellent biocompatibility, and may be used as a scaffold for bone tissue engineering. Keywords: Biocompatibility, Hard tissue, Biomaterial availability, Bone remodeling, Polylactic acid, ...

  18. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  19. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    Science.gov (United States)

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  20. Engineering complex orthopaedic tissues via strategic biomimicry.

    Science.gov (United States)

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  1. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    Science.gov (United States)

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.

    2014-01-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  2. On the participation of irradiated tissues in the formation of limb regenerate in axolotls

    International Nuclear Information System (INIS)

    Tuchkova, S.Ya.

    1976-01-01

    The aim of the study was to obtain further information on the participation of irradiated tissue cells in formation of regenerated limbs after X-irradiation of axolotls and experimental restoration of the regenerational ability. Cells of irradiated tissues were labeled with H 3 -thymidine; the presence of the label in regenerated tissues would be indicative of participation of irradiated cells in the regeneration process. Irradiation dose was 700 R. 30 axolotls with irradiated limbs were intramuscularly injected with rat muscle homogenate into the right limb once a day beginning from the day of treatment. 15 similarly irradiated animals which did not receive homogenate served as a control. The authors concluded that the presence of highly labeled cells in regenerated tissues was likely to indicate the participation of irradiated tissue cells in regeneration of the limb. However, the quantitative contribution of such cells was impossible to determine since remaining irradiated tissues of the organ contained mostly unlabeled cells. It was also impossible to rule out the possibility of cell migration from non-irradiated tissues [ru

  3. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  4. Biology and augmentation of tendon-bone insertion repair

    OpenAIRE

    Lui, PPY; Zhang, P; Chan, KM; Qin, L

    2010-01-01

    Abstract Surgical reattachment of tendon and bone such as in rotator cuff repair, patellar-patella tendon repair and anterior cruciate ligament (ACL) reconstruction often fails due to the failure of regeneration of the specialized tissue ("enthesis") which connects tendon to bone. Tendon-to-bone healing taking place between inhomogenous tissues is a slow process compared to healing within homogenous tissue, such as tendon to tendon or bone to bone healing. Therefore special attention must be ...

  5. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    Science.gov (United States)

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  6. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. Copyright 2009 Elsevier Inc. All rights reserved.

  7. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.

    Science.gov (United States)

    Borden, Mark; Attawia, Mohamed; Laurencin, Cato T

    2002-09-05

    A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.

  8. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    Science.gov (United States)

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. About tendon tissue regeneration in experimental radiation disease

    Energy Technology Data Exchange (ETDEWEB)

    Popov, D; Trichkova, P

    1976-01-01

    Under the conditions of experimental acute radiation disease the authors study the tendon tissue regeneration after suture of the lateral part of the gastrocnemius muscle tendon. Tendon auto and alloplasty were applied. In four postoperative periods the histological features are described in details as well as the characteristic phenomena observed during the regeneration influenced to a considerable degree by the irradiation. Round cell infiltration, large necrotic zones, erythrocyte infiltrations as well as predominance of non-specific tendon regeneration long after the surgery characterize the recovery period of the traumatically damaged tendon, nevertheless that at the end there is real tendon regeneration even though in a longer period in comparison with the controls (non-irradiated animals).

  10. 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration.

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan; Jiang, Xinquan; Wu, Chengtie

    2017-12-01

    Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.

  11. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    Full Text Available The ratio of matrix metalloproteinases (MMPs to the tissue inhibitors of metalloproteinases (TIMPs in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  12. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  13. Use of platelet lysate for bone regeneration - are we ready for clinical translation?

    Science.gov (United States)

    Altaie, Ala; Owston, Heather; Jones, Elena

    2016-02-26

    Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its "potency" assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.

  14. Bioceramics of apatites: an option for bone regeneration; Bioceramica de apatitas: uma opcao para regeneracao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Arxer, Eliana Alves; Almeida Filho, Edson de; Guastaldi, Antonio Carlos, E-mail: iarxer@iq.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2011-07-01

    The bioceramics of calcium phosphate called apatite, are widely used as material for bone replacement and regeneration, due to its similarity to the mineral component of bones and teeth. The apatites are biocompatible, bioactive and integrate with living tissue by the same active process of physiological bone remodeling. These bioceramics may be used in medical, dental and orthopedic applications. In this research, it was used the wet method for the synthesis of the powder and biomimetic method for coating the surface. The Solubility study was performed in the layer deposited, apatite, for possible application as a platform for inorganic drug delivery. The bioceramics were characterized by MEV, DRX, and EDS. The curves of solubility of apatite in coatings showed that the OCP phase had a higher rate of release in the short term (4 days) while the HA phase showed a gradual release throughout the experiment (16 days). (author)

  15. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    Science.gov (United States)

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  16. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  17. Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Du, Mi; Zhu, Ting; Duan, Xiaoqi; Ge, Shaohua; Li, Ning; Sun, Qinfeng; Yang, Pishan

    2017-01-01

    New generation of barrier membranes has been developed, which not only act as barriers but also as delivery devices to release specific growth factors. This study observed biological behaviors of bone morrow mesenchymal stem cells (BMMSCs) pretreated by bFGF or BMP-2 in vitro and evaluated differential bone regeneration process induced by bFGF and BMP-2 loaded acellular dermal matrix (ADM) membrane using critical-size rat calvarial defect model in vivo. The results showed that the proliferation capability of BMMSCs pretreated by bFGF was stronger than that by BMP-2, while there was temporally differential effect of bFGF and BMP-2 pretreatment on MSC osteogenic differentiation potentials. During healing process of rat calvarial defects, 2-fold more CD34 −/CD90 + MSCs in group of bFGF-ADM was observed than in any other treatment group at 2 weeks. However, there were similar amount of new bone formation and expression of osteopotin in newly-formed bone tissue in groups of bFGF- and BMP-2-ADM at 8 weeks, which were more than those in ADM alone and blank control. Taken together, bFGF-ADM guided similar bone regeneration to BMP-2 through more efficient recruitment of MSCs, and moreover, BMMSCs pretreated by bFGF showed stronger proliferation at 1–5 days and osteogenic differentiation potentials at 14 days compared with BMP-2 pretreatment. - Highlights: • An improved barrier membrane used in the field of bone tissue engineering was proposed, which is acellular dermal matrix (ADM) loaded with growth factors. • It is generally agreed that BMP-2 and -7 provide the greatest bone regeneration potentials, however, we found that ADM loading with bFGF could guide similar bone regeneration to BMP-2. • Compared with BMP-2, bFGF could more effectively recruit MSCs and moreover, BMMSCs pretreated by bFGF showed out stronger proliferation at 1-5 days and osteogenic differentiation potentials at 14 days.

  18. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.

    Science.gov (United States)

    Xue, Jiajia; He, Min; Liu, Hao; Niu, Yuzhao; Crawford, Aileen; Coates, Phil D; Chen, Dafu; Shi, Rui; Zhang, Liqun

    2014-11-01

    Infection is the major reason for guided tissue regeneration/guided bone regeneration (GTR/GBR) membrane failure in clinical application. In this work, we developed GTR/GBR membranes with localized drug delivery function to prevent infection by electrospinning of poly(ε-caprolactone) (PCL) and gelatin blended with metronidazole (MNA). Acetic acid (HAc) was introduced to improve the miscibility of PCL and gelatin to fabricate homogeneous hybrid nanofiber membranes. The effects of the addition of HAc and the MNA content (0, 1, 5, 10, 20, 30, and 40 wt.% of polymer) on the properties of the membranes were investigated. The membranes showed good mechanical properties, appropriate biodegradation rate and barrier function. The controlled and sustained release of MNA from the membranes significantly prevented the colonization of anaerobic bacteria. Cells could adhere to and proliferate on the membranes without cytotoxicity until the MNA content reached 30%. Subcutaneous implantation in rabbits for 8 months demonstrated that MNA-loaded membranes evoked a less severe inflammatory response depending on the dose of MNA than bare membranes. The biodegradation time of the membranes was appropriate for tissue regeneration. These results indicated the potential for using MNA-loaded PCL/gelatin electrospun membranes as anti-infective GTR/GBR membranes to optimize clinical application of GTR/GBR strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry

    Directory of Open Access Journals (Sweden)

    Abhijit Ningappa Gurav

    2015-01-01

    Full Text Available Periradicular (PR bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect.

  20. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry

    Science.gov (United States)

    Gurav, Abhijit Ningappa; Shete, Abhijeet Rajendra; Naiktari, Ritam

    2015-01-01

    Periradicular (PR) bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR) has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect. PMID:26941526

  1. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery.

    Science.gov (United States)

    Ceccarelli, Gabriele; Presta, Rossella; Benedetti, Laura; Cusella De Angelis, Maria Gabriella; Lupi, Saturnino Marco; Rodriguez Y Baena, Ruggero

    2017-01-01

    Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

  2. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery

    Directory of Open Access Journals (Sweden)

    Gabriele Ceccarelli

    2017-01-01

    Full Text Available Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA, polylactic acid (PLA, and polycaprolactone. This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.

  3. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  4. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yinan; Xiao, Wei [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Bal, B. Sonny [Department of Orthopaedic Surgery, University of Missouri, Columbia, MO 65212 (United States); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  5. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    International Nuclear Information System (INIS)

    Lin, Yinan; Xiao, Wei; Bal, B. Sonny; Rahaman, Mohamed N.

    2016-01-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  6. 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan

    2017-01-01

    Abstract Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root‐like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration. PMID:29270348

  7. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  8. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit

    Directory of Open Access Journals (Sweden)

    Maiti SK

    2016-11-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BMSC represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2 and insulin-like growth factor (IGF-1 to a silica-coated calcium hydroxyapatite (HASi - rabbit bone marrow derived mesenchymal stem cell (rBMSC construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B; HASi scaffold seeded with rBMSC (group C; HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells and concentration of growth factors rhBMP-2 (50µg and IGF-1 (50µg was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A. Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT, haematoxylin and eosin (H & E and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.

  9. In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM

    Energy Technology Data Exchange (ETDEWEB)

    Tavakol, Shima [School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Department of Medical Nanotechnology (Iran, Islamic Republic of); Ragerdi Kashani, Iraj [School of Medicine, Tehran University of Medical Sciences, Department of Anatomy (Iran, Islamic Republic of); Azami, Mahmood [School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Department of Tissue Engineering (Iran, Islamic Republic of); Khoshzaban, Ahad [Tehran University of Medical Sciences, Iranian Tissue Bank Research and Preparation Center (Iran, Islamic Republic of); Tavakol, Behnaz [Kashan University of Medical Sciences, Department of Medicine (Iran, Islamic Republic of); Kharrazi, Sharmin [School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Department of Medical Nanotechnology (Iran, Islamic Republic of); Ebrahimi, Somayeh [University of Tarbiat Moallem, Department of Biology, Faculty of Sciences (Iran, Islamic Republic of); Rezayat Sorkhabadi, Seyed Mahdi, E-mail: sh_tavakol@razi.tums.ac.ir [School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Department of Medical Nanotechnology (Iran, Islamic Republic of)

    2012-12-15

    Bone regeneration ability of a scaffold strongly depends on its structure and the size of its components. In this study, a nanostructured scaffold was designed for bone repair using nano hydroxyapatite (nHA) (8-16 nm Multiplication-Sign 50-80 nm) and gelatin (GEL) as main components. In vitro investigations of calcium matrix deposition and gene expression of the seeded cells for this scaffold, demineralized bone matrix (DBM), scaffold plus DBM, and the control group were carried out. Bone regeneration in rat calvarium with critical defect size after 1, 4, and 8 weeks post implantation was investigated. The calcium matrix depositions by the osteoblast and RUNX2, ALP, osteonectin, and osteocalcin gene expression in scaffold were more significant than in other groups. Histomorphometry analysis confirmed in vitro results. In vitro and in vivo bone regeneration were least in scaffold plus DBM group. Enhanced effects in scaffold could be attributed to the shape and size of nHA particles and good architecture of the scaffold. Reduction of bone regeneration might be due to tight bonding of BMPs and nHA particles in the third group. Results obtained from this study confirmed that nano-scale size of the main components and the scaffold architecture (pore diameter, interconnectivity pores, etc.) have significant effects on bone regeneration ability of the scaffold and are important parameters in designing a temporary bone substitute.

  10. In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM

    International Nuclear Information System (INIS)

    Tavakol, Shima; Ragerdi Kashani, Iraj; Azami, Mahmood; Khoshzaban, Ahad; Tavakol, Behnaz; Kharrazi, Sharmin; Ebrahimi, Somayeh; Rezayat Sorkhabadi, Seyed Mahdi

    2012-01-01

    Bone regeneration ability of a scaffold strongly depends on its structure and the size of its components. In this study, a nanostructured scaffold was designed for bone repair using nano hydroxyapatite (nHA) (8–16 nm × 50–80 nm) and gelatin (GEL) as main components. In vitro investigations of calcium matrix deposition and gene expression of the seeded cells for this scaffold, demineralized bone matrix (DBM), scaffold plus DBM, and the control group were carried out. Bone regeneration in rat calvarium with critical defect size after 1, 4, and 8 weeks post implantation was investigated. The calcium matrix depositions by the osteoblast and RUNX2, ALP, osteonectin, and osteocalcin gene expression in scaffold were more significant than in other groups. Histomorphometry analysis confirmed in vitro results. In vitro and in vivo bone regeneration were least in scaffold plus DBM group. Enhanced effects in scaffold could be attributed to the shape and size of nHA particles and good architecture of the scaffold. Reduction of bone regeneration might be due to tight bonding of BMPs and nHA particles in the third group. Results obtained from this study confirmed that nano-scale size of the main components and the scaffold architecture (pore diameter, interconnectivity pores, etc.) have significant effects on bone regeneration ability of the scaffold and are important parameters in designing a temporary bone substitute.

  11. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    Directory of Open Access Journals (Sweden)

    Abdalla Abdal-hay

    2017-02-01

    Full Text Available Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles (NPs rapidly nucleated and deposited from surrounding biological minerals within chitosan (CTS matrices using hydrothermal technique. After that, freeze-drying method was applied on the composite solution to form the desired porous 3D architecture. Interestingly, the porosity and pore size of composite scaffold were not significantly affected by the particles size and particles content within the CTS matrix. Our results demonstrated that the compression modulus of porous composite scaffold is twice higher than that of plain CTS scaffold, indicating a maximization of the chemical interaction between polymer matrix and apatite NPs. Cytocompatibility test for MC3T3-E1 pre-osteoblasts cell line using MTT-indirect assay test showed that the fabricated 3D microporous nanocomposite scaffold possesses higher cell proliferation and growth than that of pure CTS scaffold. Collectively, our results suggest that the newly developed highly porous apatite/CTS nanocomposite scaffold as an alternative of hydroxyapatite/CTS scaffold may serve as an excellent porous 3D platform for bone tissue regeneration.

  12. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  13. Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats.

    Science.gov (United States)

    Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Linhares, Camila Rodrigues Borges; Bergamini, Mariana Lobo; Rocha, Flaviana Soares; Morais, Richarlisson Borges de; Balbi, Ana Paula Coelho; Hiraki, Karen Renata Nakamura; Dechichi, Paula

    2018-01-29

    The aim of this study was evaluate the effect of HBO on diabetic rats. Twenty rats were distributed into four groups (n = 5): Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin, and bone defects were created in both femurs in all animals. HBO therapy began immediately after surgery and was performed daily in the CH and DH groups. After 7 days, the animals were euthanized. The femurs were removed, demineralized, embedded in paraffin, and histologic images were analyzed. Qualitative histologic analyses showed more advanced stage bone regeneration in control groups (C and CH) compared with diabetic groups (D and DH). Histomorphometric analysis showed significantly increased bone neoformation in CH compared with the other groups (p  0.05). The mast cell population increased in CH compared with the other groups (C, D, and DH) (p < 0.05). The mast cell population did not differ between D and DH Groups. This study showed that HBO therapy improved early bone regeneration in diabetic rats and increased the mast cell population only in non-diabetic animals. HBO was shown to be important treatment for minimizing deleterious effects of diabetes on bone regeneration.

  14. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/?-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration

    OpenAIRE

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-01-01

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and ?-tricalcium phosphate (?-TCP) in a 4:4:2 ratio, PCL/PLGA/?-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/P...

  15. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  16. Fabrication of nanocrystalline hydroxyapatite doped degradable composite hollow fiber for guided and biomimetic bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ning [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Nichols, Heather L. [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Tylor, Shila [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Wen Xuejun [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States)]. E-mail: xjwen@clemson.edu

    2007-04-15

    Natural bone tissue possesses a nanocomposite structure interwoven in a three-dimensional (3-D) matrix, which plays critical roles in conferring appropriate physical and biological properties to the bone tissue. Single type of material may not be sufficient to mimic the composition, structure and properties of native bone, therefore, composite materials consisting of both polymers, bioceramics, and other inorganic materials have to be designed. Among a variety of candidate materials, polymer-nanoparticle composites appear most promising for bone tissue engineering applications because of superior mechanical properties, improved durability, and surface bioactivity when compared with conventional polymers or composites. The long term objective of this project is to use highly aligned, bioactive, biodegradable scaffold mimicking natural histological structure of human long bone, and to engineer and regenerate human long bone both in vitro and in vivo. In this study, bioactive, degradable, and highly permeable composite hollow fiber membranes (HFMs) were fabricated using a wet phase phase-inversion approach. The structure of the hollow fiber membranes was examined using scanning electron microscopy (SEM); degradation behavior was examined using weigh loss assay, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC); and bioactivity was evaluated with the amount of calcium deposition from the culture media onto HFM surface. Doping PLGA HFMs with nanoHA results in a more bioactive and slower degrading HFM than pure PLGA HFMs.

  17. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  18. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    Science.gov (United States)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  19. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  20. Development of a 3D bone marrow adipose tissue model.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  1. Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity

    Directory of Open Access Journals (Sweden)

    Boguslawa Żywicka

    2017-10-01

    Full Text Available Abstracts: The aim of the study was to evaluate the biocompatibility and bioactivity of two new prototype implants for bone tissue regeneration made from biodegradable fibrous materials. The first is a newly developed poly(l-lactide-co-glycolide, (PLGA, and the second is a blend of PLGA with synthetic poly([R,S]-3-hydroxybutyrate (PLGA/PHB. The implant prototypes comprise PLGA or PLGA/PHB nonwoven fabrics with designed pore structures to create the best conditions for cell proliferation. The bioactivity of the proposed implants was enhanced by introducing a hydroxyapatite material and a biologically active agent, namely, growth factor IGF1, encapsulated in calcium alginate microspheres. To assess the biocompatibility and bioactivity, allergenic tests and an assessment of the local reaction of bone tissue after implantation were performed. Comparative studies of local tissue response after implantation into trochanters for a period of 12 months were performed on New Zealand rabbits. Based on the results of the in vivo evaluation of the allergenic effects and the local tissue reaction 12 months after implantation, it was concluded that the two implant prototypes, PLGA + IGF1 and PLGA/PHB + IGF1, were characterized by high biocompatibility with the soft and bone tissues of the tested animals.

  2. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia

    2016-04-01

    BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Changes in Mouse Bone Turnover in Response to Microgravity

    Science.gov (United States)

    Cheng-Campbell, M.; Blaber, E.; Almeida, E.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered

  4. Bone healing and bone substitutes.

    Science.gov (United States)

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason

    2002-02-01

    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  5. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  6. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  7. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John A; Gomes, Manuela E; Walboomers, X Frank

    2016-10-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect with the adequate cell populations. In this study, we proposed a bilayered system composed of (1) a platelet lysate (PL)-based construct produced by crosslinking of PL proteins with genipin (gPL) for the delivery of rat periodontal ligament cells (rat-PDLCs); combined with (2) an injectable composite consisting of calcium phosphate cement incorporated with PL-loaded poly(d, l-lactic-co-glycolic acid) microspheres. This system was expected to promote periodontal regeneration by the delivery of adequate progenitor cells and providing a stable system enriched with adequate cytokines and growth factors for the orchestration of tissue regrowth in periodontal defects. The bilayered system was tested in a three-wall intrabony defect in rats and the healing of periodontal tissue was assessed 6 weeks after surgery. Results showed that the bilayered system was able to promote the regrowth of functional periodontal tissues, both with (cells + gPL) and without the loading of PDLCs (gPL). Significant connective tissue attachment (45.0 ± 15.0% and 64.0 ± 15.0% for gPL and cells + gPL group, respectively) and new bone area (33.8 ± 21% and 21.3 ± 3% for gPL and cells + gPL group, respectively) were observed. Nevertheless, rat PDLCs delivered with gPL construct in the defect area were hardly visible 6 weeks after surgery and did not contribute for the regeneration of new periodontal tissue. Overall, our findings show that the bilayered system promotes the stabilization of PL proteins on the root surface and has a positive effect in the repair of periodontal tissues both in quality and in quantity.

  8. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  9. The use of titanium plates for bone regeneration with root form implants: a case report.

    Science.gov (United States)

    Maksoud, M A

    1999-01-01

    In reconstruction of the partially and totally edentulous ridges that have bony defects due to old trauma or longstanding atrophy, it is necessary to reconstruct both the width and height of the alveolar ridge. This clinical case report covers bone regeneration prior to implant placement to achieve an aesthetic and functional base for prosthetic restoration. The focus of this report will be on bone regeneration, which does not depend on the utilization of a barrier membrane.

  10. Functional regeneration of ligament-bone interface using a triphasic silk-based graft.

    Science.gov (United States)

    Li, Hongguo; Fan, Jiabing; Sun, Liguo; Liu, Xincheng; Cheng, Pengzhen; Fan, Hongbin

    2016-11-01

    The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effectiveness of the use of xenogeneic bone blocks mixed with autologous Concentrated Growth Factors (CGF in bone regeneration techniques: a case series

    Directory of Open Access Journals (Sweden)

    E. Gheno

    2014-06-01

    Full Text Available Aim: Different types of biomaterials and surgical techniques are currently used for the augmentation of atrophic ridges in view of implant supported restorations. The aim of this study was to clinically and histologically evaluate the combination of Concentrated Growth Factors (CGF and xenogeneic bone in vertical and/or horizontal ridge augmentation. Materials and methods: Seven patients (3 males and 4 females, who required oral implant and ridge augmentation surgery, were selected: 3 implants were placed during the surgery and 4 implants were inserted 4 months later, in order to allow complete graft integration. All implants were loaded after a 4-month healing time. The following parameters were assessed: a the capability of CGF to permeate the bone scaffold; b the degree of bone regeneration; c the clinical success rate. Results: The results obtained showed that: a with the used medical device porous bone scaffolds can be effectively permeated by the CGF; b the permeated grafting material resulted in effective bone regeneration, as confirmed by histomorphometric analysis; c all implants were successfully in function at the 12 months follow-up. Conclusion: This technique can be safely performed in the dental office under local anesthesia, so it can be considered a viable option in bone regeneration surgery.

  12. Reparative inflammation takes charge of tissue regeneration

    NARCIS (Netherlands)

    Karin, Michael; Clevers, Hans

    2016-01-01

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an

  13. Antibacterial Membrane with a Bone-Like Structure for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    YuYuan Zhang

    2015-01-01

    Full Text Available An antibacterial membrane with a bone-like structure was developed for guided bone regeneration (GBR by mineralising acellular bovine pericardium (ABP and loading it with the antibiotic minocycline. The bovine pericardium (BP membrane was processed using physical and chemical methods to remove the cellular components and obtain ABP membranes. Then, the ABP membranes were biomimetically mineralised using a calcium phosphate-loaded agarose hydrogel system aided by electrophoresis. Minocycline was adsorbed to the mineralised ABP membrane, and the release profile in vitro was studied. The membranes were characterised through scanning electron microscopy, diffuse reflectance-Fourier transform infrared spectroscopy, and X-ray diffraction. Results showed that the ABP membrane had an asymmetric structure with a layer of densely arranged and irregularly aligned collagen fibrils. Collagen fibrils were calcified with the formation of intrafibrillar and interfibrillar hydroxyapatites similar to the bone structure. Minocycline was incorporated into the mineralised collagen membrane and could be released in vitro. This process endowed the membrane with an antibacterial property. This novel composite membrane offers promising applications in bioactive GBR.

  14. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration

    International Nuclear Information System (INIS)

    Das, Beauty; Karak, Niranjan; Chattopadhyay, Pronobesh; Upadhyay, Aadesh; Maji, Somnath; Maity, Tapas Kumar; Purkayastha, Manashi Das; Mohanta, Charu lata

    2015-01-01

    The proper fabrication of biomaterials, particularly for purposes like bone regeneration, is of the utmost importance for the clinical success of materials that fulfill the design criteria at bio-interfacial milieu. Building on this aspect, a polyurethane nanocomposite (PNC) was fabricated by the combination of rapeseed protein functionalized multi-walled carbon nanotubes (MWCNTs) and vegetable-oil-based hyperbranched polyurethane. Biofunctionalized MWCNTs showed incredible biocompatibility compared to pristine MWCNTs as ascertained via in vitro and in vivo studies. PNC showed enhanced MG63 cell differentiation ability compared to the control and carboxyl functionalized MWCNT-based nanocomposite, as postulated by alkaline phosphatase activity together with better cellular adhesion, spreading and proliferation. Consequently, a critical-sized fracture gap (6 mm) bridged by the sticky PNC scaffold illustrated rapid bone neoformation within 30–45 d, with 90–93% of the defect area filling up. Histopathological studies demonstrated the reorganization of the normal tibial architecture and biodegradation of the implant. The subsequent toxicological study through cytokine expression, biochemical analysis and hematological studies suggested non-immunogenic and non-toxic effects of PNCs and their degraded/leached products. Their excellent bio-physiological features with high load-bearing ability (49–55.5 Mpa), ductility (675–790%) and biodegradability promote them as the best alternative biomaterials for bone regeneration in a comprehensive manner. (paper)

  15. Incomplete bone regeneration of rabbit calvarial defects using different membranes

    DEFF Research Database (Denmark)

    Aaboe, M; Pinholt, E M; Schou, S

    1998-01-01

    The present study describes the use of a degradable and a non-degradable material for guided bone regeneration. Forty rabbits were divided into 5 groups. Bicortical defects 15 mm in diameter were prepared in rabbit calvaria. A titanium microplate was placed over the defect to prevent collapse...

  16. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    Science.gov (United States)

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-02-01

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  17. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications

    Energy Technology Data Exchange (ETDEWEB)

    Tevlek, Atakan [Bioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara (Turkey); Hosseinian, Pezhman; Ogutcu, Cansel [Nanotechnology and Nanomedicine Division, Institute of Science and Engineering, Hacettepe University, Ankara (Turkey); Turk, Mustafa [Biology Department, Kirikkale University, Kirikkale (Turkey); Aydin, Halil Murat, E-mail: hmaydin@hacettepe.edu.tr [Environmental Engineering Department, Bioengineering Division, Centre for Bioengineering, Hacettepe University, Ankara (Turkey)

    2017-03-01

    This study aims to establish a facile protocol for the preparation of a bi-layered poly(glycerol-sebacate) (PGS)/β-tricalcium phosphate (β-TCP) construct and to investigate its potential for bone-soft tissue engineering applications. The layered structure was prepared by distributing the ceramic particles within a prepolymer synthesized in a microwave reactor followed by a cross-linking of the final construct in vacuum (< 10 mbar). The vacuum stage led to the separation of cross-linked elastomer (top) and ceramic (bottom) phases. Results showed that addition of β-TCP particles to the elastomer matrix after the polymerization led to an increase in compression strength (up to 14 ± 2.3 MPa). Tensile strength (σ), Young's modulus (E), and elongation at break (%) values were calculated as 0.29 ± 0.03 MPa and 0.21 ± 0.03; 0.38 ± 0.02 and 1.95 ± 0.4; and 240 ± 50% and 24 ± 2% for PGS and PGS/β-TCP bi-layered constructs, respectively. Morphology was characterized by using Scanning Electron Microscopy (SEM) and micro-computed tomography (μ-CT). Tomography data revealed an open porosity of 35% for the construct, mostly contributed from the ceramic phase since the elastomer side has no pore. Homogeneous β-TCP distribution within the elastomeric structure was observed. Cell culture studies confirmed biocompatibility with poor elastomer-side and good bone-side cell attachment. In a further study to investigate the osteogenic properties, the construct were loaded with BMP-2 and/or TGF-β1. The PGS/β-TCP bi-layered constructs with improved mechanical and biological properties have the potential to be used in bone-soft tissue interface applications where soft tissue penetration is a problem. - Highlights: • Biodegradable bi-layered constructs with elastomer and ceramic sides were prepared. • The constructs could be a promising material in guided bone regeneration. • Elastomer side of the construct acts as a barrier to prevent soft tissue ingrowth.

  18. The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Sonia Fiorilli

    2018-04-01

    Full Text Available Over the recent years, mesoporous bioactive glasses (MBGs gained interest as bone regeneration systems, due to their excellent bioactivity and ability to release therapeutic molecules. In order to improve the bone regeneration ability of MBGs, the incorporation of Sr2+ ions, due to its recognized pro-osteogenenic potential, represents a very promising strategy. In this study, MBGs based on the SiO2–CaO system and containing different percentages (2 and 4 mol % of strontium were prepared by two synthesis methods, in the form of microspheres and nanoparticles. Sr-containing MBGs were characterized by FE-SEM, XRD and N2 adsorption/desorption analysis. The in vitro bioactivity in SBF resulted excellent. The assessment of fibroblast cell (line L929 viability showed that Sr-containing MBGs were biocompatible both in form of micro- and nanoparticles. The osteogenic response of osteoblast-like SAOS-2 cells was investigated by analysing the expression of GAPDH, COL1a1, RANKL, SPARC, OPG and ALPL genes, as cell differentiation markers. The results indicate that the incorporation of Sr into MBG is beneficial for bone regeneration as promotes a pro-osteogenic effect, paving the way to the design of advanced devices enabled by these nanocarriers also in combination with drug release, for the treatment of bone pathologies, particularly in patients with osteoporosis.

  19. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    Science.gov (United States)

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    Science.gov (United States)

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  1. Guiding tissue regeneration with ultrasound in vitro and in vivo

    Science.gov (United States)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  2. Vascularised endosteal bone tissue in armoured sauropod dinosaurs.

    Science.gov (United States)

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-04-26

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature.

  3. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    Full Text Available Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found. For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies was assessed and outcome data were collected for meta-analysis (151 studies. Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular

  4. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  5. Structural and ultrastructural analyses of bone regeneration in rabbit cranial osteotomy: Piezosurgery versus traditional osteotomes.

    Science.gov (United States)

    Anesi, Alexandre; Ferretti, Marzia; Cavani, Francesco; Salvatori, Roberta; Bianchi, Michele; Russo, Alessandro; Chiarini, Luigi; Palumbo, Carla

    2018-01-01

    Clinical advantages of piezosurgery have been already proved. However, few investigations have focused on the dynamics of bone healing. The aim of this study was to evaluate, in adult rabbits, bone regeneration after cranial linear osteotomies with two piezoelectrical devices (Piezosurgery ® Medical - PM and Piezosurgery ® Plus - PP), comparing them with conventional rotary osteotomes (RO). PP was characterized by an output power three times higher than PM. Fifteen days after surgery, histomorphometric analyses showed that the osteotomy gap produced with PM and PP was about half the size of that produced by RO, and in a more advanced stage of recovery. Values of regenerated bone area with respect to the total osteotomy area were about double in PM and PP samples compared with RO ones, while the number of TRAP-positive (tartrate-resistant acid phosphatase positive) osteoclasts per linear surface showed a significant increase, suggesting greater bone remodelling. Under scanning electron microscopy, regenerated bone displayed higher cell density and less mineralized matrix compared with pre-existent bone for all devices used. Nanoindentation tests showed no changes in elastic modulus. In conclusion, PM/PP osteotomies can be considered equivalent to each other, and result in more rapid healing compared with those using RO. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.

    Science.gov (United States)

    Samavedi, Satyavrata; Vaidya, Prasad; Gaddam, Prudhvidhar; Whittington, Abby R; Goldstein, Aaron S

    2014-12-01

    Although bone-patellar tendon-bone (B-PT-B) autografts are the gold standard for repair of anterior cruciate ligament ruptures, they suffer from drawbacks such as donor site morbidity and limited supply. Engineered tissues modeled after B-PT-B autografts are promising alternatives because they have the potential to regenerate connective tissue and facilitate osseointegration. Towards the long-term goal of regenerating ligaments and their bony insertions, the objective of this study was to construct 2D meshes and 3D cylindrical composite scaffolds - possessing simultaneous region-wise differences in fiber orientation, diameter, chemistry and mechanical properties - by electrospinning two different polymers from off-set spinnerets. Using a dual drum collector, 2D meshes consisting of an aligned polycaprolactone (PCL) fiber region, randomly oriented poly(lactide-co-glycolide) (PLGA) fiber region and a transition region (comprised of both PCL and PLGA fibers) were prepared, and region-wise differences were confirmed by microscopy and tensile testing. Bone marrow stromal cells (BMSCs) cultured on these meshes exhibited random orientations and low aspect ratios on the random PLGA regions, and high aspect ratios and alignment on the aligned PCL regions. Next, meshes containing an aligned PCL region flanked by two transition regions and two randomly oriented PLGA regions were prepared and processed into 3D cylindrical composite scaffolds using an interpenetrating photo-crosslinkable polyethylene glycol diacrylate hydrogel to recapitulate the shape of B-PT-B autografts. Tensile testing indicated that cylindrical composites were mechanically robust, and eventually failed due to stress concentration in the aligned PCL region. In summary, this study demonstrates a process to fabricate electrospun meshes possessing region-wise differences in properties that can elicit region-dependent cell responses, and be readily processed into scaffolds with the shape of B-PT-B autografts.

  7. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  8. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  9. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration

    Directory of Open Access Journals (Sweden)

    M Shafiq

    2011-11-01

    Full Text Available In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone (PLCL and substance P (SP-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+ cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  10. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing

  11. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering.

    Science.gov (United States)

    Wang, Ping; Song, Yang; Weir, Michael D; Sun, Jinyu; Zhao, Liang; Simon, Carl G; Xu, Hockin H K

    2016-02-01

    Calcium phosphate cements (CPCs) are promising for dental and craniofacial repairs. The objectives of this study were to: (1) develop an injectable cell delivery system based on encapsulation of induced pluripotent stem cell-derived mesenchymal stem cells (iPSMSCs) in microbeads; (2) develop a novel tissue engineered construct by dispersing iPSMSC-microbeads in CPC to investigate bone regeneration in an animal model for the first time. iPSMSCs were pre-osteoinduced for 2 weeks (OS-iPSMSCs), or transduced with bone morphogenetic protein-2 (BMP2-iPSMSCs). Cells were encapsulated in fast-degradable alginate microbeads. Microbeads were mixed with CPC paste and filled into cranial defects in nude rats. Four groups were tested: (1) CPC-microbeads without cells (CPC control); (2) CPC-microbeads-iPSMSCs (CPC-iPSMSCs); (3) CPC-microbeads-OS-iPSMSCs (CPC-OS-iPSMSCs); (4) CPC-microbeads-BMP2-iPSMSCs (CPC-BMP2-iPSMSCs). Cells maintained good viability inside microbeads after injection. The microbeads were able to release the cells which had more than 10-fold increase in live cell density from 1 to 14 days. The cells exhibited up-regulation of osteogenic markers and deposition of minerals. In vivo, new bone area fraction (mean±SD; n=5) for CPC-iPSMSCs group was (22.5±7.6)%. New bone area fractions were (38.9±18.4)% and (44.7±22.8)% for CPC-OS-iPSMSCs group and CPC-BMP2-iPSMSCs group, respectively, 2-3 times the (15.6±11.2)% in CPC control at 12 weeks (pdental and craniofacial bone regenerations. Published by Elsevier Ltd.

  12. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  13. Natural marine sponges for bone tissue engineering: The state of art and future perspectives.

    Science.gov (United States)

    Granito, Renata Neves; Custódio, Márcio Reis; Rennó, Ana Claudia Muniz

    2017-08-01

    Marine life and its rich biodiversity provide a plentiful resource of potential new products for the society. Remarkably, marine organisms still remain a largely unexploited resource for biotechnology applications. Among them, marine sponges are sessile animals from the phylum Porifera dated at least from 580 million years ago. It is known that molecules from marine sponges present a huge therapeutic potential in a wide range of applications mainly due to its antitumor, antiviral, anti-inflammatory, and antibiotic effects. In this context, this article reviews all the information available in the literature about the potential of the use of marine sponges for bone tissue engineering applications. First, one of the properties that make sponges interesting as bone substitutes is their structural characteristics. Most species have an efficient interconnected porous architecture, which allows them to process a significant amount of water and facilitates the flow of fluids, mimicking an ideal bone scaffold. Second, sponges have an organic component, the spongin, which is analogous to vertebral collagen, the most widely used natural polymer for tissue regeneration. Last, osteogenic properties of marine sponges is also highlighted by their mineral content, such as biosilica and other compounds, that are able to support cell growth and to stimulate bone formation and mineralization. This review focuses on recent studies concerning these interesting properties, as well as on some challenges to be overcome in the bone tissue engineering field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1717-1727, 2017. © 2016 Wiley Periodicals, Inc.

  14. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    Science.gov (United States)

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  15. Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy.

    Science.gov (United States)

    Pacelli, Settimio; Maloney, Ryan; Chakravarti, Aparna R; Whitlow, Jonathan; Basu, Sayantani; Modaresi, Saman; Gehrke, Stevin; Paul, Arghya

    2017-07-26

    Nanodiamonds (NDs) have attracted considerable attention as drug delivery nanocarriers due to their low cytotoxicity and facile surface functionalization. Given these features, NDs have been recently investigated for the fabrication of nanocomposite hydrogels for tissue engineering. Here we report the synthesis of a hydrogel using photocrosslinkable gelatin methacrylamide (GelMA) and NDs as a three-dimensional scaffold for drug delivery and stem cell-guided bone regeneration. We investigated the effect of different concentration of NDs on the physical and mechanical properties of the GelMA hydrogel network. The inclusion of NDs increased the network stiffness, which in turn augmented the traction forces generated by human adipose stem cells (hASCs). We also tested the ability of NDs to adsorb and modulate the release of a model drug dexamethasone (Dex) to promote the osteogenic differentiation of hASCs. The ND-Dex complexes modulated gene expression, cell area, and focal adhesion number in hASCs. Moreover, the integration of the ND-Dex complex within GelMA hydrogels allowed a higher retention of Dex over time, resulting in significantly increased alkaline phosphatase activity and calcium deposition of encapsulated hASCs. These results suggest that conventional GelMA hydrogels can be coupled with conjugated NDs to develop a novel platform for bone tissue engineering.

  16. Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration

    DEFF Research Database (Denmark)

    Chakraborti, M.; Jackson, J.K.; Plackett, David

    2011-01-01

    It has been proposed that localized and controlled delivery of alendronate and tetracycline to periodontal pocket fluids via guided tissue regeneration (GTR) membranes may be a valuable adjunctive treatment for advanced periodontitis. The objectives of this work were to develop a co...... evidence of intercalation in the LDH clay particles. The dual drug loaded nanocomposite films were biocompatible with osteoblasts and after 5 week incubations, significant increase in alkaline phosphatase activity and bone nodule formation were observed....

  17. Bone regeneration in cranioplasty and clinical complications in rabbits with alloxan-induced diabetes

    Directory of Open Access Journals (Sweden)

    Evanice Menezes Marçal Vieira

    2008-06-01

    Full Text Available This research evaluated the bone repair process in surgical defects created on the parietal bones of diabetic rabbits using the guided bone regeneration technique to observe the effects of alloxan in the induction of diabetes mellitus. Twenty-four adult rabbits were divided into three study groups: control (C, diabetic (D and diabetic associated to polytetrafluoroethylene (PTFE membrane (D-PTFE. For diabetes induction the animals received one dose of monohydrated alloxan (90 mg/kg by intravenous administration in the auricular or femoral vein. In group D-PTFE the membrane covered both the floor and the surface of the bone defect. In groups D and C, the bone defect was filled up with blood clot. The specimens were fixed in 10% formol and prepared for histomorphometric analysis. The results showed that the 90 mg/kg dose of monohydrate alloxan was sufficient to promote diabetes mellitus when administered in the auricular vein. Bone regeneration was slower in the diabetic group when compared with the control and diabetic-PTFE groups, but there was no significant statistical difference between the two experimental groups (D and D-PTFE. The oral and general clinical complications among the diabetics were weight loss, polyuria, polyphagia and severe chronic gingivitis.

  18. Bone Regeneration from PLGA Micro-Nanoparticles.

    Science.gov (United States)

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.

  19. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xiaochen Zhang,1,* Quan Yu,2,* Yan-an Wang,1 Jun Zhao2 1Department of Oral and Maxillofacial-Head and Neck Oncology, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China *These authors contributed equally to this work Introduction: To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2 are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. Materials and methods: A new growth factor delivery system was fabricated using BMP-2-loaded TiO2 nanotubes by lyophilization with trehalose (TiO2-Lyo-Tre-BMP-2. We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT, sequential fluorescent labelling, and histological analysis. Results: Compared with absorbed BMP-2-loaded TiO2 nanotubes (TiO2-BMP-2, TiO2-Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO2-Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO2-BMP-2 nanotubes. Conclusion: Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects. Keywords: bone morphogenetic protein-2, dose reduction, delivery system, trehalose, lyophilization, TiO2 nanotubes, BMP-2, regenerative medicine, surface

  20. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Consortium for Bone and Tissue Repair and Regeneration

    Science.gov (United States)

    2011-01-01

    develop the next generation of biomaterials and biosensors. • Developing joint programs to train the next generation of biomedical and biomaterials...nonunions. Clin Orthop Relat Res 205:299-308. Wolfe SA (1982). Autogenous bone grafts versus alloplastic material in maxillofacial surgery. Clin Plast

  2. Osteogenesis and angiogenesis: The potential for engineering bone

    Directory of Open Access Journals (Sweden)

    JM Kanczler

    2008-05-01

    Full Text Available The repair of large bone defects remains a major clinical orthopaedic challenge. Bone is a highly vascularised tissue reliant on the close spatial and temporal connection between blood vessels and bone cells to maintain skeletal integrity. Angiogenesis thus plays a pivotal role in skeletal development and bone fracture repair. Current procedures to repair bone defects and to provide structural and mechanical support include the use of grafts (autologous, allogeneic or implants (polymeric or metallic. These approaches face significant limitations due to insufficient supply, potential disease transmission, rejection, cost and the inability to integrate with the surrounding host tissue.The engineering of bone tissue offers new therapeutic strategies to aid musculoskeletal healing. Various scaffold constructs have been employed in the development of tissue-engineered bone; however, an active blood vessel network is an essential pre-requisite for these to survive and integrate with existing host tissue. Combination therapies of stem cells and polymeric growth factor release scaffolds tailored to promote angiogenesis and osteogenesis are under evaluation and development actively to stimulate bone regeneration. An understanding of the cellular and molecular interactions of blood vessels and bone cells will enhance and aid the successful development of future vascularised bone scaffold constructs, enabling survival and integration of bioengineered bone with the host tissue. The role of angiogenic and osteogenic factors in the adaptive response and interaction of osteoblasts and endothelial cells during the multi step process of bone development and repair will be highlighted in this review, with consideration of how some of these key mechanisms can be combined with new developments in tissue engineering to enable repair and growth of skeletal fractures. Elucidation of the processes of angiogenesis, osteogenesis and tissue engineering strategies offer

  3. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  4. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  5. Preparation of Emulsifying Wax/GMO Nanoparticles and Evaluation as a Delivery System for Repurposing Simvastatin in Bone Regeneration.

    Science.gov (United States)

    Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O

    2018-05-30

    Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.

  6. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  7. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Patrizia Pessina

    2015-06-01

    Full Text Available Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD, skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  8. Treatment of periodontal disease with guided tissue regeneration technique using a hydroxyapatite and polycaprolactone membrane

    Directory of Open Access Journals (Sweden)

    L.M.A. Martins

    Full Text Available ABSTRACT The aim of this study was to evaluate the use of a malleable membrane composed of hydroxyapatite (60% and polycaprolactone (40% as treatment of periodontal disease experimentally induced in dogs. A bone defect of standardized dimensions was created between the roots of the third and fourth premolar of 12 dogs for periodontal disease induction. Six dogs had the defect covered by the membrane and six dogs received only standard treatment for periodontal disease, also applied to dogs in the treated group. The animals were clinically monitored during the experiment. Radiographs were taken after surgery and at 60 days after treatment initiation. Clinical attachment level was also assessed in those moments. On the 60th day, dental sample of all animals, containing tooth, defect and periodontal tissues, were harvested, fixed in formalin and analyzed by microtomography and histology. During the experimental period, the animals showed no pain and purulent discharge, however, there was dehiscence in 50% of animals and membrane exposure in five out of six animals in the treated group. Clinical attachment level showed no difference between groups. Radiographs showed radiopacity equal to the alveolar bone in both groups. The microtomography revealed that the control group had higher bone volume in the defect compared to the treated group; however, the furcation was not filled by new alveolar bone in any animal. Histological analysis revealed that junctional epithelium invasion was lighter in the control group. New bone was only observed in the apical edge of the defect in both groups. Although the composite is biocompatible and able to keep the space of the defect, it did not promote periodontal tissue regeneration within 60 days of observation.

  9. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  10. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Hernández, José Manuel [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Escobar-García, Diana María [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Escalante, Alfredo [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Flores, Hector [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); González, Francisco Javier [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Gatenholm, Paul [Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden); Toriz, Guillermo, E-mail: gtoriz@dmcyp.cucei.udg.mx [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden)

    2017-06-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  11. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Gutiérrez-Hernández, José Manuel; Escobar-García, Diana María; Escalante, Alfredo; Flores, Hector; González, Francisco Javier; Gatenholm, Paul; Toriz, Guillermo

    2017-01-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  12. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  13. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  14. Immediate implant placement and provisionalization with simultaneous guided bone regeneration in the esthetic zone

    Directory of Open Access Journals (Sweden)

    Chih-Long Chen

    2011-03-01

    Full Text Available The procedure for immediate implant placement and provisionalization is time-saving, possibly with only one surgical intervention required, although allowing maximal preservation of peri-implant tissues. In this case, we extracted a fractured maxillary right central incisor of a 46-year-old woman with high esthetic expectations, and a transmucosal implant was immediately installed. Simultaneous guided bone regeneration was performed to correct the defects at the facial side of the socket and augment the alveolar ridge horizontally. Primary stability of the implant body and wound closure without tension were confirmed. Connection of a 15° angled abutment and fabrication of a provisional acrylic resin crown without occlusal contact were also completed in the same appointment. After intensive follow-up and soft-tissue molding for 6 months, the customized zirconia abutment and all-ceramic crown were definitively fabricated. During the 18-month follow-up period, the patient was satisfied with the esthetic and functional results.

  15. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.

    Science.gov (United States)

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L; Cronstein, Bruce N

    2017-02-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. Nearly 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3D Robocasting system, and sintered at 1100°C for 4 h. Scaffolds were coated with BMP-2 (200 ng mL -1 ), dypiridamole 100 µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3 mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. Micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP-dipyridamole and HA/β-TCP-BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4, and 8 weeks (n = 5 per group; p ≤ 0.05, p ≤ 0.05, and p ≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. Coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 366-375, 2017. © 2015 Wiley Periodicals, Inc.

  16. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    Science.gov (United States)

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in

  17. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    Science.gov (United States)

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  18. Tissue regenerating functions of coagulation factor XIII

    DEFF Research Database (Denmark)

    Soendergaard, C; Kvist, P H; Seidelin, J B

    2013-01-01

    The protransglutaminase factor XIII (FXIII) has recently gained interest within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports haemostasis by enhancing platelet adhesion to damaged......-receptor 2 and the αVβ3 integrin is important for angiogenesis supporting formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review...

  19. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration

    Directory of Open Access Journals (Sweden)

    Smeets Ralf

    2008-10-01

    Full Text Available Abstract Background Different types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF, periodontal ligament fibroblasts (PDLF and human osteoblast-like (HOB cells in vitro. Methods Three commercially available collagen membranes [TutoDent® (TD, Resodont® (RD and BioGide® (BG] as well as three nonresorbable polytetrafluoroethylene (PTFE membranes [ACE (AC, Cytoplast® (CT and TefGen-FD® (TG] were tested. Cells plated on culture dishes (CD served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM. Results The results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h and later (48 h time periods (P P ≤ 0.001. In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (P Conclusion Results from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.

  20. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ze Tang

    Full Text Available Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS, which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.