WorldWideScience

Sample records for bone substitute material

  1. Advances in Osteobiologic Materials for Bone Substitutes.

    Science.gov (United States)

    Hasan, Anwarul; Byambaa, Batzaya; Morshed, Mahboob; Cheikh, Mohammad Ibrahim; Shakoor, Rana Abdul; Mustafy, Tanvir; Marei, Hany

    2018-04-27

    A significant challenge in the current orthopedics is the development of suitable osteobiologic materials that can replace the conventional allografts, autografts and xenografts, and thereby serve as implant materials as bone substitutes for bone repair or remodeling. The complex biology behind the nano-microstructure of bones and their repair mechanisms, which involve various types of chemical and biomechanical signaling amongst different cells, has set strong requirements for biomaterials to be used in bone tissue engineering. This review presents an overview of various types of osteobiologic materials to facilitate the formation of the functional bone tissue and healing of the bone, covering metallic, ceramic, polymeric and cell-based graft substitutes, as well as some biomolecular strategies including stem cells, extracellular matrices, growth factors and gene therapies. Advantages and disadvantages of each type, particularly from the perspective of osteoinductive and osteoconductive capabilities, are discussed. Although the numerous challenges of bone regeneration in tissue engineering and regenerative medicine are yet to be entirely addressed, further advancements in osteobiologic materials will pave the way towards engineering fully functional bone replacement grafts. This article is protected by copyright. All rights reserved.

  2. Development of a piezoelectric bone substitute material

    International Nuclear Information System (INIS)

    Al-Bader, Yousef A.

    2000-01-01

    The thesis deals with the preparation and testing of ceramic compositions to be used as bone substitute. The proposed composition consisted of calcium enriched calcium phosphate, kaolin and barium titanate in different ratios. The homogeneous powder mixture was dry pressed at different pressures and fired at temperatures up to 1350 degC for different soaking times. The physical properties of the fired compacts that were tested are bulk density and porosity. These were determined as function of pressing pressure, firing temperature and soaking time for different compositions. The mechanical properties investigated were the ultimate compressive strength and Young's modulus, which were determined for different compositions and forming pressures. The electrical properties investigated were D.C. characteristics (resistivity) and A.C. characteristics (A.C. resistivity, dielectric constant, dielectric loss and loss tangent). The piezoelectric behaviour of the fired compacts was investigated and the piezoelectric coefficient (d) in the axial direction was obtained as a function of the percent barium titanate added. The development of piezoelectricity when barium titanate is added was interpreted, using XRD, as due to the formation of barium titanate silicate. Compositions determined as having properties comparable to those of natural bone, were tested for in vitro solubility in pure water and saline solution. The results obtained showed that the selected composition (containing 15% kaolin, 10% barium titanate, pressed at 35 MPa and fired at 1350 degC for two hours) has properties comparable to those of dry bone and a reasonable in vitro solubility. (author)

  3. Tissue reaction and material characteristics of four bone substitutes

    DEFF Research Database (Denmark)

    Jensen, S S; Aaboe, M; Pinholt, E M

    1996-01-01

    and Interpore 500 HA/CC) were implanted into 5-mm bur holes in rabbit tibiae. There was no difference in the amount of newly formed bone around the four biomaterials. Interpore 500 HA/CC resorbed completely, whereas the other three biomaterials did not undergo any detectable biodegradation. Bio......The aim of the present study was to qualitatively and quantitatively compare the tissue reactions around four different bone substitutes used in orthopedic and craniofacial surgery. Cylinders of two bovine bone substitutes (Endobon and Bio-Oss) and two coral-derived bone substitutes (Pro Osteon 500......-Oss was osseointegrated to a higher degree than the other biomaterials. Material characteristics obtained by diffuse reflectance infrared Fourier transform spectrometry analysis and energy-dispersive spectrometry did not explain the differences in biologic behavior....

  4. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  5. Novel bone substitute material in alveolar bone healing following tooth extraction: an experimental study in sheep.

    Science.gov (United States)

    Liu, Jinyi; Schmidlin, Patrick R; Philipp, Alexander; Hild, Nora; Tawse-Smith, Andrew; Duncan, Warwick

    2016-07-01

    Electrospun cotton wool-like nanocomposite (ECWN) is a novel synthetic bone substitute that incorporates amorphous calcium phosphate nanoparticles into a biodegradable synthetic copolymer poly(lactide-co-glycolide). The objectives of this study were to develop a tooth extraction socket model in sheep for bone graft research and to compare ECWN and bovine-derived xenograft (BX) in this model. Sixteen cross-bred female sheep were used. Bilateral mandibular premolars were extracted atraumatically. Second and third premolar sockets were filled (Latin-square allocation) with BX, ECWN or left unfilled. Resorbable collagen membranes were placed over BX and selected ECWN grafted sockets. Eight sheep per time period were sacrificed after 8 and 16 weeks. Resin-embedded undemineralised sections were analysed for descriptive histology and histomorphometric analyses. At 8 weeks, there were with no distinct differences in healing among the different sites. At 16 weeks, osseous healing followed a fine trabecular pattern in ECWN sites. Non-grafted sites showed thick trabeculae separated by large areas of fibrovascular connective tissue. In BX grafted sites, xenograft particles were surrounded by newly formed bone or fibrovascular connective tissue. There were no statistically significant differences in bone formation across the four groups. However, ECWN sites had significantly less residual graft material than BX sites at 16 weeks (P = 0.048). This first description of a tooth extraction socket model in sheep supports the utility of this model for bone graft research. The results of this study suggested that the novel material ECWN did not impede bone ingrowth into sockets and showed evidence of material resorption. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Maxillary Sinus Floor Augmentation With Synthetic Bone Substitutes Compared With Other Grafting Materials

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Mordenfeld, Arne; Becktor, Jonas Peter

    2018-01-01

    OBJECTIVE: To test the hypotheses of no differences in implant treatment outcome after maxillary sinus floor augmentation (MSFA) with synthetic bone substitutes (SBS) compared with other grafting materials applying the lateral window technique. MATERIALS AND METHODS: A MEDLINE/PubMed, Embase and ...

  7. Investigation of novel bioactive rapidly resorbable bone substitute materials and their influence on osteoblastic cell differentiation in vivo

    OpenAIRE

    Jonscher, Sebastian

    2010-01-01

    Among the various techniques to reconstruct or enlarge a deficient alveolar ridge, the concept of guided bone regeneration (GBR) has become a predictable and well-documented surgical approach. At present, autogenous bone grafts are preferably combined with barrier membranes. Using synthetic biodegradable bone substitute materials, however, is advantageous, since it avoids second-site surgery for autograft harvesting. A bone substitute for alveolar ridge augmentation must be rapidly resorbable...

  8. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  9. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  10. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  11. Bone healing and bone substitutes.

    Science.gov (United States)

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason

    2002-02-01

    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  12. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study.

    Science.gov (United States)

    Shakibaie-M, Behnam

    2013-01-01

    The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.

  13. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    Science.gov (United States)

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  14. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  15. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    Science.gov (United States)

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    Science.gov (United States)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were

  17. Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle

    Directory of Open Access Journals (Sweden)

    Jian-Sheng Wang

    2016-07-01

    Conclusion: Calcium sulfate hydroxyapatite bone substitute can be used as a carrier for antibiotics or other drugs, without adverse reaction due to the fast resorption of the calcium sulfate. No bone formation was seen despite treating the bone substitute with autologous bone marrow.

  18. Marker for the pre-clinical development of bone substitute materials

    Directory of Open Access Journals (Sweden)

    de Wild Michael

    2017-09-01

    Full Text Available Thin mechanically stable Ti-cages have been developed for the in-vivo application as X-ray and histology markers for the optimized evaluation of pre-clinical performance of bone graft materials. A metallic frame defines the region of interest during histological investigations and supports the identification of the defect site. This standardization of the procedure enhances the quality of pre-clinical experiments. Different models of thin metallic frameworks were designed and produced out of titanium by additive manufacturing (Selective Laser Melting. The productibility, the mechanical stability, the handling and suitability of several frame geometries were tested during surgery in artificial and in ex-vivo bone before a series of cages was preclinically investigated in the female Göttingen minipigs model. With our novel approach, a flexible process was established that can be adapted to the requirements of any specific animal model and bone graft testing.

  19. Evaluation of Three Bone Substitute Materials in the Treatment of Experimentally Induced Defects in Rabbit Calvaria

    Directory of Open Access Journals (Sweden)

    M. Paknejad

    2007-12-01

    Full Text Available Objective: The aim of present study was to evaluate the quality, density and thickness of newly formed bone in experimental defects treated with Combi-Pack®, Bio-Oss® and Biostite®.Materials and Methods: Eight New Zealand white rabbits were included in this randomized,blinded study. Four equal 3×6 mm bone defects were created on the frontal and parietal bones of each animal and three were immediately grafted with Bio-Oss®, Combi-Pack® and Biostite® while one was left untreated, serving as negative control. Histologic and histomorphometric analysis was performed four weeks after surgery.Results: Histomorphometric bone area and trabecular maturity was significantly higher in the Bio-Oss® and Combi-Pack® samples as compared to the Biostite® and control cases.The amount of remaining biomaterial was almost equal in the three experimental groups at the end of the study period. Neither foreign body reaction nor severe inflammation was seen in any of the specimens except for the Biostite® samples.Conclusion: It may be suggested that implantation of Bio-Oss® particles and Combi-Pack® blocks can promote bone regeneration more effectively than Biostite®.

  20. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    International Nuclear Information System (INIS)

    He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming

    2015-01-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials

  1. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial.

    Science.gov (United States)

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A

    2016-01-01

    In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.

  2. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  3. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  4. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes

    NARCIS (Netherlands)

    Duan, Rongquan; Barbieri, Davide; Luo, Xiaoman; Weng, Jie; Bao, Chongyun; De Bruijn, Joost D.; Yuan, Huipin

    2018-01-01

    Because of their bioactive properties and chemical similarity to the inorganic component of bone, calcium phosphate (CaP) materials are widely used for bone regeneration. Six commercially available CaP bone substitutes (Bio-Oss, Actifuse, Bi-Ostetic, MBCP, Vitoss and chronOs) as well as two

  5. Osseointegration of subperiosteal implants using bovine bone substitute and various membranes

    DEFF Research Database (Denmark)

    Aaboe, Merete; Schou, S.; Hjørting-Hansen, E.

    2000-01-01

    Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits......Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits...

  6. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials

    DEFF Research Database (Denmark)

    Jensen, Simon Storgård; Terheyden, Hendrik

    2009-01-01

    PURPOSE: The objective of this review was to evaluate the efficacy of different grafting protocols for the augmentation of localized alveolar ridge defects. MATERIALS AND METHODS: A MEDLINE search and an additional hand search of selected journals were performed to identify all levels of clinical...... evidence except expert opinions. Any publication written in English and including 10 or more patients with at least 12 months of follow-up after loading of the implants was eligible for this review. The results were categorized according to the presenting defect type: (1) dehiscence and fenestration...... periods. The heterogeneity of the available data did not allow identifying one superior grafting protocol for any of the osseous defect types under investigation. However, a series of grafting materials can be considered well-documented for different indications based on this review. There is a high level...

  7. Radiographic Comparison of Bovine Bone Substitute Alone versus Bovine Bone Substitute and Simvastatin for Human Maxillary Sinus Augmentation

    Directory of Open Access Journals (Sweden)

    Amir Ali Reza Rasouli Ghahroudi

    2018-01-01

    Full Text Available Objectives: The aim of this study was to compare the efficacy of bovine bone substitute (Compact Bone B. ® alone versus bovine bone substitute and simvastatin for human maxillary sinus augmentation.Materials and Methods: This study was conducted on 16 sinuses in eight patients. Radiographic assessments were done preoperatively (T0, immediately (T1 and at nine months after sinus grafting (T2. Alveolar bone height and density were assessed on cone beam computed tomography (CBCT scans using Planmeca Romexis™ Imaging Software 2.2.Results: The change in alveolar bone height and density between T0, T1 and T2 was significant in both groups. Alveolar bone height (h0, h1, h2 and vertical height of the grafted bone (g1, g2 in three lines (anterior, middle and posterior were not significantly different between groups. The grafted bone height shrinkage (% in the anterior, middle and posterior limits of the augmented area were not significantly different between groups. The existing alveolar and grafted bone density increased significantly in both groups between T1 and T2, except for the existing alveolar bone density in the control group. There were no statistically significant differences between the alveolar bone density values obtained in TI and T2 between groups, except for the existing alveolar bone density at T1.Conclusions: This study did not show any significant positive effect for simvastatin in maxillary sinus augmentation based on radiographic examination.

  8. 3D printing of octacalcium phosphate bone substitutes

    Directory of Open Access Journals (Sweden)

    Vladimir S. Komlev

    2015-06-01

    Full Text Available Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here we proposed a relatively simple route for 3D printing of octacalcium phosphates in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed octacalcium phosphate blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed octacalcium phosphates bone substitutes, which allowed 2.5-time reducing of defect’s diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  9. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    Science.gov (United States)

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  10. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  11. Bone Graft Substitutes : Developed for Trauma and Orthopaedic Surgery

    NARCIS (Netherlands)

    J. van der Stok (Johan)

    2015-01-01

    markdownabstract__Abstract__ Bone grafting was established in the 19th century and has become a common procedure in which bone defects are filled with bone grafts or bone graft substitutes. Bone defects that require bone grafting are encountered in approximately 10% of trauma and orthopaedic

  12. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute

    DEFF Research Database (Denmark)

    Stravinskas, M; Horstmann, P; Ferguson, J

    2016-01-01

    . Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. MATERIALS AND METHODS: We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery...... in patients treated surgically for chronic corticomedullary osteomyelitis. RESULTS: The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). CONCLUSIONS: This new biphasic bone...

  13. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies

    Science.gov (United States)

    Wu, Xiaomian; Liu, Xiaochen; Wei, Jie; Ma, Jian; Deng, Feng; Wei, Shicheng

    2012-01-01

    Background Compared with titanium (Ti) and other metal implant materials, poly(ether-ether ketone) (PEEK) shows outstanding biomechanical properties. A number of studies have also reported attractive bioactivity for nano-TiO2 (n-TiO2). Methods In this study, n-TiO2/PEEK nanocomposites were prepared, taking advantage of the unique properties of both PEEK polymer and n-TiO2. The in vitro and in vivo bioactivity of these nanocomposites was assessed against a PEEK polymer control. The effect of surface morphology or roughness on the bioactivity of the n-TiO2/PEEK nanocomposites was also studied. n-TiO2/PEEK was successfully fabricated and cut into disks for physical and chemical characterization and in vitro studies, and prepared as cylindrical implants for in vivo studies. Their presence on the surface and dispersion in the composites was observed and analyzed by scanning and transmission electron microscopy and X-ray photoelectron spectroscopy. Results Bioactivity evaluation of the nanocomposites revealed that pseudopods of osteoblasts preferred to anchor at areas where n-TiO2 was present on the surface. In a cell attachment test, smooth PEEK showed the lowest optical density value (0.56 ± 0.07) while rough n-TiO2/PEEK exhibited the highest optical density value (1.21 ± 0.34, P PEEK was approximately twice as large as that of PEEK (P PEEK, especially if it has a rough composite surface. A n-TiO2/PEEK composite with a rough surface could be a novel alternative implant material for orthopedic and dental applications. PMID:22419869

  14. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    Science.gov (United States)

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  15. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  16. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes

    NARCIS (Netherlands)

    Habibovic, Pamela; Kruyt, Moyo C.; Juhl, Maria V.; Clyens, Stuart; Martinetti, Roberta; Dolcini, Laura; Theilgaard, Naseem; van Blitterswijk, Clemens

    2008-01-01

    Improvement of synthetic bone graft substitutes as suitable alternatives to a patient's own bone graft remains a challenge in biomaterials research. Our goal was to answer the question of whether improved osteoinductivity of a material would also translate to better bone-healing orthotopically.

  17. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.

    Science.gov (United States)

    Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B

    2009-11-01

    One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.

  18. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application.

    Science.gov (United States)

    Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas

    2013-03-01

    To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

  19. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  20. Bone graft substitutes for the treatment of traumatic fractures of the extremities.

    Science.gov (United States)

    Hagen, Anja; Gorenoi, Vitali; Schönermark, Matthias P

    2012-01-01

    HEALTH POLITICAL AND SCIENTIFIC BACKGROUND: Bone graft substitutes are increasingly being used as supplements to standard care or as alternative to bone grafts in the treatment of traumatic fractures. The efficacy and cost-effectiveness of bone graft substitutes for the treatment of traumatic fractures as well as the ethical, social and legal implications of their use are the main research questions addressed. A systematic literature search was conducted in electronic medical databases (MEDLINE, EMBASE etc.) in December 2009. Randomised controlled trials (RCT), where applicable also containing relevant health economic evaluations and publications addressing the ethical, social and legal aspects of using bone graft substitutes for fracture treatment were included in the analysis. After assessment of study quality the information synthesis of the medical data was performed using metaanalysis, the synthesis of the health economic data was performed descriptively. 14 RCT were included in the medical analysis, and two in the heath economic evaluation. No relevant publications on the ethical, social and legal implications of the bone graft substitute use were found. In the RCT on fracture treatment with bone morphogenetic protein-2 (BMP-2) versus standard care without bone grafting (RCT with an elevated high risk of bias) there was a significant difference in favour of BMP-2 for several outcome measures. The RCT of calcium phosphate (CaP) cement and bone marrow-based composite materials versus autogenous bone grafts (RCT with a high risk of bias) revealed significant differences in favour of bone graft substitutes for some outcome measures. Regarding the other bone graft substitutes, almost all comparisons demonstrated no significant difference. The use of BMP-2 in addition to standard care without bone grafting led in the study to increased treatment costs considering all patients with traumatic open fractures. However, cost savings through the additional use of BMP-2

  1. Macroporous synthetic hydroxyapatite bioceramics for bone substitute applications

    CSIR Research Space (South Africa)

    Thomas, ME

    1999-08-01

    Full Text Available An improved strategy is described for the manufacture of macroporous hydroxyapatite bioceramics for bone substitute applications. This is based on a modified fugitive phase technique, which allows production of relatively open, high-strength devices...

  2. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    Science.gov (United States)

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  3. A Bone Graft Substitutes Hydroxyapatite Coated Gentamycin (Bonigent) As Drug Delivery System

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Fauziah Othman; Asmah Rahmat; Mohd Reusmaazran Yusof; Shaaban Kasim; Narimah Abu Baka; Nasani Nasrul

    2014-01-01

    Porous hydroxyapatite coated with antibiotic gentamycin for drug delivery system is namely Bonigent. In this product, antibiotic (gentamycin) is coated into the scaffolds HA porous and Would then be released slowly into the bone tissue upon implantation, this way would increase drug penetration, thus avoiding systemic infection, preventing the formation of biofilm and improved healing. When a foreign material (implants or scaffolds of bone graft substitutes) is introduced into the body, there would be normally formation of biofilm that can lead to systemic infection and cause device failure. Surgeon will use antibiotic such as gentamycin to avoid these effects. The purpose of this project is to investigate the feasibility of fabricating a drug delivery system (DDS) that serves dual functions, to combating biofilms and to enhance bone in growths. We also successfully producing a scaffold HA bone graft substitutes incorporated with antibiotic gentamycin to combating bio-film and prevent the failure medical device implant for healthy and human nation. Bone graft substitutes into porous scaffolds suitable for drug delivery; loading the scaffolds with gentamycin; and study release rate in vivo were studied. Porous bone grafts substitutes are coated with antibiotic gentamycin by immerse technique. In order to limit biofilm formation, biomaterials loaded with suitable antibiotics can be used as a preventative measure. The biomaterials hydroxyapatite (HA) is an osteoconductive space filler and is produced locally by Malaysian Nuclear Agency. Porous HA and HA/ TCP has the potential to be used as synthetic bone graft materials because it is bioactive and biocompatible with bone tissues. Development of a product as bone graft substitute (BGS) with special ability of delivering drug (gentamycin) to bone tissue for better and more effective healing process. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy Analysis (SEM) and

  4. Can we improve fixation and outcomes? Use of bone substitutes.

    Science.gov (United States)

    Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V

    2009-07-01

    Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.

  5. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization

    International Nuclear Information System (INIS)

    Barbeck, Mike; Sader, Robert; Ghanaati, Shahram; Najman, Stevo; Stojanović, Sanja; Živković, Jelena M; Mitić, Žarko; Choukroun, Joseph; Kovačević, Predrag; James Kirkpatrick, C

    2015-01-01

    The present study aimed to analyze the effects of the addition of blood to the phycogenic bone substitute Algipore ® on the severity of in vivo tissue reaction. Initially, Fourier-transform infrared spectroscopy (FTIR) of the bone substitute was conducted to analyze its chemical composition. The subcutaneous implantation model in Balb/c mice was then applied for up to 30 d to analyze the tissue reactions on the basis of specialized histochemical, immunohistochemical, and histomorphometrical methods. The data of the FTIR analysis showed that the phycogenic bone substitute material is mainly composed of hydroxyapatite with some carbonate content. The in vivo analyses revealed that the addition of blood to Algipore ® had a major impact on both angiogenesis and vessel maturation. The higher vascularization seemed to be based on significantly higher numbers of multinucleated TRAP-positive cells. However, mostly macrophages and a relatively low number of multinucleated giant cells were involved in the tissue reaction to Algipore ® . The presented data show that the addition of blood to a bone substitute impacts the tissue reaction to it. In particular, the immune response and the vascularization were influenced, and these are believed to have a major impact on the regenerative potential of the process of bone tissue regeneration. (paper)

  6. Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology

    Directory of Open Access Journals (Sweden)

    Deborah Meleo

    2012-01-01

    Full Text Available In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (<10 micron pixel size. For a correct analysis, samples need not be altered or treated in any way, as micro-CT is a non-invasive and non-destructive technique. It shows promising results in biomaterial studies and tissue engineering. This work shows the potential applications of this microtomographic technique by means of an in vitro analysis system, in characterizing morphometric features of human bone tissue, and contributes to the use of this technique in studies concerning biomaterials and bioscaffolds inserted in bone tissue.

  7. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    Science.gov (United States)

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  8. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  9. Bioceramic bone graft substitute for treatment of unicameral bone cysts.

    Science.gov (United States)

    Fillingham, Y A; Cvetanovich, G L; Haughom, B D; Erickson, B J; Gitelis, S

    2016-08-01

    To review the outcome of 12 patients who underwent debridement and injection of bioceramic for unicameral bone cyst (UBC). The resorption rate of the bioceramic was estimated by both traditional and novel methods. Records of 10 males and 2 females aged 6 to 34 years who underwent debridement and injection of bioceramic for UBC and were followed up for a mean of 41 (range, 26-57) months were reviewed. Functional outcome was assessed using the selfcompleted Musculoskeletal Tumor Society (MSTS) questionnaire. Radiological outcome was assessed using both original and modified Neer Outcome Rating System. The resorption rate of the bioceramic was estimated using both traditional and novel (ImageJ) methods. The mean MSTS score was 29.7 (range, 28-30) indicating excellent functional outcome. Of the 12 patients, 9 achieved complete healing and 3 had a residual cyst of 1%, 11%, and 52%. The last was considered a local recurrence, and the patient underwent repeat percutaneous injection of the bioceramic 1.5 years later and remained disease-free 4 years later. The mean resorption rate was 29% faster when estimated using the traditional rather than the ImageJ method (0.47 vs. 0.33 cm3/day, p=0.02). In the patient with recurrence, the resorption rate was faster than the average (0.68 vs. 0.33 cm3/day). A single percutaneous injection of the bioceramic for UBC achieved good functional and radiological outcome while avoiding donor-site morbidity.

  10. Bone graft extenders and substitutes in the thoracolumbar spine.

    Science.gov (United States)

    Arner, Justin W; Daffner, Scott D

    2012-05-01

    Autologous iliac crest bone graft remains the gold standard for lumbar fusion. The potential for complications has led to the development of alternative bone graft materials and enhancers, including autologous growth factors, demineralized bone matrix products, osteoinductive agents, and ceramic products. The current literature centers mainly on preclinical studies, which, further complicating the situation, evaluate these products in different clinical scenarios or surgical techniques. Autologous growth factors and demineralized bone matrix products have had promising results in preclinical studies, but few strong clinical studies have been conducted. Ceramic extenders were evaluated with other substances and had good but often inconsistent results. Bone morphogenetic proteins have been extensively studied and may have benefits as osteoinductive agents. Category comparisons are difficult to make, and there are differences even between products within the same category. The surgeon must be knowledgeable about products and their advantages, disadvantages, indications, contraindications, and possible applications so that they can make the best choice for each patient.

  11. Journey of bone graft materials in periodontal therapy: A chronological review

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-01-01

    Full Text Available Bone, the basic building block of the healthy periodontium, is affected in most of the periodontal diseases and can be managed either by mechanically recontouring it or by grafting techniques, which encourages regeneration where it has been lost. Bone replacement grafts are widely used to promote bone formation and periodontal regeneration. Bone grafting, placing bone or bone substitutes into defects created by the disease process, acts like a scaffold upon which the body generates its own, new bone. A wide range of bone grafting materials, including bone grafts and bone graft substitutes, have been applied and evaluated clinically, including autografts, allografts, xenografts, and alloplasts. This review provides an overview of the clinical application, biologic function, and advantages and disadvantages of various types of bone graft materials used in periodontal therapy till date with emphasis on recent advances in this field.

  12. Comparison of efficacies of different bone substitutes adhered to osteoblasts with and without extracellular matrix proteins

    Directory of Open Access Journals (Sweden)

    Li-Ling Tseng

    2013-12-01

    Conclusion: The results indicated that ECM proteins increased cell attachment to bone substitutes in vitro. The preferential affinity of different bone substitutes to certain ECM proteins was evident. Cerasorb and BoneCeramic had better MG63 human osteosarcoma cell adhesion ability than Bio-Oss and MBCP.

  13. Tusk or Bone? An Example of Ivory Substitute in the Wildlife Trade

    Directory of Open Access Journals (Sweden)

    Margaret E. Sims

    2011-08-01

    Full Text Available Bone carvings (and other ivory substitutes are common in the modern-day lucrative international ivory trade.  Souvenirs for unknowing travelers and market shoppers can be made of non-biological material (plastic "ivory" beads or skillfully crafted natural objects made to resemble something other than their true origin.  Many of these items are received at the U. S. National Fish and Wildlife Forensics Laboratory (NFWFL for species identification as part of law enforcement investigations.  Morphologists at the Lab often receive uniquely carved ivory items that have been imported with little or no documentation.  In recent years, analysts examined several purported ivory tusks suspected to be walrus, a protected marine mammal.  After examination, the Lab determined their origin as carved leg bones of cattle using principles and methods of zooarchaeology and ancient DNA analysis.  The naturally long and straight ungulate metapodials had been cut, carved, filled, stained, and polished to closely resemble unmodified ivory tusks.  Morphological species identification of these bones proved to be a challenge since diagnostic characters of the bones had been altered and country of origin was unknown. Genetic analysis showed that the bones originated from cattle.  While bone is commonly used as a substitute for ivory, this style of artifact was not previously documented in the wildlife trade prior to our analysis.  Archaeological ethnobiologists commonly encounter bone tools and other forms of material culture from prehistoric and historic contexts; in this case bone tools come from a modern context, thus the application of methods common in zooarchaeology are situated in wildlife forensics.  In addition, results reported here pertain to cross-cultural ivory trade and conservation science.

  14. Substitution effects in magnetic and superconducting materials

    Directory of Open Access Journals (Sweden)

    Peña, O.

    1999-10-01

    Full Text Available Chemical substitutions at very low level have been proved to be a very effective tool to change important physical parameters in many kinds of materials. These modifications may be the result of, for instance, subtle variations of the position of the Fermi level with respect to the density of states, presence of additional electrons which may change the hole carrier concentration, steric effects which impose contraints in the crystallographic lattice, mixed-valence states resultating from the dismutation of chemical components, etc. We review herein three systems in which the substitution effects are at the origin of new physical states : the high-Tc superconductor bismuth cuprate of the 2212 family, the mixed-valence manganese perovskites representative of giant magneto-resistive compounds, and the Chevrel phase materials in which a structural transition may inhibit the superconducting state.

    Las substituciones químicas a un nivel muy pequeño se han probado como una importante herramienta para cambiar los parámetros físicos en una gran variedad de materiales. Estas modificaciones pueden ser el resultado de, por ejemplo, muy ligeras variaciones de la posición del nivel de Fermi con respecto a la densidad de estados, presencia de electrones adicionales que pueden cambiar la concentración de portadores tipo huecos, efectos estéricos que imponen restricciones en la red cristalográfica, estados de valencia mixtos resultantes de la dismutación de los componentes químicos, etc. Aquí se revisan tres sistemas donde los efectos de substitución son el origen de nuevos estados físicos: los superconductores de alta temperatura basados en cupratos de bismuto de la familia 2212, las perovskitas de manganeso de valencia mixta representantes de compuestos con magnetorresistencia gigante, y los materiales con fases de Chevrelt cuya transición estructural puede inhibir el estado superconductor.

  15. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute

    International Nuclear Information System (INIS)

    Wang Qi; Chen Qiang; Zhu Jianguo; Huang Chunpeng; Darvell, Brian W.; Chen Zhiqing

    2008-01-01

    A porous lead-free piezoelectric ceramic is investigated as direct bone substitute. Porous lithium sodium potassium niobate (Li 0.06 Na 0.5 K 0.44 )NbO 3 specimens were prepared by pore-forming method. Different volume fraction of ammonium oxalate monohydrate and poly(methyl methacrylate) were used as porogens to obtain different pore shape and porosity. Scanning electron microscopy showed a bicontinuous 3-3 structure of interconnected pores 150-250 μm in size. The piezoelectric constants and electromechanical coupling coefficients may be controlled by both size and shape of the porogens to tune for the best biological response. Such materials show promise for use as a piezoelectric composite bone substitute

  16. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.

    2015-05-01

    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  17. New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption

    Science.gov (United States)

    Lu, Yanfei; Lekszycki, Tomasz

    2018-03-01

    A new description of graft substitution by bone tissue is proposed in this work. The studied domain is considered as a continuum model consisting of a mixture of the bone tissue and the graft material. Densities of both components evolve in time as a result of cellular activity and biodegradation. The proposed model focuses on the interaction between the bone cell activity, mechanical stimuli, nutrients supply and scaffold microstructure. Different combinations of degradation rate and stiffness of the graft material were examined by numerical simulation. It follows from the calculations that the degradation rate of the scaffold should be tuned to the synthesis/resorption rate of the tissue, which are dependent among the others on scaffold porosity changes. Simulation results imply potential criteria to choose proper bone substitute material in consideration of degradation rate, initial porosity and mechanical characteristics.

  18. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    Directory of Open Access Journals (Sweden)

    Ghanaati Shahram

    2013-01-01

    Full Text Available Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP or an hydroxyapatite/silicon dioxide (HA/SiO2-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  19. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review.

    Science.gov (United States)

    Zizzari, Vincenzo Luca; Zara, Susi; Tetè, Giulia; Vinci, Raffaele; Gherlone, Enrico; Cataldi, Amelia

    2016-10-01

    Many bone substitutes have been proposed for bone regeneration, and researchers have focused on the interactions occurring between grafts and host tissue, as the biologic response of host tissue is related to the origin of the biomaterial. Bone substitutes used in oral and maxillofacial surgery could be categorized according to their biologic origin and source as autologous bone graft when obtained from the same individual receiving the graft; homologous bone graft, or allograft, when harvested from an individual other than the one receiving the graft; animal-derived heterologous bone graft, or xenograft, when derived from a species other than human; and alloplastic graft, made of bone substitute of synthetic origin. The aim of this review is to describe the most commonly used bone substitutes, according to their origin, and to focus on the biologic events that ultimately lead to the integration of a biomaterial with the host tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Physical and mechanical properties evaluation of Acropora palmata coralline species for bone substitution applications.

    Science.gov (United States)

    Alvarez, K; Camero, S; Alarcón, M E; Rivas, A; González, G

    2002-05-01

    The search for ideal materials for bone substitution has been a challenge for many decades. Numerous natural and synthetic materials have been studied. For this application, exoskeletons of coral have been considered a good alternative given its tendency to resorption, biocompatibility and similarity to the mineral bone phase. Very few studies of these materials consider a detailed analysis of the structure-property relationship. The purpose of this work was to carry out the microstructural characterization of a coralline species named Acropora palmata and the determination of the mechanical and physico-chemical properties. Measurements of hardness, compressive strength, bulk density and apparent porosity were performed. From these results it was determined that this marine coral species could be an alternative xenograft due to its mechanical properties and osteoconductive nature.

  1. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    Science.gov (United States)

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  2. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    Directory of Open Access Journals (Sweden)

    Xu W

    2011-08-01

    Full Text Available Weiguo Xu1, Cornelia Ganz2, Ulf Weber2, Martin Adam2, Gerd Holzhüter2, Daniel Wolter3, Bernhard Frerich3, Brigitte Vollmar1, Thomas Gerber21Institute for Experimental Surgery, 2Institute of Physics, 3Department of Oral, Maxillofacial and Plastic Surgery, University of Rostock, Rostock, GermanyAbstract: In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.Keywords: bone remodelling, electron microscopy, histomorphometry, nanotechnology, tissue engineering

  3. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  4. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone

    NARCIS (Netherlands)

    Bobbert, F.S.L.; Zadpoor, A.A.

    2017-01-01

    The success of bone substitutes used to repair bone defects such as critical sized defects depends on the architecture of the porous biomaterial. The architectural parameters and surface properties affect cell seeding efficiency, cell response, angiogenesis, and eventually bone formation. The

  5. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  6. Development of implants composed of bioactive materials for bone repair

    Science.gov (United States)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  7. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    Science.gov (United States)

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery

  8. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: Radiographic-biomechanical correlation

    International Nuclear Information System (INIS)

    Sartoris, D.J.; Resnick, D.; Holmes, R.E.; Tencer, A.F.; Texas Univ., Dallas; Mooney, V.

    1986-01-01

    Radiographic and biomechanical assessment of a new type of bone graft substitute derived from reef-building sea coral was performed in a canine metaphyseal defect model. Blocks of this material and autogenous iliac crest graft were implanted, respectively, into the right and left proximal tibial metaphyses of eight dogs. Qualitative and quantitative radiographic evaluation was performed in the immediate postoperative period and at 6 months after surgery. Biomechanical testing was carried out on all grafts following harvest at 6 months, as well as on nonimplanted coralline hydroxyapatite and autogenous iliac cancellous bone. In contrast to autografts, incorporation of coralline implants was characterized by predictable osseous growth and apposition with preservation of intrinsic architecture. Greater percent increase in radiography density, higher ultimate compressive strength, and lower stiffness with incorporation were documented advantages of coralline hydroxyapatite over autogenous graft. Densitometric measurements correlated moderately with strength for both types of graft material (r=0.65). These promising results have important implications to the clinical application of coralline hydroxyapatite bone graft substitutes as an alternative to autogenous grafting. (orig.)

  9. Design of ceramic-based cements and putties for bone graft substitution

    Directory of Open Access Journals (Sweden)

    M Bohner

    2010-07-01

    Full Text Available In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements, and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life.

  10. Minimally Invasive Alveolar Ridge Preservation Utilizing an In Situ Hardening β-Tricalcium Phosphate Bone Substitute: A Multicenter Case Series

    Directory of Open Access Journals (Sweden)

    Minas D. Leventis

    2016-01-01

    Full Text Available Ridge preservation measures, which include the filling of extraction sockets with bone substitutes, have been shown to reduce ridge resorption, while methods that do not require primary soft tissue closure minimize patient morbidity and decrease surgical time and cost. In a case series of 10 patients requiring single extraction, in situ hardening beta-tricalcium phosphate (β-TCP granules coated with poly(lactic-co-glycolic acid (PLGA were utilized as a grafting material that does not necessitate primary wound closure. After 4 months, clinical observations revealed excellent soft tissue healing without loss of attached gingiva in all cases. At reentry for implant placement, bone core biopsies were obtained and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological and histomorphometrical analysis revealed pronounced bone regeneration (24.4 ± 7.9% new bone in parallel to the resorption of the grafting material (12.9 ± 7.7% graft material while high levels of primary implant stability were recorded. Within the limits of this case series, the results suggest that β-TCP coated with polylactide can support new bone formation at postextraction sockets, while the properties of the material improve the handling and produce a stable and porous bone substitute scaffold in situ, facilitating the application of noninvasive surgical techniques.

  11. The efficacy of poly-d,l-lactic acid- and hyaluronic acid-coated bone substitutes on implant fixation in sheep

    Directory of Open Access Journals (Sweden)

    Christina M. Andreasen

    2017-01-01

    Conclusion: This study demonstrates that HA/βTCP granules coated with PDLLA and HyA have similar bone ingrowth and implant fixation as those with allograft, and with mechanical properties resembling those of allograft in advance, they may be considered as alternative substitute materials for bone formation in sheep.

  12. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Jiyeon Roh

    2016-02-01

    Full Text Available The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA; silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP in the ratios 100:0 (S100T0, 70:30 (S70T30, 60:40 (S60T40, and 50:50 (S50T50. The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm. The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05. In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05. In conclusion, Si-HA/TCP showed potential as a bone graft material.

  13. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  14. The Role of Resorbable Plate and Artificial Bone Substitute in Reconstruction of Large Orbital Floor Defect

    Directory of Open Access Journals (Sweden)

    Ho Kwon

    2016-01-01

    Full Text Available It is essential to reduce and reconstruct bony defects adequately in large orbital floor fracture and defect. Among many reconstructive methods, alloplastic materials have attracted attention because of their safety and ease of use. We have used resorbable plates combined with artificial bone substitutes in large orbital floor defect reconstructions and have evaluated their long-term reliability compared with porous polyethylene plate. A total of 147 patients with traumatic orbital floor fracture were included in the study. Surgical results were evaluated by clinical evaluations, exophthalmometry, and computed tomography at least 12 months postoperatively. Both orbital floor height discrepancy and orbital volume change were calculated and compared with preoperative CT findings. The average volume discrepancy and vertical height discrepancies were not different between two groups. Also, exophthalmometric measurements were not significantly different between the two groups. No significant postoperative complication including permanent diplopia, proptosis, and enophthalmos was noted. Use of a resorbable plate with an artificial bone substitute to repair orbital floor defects larger than 2.5 cm2 in size yielded long-lasting, effective reconstruction without significant complications. We therefore propose our approach as an effective alternative method for large orbital floor reconstructions.

  15. Injectable biphasic calcium phosphate cements as a potential bone substitute

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Wolke, J.G.C.; Leeuwenburgh, S.C.G.; Yubao, L.; Jansen, J.A.

    2014-01-01

    Apatitic calcium phosphate cements (CPCs) have been widely used as bone grafts due to their excellent osteoconductive properties, but the degradation properties are insufficient to stimulate bone healing in large bone defects. A novel approach to overcome the lack of degradability of apatitic CPC

  16. Maxillary sinus lift with solely autogenous bone compared to a combination of autogenous bone and growth factors or (solely) bone substitutes. A systematic review : a systematic review

    NARCIS (Netherlands)

    Rickert, D.; Slater, J. J. R. Huddleston; Meijer, H. J. A.; Vissink, A.; Raghoebar, G. M.

    Literature regarding the outcome of maxillary sinus floor elevation to create sufficient bone fraction to enable implant placement was systematically reviewed. Bone fraction and implant survival rate were assessed to determine whether grafting material or applied growth factor affected bone

  17. Clinical Application of Antimicrobial Bone Graft Substitute in Osteomyelitis Treatment: A Systematic Review of Different Bone Graft Substitutes Available in Clinical Treatment of Osteomyelitis

    Directory of Open Access Journals (Sweden)

    T. A. G. van Vugt

    2016-01-01

    Full Text Available Osteomyelitis is a common occurrence in orthopaedic surgery, which is caused by different bacteria. Treatment of osteomyelitis patients aims to eradicate infection by debridement surgery and local and systemic antibiotic therapy. Local treatment increases success rates and can be performed with different antimicrobial bone graft substitutes. This review is performed to assess the level of evidence of synthetic bone graft substitutes in osteomyelitis treatment. According to the PRISMA statement for reporting systematic reviews, different types of clinical studies concerning treatment of osteomyelitis with bone graft substitutes are included. These studies are assessed on their methodological quality as level of evidence and bias and their clinical outcomes as eradication of infection. In the fifteen included studies, the levels of evidence were weak and in ten out of the fifteen studies there was a moderate to high risk of bias. However, first results of the eradication of infection in these studies showed promising results with their relatively high success rates and low complication rates. Due to the low levels of evidence and high risks of bias of the included studies, these results are inconclusive and no conclusions regarding the performed clinical studies of osteomyelitis treatment with antimicrobial bone graft substitutes can be drawn.

  18. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Johann Charwat-Pessler

    2015-06-01

    Full Text Available The ability of bone graft substitutes to promote new bone formation has been increasingly used in the medical field to repair skeletal defects or to replace missing bone in a broad range of applications in dentistry and orthopedics. A common way to assess such materials is via micro computed tomography (µ-CT, through the density information content provided by the absorption of X-rays. Information on the chemical composition of a material can be obtained via Raman spectroscopy. By investigating a bone sample from miniature pigs containing the bone graft substitute Bio Oss®, we pursued the target of assessing to what extent the density information gained by µ-CT imaging matches the chemical information content provided by Raman spectroscopic imaging. Raman images and Raman correlation maps of the investigated sample were used in order to generate a Raman based segmented image by means of an agglomerative, hierarchical cluster analysis. The resulting segments, showing chemically related areas, were subsequently compared with the µ-CT image by means of a one-way ANOVA. We found out that to a certain extent typical gray-level values (and the related histograms in the µ-CT image can be reliably related to specific segments within the image resulting from the cluster analysis.

  20. Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae

    International Nuclear Information System (INIS)

    Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Dunstan, Colin R; Quach, Terrence; Zreiqat, Hala; Steck, Roland; Saifzadeh, Siamak; Pivonka, Peter

    2016-01-01

    The treatment of large bone defects, particularly those with segmental bone loss, remains a significant clinical challenge as current approaches involving surgery or bone grafting often do not yield satisfactory long-term outcomes. This study reports the evaluation of novel ceramic scaffolds applied as bone graft substitutes in a clinically relevant in vivo model. Baghdadite scaffolds, unmodified or modified with a polycaprolactone coating containing bioactive glass nanoparticles, were implanted into critical-sized segmental bone defects in sheep tibiae for 26 weeks. Radiographic, biomechanical, μ-CT and histological analyses showed that both unmodified and modified baghdadite scaffolds were able to withstand physiological loads at the defect site, and induced substantial bone formation in the absence of supplementation with cells or growth factors. Notably, all samples showed significant bridging of the critical-sized defect (average 80%) with evidence of bone infiltration and remodelling within the scaffold implant. The unmodified and modified baghdadite scaffolds achieved similar outcomes of defect repair, although the latter may have an initial mechanical advantage due to the nanocomposite coating. The baghdadite scaffolds evaluated in this study hold potential for use as purely synthetic bone graft substitutes in the treatment of large bone defects while circumventing the drawbacks of autografts and allografts. (paper)

  1. Biomimetic materials for controlling bone cell responses.

    Science.gov (United States)

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  2. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    International Nuclear Information System (INIS)

    Chen, Yirong; Zhou, Yilin; Yang, Shenyu; Li, Jiao Jiao; Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng; Zeng, Rong; Tu, Mei; Yu, Bin

    2016-01-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  3. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yirong; Zhou, Yilin [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Shenyu [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Li, Jiao Jiao [Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006 (Australia); Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Zeng, Rong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei, E-mail: tumei@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Yu, Bin, E-mail: yubinol@163.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2016-09-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  4. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group......, the tibial defect was filled manually with Osteoset pellets, in the control group the defect was left empty. CTs of the defect were taken on the first day after the operation, 6 weeks, 3 and 6 months postoperatively. We found about the same amount of bone in the defect in the Osteoset and control groups...... after 6 weeks, 3, and 6 months. In the control group, but not in the Osteoset group, the bone volume increased from 6 weeks to 3 months. The Osteoset pellets were almost resorbed after 6 weeks....

  5. World’s First Clinical Case of Gene-Activated Bone Substitute Application

    Directory of Open Access Journals (Sweden)

    I. Y. Bozo

    2016-01-01

    Full Text Available Treatment of patients with large bone defects is a complex clinical problem. We have initiated the first clinical study of a gene-activated bone substitute composed of the collagen-hydroxyapatite scaffold and plasmid DNA encoding vascular endothelial growth factor. The first patient with two nonunions of previously reconstructed mandible was enrolled into the study. Scar tissues were excised; bone defects (5–14 mm between the mandibular fragments and nonvascularized rib-bone autograft were filled in with the gene-activated bone substitute. No adverse events were observed during 12 months of follow-up. In 3 months, the average density of newly formed tissues within the implantation zone was 402.21 ± 84.40 and 447.68 ± 106.75 HU in the frontal and distal regions, respectively, which correlated with the density of spongy bone. Complete distal bone defect repair with vestibular and lingual cortical plates formation was observed in 6 and 12 months after surgery; thereby the posterior nonunion was successfully eliminated. However, there was partial resorption of the proximal edge of the autograft entailed to relapse of the anterior nonunion. Thus, the first clinical data on the safety and efficacy of the gene-activated bone substitute were obtained. Given a high complexity of the clinical situation the treatment, results might be considered as promising. NCT02293031.

  6. Design and optimization of a tissue-engineered bone graft substitute

    Science.gov (United States)

    Shimko, Daniel Andrew

    2004-12-01

    formulation, and scaffold material from all preceding studies were combined and a tissue-engineered bone graft was fabricated. The graft was exposed to long-term in vitro culture, and then mechanically evaluated to determine its clinical potential. The studies contained herein constitute the first steps in the conception and development of a viable tissue-engineered bone graft substitute and establish a solid scientific foundation for future in vivo experimentation utilizing this design.

  7. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  8. Multifunctional materials for bone cancer treatment

    Directory of Open Access Journals (Sweden)

    Marques C

    2014-05-01

    Full Text Available Catarina Marques,1 José MF Ferreira,1 Ecaterina Andronescu,2 Denisa Ficai,2 Maria Sonmez,3 Anton Ficai21Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, University of Aveiro, Aveiro, Portugal; 2Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Bucharest, Romania; 3National Research and Development Institute for Textiles and Leather, Bucharest, RomaniaAbstract: The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multifunctionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative, cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin, silver nanoparticles, antibiotics (anthracyclines, geldanamycin, and/or analgesics (ibuprofen, fentanyl. The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies.Keywords: bone graft, cancer, collagen, magnetite, cytostatics, silver

  9. Evaluation of Osteoconductive and Osteogenic Potential of a Dentin-Based Bone Substitute Using a Calvarial Defect Model

    Directory of Open Access Journals (Sweden)

    Ibrahim Hussain

    2012-01-01

    Full Text Available The aim of this study was to assess the osteoconductive and osteogenic properties of processed bovine dentin using a robust rabbit calvarial defect model. In total, 16 New Zealand White rabbits were operated to create three circular defects in the calvaria. One defect was left unfilled, one filled with collected autogenous bone, and the third defect was filled with the dentin-based bone substitute. Following surgery and after a healing period of either 1 or 6 weeks, a CT scan was obtained. Following sacrificing, the tissues were processed for histological examination. The CT data showed the density in the area grafted with the dentin-based material was higher than the surrounding bone and the areas grafted with autologous bone after 1 week and 6 weeks of healing. The area left unfilled remained an empty defect after 1 week and 6 weeks. Histological examination of the defects filled with the dentin product after 6 weeks showed soft tissue encapsulation around the dentin particles. It can be concluded that the rabbit calvarial model used in this study is a robust model for the assessment of bone materials. Bovine dentin is a biostable material; however, it may not be suitable for repairing large 4-wall defects.

  10. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration.

  11. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  12. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion.

    Science.gov (United States)

    Goyal, Lata

    2014-02-01

    The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  13. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion

    Directory of Open Access Journals (Sweden)

    Lata Goyal

    2014-02-01

    Full Text Available The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  14. Hydroxyapatite reinforced with multi-walled carbon nanotubes and bovine serum albumin for bone substitute applications

    Science.gov (United States)

    Gholami, Fatemeh; Noor, Ahmad-Fauzi Mohd

    2016-12-01

    The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.

  15. Possibilities to improve the adaptation quality of calculated material substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G.

    1981-04-01

    In calculating the composition of material substitutes by a system of simultaneous equations it is possible, by using a so called quality index, to find out of the set of solutions which generally exists that solution which possesses the best adaptation quality. Further improvement is often possible by describing coherent scattering and photoelectric interaction by an own material parameter for each effect. The exact formulation of these quantities as energy indepedent functions is, however, impossible. Using a set of attenuation coefficients at suitably chosen energies as coefficients for the system of equations the best substitutes are found. The solutions for the investigated example are identical with the original relative to its chemical composition. Such solutions may be of use in connection with neutrons, protons, heavy ions and negative pions. The components taken into consideration must, of course, permit such solutions. These facts are discussed in detail by two examples.

  16. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  17. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    Science.gov (United States)

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  18. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects

    International Nuclear Information System (INIS)

    Castilho, Miguel; Pires, Inês; Moseke, Claus; Ewald, Andrea; Gbureck, Uwe; Groll, Jürgen; Teßmar, Jörg; Vorndran, Elke

    2014-01-01

    The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials. (paper)

  19. A new method to produce macroporous Mg-phosphate bone growth substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Babaie, Elham, E-mail: Elham.Babaie@rockets.utoledo.edu [Department of Biomedical Engineering, University of Toledo, Toledo, OH 43606 (United States); Lin, Boren [Department of Biomedical Engineering, University of Toledo, Toledo, OH 43606 (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614 (United States)

    2017-06-01

    This paper is a sequel to our previous effort in developing Mg-phosphate orthopedic cements using amorphous Mg-phosphate (AMP) as the precursor. In this paper, we report a new real-time in situ technique to create macroporous bone growth substitute (BGS). The method uses biodegradable Mg-particles as the porogen. As opposed to the conventional wisdom of providing corrosion protection layers to biodegradable Mg-alloys, the present method uses the fast corrosion kinetics of Mg to create macropores in real time during the setting of the cement. An aqueous solution of PVA was used as the setting solution. Using this technique, a macroporous cement containing up to 91% porosity is obtained, as determined by pycnometry. Due to formation of H{sub 2} gas bubbles from corrosion of Mg, the cement becomes macroporous. The pore sizes as big as 760 μm were observed. The results of SBF soaking indicated change in crystallinity as confirmed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). Our in vitro cytocompatibility evaluation also revealed that the macroporous bone growth substitute composed of bobierrite is cytocompatible and can improve gene expression. - Highlights: • We report a new real time, in situ technique to fabricate macroporous bone grafts. • Self-corroding Mg granules act as porogens. • Compositions containing AMP and PVA self-set within a reasonable time. • The final bone graft substitute showed promising biocompatibility. • The results provide important information on the porosity content and bioactivity.

  20. Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu

    2018-01-01

    Abstract As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics, the emerging kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se2 (CIGS) and CdTe thin‐film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open‐circuit voltage (V OC) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth‐abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe‐based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending. PMID:29721421

  1. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  2. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Sterling, D; Higgins, P [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.

  3. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    International Nuclear Information System (INIS)

    Ehler, E; Sterling, D; Higgins, P

    2015-01-01

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology

  4. Histomorphometric evaluation of a calcium-phosphosilicate putty bone substitute in extraction sockets.

    Science.gov (United States)

    Kotsakis, Georgios A; Joachim, Frederic P C; Saroff, Stephen A; Mahesh, Lanka; Prasad, Hari; Rohrer, Michael D

    2014-01-01

    The objective of this study was to evaluate bone regeneration in 24 sockets grafted with a calcium phosphosilicate putty alloplastic bone substitute. A core was obtained from 17 sockets prior to implant placement for histomorphometry at 5 to 6 months postextraction. Radiographic analysis during the same postextraction healing period showed radiopaque tissue in all sockets. Histomorphometric analysis revealed a mean vital bone content of 31.76% (± 14.20%) and residual graft content of 11.47% (± 8.99%) after a mean healing period of 5.7 months. The high percentage of vital bone in the healed sites in combination with its timely absorption rate suggest that calcium phosphosilicate putty can be a reliable choice for osseous regeneration in extraction sockets.

  5. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  6. Early matrix change of a nanostructured bone grafting substitute in the rat.

    Science.gov (United States)

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  7. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    El Backly, Rania M. [DIMES, University of Genova, Genova (Italy); IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Chiapale, Danilo [IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Muraglia, Anita [Biorigen S.R.L., Genova (Italy); Tromba, Giuliana [Sincrotrone Trieste S.C.P.A., Trieste (Italy); Ottonello, Chiara [Biorigen S.R.L., Genova (Italy); Santolini, Federico [IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Cancedda, Ranieri; Mastrogiacomo, Maddalena, E-mail: maddalena.mastrogiacomo@unige.it [DIMES, University of Genova, Genova (Italy); IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy)

    2015-01-06

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  8. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    International Nuclear Information System (INIS)

    El Backly, Rania M.; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Santolini, Federico; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2015-01-01

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX ® ) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX ® ) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  9. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    Science.gov (United States)

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  10. Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou military command, Guangzhou 510010 (China); Yang, Xuan [Guangzhou University of Chinese Medicine, Guangzhou 510405 (China); Wang, Weidan [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Yu [Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou military command, Guangzhou 510010 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, Yong, E-mail: yonghan@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-04-01

    Regeneration of bone defects is a clinical challenge that usually necessitates bone grafting materials. Limited bone supply and donor site morbidity limited the application of autografting, and improved biomaterials are needed to match the performance of autografts. Osteoinductive materials would be the perfect candidates for achieving this task. Strontium (Sr) is known to encourage bone formation and also prevent osteoporosis. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopedic applications. The present study demonstrated a new concept of developing biodegradable and hollow three-dimensional magnesium-strontium (Mg−Sr) devices for grafting with their clinical demands. The microstructure and performance of Mg−Sr devices, in vitro degradation and biological properties including in vitro cytocompatibility and osteoinductivity were investigated. The results showed that our Mg−Sr devices exhibited good cytocompatibility and osteogenic effect. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the expression level of osteogenesis-related genes and proteins, respectively. The results showed that our Mg−Sr devices could both up-regulate the genes and proteins expression of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), as well as alkaline phosphatase (ALP), Osteopontin (OPN), Collagen I (COL I) and Osteocalcin (OCN) significantly. Taken together, our innovation presented in this work demonstrated that the hollow three-dimensional Mg−Sr substitutes had excellent biocompatibility and osteogenesis and could be potential candidates for bone grafting for future orthopedic applications. - Highlights: • Novel biodegradable Mg−Sr bone substitutes with the hollow and marginal design was fabricated • The Mg−Sr substitutes exhibited excellent cyto-compatibility and osteo-inductivity effects • The osteo

  11. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model.

    Science.gov (United States)

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-06-01

    Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011

  12. Tooth apatite as a bone substitute: an experimental study and clinical applications

    International Nuclear Information System (INIS)

    Eun-Seok Kim; Pill-Hoon Choung

    1999-01-01

    The purpose of this study is to evaluate the usefulness of calcined teeth powder as biological apatite. The animal experiment was performed in 36 rabbits aging 6 weeks and weighing 1.6 kg. In experimental group, tooth apatite powder was implanted to 10 mm bony defects in diameter made on the cranial bone of the rabbits. As control groups, synthetic porous hydroxyapatite and resorbable type calcium carbonate were implanted to the defects of same size. Each group was sacrificed in 1, 2, 4, 6, 8, 12 weeks after the surgery. Specimens were prepared for decalcified samples and observed by a light microscope. And we also performed quantitative analysis of new bone formation through image analysis using computer. In clinical applications, we used tooth apatite alone or mixed with decalcified freeze-dried bone for reconstruction of bony defects in 15 patients undergone enucleation of cyst or ameloblastoma. The obtained results were as follows; 1) The powder of the calcined teeth was called as 'tooth apatite' and it seemed to have biocompatibility in rabbits and human. 2) In group of tooth apatite, after 4 weeks of operation, new bone directly bonded to the particles was observed. And in 12 weeks of it, new bone occupied most of the bony defects. In 6 weeks, resorption of the tooth apatite particles was observed. Thus the tooth apatite was regarded as one of resorbable apatite. 3) The group of tooth apatite showed new bone formation similar to the group of porous hydroxyapatite, but they were inferior to the group of resorbable calcium carbonate. 4) In clinical application, tooth apatite had biocompatibility and new bone formation was observed without any complication except for 1 case. So we think it is a useful bone substitute with osteoconductivity

  13. Multifaceted Material Substitution: The Case of NdFeB Magnets, 2010-2015

    Science.gov (United States)

    Smith, Braeton J.; Eggert, Roderick G.

    2016-07-01

    Substitution is an important response for material users when faced with disruption to the availability or price of an essential material. In economic terms, substitution refers to the ability of firms to alter their patterns of material use in response to exogenous market shocks. Substitution comes in different forms which vary from situation to situation. This paper uses expert opinion to identify the specific forms of substitution that occurred in permanent magnets, specifically neodymium-iron-boron magnets, following the significant increase in rare earth prices in 2010-2011. The paper provides a framework for understanding the multifaceted nature of substitution and assesses the relative importance of five different types of substitution. Technology-for-element, grade-for-grade, and system-for-system substitution appear to have been more important than element-for-element and magnet-for-magnet substitution. Cost pass-through and absorption were also important responses.

  14. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    Science.gov (United States)

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  15. Structural and mechanical properties of the coral and nacre and the potentiality of their use as bone substitutes

    International Nuclear Information System (INIS)

    Hamza, Samir; Slimane, Noureddine; Azari, Zitouni; Pluvinage, Guy

    2013-01-01

    Highlights: ► The structural and mechanical properties of coral and nacre used as bone substitute. ► The chemical composition of the nacre and coral are qualitatively similar to a bone. ► The percentage of porosity influences significantly the mechanical properties. ► A stress-life curve revealed an endurance limit to coral and nacre. - Abstract: The main objective of this work is to develop resistant compact material samples with different porosities from coral and nacre adapted to the filling of bone cavities. The characterization of materials was conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and laser granulometry. The micro-hardness and the influence of porosity on the mechanical behavior of these biomaterials under compression as well as three-points bending tests were also assessed. Both materials showed similar particles size ranging from 50 to 100 μm in diameter, distributed according to the Gauss curve. The modal particle size, the median D 50 and D 90 –D 10 are the most important parameters which allow for the distinction between coral and nacre samples. The two biomaterials showed a micro hardness (138–167 HV for coral and 261–340 HV for nacre) higher than that of bovine bones (55–70 HV). The maximum compression stresses were 32.82 MPa for coral and 37.06 MPa for nacre at 50% of porosity. S–N curve with ASME format is constructed to predict the fatigue life extended from 10 1 to 10 6 cycles, which reveals an endurance limit at a compression stress ratio of about 10.

  16. Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses.

    Science.gov (United States)

    Boyd, D; Carroll, G; Towler, M R; Freeman, C; Farthing, P; Brook, I M

    2009-01-01

    Bone graft procedures typically require surgeons to harvest bone from a second site on a given patient (Autograft) before repairing a bone defect. However, this results in increased surgical time, excessive blood loss and a significant increase in pain. In this context a synthetic bone graft with excellent histocompatibility, built in antibacterial efficacy and the ability to regenerate healthy tissue in place of diseased tissue would be a significant step forward relative to current state of the art philosophies. We developed a range of calcium-strontium-zinc-silicate glass based bone grafts and characterised their structure and physical properties, then evaluated their in vitro cytotoxicity and in vivo biocompatibility using standardised models from the literature. A graft (designated BT109) of composition 0.28SrO/0.32ZnO/0.40 SiO(2) (mol fraction) was the best performing formulation in vitro shown to induce extremely mild cytopathic effects (cell viability up to 95%) in comparison with the commercially available bone graft Novabone (cell viability of up to 72%). Supplementary to this, the grafts were examined using the standard rat femur healing model on healthy Wister rats. All grafts were shown to be equally well tolerated in bone tissue and new bone was seen in close apposition to implanted particles with no evidence of an inflammatory response within bone. Complimentary to this BT109 was implanted into the femurs of ovariectomized rats to monitor the response of osteoporotic tissue to the bone grafts. The results from this experiment indicate that the novel grafts perform equally well in osteoporotic tissue as in healthy tissue, which is encouraging given that bone response to implants is usually diminished in ovariectomized rats. In conclusion these materials exhibit significant potential as synthetic bone grafts to warrant further investigation and optimisation.

  17. Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material

    Directory of Open Access Journals (Sweden)

    H. Fouad

    2018-03-01

    Full Text Available In this study, porous polyethylene scaffolds were examined as bone substitutes in vitro and in vivo in critical-sized calvarial bone defects in transgenic Sprague-Dawley rats. A microscopic examination revealed that the pores appeared to be interconnected across the material, making them suitable for cell growth. The creep recovery behavior of porous polyethylene at different loads indicated that the creep strain had two main portions. In both portions, strain increased with increased applied load and temperature. In terms of the thermographic behavior of the material, remarkable changes in melting temperature and heat fusion were revealed with increased the heating rates. The tensile strength results showed that the material was sensitive to the strain rate and that there was adequate mechanical strength to support cell growth. The in vitro cell culture results showed that human bone marrow mesenchymal stem cells attached to the porous polyethylene scaffold. Calcium sulfate–hydroxyapatite (CS–HA coating of the scaffold not only improved attachment but also increased the proliferation of human bone marrow mesenchymal stem cells. In vivo, histological analysis showed that the study groups had active bone remodeling at the border of the defect. Bone regeneration at the border was also evident, which confirmed that the polyethylene acted as an osteoconductive bone graft. Furthermore, bone formation inside the pores of the coated polyethylene was also noted, which would enhance the process of osteointegration.

  18. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Pattipeilohy, J.; Hsu, S.; Grykien, M.; Weijden, B. van der; Leeuwenburgh, S.C.G.; Salmon, P.; Wolke, J.G.C.; Jansen, J.A.

    2013-01-01

    Calcium phosphate cements (CPCs) and fibrin glue (FG) are used for surgical applications. Their combination is promising to create bone substitutes able to promote cell attachment and bone remodeling. This study proposes a novel approach to create CPC-FG composites by simultaneous CPC setting and FG

  19. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  20. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute

    International Nuclear Information System (INIS)

    Bera, Tanmay; Vivek, A N; Saraf, S K; Ramachandrarao, P

    2008-01-01

    There is an increasing demand for an affordable and easy-to-fabricate material to help patients having a long bone gap. In this paper, we describe the biomimetic synthesis of Hap-Gel in situ nanocomposite powders with varied proportions. Their biocompatibility and bone regeneration abilities were assessed on a rabbit model. The use of Hap crystals and Gel molecule, the soluble form of bone protein, makes the nanocomposites comparable to natural bone in constituents. The application of biomimetic principles improves crystal morphology and the interaction of Hap crystals with the Gel molecules as seen through in vitro characterizations. Out of the various compositions studied, one with 80:20 proportions of Hap to Gel proved to be closest to the characteristics of natural bone. The immunological response to this composite, assessed through intradermal inoculation, did not reveal any reaction. The in vivo implantation studies in the femoral condyle of the animals, as assessed by serial post-operative follow-up radiography and the histological evaluation, revealed a good biocompatibility and bone-regeneration ability of the material. Thus, nanocomposites of Hap-Gel have a great potential for serving as an effective and affordable biomaterial for bone grafting applications

  1. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz (Germany); Willershausen, Ines [Institute for Dental Material Sciences and Technology, University Medical Center of the Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 14, 55128 Mainz (Germany); Thimm, Benjamin W [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland); Booms, Patrick [Leeds Institute of Molecular Medicine, Section of Medicine, Surgery and Anaesthesia, University of Leeds (United Kingdom); Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton, E-mail: ghanaati@uni-mainz.d [Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Theodor-Stein-Kai 7, 60596 Frankfurt am Main (Germany)

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  2. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    International Nuclear Information System (INIS)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton

    2010-01-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  3. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    Directory of Open Access Journals (Sweden)

    Dau M

    2017-10-01

    in EB (21 and 63 days. Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion: The bone substitute (EB with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links in the structure in PVP.Keywords: bone substitute, cross-linked, nanocrystalline hydroxyapatite, rat animal model, polyvinylpyrrolidone, irradiation, silica, osseointegration

  4. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization.

    Science.gov (United States)

    Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter

    2009-10-01

    The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.

  5. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes.

    Science.gov (United States)

    Trajkovski, Branko; Jaunich, Matthias; Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza

    2018-01-30

    The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone ® ), synthetic (maxresorb ® ), and allograft (maxgraft ® , Puros ® ) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone ® and maxresorb ® blocks showed a slight height decrease in wet state, whereas both maxgraft ® and Puros ® had an almost identical height increase. In addition, cerabone ® and maxresorb ® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft ® and Puros ® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone ® , Bio-Oss ® , NuOss ® , SIC ® nature graft) and synthetic DBGS granules (maxresorb ® , BoneCeramic ® , NanoBone ® , Ceros ® ). The highest level of hydrophilicity was detected in cerabone ® and maxresorb ® , while Bio-Oss ® and BoneCeramic ® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this

  6. Histological Analysis of the Effect of Accelerated Portland Cement as a Bone Graft Substitute on Experimentally-Created Three-Walled Intrabony Defects in Dogs

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Ashraf

    2007-12-01

    Full Text Available

    Background and aims. Recent literature shows that accelerated Portland cement (APC is a non-toxic material that may have potential to promote bone healing. The objective of this study was to histologically evaluate periodontal healing focusing on new bone regeneration following implantation of APC into intra-bony defects in dogs.

    Materials and methods. Three-wall intra-bony periodontal defects were surgically created at the mesial aspect of the first molar in both sides of mandible in six dogs. One side was randomly filled with the material and other received a flap operation only. The animals were euthanized eight weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis.

    Results. Compared to control group, stimulation of growth of new bone tissue in the cavity containing APC was significantly prominent in three of six cases, showing osteoid formation with osteoblastic rimming and new bone trabeculla. New bone formation was observed just close to cavity containing APC. Connective tissue proliferation and downgrowth of epithelium were significantly less than those of control group.

    Conclusion. Our results are encouraging for the use of APC as a bone substitute, but more comprehensive study are necessary before warranting clinical use.

  7. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    Science.gov (United States)

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  8. A biomimetic approach toward artificial bone-like materials

    OpenAIRE

    Bertozzi, Carolyn R.

    2001-01-01

    Bone consists of microcrystalline hydroxyapatite and collagen, an elastic protein matrix that is decorated with mineral-nucleating phosphoproteins. Our rational design of artificial bone-like material uses natural bone as a guide. Hydrogel and self-assembling polymers that possess anionic groups suitably positioned for nucleating biominerals, and therefore mimic the natural function of the collagen-phosphoprotein matrix in bone, were designed to direct template-driven biomimetic mineralizatio...

  9. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking...

  10. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    International Nuclear Information System (INIS)

    Zhang Lijie; Webster, Thomas J; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham

    2009-01-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml -1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  11. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  12. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-01-01

    Full Text Available Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.

  13. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  14. Bone graft substitutes for the treatment of traumatic fractures of the extremities [Knochenersatzmaterialien zur Behandlung von traumatischen Frakturen der Extremitäten

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2012-06-01

    Full Text Available [english] Bone graft substitutes are increasingly being used as supplements to standard care or as alternative to bone grafts in the treatment of traumatic fractures.The efficacy and cost-effectiveness of bone graft substitutes for the treatment of traumatic fractures as well as the ethical, social and legal implications of their use are the main research questions addressed.A systematic literature search was conducted in electronic medical databases (MEDLINE, EMBASE etc. in December 2009. Randomised controlled trials (RCT, where applicable also containing relevant health economic evaluations and publications addressing the ethical, social and legal aspects of using bone graft substitutes for fracture treatment were included in the analysis. After assessment of study quality the information synthesis of the medical data was performed using metaanalysis, the synthesis of the health economic data was performed descriptively. 14 RCT were included in the medical analysis, and two in the heath economic evaluation. No relevant publications on the ethical, social and legal implications of the bone graft substitute use were found. In the RCT on fracture treatment with bone morphogenetic protein-2 (BMP-2 versus standard care without bone grafting (RCT with an elevd high risk of bias there was a significant difference in favour of BMP-2 for several outcome measures. The RCT of calcium phosphate (CaP cement and bone marrow-based composite materials versus autogenous bone grafts (RCT with a high risk of bias revealed significant differences in favour of bone graft substitutes for some outcome measures. Regarding the other bone graft substitutes, almost all comparisons demonstrated no significant difference.The use of BMP-2 in addition to standard care without bone grafting led in the study to increased treatment costs considering all patients with traumatic open fractures. However, cost savings through the additional use of BMP-2 were calculated in a

  15. No influence of simultaneous bone-substitute application on the success of immediately loaded dental implants: a retrospective cohort study.

    Science.gov (United States)

    Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike

    2013-06-01

    To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.

  16. 21 CFR 872.3930 - Bone grafting material.

    Science.gov (United States)

    2010-04-01

    ... of the oral and maxillofacial region. (b) Classification. (1) Class II (special controls) for bone grafting materials that do not contain a drug that is a therapeutic biologic. The special control is FDA's “Class II Special Controls Guidance Document: Dental Bone Grafting Material Devices.” (See § 872.1(e) for...

  17. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs: part 1. Augmentation using bone graft substitutes and autogenous bone.

    Science.gov (United States)

    Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen

    2012-01-01

    To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.

  18. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    Science.gov (United States)

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  19. Use of computational methods for substitution and numerical dosimetry of real bones

    International Nuclear Information System (INIS)

    Silva, I.C.S.; Gonzalez, K.M.L.; Barbosa, A.J.A.; Lucindo Junior, C.R.; Vieira, J.W.; Lima, F.R.A.

    2017-01-01

    Estimating the dose that ionizing radiation deposits in the soft tissues of the skeleton within the cavities of the trabecular bones represents one of the greatest difficulties faced by numerical dosimetry. The Numerical Dosimetry Group (GDN/CNPq) Brazil, Recife-PE has used a method based on micro-CT images. The problem of the implementation of micro-CT is the difficulty in obtaining samples of real bones (OR). The objective of this work was to evaluate the sample of a virtual block of trabecular bone through the nonparametric method based on the voxel frequencies (VF) and samples of the climbing plant called Luffa aegyptica, whose dry fruit is known as vegetal bush (BV) substitution of OR samples. For this, a theoretical study of the two techniques developed by the GDN was made. The study showed in both techniques, after the dosimetric evaluations, that the actual sample can be replaced by the synthetic samples, since they have shown dose estimates close to the actual one

  20. Primary stability of different plate positions and the role of bone substitute in open wedge high tibial osteotomy.

    Science.gov (United States)

    Takeuchi, Ryohei; Woon-Hwa, Jung; Ishikawa, Hiroyuki; Yamaguchi, Yuichiro; Osawa, Katsunari; Akamatsu, Yasushi; Kuroda, Koichi

    2017-12-01

    The purpose of this study was to compare the mechanical fixation strengths of anteromedial and medial plate positions in osteotomy, and clarify the effects of bone substitute placement into the osteotomy site. Twenty-eight sawbone tibia models were used. Four different models were prepared: Group A, the osteotomy site was open and the plate position was anteromedial; Group B, bone substitutes were inserted into the osteotomy site and the plate position was anteromedial; Group C, the osteotomy site was open and the plate position was medial; and Group D, bone substitutes were inserted into the osteotomy site and the plate position was medial. The loading condition ranged from 0 to 800N and one hertz cycles were applied. Changes of the tibial posterior slope angle (TPS), stress on the plate and lateral hinge were measured. The changes in the TPS and the stress on the plate were significantly larger in Group A than in Group C. These were significantly larger in Group A than in Group B, and in Group C than in Group D. There was no significant difference between Group B and Group D, and no significant difference between knee flexion angles of 0° and 10°. Stress on the lateral hinge was significantly smaller when bone substitute was used. A medial plate position was biomechanically superior to an anteromedial position if bone substitute was not used. Bone substitute distributed the stress concentration around the osteotomy gap and prevented an increase in TPS angle regardless of the plate position. Copyright © 2017. Published by Elsevier B.V.

  1. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Jensen, T B; Overgaard, S; Lind, M

    2007-01-01

    Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  2. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  3. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model.

    Science.gov (United States)

    van Houdt, C I A; Cardoso, D A; van Oirschot, B A J A; Ulrich, D J O; Jansen, J A; Leeuwenburgh, S C G; van den Beucken, J J J P

    2017-09-01

    Demineralized bone matrix (DBM) is an allograft bone substitute used for bone repair surgery to overcome drawbacks of autologous bone grafting, such as limited supply and donor-site comorbidities. In view of different demineralization treatments to obtain DBM, we examined the biological performance of two differently demineralized types of DBM, i.e. by acidic treatment using hydrochloric acid (HCl) or treatment with the chelating agent ethylene diamine tetra-acetate (EDTA). First, we evaluated the osteo-inductive properties of both DBMs by implanting the materials subcutaneously in rats. Second, we evaluated the effects on bone formation by incorporating DBM in a hyaluronic acid (HA) gel to fill a porous titanium scaffold for use in a critical-sized calvarial defect model in 36 male Wistar rats. These porous titanium scaffolds were implanted empty or filled with HA gel containing either DBM HCl or DBM EDTA. Ectopically implanted DBM HCl and DBM EDTA did not induce ectopic bone formation over the course of 12 weeks. For the calvarial defects, mean percentages of newly formed bone at 2 weeks were significantly higher for Ti-Empty compared to Ti-HA + DBM HCl , but not compared to Ti-HA + DBM EDTA. Significant temporal bone formation was observed for Ti-Empty and Ti-HA + DBM HCl, but not for Ti-HA + DBM EDTA. At 8 weeks there were no significant differences in values of bone formation between the three experimental constructs. In conclusion, these results showed that, under the current experimental conditions, neither DBM HCl nor DBM EDTA possess osteo-inductive properties. Additionally, in combination with an HA gel loaded in a porous titanium scaffold, DBM HCl and DBM EDTA showed similar amounts of new bone formation after 8 weeks, which were lower than using the empty porous titanium scaffold. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes

    Directory of Open Access Journals (Sweden)

    Branko Trajkovski

    2018-01-01

    Full Text Available The indication-oriented Dental Bone Graft Substitutes (DBGS selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA of xenograft (cerabone®, synthetic (maxresorb®, and allograft (maxgraft®, Puros® blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®. The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new

  5. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics

    International Nuclear Information System (INIS)

    Ghanaati, Shahram; Barbeck, Mike; Hilbig, Ulrike; Rausch, Vera; Unger, Ronald E; Kirkpatrick, Charles James; Detsch, Rainer; Ziegler, Guenter; Deisinger, Ulrike; Sader, Robert

    2012-01-01

    Bone substitute material properties such as granule size, macroporosity, microporosity and shape have been shown to influence the cellular inflammatory response to a bone substitute material. Keeping these parameters constant, the present study analyzed the in vivo tissue reaction to three bone substitute materials (granules) with different chemical compositions (hydroxyapatite (HA), beta-tricalcium phosphate (TCP) and a mixture of both with a HA/TCP ratio of 60/40 wt%). Using a subcutaneous implantation model in Wistar rats for up to 30 days, tissue reactions, including the induction of multinucleated giant cells and the extent of implantation bed vascularization, were assessed using histological and histomorphometrical analyses. The results showed that the chemical composition of the bone substitute material significantly influenced the cellular response. When compared to HA, TCP attracted significantly greater multinucleated giant cell formations within the implantation bed. Furthermore, the vascularization of the implantation bed of TCP was significantly higher than that of HA implantation beds. The biphasic bone substitute group combined the properties of both groups. Within the first 15 days, high giant cell formation and vascularization rates were observed, which were comparable to the TCP-group. However, after 15 days, the tissue reaction, i.e. the extent of multinucleated giant cell formation and vascularization, was comparable to the HA-group. In conclusion, the combination of both compounds HA and TCP may be a useful combination for generating a scaffold for rapid vascularization and integration during the early time points after implantation and for setting up a relatively slow degradation. Both of these factors are necessary for successful bone tissue regeneration.

  6. Tailoring the degradation and biological response of a magnesium–strontium alloy for potential bone substitute application

    International Nuclear Information System (INIS)

    Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke

    2016-01-01

    Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium–strontium (Mg–Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg–Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg–Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg–Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg–Sr alloy with coating is potential to be used for bone substitute alternative. - Highlights: • Three different statuses of Mg–Sr alloys are used to compare the efficacy for bone graft application. • The rapid degradation is due to intergranular distribution of Mg 17 Sr 2 and galvanic corrosion. • The as-cast alloy with MAO coating exhibited tailored degradation and good biocompatibility. • The in vivo compatible degradation with bone healing is observed for the as-cast alloy with coating.

  7. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  8. Physical and chemical characteristics of Vietnamese natural corals used as substitutes for bone grafts

    International Nuclear Information System (INIS)

    Tran Cong Toai; To Phuong Vu; Tran Bac Hai; Doan Binh

    1999-01-01

    Coral has been used as substitutes for bone grafts in France and the United State of American. In Vietnam, research on coral has been done at the Biomaterial Research Laboratory, The University Training Centre since 1994. Among the studies are the determination of physical and chemical characteristics of natural coral blocks obtained by the scientists of the NhaTrang Maritime Institute. We found that it was quite necessary to establish a standard formula for processing coral as biomaterial graft. The selected coral was cut into blocks approximately 1x1x1 cm or 1x1x2 cm and cleaned. We measured the density, porous rate, water loading speed (at room temperature and at boiled temperature with low pressure, mechanical strength and content of soluble protein, chitosan in coral rods. (1140 samples of three types of corals). The density of Porites australiensis was heavier than that of Porites lutea. But, Porites lutea has more porous rate than Porites australiensis. This experiment has also showed that mechanical strength of Porites australiensis was harder than that of Porites lutea. To measure the water loading speed, the coral rods were treated at boiled temperature with low pressure versus at room temperature. We found that the water loading speed of Porites australiensis at boiled temperature was faster than that at room temperature. Porites lutea and Montastrea annuligera showed as the same result. The efficiency of water loading rate is quite low approximately 116 - 121 % for 45 minutes at room temperature versus 135 - 155 % for only I 0 minutes at boiled temperature with low pressure. We measured the content of soluble protein by both Lowry and Biuret methods, the content of soluble protein after washing with 0.9% sodium chloride, 1210 degree C, 60 minutes is very low (below limit of tests). The content of chitosan from dried coral rods treated with HCI 36 - 38 % and NAOH 0.01N is about 0.1 - 0.6 %. Our study determined some physical and chemical characteristics

  9. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Frasnelli, Matteo, E-mail: matteo.frasnelli@unitn.it [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); INSTM Research Unit, Via G. Giusti 9, 50123 Firenze (Italy); Cristofaro, Francesco [Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Viale Taramelli 3/b, 27100 Pavia (Italy); Sglavo, Vincenzo M. [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); INSTM Research Unit, Via G. Giusti 9, 50123 Firenze (Italy); Dirè, Sandra; Callone, Emanuela [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); “Klaus Müller” NMR Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); Ceccato, Riccardo [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); Bruni, Giovanna [Department of Chemistry, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia (PV) (Italy); Cornaglia, Antonia Icaro [Department of Experimental Medicine, Faculty of Medicine, University of Pavia (Italy); Visai, Livia [Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Viale Taramelli 3/b, 27100 Pavia (Italy); Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio, 28, 27100 Pavia (PV) (Italy)

    2017-02-01

    The production of stable suspensions of strontium-substituted hydroxyapatite (Sr-HA) nanopowders, as Sr ions vector for bone tissue regeneration, was carried out in the present work. Sr-HA nanopowders were synthesized via aqueous precipitation methods using Sr{sup 2+} amount from 0 to 100 mol% and were characterized by several complementary techniques such as solid-state Nuclear Magnetic Resonance spectroscopy, X-ray diffraction, Infrared spectroscopy, N{sub 2} physisorption and Transmission Electron Microscopy. The substitution of Ca{sup 2+} with Sr{sup 2+} in HA is always isomorphic with gradual evolution between the two limit compositions (containing 100% Ca and 100% Sr), this pointing out the homogeneity of the synthesized nanopowders and the complete solubility of strontium in HA lattice. Strontium addition is responsible for an increasing c/a ratio in the triclinic unit cell. A significant variation of the nanopowders shape and dimension is also observed, a preferential growth along the c-axis direction being evident at higher strontium loads. Modifications in the local chemical environment of phosphate and hydroxyl groups in the apatite lattice are also observed. Stable suspensions were produced by dispersing the synthesized nanopowders in bovine serum albumin. Characterization by Dynamic Light Scattering and ζ-potential determination allowed to show that Ca{sup 2+} → Sr{sup 2+} substitution influences the hydrodynamic diameter, which is always twice the particles size determined by TEM, the nanoparticles being always negatively charged as a result from the albumin rearrangement upon the interaction with nanoparticles surface. The biocompatibility of the suspensions was studied in terms of cell viability, apoptosis, proliferation and morphology, using osteosarcoma cell line SAOS-2. The data pointed out an increased cell proliferation for HA nanoparticles containing larger Sr{sup 2+} load, the cells morphology remaining essentially unaffected. - Highlights

  10. Nano-material aspects of shock absorption in bone joints.

    Science.gov (United States)

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  11. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    Science.gov (United States)

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (palginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible

  12. Investigation of microstructure and mechanical properties of phosphocalcic bone substitute using the chemical wet method

    Science.gov (United States)

    Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel

    2018-05-01

    Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.

  13. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of bone specimens harvested from the central part of the glenoid subchondral area. The elastic modulus varied from approximately 100 MPa at the glenoid bare area to 400 MPa at the superior part of the glenoid. With the elastic constants used a predictor of the mechanical anisotropy, the average anisotropy...... ratio was 5.2, indicating strong anisotropy. The apparent density was an average 0.35 gr. cm-3, and the Poisson ratio averaged 0.263. According to our findings the anisotropy of the glenoid cancellous bone, details concerning the strength distribution, and the load-bearing function of the cortical shell......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid...

  14. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron beam irradiation to the allogeneic, xenogenic and synthetic bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Park, Min Woo; Jeong, Hyun Oh [School of Dentistry Seoul National University, Seoul (Korea, Republic of); and others

    2013-07-01

    For the development of the biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bone were irradiated by electron beam to change the basic components and structures. For the efficient electron beam irradiating condition of these allogenic, xenogenic and artificial bone substitutes, the optimal electron beam energy and their individual dose were established, to maximize the bony regeneration capacity. Commercial products of four allogenic bones, such as Accell (ISOTIS OrthogBiologics Co., USA), Allotis (Korea Bone Bank Co., Korea), Oragraft (LifeNet Co., USA), and Orthoblast (Integra Orthobiologics Inc., USA), six xenogenic bones, such as BBP (OscoTec Co., Korea), Bio-cera (OscoTec Co., Korea), Bio-oss (Geistlich Pharma AG, Switzerland), Indu-cera (OscoTec Co., Korea), OCS-B (Nibec Co., Korea), and OCS-H (Nibec Co., Korea), and six synthetic bones, such as BMP (Couellmedi Co., Korea), BoneMedik (Meta Biomed Co., Korea), Bone plus (Megagen Co., Korea), MBCP (Biomatlante Co., France), Osteon (Genoss Co., Korea), and Osteogen (Impladent LTD., USA), were used. We used 1.0 and 2.0 MeV superconduction accelerator, and/or microtrone with different individual 60, 120 kGy irradiation dose. Different dose irradiated specimens were divided 6 portions each, so total 360 groups were prepared. 4 portions were analyzed each by elementary analysis using FE-SEM (Field Emission Scanning Microscopy) and another 2 portions were grafted to the calvarial defect of Sprague-Dawley rat, following histologic, immunohistochemical analysis and TEM study were processed at the 8th and 16th weeks, in vivo. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)

  16. Instrumental neutron activation analysis of rib bone samples and of bone reference materials

    International Nuclear Information System (INIS)

    Saiki, M.; Takata, M.K.; Kramarski, S.; Borelli, A.

    2000-01-01

    The instrumental neutron activation analysis method was used for the determination of trace elements in rib bone samples taken from autopsies of accident victims. The elements Br, Ca, Cl, Cr, Fe, Mg, Mn, Na, P, Sr, Rb and Zn were determined in cortical tissues by using short and long irradiations with thermal neutron flux of the IEA-R1m nuclear reactor. The reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were also analyzed in order to evaluate the precision and the accuracy of the results. It was verified that lyophilization is the most convenient process for drying bone samples since it does not cause any element losses. Comparisons were made between the results obtained for rib samples and the literature values as well as between the results obtained for different ribs from a single individual and for bones from different individuals. (author)

  17. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    OpenAIRE

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline p...

  18. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Røjskjaer, Jesper; Cheng, Liming

    2012-01-01

    Hydroxyappatite-β-tricalciumphosphate (HA/β-TCP) was reinforced with poly(D,L)-lactic acid (PDLLA) to overcome its weak mechanical properties. Two substitutes with porosities of 77% and 81% HA/β-TCP reinforced with 12 wt % PDLLA were tested in compression. The effects of allograft, substitute (HA...

  19. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  20. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: a study of rabbit cranial defects.

    Science.gov (United States)

    Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong

    2014-10-01

    The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    International Nuclear Information System (INIS)

    Borkowski, Leszek; Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek; Polkowska, Izabela; Belcarz, Anna; Karpiński, Mirosław; Słowik, Tymoteusz; Matuszewski, Łukasz; Ślósarczyk, Anna; Ginalska, Grażyna

    2015-01-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration

  2. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Leszek, E-mail: leszek.borkowski@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek [Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin (Poland); Polkowska, Izabela [Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin (Poland); Belcarz, Anna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Karpiński, Mirosław [Department of Companion and Wildlife Animals, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Słowik, Tymoteusz [Independent Radiology Unit at Lublin Small Animals Medical Centre, Stefczyka 11, 20-151 Lublin (Poland); Matuszewski, Łukasz [Children' s Orthopaedic Clinic and Rehabilitation Department, Medical University of Lublin, Chodzki 2, 20-093 Lublin (Poland); Ślósarczyk, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Ginalska, Grażyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland)

    2015-08-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration.

  3. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    Science.gov (United States)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  4. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    Science.gov (United States)

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  5. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Jansen, J.A.; Mikos, A.G.

    2007-01-01

    Biodegradable polymers that can be processed into injectable hydrogel matrices are promising candidates for bone-substituting purposes. Furthermore, by incorporating degradable calcium phosphate (CaP) particles and growth factors into these hydrogel matrices, a bone construct can be designed which

  6. Synchrotron μCT Imaging of Bone, Titanium implants and Bone Substitutes -a Systematic Review of the Literature

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2014-01-01

    Today x-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic x-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled...... to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro...... examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization...

  7. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. A double-blind randomised controlled trial.

    Science.gov (United States)

    Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Pagliaro, Umberto; Raffaelli, Eugenia; Nieri, Michele

    2015-01-01

    The objective of this parallel randomised controlled trial is to compare two bone substitutes and collagen membranes in a one-stage procedure for horizontal bone augmentation: anorganic bovine bone (Bio-Oss) and collagen porcine membranes (Bio-Gide) (BB group) versus a synthetic resorbable bone graft substitute made of pure β-tricalcium phosphate (Ceros TCP) and porcine pericardium collagen membranes (Jason) (CJ group). Patients in need of implant treatment having at least one site with horizontal osseous defects at a private clinic in Rimini (Italy) were included in this study. Patients were randomised to receive either the BB or CJ treatment. Randomisation was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes. Patients and the outcome assessor were blinded to group assignment. The main outcome measures were implant failure, complications, clinical bone gain at augmented sites, and complete filling of the bone defect. Secondary outcome measures were chair-time, postoperative pain and peri-implant marginal bone level changes. Twenty-five patients with 32 implants were allocated to the BB group and 25 patients with 29 implants to the CJ group. All 50 randomised patients received the treatment as allocated and there were no dropouts up to 6-months post-loading (12 months post-surgery). There were no failures and there were three complications in the BB group and three complications in the CJ group (relative risk: 1.00, 95% CI from 0.22 to 4.49, P = 1.00). The estimated difference between treatments in the vertical defect bone gain was -0.15 mm (95% CI from -0.65 to 0.35, P = 0.5504) favouring the BB group, and the estimated difference between treatments in the horizontal defect bone gain was -0.27 mm (95%CI from -0.73 to 0.19, P = 0.3851) favouring the BB group. There was no difference in the complete filling of the defect (relative risk: 0.88, 95%CI from 0.58 to 1.34, P = 0.7688). No significant differences were

  8. Manganese substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications

    OpenAIRE

    Paulsen, J. A.; Ring, A. P.; Lo, C. C. H.; Snyder, John Evan; Jiles, David

    2005-01-01

    Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 °C the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the ma...

  9. Evaluation of cell binding peptide (p15) with silk fibre enhanced hydroxyappatite bone substitute for posterolateral spinal fusion in sheep

    DEFF Research Database (Denmark)

    Axelsen, M.; Jespersen, Stig; Overgaard, Søren

    2015-01-01

    Background: Spinal fusion is indicated in the surgical management of various spinal disorders. To ensure stabile fusion, bone graft materials are essential. Traditionally allo- or autograft has been used, but both are associated with limitations. Synthetic bone graft materials that reassemble today......: In this study, we compared fusion rates between silk fibre enhanced anorganic bovine derived hydroxyapatite matrix (ABM) with and without P15 peptide coating in uninstrumented PLF in a preclinical setting. Study design: Randomised prospective study in sheep. Method/materials: Twelve Tex/got sheep underwent open...

  10. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/?-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration

    OpenAIRE

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-01-01

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and ?-tricalcium phosphate (?-TCP) in a 4:4:2 ratio, PCL/PLGA/?-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/P...

  11. Avaliação pré-clínica de um material substituto ósseo xenógeno a base de hidroxiapatita/colágeno = Preclinical evaluation of a xenogenic hydroxyapatite/collagen-based bone substitute material

    Directory of Open Access Journals (Sweden)

    Bittencourt, Rafael Cotias

    2014-01-01

    Full Text Available Objetivo: O objetivo deste estudo foi avaliar as propriedades físicas, químicas e biológicas de um xenoenxerto bovino para o reparo ósseo. Métodos: Análise físico-química foi conduzida usando difração de raios X, espectroscopia no infravermelho por transformada de Fourier e microscopia eletrônica de varredura. Biocompatibilidade in vitro foi avaliada através de ensaios de citotoxicidade e adesão celular usando culturas de linhagem celular de fibroblastos e pré-osteoblastos murinos, respectivamente. Além disso, por ensaio in vivo usando enxertia subcutânea no modelo rato (5 e 10 semanas, hidroxiapatita sintética como material controle e ainda um experimento a longo prazo em defeitos de tamanho crítico em calvária (6 e 9 meses, coágulo sanguíneo e osso autógeno como controles negativo e positivo, respectivamente. Resultados: O material teste apresentou uma arquitetura tridimensional consistindo de grânulos densos e microporos (várias dimensões, composto de hidroxiapatita cristalina/fibras colágenas. O xenoenxerto foi citocompatível e após 7 dias foi observado espraiamento de pré-osteoblastos sobre grânulos do material. Análise histopatológica do material implantado no subcutâneo de ratos mostrou o xenoenxerto intato após 10 semanas circundado por tecido conjuntivo frouxo com suave infiltrado inflamatório e células gigantes multinucleadas ao redor de partículas (5 e 10 semanas similar à hidroxiapatita sintética. Considerando os defeitos de tamanho crítico em calvária foi observada 1,7 vezes mais formação de novo osso no xenoenxerto do que no grupo controle (P<0,001, um resultado similar verificado no autoenxerto. Não houve variação significante na densidade de volume do xenoenxerto (37,9%±4,3. Conclusão: Pode-se concluir que o material xenógeno é biomimético, biocompatível, osseocondutor e nãoreabsorvível, portanto sendo um material promissor para o reparo óss

  12. A novel hyperthermia treatment for bone metastases using magnetic materials

    International Nuclear Information System (INIS)

    Matsumine, Akihiko; Asanuma, Kunihiro; Matsubara, Takao; Nakamura, Tomoki; Uchida, Atsumasa; Sudo, Akihiro; Takegami, Kenji

    2011-01-01

    Patients with bone metastases in the extremities sometimes require surgical intervention to prevent deterioration of quality of life due to a pathological fracture. The use of localized radiotherapy combined with surgical reinforcement has been a gold standard for the treatment of bone metastases. However, radiotherapy sometimes induces soft tissue damage, including muscle induration and joint contracture. Moreover, cancer cells are not always radiosensitive. Hyperthermia has been studied since the 1940s using an experimental animal model to treat various types of advanced cancer, and studies have now reached the stage of clinical application, especially in conjunction with radiotherapy or chemotherapy. Nevertheless, bone metastases have several special properties which discourage oncologists from developing hyperthermic therapeutic strategies. First, the bone is located deep in the body, and has low thermal conductivity due to the thickness of cortical bone and the highly vascularized medulla. To address these issues, we developed new hyperthermic strategies which generate heat using magnetic materials under an alternating electromagnetic field, and started clinical application of this treatment modality. The purpose of this review is to summarize the latest studies on hyperthermic treatment in the field of musculoskeletal tumors, and to introduce the treatment strategy employing our novel hyperthermia approach. (author)

  13. Modern materials in fabrication of scaffolds for bone defect replacement

    Science.gov (United States)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  14. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing

  15. Synchrotron μCT imaging of bone, titanium implants and bone substitutes - a systematic review of the literature.

    Science.gov (United States)

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2014-09-01

    Today X-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic X-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. CT assisted biomimetic artificial bone des

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-gang; ZHANG Chao-zong; GUO Zhi-ping; TIAN Jie-mo

    2001-01-01

    @@ In the recent years, bioceramic materials have been widely used in the clinics. They are mainly fabricated as the substitution of human hard tissue, such as artificial bone and false tooth. As a medical implant, those that have similar structure to human bone have better biocompatibility and osteoinductional property. So it is necessary to design bone model close to human bone.

  17. The material from Lampung as coarse aggregate to substitute andesite for concrete-making

    Science.gov (United States)

    Amin, M.; Supriyatna, Y. I.; Sumardi, S.

    2018-01-01

    Andesite stone is usually used for split stone material in the concrete making. However, its availability is decreasing. Lampung province has natural resources that can be used for coarse aggregate materials to substitute andesite stone. These natural materials include limestone, feldspar stone, basalt, granite, and slags from iron processing waste. Therefore, a research on optimizing natural materials in Lampung to substitute andesite stone for concrete making is required. This research used laboratory experiment method. The research activities included making cubical object samples of 150 x 150 x 150 mm with material composition referring to a standard of K.200 and w/c 0.61. Concrete making by using varying types of aggregates (basalt, limestone, slag) and aggregate sizes (A = 5-15 mm, B = 15-25 mm, and 25-50 mm) was followed by compressive strength test. The results showed that the obtained optimal compressive strengths for basalt were 24.47 MPa for 50-150 mm aggregate sizes, 21.2 MPa for 15-25 mm aggregate sizes, and 20.7 MPa for 25-50 mm aggregate sizes. These results of basalt compressive strength values were higher than the same result for andesite (19.69 MPa for 50-150 mm aggregate sizes), slag (22.72 MPa for 50-150 mm aggregate sizes), and limestone (19.69 Mpa for 50-150 mm aggregate sizes). These results indicated that basalt, limestone, and slag aggregates were good enough to substitute andesite as materials for concrete making. Therefore, natural resources in Lampung can be optimized as construction materials in concrete making.

  18. Material Substitution For The Supporting Frame of Power Tiller With Finite Element Analysis Approach

    Directory of Open Access Journals (Sweden)

    Midian Shite

    2006-08-01

    Full Text Available Due to its advantageouse characteristic, aluminum is considered to substitute the existing steel as material of the supporting frame of power tiller to meet the strength and environment concerns. The investigation was emphasized on the comparison of both material in view of stress and deformation. In this study, both experimental test and finite element (FE analysis were employed to meet the research concem.comparison between the experimental test and numerical analysis result indicated acceptable differnces of about 7-33% wich is lower than the previouse research. Substitution with aluminum was confirmed using material index that aluminum has better performance in strength and stiffness than that of steel by prescibing minimum better performance in strength and stiffness than that of steel by prescibing minimum weight. FE analysis result revealed that aluminum model was capable of sustaining loads about equal to the steel model. It was based on its maximum von Mises stress wich was insignificatly lower than the steel model. In term of strength characteristic, strength ratio of the aluminum model was higher than the steel model. Furthemore, the substitution also resulted in redistrubuting stress into wider area and mass reduction for about 36%.

  19. Quantifying migration and polarization of murine mesenchymal stem cells on different bone substitutes by confocal laser scanning microscopy.

    Science.gov (United States)

    Roldán, J C; Chang, E; Kelantan, M; Jazayeri, L; Deisinger, U; Detsch, R; Reichert, T E; Gurtner, G C

    2010-12-01

    Cell migration is preceded by cell polarization. The aim of the present study was to evaluate the impact of the geometry of different bone substitutes on cell morphology and chemical responses in vitro. Cell polarization and migration were monitored temporally by using confocal laser scanning microscopy (CLSM) to follow green fluorescent protein (GFP)±mesenchymal stem cells (MSCs) on anorganic cancellous bovine bone (Bio-Oss(®)), β-tricalcium phosphate (β-TCP) (chronOS(®)) and highly porous calcium phosphate ceramics (Friedrich-Baur-Research-Institute for Biomaterials, Germany). Differentiation GFP±MSCs was observed using pro-angiogenic and pro-osteogenic biomarkers. At the third day of culture polarized vs. non-polarized cellular sub-populations were clearly established. Biomaterials that showed more than 40% of polarized cells at the 3rd day of culture, subsequently showed an enhanced cell migration compared to biomaterials, where non-polarized cells predominated (ppolarization predominated at the 7th day of culture (p=0.001). This model opens an interesting approach to understand osteoconductivity at a cellular level. MSCs are promising in bone tissue engineering considering the strong angiogenic effect before differentiation occurs. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Study of Ti4+ substitution in ZrW2O8 negative thermal expansion materials

    International Nuclear Information System (INIS)

    Buysser, Klaartje de; Driessche, Isabel van; Putte, Bart van de; Schaubroeck, Joseph; Hoste, Serge

    2007-01-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2 -WO 3 -ZrO 2 mixtures revealed the formation of Zr 1-x Ti x W 2 O 8 solid solutions. A noticeable decrease in unit cell parameter 'a' and in the order-disorder transition temperature could be seen in the case of Zr 1-x Ti x W 2 O 8 solid solutions. Studies performed on other ZrW 2 O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry. - Graphical abstract: This study indicates that the phase transition temperature in our materials Zr 1-x Ti x W 2 O 8 is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice-free volume, lowering the phase transition temperature

  1. Treatment outcomes of the simple bone cyst: A comparative study of 2 surgical techniques using artificial bone substitutes.

    Science.gov (United States)

    Higuchi, Takashi; Yamamoto, Norio; Shirai, Toshiharu; Hayashi, Katsuhiro; Takeuchi, Akihiko; Kimura, Hiroaki; Miwa, Shinji; Abe, Kensaku; Taniguchi, Yuta; Tsuchiya, Hiroyuki

    2018-05-01

    Simple bone cysts (SBCs) are benign lesions of unknown etiology. Because of its high relapse rate, they occasionally need a long period of treatment and restriction of activities in children and adolescent. Although various treatment modalities with variable differing outcomes have been described in the literature, no consensus has been reached regarding the standard treatment. The purpose of this study was to evaluate the outcome of a minimally invasive technique that uses a ceramic hydroxyapatite cannulated pin (HA pin) for the treatment of SBCs.Between 1998 and 2015, we have treated 75 patients with SBCs either with continuous decompression by inserting HA pins after curettage and multiple drilling (group 1, n = 39 patients) or with calcium phosphate cement (CPC) filling after curettage (group 2, n = 36 patients). These patients were retrospectively analyzed for recurrence-free survival (RFS) and factors implicated in SBC recurrence.Seventy-five patients (50 man and 25 females) with a mean age of 17.5 ± 11.6 years and a histopathologically confirmed diagnosis of SBCs were included. The mean follow-up period was 33 ± 25.3 months. RFS were 88% at 1 year and 81% at 5 years. Residual or progressing cysts were observed in 12 patients after the surgery and 10 of them underwent additional surgery. Recurrence rate was significantly higher in patients under the age of 10 years (P = .01), in long bone cysts (P = .01), and in active phase cysts (P = .003) (log-rank test). Multivariate analysis results revealed that age less than 10 years was an independent risk factor of recurrence (P = .04). No significant difference in recurrence rate was observed between groups 1 and 2. However, the mean operating time was significantly shorter in group 1. (62.4 ± 25.6 vs 110.5 ± 48.4 minutes in group 2).Continuous decompression using HA pin is a less invasive surgical technique for the treatment of SBCs compared with CPC filling and has a

  2. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    Science.gov (United States)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  3. Evaluation of raw rock phosphate as substitute for bone meal in diet ...

    African Journals Online (AJOL)

    Experiment was conducted to determine the optimal replacement level of Raw Rock Phosphate (RRP) for bone meal in layers diet. A total of 144, 55 week-old shavers X Hubbard cross-strain laying hens were used for the study. Triplicate groups of 12 hens per replicate were placed on four test diets containing 0, 1, 1.5 and ...

  4. Bioreactor activated graft material for early implant fixation in bone

    DEFF Research Database (Denmark)

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish....... The superficial part was used for mechanical testing and micro-CT scanning, and the profound part for histomorphometry. Push-out tests were performed on an 858 Bionix MTS hydraulic materials testing machine (MTS Systems Corporation, USA). Shear mechanical properties between implant and newly generated bone were...

  5. Advances in allogenic bone graft processing and usage: preparation and evaluation of chitosan-demineralized cancellous bone powder composite scaffolds as a bone graft substitute

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    2008-01-01

    Full text: Demineralized bone matrix (DBM) is currently used by surgeons. It usually exists as a lyophilized powder which is difficult to handle and operated. In this study, we try to improve these disadvantages by combining DBM with a biomaterial. It focuses on a natural biodegradable polymer, chitosan, to act as a temporary matrix for bone growth that easily prepare in any size and shape by using tissue engineering knowledge to get a proper temporary matrix. Thus, the development of chitosan-demineralized bone powder composite scaffold is an alternative way. Polymeric scaffold has been demonstrated to have great potential for tissue engineering because the scaffold or three dimension (3D) construct provides the necessary support for cells to proliferate, extracellular matrix deposition and vascularization of neo-tissue. Moreover, chitosan, a natural cationic polymer which its structural is similar to extracellular matrix glycosaminoblycans, is biodegradable, biocompatible, non-antigenic and biofunctional. It can enhance osteoblast cells proliferation and mineral matrix deposition in culture. The first study was to fabricate and analyze composite scaffold composed of either chitosan-demineralized cancellous bone powders or chitosan-demineralized cancellous cartilage bone powders in a ratio 50:50 and 70:30 w/w (chitosan : bone powders) based on physical properties composing of average pore diameter, mechanical integrity and swelling property. Secondly, scaffolds were evaluated in term of biological properties composing of their ability to support neo osteogenesis, including assessments of cell attachment and viability, cell morphology, and the biosynthesis of extracellular matrix. Results indicated that chitosan-demineralized cancellous bone powder composite scaffolds possessing an interconnecting, porous structure could be easily created through a simple freezing and lyophilization process. (Author)

  6. 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate.

    Science.gov (United States)

    Egorov, Aleksey A; Fedotov, Alexander Yu; Mironov, Anton V; Komlev, Vladimir S; Popov, Vladimir K; Zobkov, Yury V

    2016-01-01

    We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the "ink"). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

  7. 3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

    Directory of Open Access Journals (Sweden)

    Aleksey A. Egorov

    2016-11-01

    Full Text Available We demonstrate a relatively simple route for three-dimensional (3D printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”. The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

  8. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    Science.gov (United States)

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  9. Size distributions of aerosols produced from substitute materials by the Laskin cold DOP aerosol generator

    International Nuclear Information System (INIS)

    Hinds, W.; Macher, J.; First, M.W.

    1981-01-01

    Test aerosols of di(2-ethylhexyl)phthalate (DOP) produced by Laskin nozzle aerosol generators are widely used for in-place filter testing and respirator fit testing. Concern for the health effects of this material has led to a search for substitute materials for test aerosols. Aerosols were generated with a Laskin generator and diluted 6000-fold with clean air. Size distributions were measured for DOP, di(2-ethylhexyl)sebecate, polyethylene glycol, mineral oil, and corn oil aerosols with a PMS ASAS-X optical particle counter. Distributions were slightly bimodal with count median diameters from 0.22 to 0.30 μm. Size distributions varied little with aerosol material, operating pressure, or liquid level. Mineral oil and corn oil gave the best agreement with the DOP size distribution

  10. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects

    DEFF Research Database (Denmark)

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled...... with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA......-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2...

  11. Substitution of wastes for fuels and raw materials in high-temperature processes; Substitution von Brennstoffen und Rohstoffen durch Abfaelle in Hochtemperaturprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Energieverfahrenstechnik; Beckmann, M. [Clausthaler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany)

    1998-09-01

    The physical recycling and energy conversion of wastes has for a long time been a topic of discussion. Some of the most interesting questions in this connection concern specific applications such as the co-combustion of sewage sludge in power plants, substitution of plastic wastes for primary fuels in burning processes in the cement industry etc. This paper also undertakes a comparative study of different applications, giving additional consideration to the state of the art in thermal waste treatment. Different processes can of course only be compared by taking the entirety of expenditures on additives and auxiliary energy into account and assuming equal side constraints for all processes. A further requirement is that the waste materials` specific properties that are relevant to the application in question have to be taken into account. This concerns in particular the effects of the substitution of waste-derived fuels (secondary fuels) for primary fuels on, for example, heat transfer conditions during the combustion process, flow conditions, and the resultant temperature distribution, transport of feedstock, and specific energy expenditure. Secondary fuels must be suited for substitution in various respects, e.g. in their material properties, and their combustion and thermal behaviour. The present paper deals in particular with the requirements on wastes as substitutes for primary fuels with regard to combustion and thermal behaviour. For this purpose it briefly discusses some important aspects of heat transfer in firing plants and industrial furnaces. An important criterion in assessing fuel substitution is the energy exchange ratio, which expresses value of the substitute fuel relative to that of the primary fuel and should be duly considered when making comparative studies. Focussing on aspects of process engineering the paper also deals exemplarily with the influence of fuel substitution on, e.g. furnace temperature, exhaust gas quantities etc. in clinker

  12. Behavior of bone cells in contact with magnesium implant material.

    Science.gov (United States)

    Burmester, Anna; Willumeit-Römer, Regine; Feyerabend, Frank

    2017-01-01

    Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017. © 2015 Wiley Periodicals, Inc.

  13. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  14. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    Background: Synthetic bone graft substitutes such as bioactive glass (BG) material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of ...

  15. [Children, Collect Bones! : Teaching Aids and Propaganda Material on Bone-Collections and Bone-Utilisation Used in German Schools During the "Third Reich"].

    Science.gov (United States)

    Vaupel, Elisabeth; Preiß, Florian

    2018-06-05

    In the nineteenth and early twentieth centuries bones were an essential raw material for the German chemical industry, vital to the production of fertilizer, glue, gelatine, soap and other products. As most of this material was imported, the German school system during the "Third Reich" took the utilisation of bones as an example to illustrate the relevance of the four-year plan of 1936 and its policy of economic self-sufficiency. The school children were encouraged to collect bones from domestic sources and bring them to the collecting points in the schools. Several NS-institutions developed a variety of teaching aids and materials to support school education on this economically and politically important topic. Focussing on the example of bone-utilisation, this paper examines the messages and intentions of these educational materials. It also demonstrates how even apparently ideologically unbiased school subjects, such as chemistry, were instrumentalised for the political indoctrination of the pupils.

  16. Bis-aryl substituted dioxaborines as electron-transport materials: a comparative density functional theory investigation with oxadiazoles and siloles

    International Nuclear Information System (INIS)

    Risko, C.; Zojer, E.; Brocorens, P.; Marder, S.R.; Bredas, J.L.

    2005-01-01

    We report on a detailed quantum-chemical comparison of the electronic structures, vertical electron affinities, and intramolecular reorganization energies for bis-aryl substituted dioxaborine, oxadiazole, and silole derivatives. The results indicate that the HOMO and LUMO energies of the substituted compounds can be tuned on the order of 2-3 eV via minor changes in the substitution patterns, with the HOMO and LUMO levels for the dioxaborine derivatives consistently the most energy stabilized. Additionally, large vertical electron affinities and comparable intramolecular reorganization energies confirm that dioxaborine systems are interesting candidates for electron transport materials

  17. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    DEFF Research Database (Denmark)

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner

    2016-01-01

    -the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay...

  18. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of); Lee, Song Eun; Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of)

    2015-09-15

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm{sup 2}, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm{sup 2}, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs.

  19. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin; Lee, Song Eun; Lee, Ho Won; Kim, Young Kwan; Yoon, Seung Soo

    2015-01-01

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm 2 , respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm 2 , respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs

  20. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  1. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  2. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    Science.gov (United States)

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  3. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Science.gov (United States)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  4. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    Science.gov (United States)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure

  5. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    Science.gov (United States)

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  6. Study of Radiation Induced Radicals in HAP and β-TCP Based Bone Graft Materials by ERP Spectroscopy

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Matkovic, I.

    2013-01-01

    Calcium phosphates such as beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) are frequently used as dental implants due to proven excellent biocompatibility. Because of their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, literature provides little information about effects of γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this study EPR (electron paramagnetic resonance) spectroscopy was used to investigate HAP and β-TCP based dental implants present on the market. Eight dental graft materials present on the market were investigated: Bioresorb R Macropore, Poresorb R -TCP, Easy-Graft T M and Cerasorb R synthetic β-tricalcium phosphates, Easy-Graft T M crystal and Ossceram R two phase synthetic CaP consisting of 60 % HAP and 40 % β-TCP, and Dexabone R and Bio-Oss R bone graft material of bovine origin. EPR study shows that this is the only technique for characterization of free radicals that can simultaneously determine not only the presence and content, but also the position and the structure of free radicals formed by γ-sterilization in the investigated materials, as well as the paramagnetic substitutions incorporated in the materials during the synthesis (such as Mn 2+ , Fe 3+ or Cr 2+ ). Additionally, EPR provides information on stability of irradiation-induced radicals (CO 2 - , trapped H-atoms, NO 3 2 etc.) and processes for reducing them. Results show that EPR should be considered as a valuable technique in improving the quality of bone graft materials, which must be sterile, and to offer the high quality, efficacy and reliable materials to the patients.(author)

  7. Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique.

    Science.gov (United States)

    Lindner, Markus; Hoeges, Simon; Meiners, Wilhelm; Wissenbach, Konrad; Smeets, Ralf; Telle, Rainer; Poprawe, Reinhart; Fischer, Horst

    2011-06-15

    The additive manufacturing technique selective laser melting (SLM) has been successfully proved to be suitable for applications in implant manufacturing. SLM is well known for metal parts and offers direct manufacturing of three-dimensional (3D) parts with high bulk density on the base of individual 3D data, including computer tomography models of anatomical structures. Furthermore, an interconnecting porous structure with defined and reproducible pore size can be integrated during the design of the 3D virtual model of the implant. The objective of this study was to develop the SLM processes for a biodegradable composite material made of β-tricalcium phosphate (β-TCP) and poly(D, L)-lactide (PDLLA). The development of a powder composite material (β-TCP/PDLLA) suitable for the SLM process was successfully performed. The microstructure of the manufactured samples exhibit a homogeneous arrangement of ceramic and polymer. The four-point bending strength was up to 23 MPa. The X-ray diffraction (XRD) analysis of the samples confirmed β-TCP as the only present crystalline phase and the gel permeations chromatography (GPC) analysis documented a degradation of the polymer caused by the laser process less than conventional manufacturing processes. We conclude that SLM presents a new possibility to manufacture individual biodegradable implants made of β-TCP/PDLLA. Copyright © 2011 Wiley Periodicals, Inc.

  8. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  9. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis

    International Nuclear Information System (INIS)

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-01-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme. -- Highlights: ► We model the life cycle flows for solder-containing metals in Japan. ► The Japanese shift to lead-free solders progresses rapidly for a decade. ► Substitution for lead in solders slows down during the late life cycle stages. ► The deceleration of substitution precludes a reduction in lead emissions to air.

  10. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    Science.gov (United States)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  11. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  12. Polymers Containing Diphenylvinyl-Substituted Indole Rings as Charge-Transporting Materials for OLEDs

    Science.gov (United States)

    Grigalevicius, S.; Zostautiene, R.; Sipaviciute, D.; Stulpinaite, B.; Volyniuk, D.; Grazulevicius, J. V.; Liu, L.; Xie, Z.; Zhang, B.

    2016-02-01

    Monomers and polymers containing electronically isolated diphenylvinyl-substituted indole rings were synthesized and characterized by nuclear magnetic resonance (NMR) and mass spectroscopies as well as by gel permeation chromatography. The polymers represent amorphous materials with glass transition temperatures of 91-109°C and thermal decomposition starting above 307°C. Electron photoemission spectra of thin films of the synthesized polymers revealed ionization potentials of 5.54-5.58 eV. The synthesized polymers were tested as hole-transporting materials in simple electroluminescent organic light-emitting diode (OLED) devices with tris(quinolin-8-olato)aluminium (Alq3) as an emitter as well as an electron-transporting layer. A green OLED device containing a hole-transporting layer of poly[1-(2,3-epithiopropyl)-2-methyl-3-(2,2-diphenylvinyl)índole] exhibited the best overall performance with a driving voltage of 4.0 V, maximum photometric efficiency of 2.8 cd/A and maximum brightness of about 4200 cd/m2.

  13. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Jegatheeswaran, S. [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India); Selvam, S. [Laser and Sensor Application Laboratory, Pusan National University, Busan 609735 (Korea, Republic of); Sri Ramkumar, V. [Deptartment of Environmental Biotechnology, School of Environmental, Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu (India); Sundrarajan, M., E-mail: sundrarajan@yahoo.com [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF{sub 4} ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  14. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    International Nuclear Information System (INIS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-01-01

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF_4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  15. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-11-01

    Full Text Available Glow discharge plasma (GDP treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP. The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.

  16. Three-dimensional bone tissue substitute based on a human mesenchymal stem cell culture on a nanofiber carrier and inorganic matrix

    Directory of Open Access Journals (Sweden)

    Martin Krbec

    2016-01-01

    Full Text Available The aim was to construct a composite structure for bone tissue substitute on the basis of a degradable composite of an organic nanofiber carrier and an inorganic matrix in 3D, and to achieve subsequent colonisation by differentiated human mesenchymal stem cells (hMSC towards osteocytes. We developed an active bone tissue substitute using nanofiber technology for a polycaprolactone (PCL scaffold with the addition of hydroxyapatite and the colonisation of both components with hMSC with the ability of differentiation towards osteocytes. The constructed composition included the components necessary for bone healing (inorganic and cellular and it also forms a spatially-oriented 3D structure. We used polycaprolactone Mw 70,000 with electrostatic spinning for the formation of nanofibers using a modified NanospiderTM method. For the inorganic component we used orthophosphate-calcium silicate with a crystal size of 1-2 mm which the nanofiber membrane was coated with. Both components were connected together with a tissue adhesive based of fibrin glue. Cultivated hMSC cells at a concentration of 1.2 × 104/cm2 were multiplied in vitro and then cultivated in the expansion medium. HMSC overgrew both the PCL membrane and the Si-CaP crystals. After colonisation with cultivated cells, this composite 3D structure can serve as a three-dimensional bone tissue replacement.

  17. Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries

    International Nuclear Information System (INIS)

    Lee, S.B.; Cho, S.H.; Heo, J.B.; Aravindan, V.; Kim, H.S.; Lee, Y.S.

    2009-01-01

    Carbon-free, copper-doped, lithium rich iron phosphates, Li 1+x Fe 1-y Cu y PO 4 (0 ≤ x ≤ 0.15, 0 ≤ y ≤ 0.005), have been synthesized by a solid-state reaction method. From the optimization, the Li 1.05 Fe 0.997 Cu 0.003 PO 4 phase showed superior performances in terms of phase purity and high discharge capacity. The structural, morphological, and electrochemical properties were studied and compared to LiFePO 4 , Li 1.05 FePO 4 , LiFe 0.997 Cu 0.003 PO 4 , and materials. X-ray photoelectron spectroscopy (XPS) was conducted to ensure copper doping. Only smooth surface morphologies were observed for lithium rich iron phosphates, namely Li 1.05 FePO 4 and Li 1.05 Fe 0.997 Cu 0.003 PO 4 . The Li/Li 1.05 Fe 0.997 Cu 0.003 PO 4 cell delivered an initial discharge capacity of 145 mAh/g and was 18 mAh/g higher than the Li/LiFePO 4 cell without any carbon coating effect. Cyclic voltammetry revealed excellent reversibility of the Li 1.05 Fe 0.997 Cu 0.003 PO 4 material. High rate capability studies were also performed and showed a capacity retention over 95% during the cycling. We concluded that substituted Li and Cu ions play an important role in enhancing battery performance of the LiFePO 4 material through improving the kinetics of the lithium insertion/extraction reaction on the electrode.

  18. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  19. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting.

    Science.gov (United States)

    Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner

    2014-01-01

    Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of

  20. Bone Adaptation Around Orthopaedic Implants of Varying Materials

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading......The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading...

  1. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems.

    Directory of Open Access Journals (Sweden)

    Reza Mahmoudi

    Full Text Available For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs. The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses.In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN. Dose calculations were performed on two TPSs.The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV at three kVp's was less than 1.2%.The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems.

  2. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  3. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  4. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA Loaded with Collagen I: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ulrike Ritz

    2017-11-01

    Full Text Available Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1 release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  5. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study.

    Science.gov (United States)

    Ritz, Ulrike; Gerke, Rebekka; Götz, Hermann; Stein, Stefan; Rommens, Pol Maria

    2017-11-29

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  6. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    Science.gov (United States)

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  7. Substitute materials of furfuryl alcohol in furan resin used for foundry and their technical properties

    Directory of Open Access Journals (Sweden)

    Li Yingmin

    2009-11-01

    Full Text Available Based on a special synthesis process of furan resin, the furfuryl alcohol (FA, the main component of typical no-bake furan resins is substituted by ethanol and xylitol mother liquor which is relatively low price and chemically active. Through orthogonal test, the optimal amount of xylitol liquor, ethanol and modifi er has been determined. Finally, the test results on technical properties show that the performance can meet the production requirement well, which indicate a success in this substituting attempt.

  8. Inclusions in bone material as a source of error in radiocarbon dating

    International Nuclear Information System (INIS)

    Hassan, A.A.; Ortner, D.J.

    1977-01-01

    Electron probe microanalysis, X-ray diffraction and microscopic examination were conducted on bone material from several archaeological sites in order to identify post-burial inclusions which, if present, may affect radiocarbon dating of bone. Two types of inclusions were identified: (1) precipitates from ground water solutions, and (2) solid intrusion. The first type consists of calcite, pyrite, humates and an unknown material. The second type includes quartz grains, hyphae, rootlets, wood and charcoal. Precipitation of calcite in a macro-molecular level in bone may lead to erroneaous dating of bone apatite if such calcite was not removed completely. A special technique, therefore, must be employed to remove calcite comletely. Hyphae and rootlets also are likely to induce errors in radiocarbon dating of bone collagen. These very fine inclusions require more than hand picking. (author)

  9. Effects of electron-beam irradiation to the hydroxyapatite and tricalcium phosphate mixtures for the development of new synthetic bone substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Eo, Mi Young; Kang, Ji Young; Park, Jung Min; Seo, Mi Hyun; Myoung, Hoon; Lee, Jong Ho [Seoul National Univ., Seoul (Korea, Republic of); Han, Young Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    The aim of this study is to evaluate the effect and potential of electron beam irradiation treatment to new bone formation and healing in rat calvarial bone defects using hydroxyapatite and tricalcium phosphate mixtures. We used 1.0-2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator with different irradiation dose such as 1, 30, 60 kGy. Structural changes in this synthetic bone material were analyzed in vitro, such as SEM, elementary and FE-SEM, ATR-IR, and CSR. And after sterilization with ethylene oxide, we use it as a bone graft material, in vivo. Bilateral, standardized truenesses circular calvarial defects, 7.0 mm in diameter, were created in male Sprague-Dawley rats. In each experimental group, the defect was filled with electron beam irradiated synthetic bony mixtures. Rate were sacrificed 2, 4 and 8 weeks post-op. for radiographic, histomorphologic, immunohistochemical staining, TEM, and elementary analysis.

  10. Materials Substitution and Recycling. Proceedings of the Meeting of the Structures and Materials Panel (57th) Held at Vimeiro, Portugal on 14-19 October 1983.

    Science.gov (United States)

    1984-04-01

    No.356 MATERIALS SUBSTITUTION AND RECYCLING Papers presented at the 5 7th Meeting of the Structures and Materials Panel in Vimneiro, Portupi. 19 -14...nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and...composition. The quality heat treatment for monocrystalline alloys such as CMSX2 normally consists of a 3-stage process, viz., Stage 1 2-3 hours @ 1260°C

  11. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Ozbolat, Ibrahim T; Moncal, Kazim K; Rizk, Elias; Seitz, Hermann; Gelinsky, Michael; Schröder, Heinz C; Wang, Xiaohong H; Müller, Werner E G; Al-Nawas, Bilal

    The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication. Nevertheless, for the surgeon, every individual clinical condition in which standardized scaffolds have to be aligned is challenging, and in many cases the alignment is not possible without limitations. Therefore, in the last decades, 3D printing (3DP) or additive manufacturing (AM) of scaffolds has become one of the most innovative approaches in surgery to individualize and improve the treatment of patients. Numerous biocompatible materials are available for 3DP, and various printing techniques can be applied, depending on the process conditions of these materials. Besides these conventional printing techniques, another promising approach in the context of medical AM is 3D bioprinting, a technique which makes it possible to print human cells embedded in special carrier substances to generate functional tissues. Even the direct printing into bone defects or lesions becomes possible. 3DP is already improving the treatment of patients, and has the potential to revolutionize regenerative medicine in future.

  12. Management of an endo perio lesion in a maxillary canine using platelet-rich plasma concentrate and an alloplastic bone substitute

    Directory of Open Access Journals (Sweden)

    Singh Sangeeta

    2009-01-01

    Full Text Available To evaluate the efficacy of platelet-rich plasma concentrate in the management of a cirumferential, infrabony defect associated with an endoperio lesion in a maxillary canine. A 45 year-old male patient with an endoperio lesion in the left maxillary canine was initially treated with endodontic therapy. Following the endodontic treatment, the circumferential, infrabony defect was treated using platelet-rich plasma and an alloplastic bone substitute. At the end of three months, there was a gain in the clinical attachment level and reduction in probing depth. Radiographic evidence showed that there was significant bony fill. The results were maintained at the time of recall nine months later.

  13. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    Science.gov (United States)

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    Science.gov (United States)

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Analysis of Bone Meal (NIST 1486) and Bone Ash (NIST 1400) reference materials by neutron activation method; Analise de materiais de referencia Bone Meal (NIST 1486) e Bone Ash (NIST 1400) pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Marcelo K.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Borelli, Aurelio [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina

    1999-11-01

    In this work instrumental neutron activation analysis has been applied to determine Ba, ca, Cl, Cr, fe, Mg, Mn, Na, P, Sb, Sc, Sr and Zn in two biological reference materials NIST 1486 Bone Meal and NIST 1400 Bone Ash. The purpose of this work was to evaluate the precision and the accuracy of the results as well as to give a contribution to certificate these materials. Interferences found in the determination of some elements were also discussed. (author) 8 refs., 4 tabs.

  16. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.

    2015-01-01

    hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...

  17. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries.

    Science.gov (United States)

    Modaresi, Roja; Pauliuk, Stefan; Løvik, Amund N; Müller, Daniel B

    2014-09-16

    Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.

  18. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    Science.gov (United States)

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  20. Theoretical Study on the Rational Design of Cyano-Substituted P3HT Materials for OSCs

    DEFF Research Database (Denmark)

    Qiu, Meng; Brandt, Rasmus Guldbæk; Niu, Yingli

    2015-01-01

    Calculations have been made regarding the strong electron-withdrawing cyano (-CN) group, which was introduced onto the backbone of poly(3-hexylthiophene) (P3HT), as an effective way to improve the parameters essential for the photovoltaic performance of organic solar cells (OSCs). The substitution...... useful information for better design strategy for OSCs....

  1. Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@dankook.ac.k

    2010-11-01

    The quantum efficiency of blue fluorescent organic light-emitting diodes was enhanced by 20% using a pyridine substituted spirofluorene-benzofluorene derivative as an electron transport material. 2',7'-Di(pyridin-3-yl)spiro[benzofluorene-7,9'-fluorene] (SPBP) was synthesized and it was used as the electron transport material to block the hole leakage from the emitting layer. The improvement of the quantum efficiency and power efficiency of the blue fluorescent organic light-emitting diodes using the SPBP was investigated.

  2. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    Science.gov (United States)

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Is Graphene a Promising Nano-Material for Promoting Surface Modification of Implants or Scaffold Materials in Bone Tissue Engineering?

    Science.gov (United States)

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang

    2014-01-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041

  4. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?

    Science.gov (United States)

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng

    2014-10-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.

  5. Development of a Moldable, Biodegradable Polymeric Bone Repair Material

    Science.gov (United States)

    1994-03-30

    26% Cellulose 2 85% PCL 1250 15% Calcium Carbonate 2 85% PCL 1250 15% Carnauba Wax 3 80% PCL 1250 20% Carboxymethyl 4 Cellulose 85% PCL 1250 15% Gum...Tragacanth 4 83% PCL 1250 17% Gelatin 5 83% PCL 1250 17% Gum Xanthan 7 79% PCL 2000 21% Carnauba Wax 7 85% PCL 2000 15% Calcium Stearate 7 83% PLA 2000...azaum 200 wo ) After the revision of the statement of work, the objective of this contract was the development of a biodegradable bone wax . It would be

  6. Comparison about the bone material examination of JIS and ISO; Honezai shiken ni kansuru JIS to ISO no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Sumie.; Yanagi, Kei.; Shimura, Akiharu.; Murohoshi, Shiori. [Japan Testing Center for Construction Materials, Tokyo (Japan)

    1998-12-01

    There are various things in slug bone material and so on manufactured from the macadam, crumble sand. Which crushed rock including gravel, sand to produce in the nature and which was manufactured, and a lightweight bone material and the industry by-product with the bone material used for the concrete. It is necessary with a bone material to grasp the nature of the bone material itself properly to occupy about 70% of the capacity in the concrete and to manufacture the good concrete of the quality from the influence that influence to the various concrete materiality that quality being big. When the quality of a bone material to use for the concrete is confirmed, an examination is being done in accordance with the way of examining it established as the Japanese industry standard in our country. (NEDO)

  7. Development of bone-lead reference materials for validating in vivo XRF measurements

    International Nuclear Information System (INIS)

    Parsons, P.J.; Zong, Y.Y.; Matthews, M. R.

    1995-01-01

    A number of biological reference materials (RM) have been prepared in our laboratory specifically for validating analytical methods for the determination of Pb in biological matrices (e.g. blood, urine, liver, and bone). The RM's were developed using animal (goats and cows) that are routinely dosed with lead acetate to produce proficiency test samples for blood lead (and erythrocyte protoporphyrin). In cases where an animal becomes injured or infirm, the veterinarian in charge may recommend that the animal be euthanized. In such cases, samples of bone, brain, liver, and other tissues containing lead are removed at autopsy. Currently, we have collected bone samples from nine goats and one cow that were dosed with lead over periods ranging from 1 to 10 years. During the autopsy, the epiphyses (bone joints) are separated from each long bone. Skin, muscle, and other adhering tissues are dissected or scraped from each bone. Bone marrow is also removed. All bare bones are currently stored at -70 degrees C until analyses for Pb are conducted

  8. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones

    International Nuclear Information System (INIS)

    Piccirillo, C.; Silva, M.F.; Pullar, R.C.; Braga da Cruz, I.; Jorge, R.; Pintado, M.M.E.; Castro, P.M.L.

    2013-01-01

    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 °C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca 10 (PO 4 ) 6 (OH) 2 and β-Ca(PO 4 ) 3 ) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca 10 (PO 4 ) 6 Cl 2 ) and fluorapatite (Ca 10 (PO 4 ) 6 F 2 ) were obtained using CaCl 2 and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. - Highlights: ► Apatite and calcium phosphate compounds extraction from cod fish bonesBone calcination: biphasic material hydroxyapatite-calcium phosphate production ► Bone pre-treatments in solution change the material composition. ► Single phase materials (hydroxy-, chloro- or fluoroapatite) are obtained. ► Concentration of other elements (Na, F, Cl) suitable for biomedical applications

  9. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones

    Energy Technology Data Exchange (ETDEWEB)

    Piccirillo, C.; Silva, M.F. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pullar, R.C. [Dept. Engenharia de Materiais e Ceramica/CICECO, Universidade de Aveiro, Aveiro (Portugal); Braga da Cruz, I. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Jorge, R. [WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pintado, M.M.E. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Castro, P.M.L., E-mail: plcastro@porto.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal)

    2013-01-01

    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 Degree-Sign C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and {beta}-Ca(PO{sub 4}){sub 3}) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}) and fluorapatite (Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}) were obtained using CaCl{sub 2} and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. - Highlights: Black-Right-Pointing-Pointer Apatite and calcium phosphate compounds extraction from cod fish bones Black-Right-Pointing-Pointer Bone calcination: biphasic material hydroxyapatite-calcium phosphate production Black-Right-Pointing-Pointer Bone pre-treatments in solution change the material composition. Black-Right-Pointing-Pointer Single phase materials (hydroxy-, chloro- or fluoroapatite) are obtained. Black-Right-Pointing-Pointer Concentration of other elements (Na, F, Cl) suitable for biomedical applications.

  10. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.

    Science.gov (United States)

    Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-06-01

    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO 3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO 3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO 3 (2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO 3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017. © 2017 Wiley Periodicals, Inc.

  11. Composite resin as an implant material in bone. Histologic, radiologic, microradiologic and oxytetracycline fluorescence examination of rats

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, J; Rokkanen, P [Tampere Univ. (Finland). Inst. of Clinical Sciences; Central Hospital, Tampere (Finland))

    1978-01-01

    The potential of a bis-GMA composite resin as implant material in bone is evaluated. The material is claimed to have mechanical and physical properties superior to those of the bone cements used today. A groove made in the cortex of the tibia in 18 rats was filled with bis-GMA, while a similar was left empty in the contralateral tibia. The reaction of the bone to this material was evaluated by histologic, radiologic, microradiograph and OTC-fluorescence methods. The material was well tolerated by the bone; after 1,3 and 6 weeks no reaction to the material was observed.

  12. Bone cells in cultures on nanocarbon-based materials for potential bone tissue engineering: A review

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Kopová, Ivana; Staňková, Ľubica; Lišková, Jana; Vacík, Jiří; Lavrentiev, Vasyl; Kromka, Alexander; Potocký, Štěpán; Stránská, D.

    2014-01-01

    Roč. 211, č. 12 (2014), s. 2688-2702 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GAP108/12/1168; GA ČR(CZ) GA14-04790S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 ; RVO:68378271 ; RVO:61389005 Keywords : biocompatibility * bone implants * carbon * nanoparticles Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.616, year: 2014

  13. Structural studies on W6+ and Nd3+ substituted La2Mo2O9 materials

    International Nuclear Information System (INIS)

    Marrero-Lopez, David; Canales-Vazquez, Jesus; Zhou Wuzong; Irvine, John T.S.; Nunez, Pedro

    2006-01-01

    The structure of a series of new ionic conductors based in lanthanum molybdate (La 2 Mo 2 O 9 ) has been investigated using transmission electron microscopy (TEM), high-resolution X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The superstructure 2a c x3a c x4a c of the low temperature α-polymorph relative to the β-polymorph was confirmed by HRTEM imaging and electron diffraction. Furthermore, the effects of partial cation substitution in the La 2-x Nd x Mo 2 O 9 and La 2 Mo 2-y W y O 9 series have been also evaluated in the search of new clues to understand the structure and stabilisation of the high temperature and better conductor β-polymorph. The thermal analysis studies show that Nd-substitution does not stabilise completely the β-polymorph at room temperature, although no superstructure ordering was observed by both XRD and HRTEM. On the other hand, W-substitution stabilises the cubic β-polymorph for y>0.25, although, electron diffraction indicates a slight distortion from the cubic symmetry for low W-content. This distortion disappears as the W content increases and the Rietveld refinements gradually render better results

  14. Triphenylamine-Thienothiophene Organic Charge-Transport Molecular Materials: Effect of Substitution Pattern on their Thermal, Photoelectrochemical, and Photovoltaic Properties.

    Science.gov (United States)

    Le, Thi Huong; Dao, Quang-Duy; Nghiêm, Mai-Phuong; Péralta, Sébastien; Guillot, Regis; Pham, Quoc Nghi; Fujii, Akihiko; Ozaki, Masanori; Goubard, Fabrice; Bui, Thanh-Tuân

    2018-04-25

    Two readily accessible thienothiophene-triphenylamine charge-transport materials have been synthesized by simply varying the substitution pattern of the triphenylamine groups on a central thienothiophene π-linker. The impact of the substitution pattern on the thermal, photoelectrochemical, and photovoltaic properties of these materials was evaluated and, based on theoretical and experimental studies, we found that the isomer in which the triphenylamine groups were located at the 2,5-positions of the thienothiophene core (TT-2,5-TPA) had better π-conjugation than the 3,6-isomer (TT-3,6-TPA). Whilst the thermal, morphological, and hydrophobic properties of the two materials were similar, their optoelectrochemical and photovoltaic properties were noticeably impacted. When applied as hole-transport materials in hybrid perovskite solar cells, the 2,5-isomer exhibited a power-conversion efficiency of 13.6 %, much higher than that of its 3,6-counterpart (0.7 %) under the same standard conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Castor oil polyurethane containing silica nanoparticles as filling material of bone defect in rats.

    Science.gov (United States)

    Nacer, Renato Silva; Poppi, Rodrigo Ré; Carvalho, Paulo de Tarso Camilo de; Silva, Baldomero Antonio Kato da; Odashiro, Alexandre Nakao; Silva, Iandara Schettert; Delben, José Renato Jurkevicz; Delben, Angela Antonia Sanches Tardivo

    2012-01-01

    To evaluate the biologic behavior of the castor polymer containing silica nanoparticles as a bone substitute in diafisary defect. Twenty seven male Rattus norvegicus albinus Wistar lineage were submitted to bone defect filled with castor oil polymer. Three experimental groups had been formed with nine animals each: (1) castor oil polymer containing only calcium carbonate; (2) castor oil polymer with calcium carbonate and doped with 5% of silica nanoparticles; (3) castor polymer with calcium carbonate doped with 10% of silica nanoparticles; 3 animals of each group were submitted to euthanasia 15, 30 and 60 days after experimental procedure, and their femurs were removed to histological evaluation. there was bone growth in all the studied groups, with a greater tendency of growth in the group 1. After 30 days all the groups presented similar results. After 60 days a greater amount of fibroblasts, osteoblasts, osteocytes and osteoclasts in group 3 was observed, with integrated activity of 3 kinds of cells involved in the bone activation-reabsorption-formation. The castor polymer associated to the silica nanoparticles is biocompatible and allows osteoconduction. The presence of osteoprogenitors cells suggests silica osteoinduction capacity.

  16. A new Fe–Mn–Si alloplastic biomaterial as bone grafting material: In vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Fântânariu, Mircea, E-mail: mfantanariu@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489, Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, Str. Aleea M. Sadoveanu, no. 3, 700490, Iasi (Romania); Solcan, Carmen, E-mail: csolcan@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489, Iasi (Romania); Trofin, Alina, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, Str. Aleea M. Sadoveanu, no. 3, 700490, Iasi (Romania); Strungaru, Ştefan, E-mail: strungaru_stefan@yahoo.com [“Alexandru Ioan Cuza” University, Faculty of Biology, Bulevardul Carol I, Nr.11, 700506, Iasi (Romania); Şindilar, Eusebiu Viorel, E-mail: esindilar@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489, Iasi (Romania); Plăvan, Gabriel, E-mail: gabriel.plavan@uaic.ro [“Alexandru Ioan Cuza” University, Faculty of Biology, Bulevardul Carol I, Nr.11, 700506, Iasi (Romania); and others

    2015-10-15

    Highlights: • A Fe–Mn–Si alloy was obtained as alloplastic graft material for bone implants. • Fe–Mn–Si alloy degradation rate was preliminary evaluate with SEM and EDAX techniques. • Biochemical, histological, RX and CT investigations were done in rats with subcutaneous and tibiae implants. • Fe–Mn–Si alloy assured an ideal compromise between degradation and mechanical integrity during bone regeneration. - Abstract: Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft–host interface and by having a potential endocrine like effect on osteoblasts. A Fe–Mn–Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X’Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe–Mn–Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe–Mn–Si alloy assured the mechanical integrity in rat tibiae defects

  17. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis.

    Science.gov (United States)

    Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo

    2017-08-08

    This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.

  18. Estimation of improved productivity based on materials substitution in high temperature applications. Use of alloy ASTM A-335 P91

    International Nuclear Information System (INIS)

    Serna, J A; Afanador, W

    2001-01-01

    In ECOPETROL-ICP was carried out an evaluation of the mechanical and micro structural properties of modified 9 Cr-1 Mo alloy, ASTM A-335 Gr. P91, finding higher strength mechanical properties, allowable stresses and creep rupture strength, than the conventional 9 Cr-1 Mo alloy, ASTM A-335 Gr. P9, recommending the alloy P91 as substitute tube material in the radiation zone of the Visbreaking heater of Cartagena's refinery (furnace in revamping process). The results obtained permit a thickness reduction of radiation tubes of material P91 close to 25% and increase the internal volume tube over up 8%, which is a parameter to consider in improving productivity and efficiency process. Also would be obtained a significant savings cost in the material among 5 and 10%. Additionally, expectations of both design and remaining useful life would be seen extensively favored with this change of alloy

  19. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  20. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut

  1. Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.

    Science.gov (United States)

    Bone, T Michael; Mowry, Sarah E

    2016-09-01

    Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.

  2. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    Science.gov (United States)

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  3. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Science.gov (United States)

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  4. Computational Study on Substituted s-Triazine Derivatives as Energetic Materials

    Directory of Open Access Journals (Sweden)

    Vikas D. Ghule

    2012-01-01

    Full Text Available s-Triazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores s-triazine derivatives in which different -NO2, -NH2 and -N3 substituted azoles are attached to the triazine ring via C-N linkage. The density functional theory is used to predict geometries, heats of formation and other energetic properties. Among the designed compounds, -N3 derivatives show very high heats of formation. The densities for designed compounds were predicted by using the crystal packing calculations. Introduction of -NO2 group improves density as compared to -NH2 and -N3, their order of increasing density can be given as NO2>N3>NH2. Analysis of the bond dissociation energies for C-NO2, C-NH2 and C-N3 bonds indicates that substitutions of the -N3 and -NH2 group are favorable for enhancing the thermal stability of s-triazine derivatives. The nitro and azido derivatives of triazine are found to be promising candidates for the synthetic studies.

  5. Assessment on the sustainable use of alternative construction materials as a substitute to natural aggregates

    CSIR Research Space (South Africa)

    George, Theresa B

    2016-08-01

    Full Text Available , and identifies potential construction materials such as glass, slags and recycled asphalt pavement (RAP) that are locally available as alternative aggregate materials to virgin aggregates. An economic cost analysis conducted indicated that it is more cost...

  6. Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model.

    Science.gov (United States)

    Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki

    2014-03-01

    Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.

  7. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram M; Thimm, Benjamin W; Unger, Ronald E; Orth, Carina; Barbeck, Mike; Kirkpatrick, C James [Institute of Pathology, Johannes Gutenberg-University Mainz, Langenbeckstr.1, 55101 Mainz (Germany); Kohler, Thomas; Mueller, Ralph, E-mail: ghanaati@uni-mainz.d [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland)

    2010-04-15

    In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO{sub 2}-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO{sub 2} biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being present and promoting scaffold degradation from an early stage. This manuscript describes successful osteoblastic growth promotion in vitro and a promising biomaterial integration and vasculogenesis in vivo for a possible therapeutic application of this biomatrix in future clinical studies.

  8. Reactions and Surface Transformations of a Bone-Bioactive Material in a Simulated Microgravity Environment

    Science.gov (United States)

    Radin, S.; Ducheyne, P.; Ayyaswamy, P. S.

    1999-01-01

    A comprehensive program to investigate the expeditious in vitro formation of three-dimensional bone-like tissue is currently underway at the University of Pennsylvania. The study reported here forms a part of that program. Three-dimensional bone-like tissue structures may be grown under the simulated microgravity conditions of NASA designed Rotating Wall Bioreactor Vessels (RWV's). Such tissue growth will have wide clinical applications. In addition, an understanding of the fundamental changes that occur to bone cells under simulated microgravity would yield important information that will help in preventing or minimizing astronaut bone loss, a major health issue with travel or stay in space over long periods of time. The growth of three-dimensional bone-like tissue structures in RWV's is facilitated by the use of microcarriers which provide structural support. If the microcarrier material additionally promotes bone cell growth, then it is particularly advantageous to employ such microcarriers. We have found that reactive, bone-bioactive glass (BBG) is an attractive candidate for use as microcarrier material. Specifically, it has been found that BBG containing Ca- and P- oxides upregulates osteoprogenitor cells to osteoblasts. This effect on cells is preceded by BBG reactions in solution which result in the formation of a Ca-P surface layer. This surface further transforms to a bone-like mineral (i.e., carbonated crystalline hydroxyapatite (c-HA)). At normal gravity, time-dependent, immersion-induced BBG reactions and transformations are greatly affected both by variations in the composition of the milieu in which the glass is immersed and on the immersion conditions. However, the nature of BBG reactions and phase transformations under the simulated microgravity conditions of RWV's are unknown, and must be understood in order to successfully use BBG as microcarrier material in RWV'S. In this paper, we report some of our recent findings in this regard using

  9. Pneumatization of the Temporal Bones in a Greenlandic Inuit Anthropological Material

    DEFF Research Database (Denmark)

    Homøe, P; Lynnerup, N

    1991-01-01

    The degree of pneumatization of the temporal bones correlates with exposure during childhood and adolescence to infectious middle ear diseases (IMED), both acute and chronic. The pneumatized area as seen on cranial X-rays can be measured. This was applied to an anthropological material in order...

  10. Fixation strength analysis of cup to bone material using finite element simulation

    NARCIS (Netherlands)

    Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van Der Heide, Emile

    2016-01-01

    Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw

  11. Effect of substitutional defects on Kambersky damping in L1{sub 0} magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qu, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Victora, R. H., E-mail: victora@umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-02-16

    Kambersky damping, representing the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction, is calculated for L1{sub 0} FePt, FePd, CoPt, and CoPd alloys versus chemical degree of order. When more substitutional defects exist in the alloys, damping is predicted to increase due to the increase of the spin-flip channels allowed by the broken symmetry. It is demonstrated that this corresponds to an enhanced density of states (DOS) at the Fermi level, owing to the rounding of the DOS with loss of long-range order. Both the damping and the DOS of the Co-based alloy are found to be less affected by the disorder. Pd-based alloys are predicted to have lower damping than Pt-based alloys, making them more suitable for high density spintronic applications.

  12. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exciplex electroluminescence and photoluminescence spectra of the new organic materials based on zinc complexes of sulphanylamino-substituted ligands.

    Science.gov (United States)

    Kaplunov, Mikhail G; Krasnikova, Svetlana S; Nikitenko, Sergey L; Sermakasheva, Natalia L; Yakushchenko, Igor K

    2012-04-03

    We have investigated the electroluminescence spectra of the electroluminescent devices based on the new zinc complexes of amino-substituted benzothiazoles and quinolines containing the C-N-M-N chains in their chelate cycles. The spectra exhibit strong exciplex bands in the green to yellow region 540 to 590 nm due to interaction of the excited states of zinc complexes and triaryl molecules of the hole-transporting layer. For some devices, the intrinsic luminescence band of 460 nm in the blue region is also observed along with the exciplex band giving rise to an almost white color of the device emission. The exciplex band can be eliminated if the material of the hole-transporting layer is not a triarylamine derivative. We have also found the exciplex emission in the photoluminescence spectra of the films containing blends of zinc complex and triphenylamine material.

  14. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; Assary, Rajeev S.

    2017-01-01

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5, 8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.

  15. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    I. I. Kuzhelivsky

    2015-01-01

    Full Text Available The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  16. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    OpenAIRE

    I. I. Kuzhelivsky; M. A. Akselrov; L. A. Sitko

    2015-01-01

    The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  17. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Alves, Luís C. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066 Bobadela LRS (Portugal); Fernandes, M. Helena Vaz [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal)

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS–SiO{sub 2} have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS–SiO{sub 2}–CaO–SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO{sub 2}. Calcium and strontium were added using the respective acetates as sources, following a sol–gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. - Highlights: • A hybrid PDMS–SiO{sub 2}–CaO–SrO material was prepared with the incorporation of Ti. • Sr was released in concentrations suitable for the induction of bone tissue repair. • The material demonstrated to be cytocompatible when tested with osteoblastic cells.

  18. [Preparation of sodium alginate-nanohydroxyapatite composite material for bone repair and its biocompatibility].

    Science.gov (United States)

    Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia

    2014-02-01

    To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.

  19. Fresh-frozen bone: case series of a new grafting material for sinus lift and immediate implants.

    LENUS (Irish Health Repository)

    Viscioni, A

    2010-08-01

    Although autologous bone is considered to be the gold standard grafting material, it needs to be harvested from patients, a process that can be off-putting and can lead to donor site morbidity. For this reason, homologous fresh-frozen bone (FFB) was used in the current study as an alternative graft material.

  20. Biphasic calcium phosphates (BCP of hydroxyapatite (HA and tricalcium phosphate (TCP as bone substitutes: Importance of physicochemical characterizations in biomaterials studies

    Directory of Open Access Journals (Sweden)

    Mehdi Ebrahimi

    2017-02-01

    Full Text Available The data presented in this article are related to the research article entitled “Biphasic calcium phosphates bioceramics (HA/TCP: Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research” [1]. This article provides in depth study of BCP bone substitutes as valuable option in the field of tissue engineering. However, there are discrepancies in the literature regarding the ideal physicochemical properties of BCP and the ideal balance between different phase compositions for enhanced bone tissue engineering (M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, 2016; M. Ebrahimi, P. Pripatnanont, S. Suttapreyasri, N. Monmaturapoj, 2014 [1,2]. This is found to be mainly because of improper characterization of BCP bioceramics in basic studies and lack of standard study protocols in in vitro and in vivo research. This data article along with original article provide the basic data required for ideal characterization of BCP and other bioceramics in an attempt to provide basic standardized protocols for future studies.

  1. Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications

    International Nuclear Information System (INIS)

    Ashuri, Maziar; Moztarzadeh, Fathollah; Nezafati, Nader; Ansari Hamedani, Ali; Tahriri, Mohammadreza

    2012-01-01

    In the present study, a bioceramic-based composite was prepared by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol–gel-derived bioactive glass (64SiO 2 -26CaO-5MgO-5ZnO) (based on mol%) powders. HA powder was mixed with different concentrations of the glass powders up to 30 wt.%. The effect of adding bioactive glass powder to HA matrix, on the mechanical properties of the composite was assessed by compression test. The specimen with the highest compressive strength was chosen to be immersed in simulated body fluid (SBF) to study apatite forming ability and dissolution behavior. It was found that compressive strength of the specimen was decreased 65% after maintaining in the SBF for 14 days. X-ray diffraction (XRD) showed prevalence of HA and β-TCP related peaks. Also, the surface morphology of the composite was observed using scanning electron microscopy (SEM). The study of degradation behavior revealed Si release capability of this composite. Biological evaluations in vitro confirmed the composite studied could induce osteoblast-like cells' activities. - Highlights: ► A novel composite based on HA/bioactive glass for bone substitutes was developed. ► Evaluations in vitro confirmed the composites induce bone-like cells' activities. ► A successful compromise of bioactivity and cytocompatibility was observed.

  2. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Science.gov (United States)

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  3. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    Science.gov (United States)

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  4. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Directory of Open Access Journals (Sweden)

    Tomasz Gredes

    2016-01-01

    Full Text Available The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen and unmodified (PLA-wt, PCL-wt, were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  5. Osteoclast-like cells on deproteinized bovine bone mineral and biphasic calcium phosphate

    DEFF Research Database (Denmark)

    Jensen, Simon S; Gruber, Reinhard; Buser, Daniel

    2015-01-01

    OBJECTIVES: The occurrence of multinucleated giant cells (MNGCs) on bone substitute materials has been recognized for a long time. However, there have been no studies linking material characteristics with morphology of the MNGCs. The aim was to analyze the qualitative differences of MNGCs on two ...... osteoclasts. CONCLUSION: MNGCs demonstrated distinctly different histological features depending on the bone substitute material used. Further research is warranted to understand the clinical implications of these morphological observations....

  6. WET-WEATHER POLLUTION PREVENTION THROUGH MATERIALS SUBSTITUTION AS PART OF INDUSTRIAL CONSTRUCTION

    Science.gov (United States)

    A literature review of urban stormwater runoff and building/construction materials has shown that many materials such as galvanized metal, concrete, asphalt, and wood products, have the potential to release pollutants into urban stormwater runoff and snowmelt. However, much of th...

  7. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  8. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  9. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  10. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  11. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  12. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    Directory of Open Access Journals (Sweden)

    Roberto Carretta

    2015-01-01

    Full Text Available Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94. Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters.

  13. Operculum bone carp (cyprinus carprio sp.) scaffold is a new potential xenograft material: a preliminary study

    Science.gov (United States)

    Kartiwa, A.; Abbas, B.; Pandansari, P.; Prahasta, A.; Nandini, M.; Fadhlillah, M.; Subroto, T.; Panigoro, R.

    2017-02-01

    Orbital floor fracture with extensive bone loss, would cause herniation of the orbital tissue into the maxillary sinus. Graft implantation should be done on the orbital fracture with extensive bone loss. Different types of grafts have their own characteristics and advantages. Xenograft has been widely studied for use in bone defects. This study was to investigate cyprinus carprio sp. opercula bone as a potential xenograft. The aim of this study was to investigate based on EDS chemical analysis using a ZAF Standardless Method of Quantitative Analysis (Oxide) and SEM examination conducted in the laboratory of Mathematics, Institute of Technology Bandung. Particularly the mass ratio of Ca and P (5.8/3:47), the result is 1.67. This is equivalent to the stoichiometric Hydroxyapatite (HA) (Aoki H, 1991, Science and medical applications of hydroxyapatite, Tokyo: Institute for Medical and Engineering, Tokyo Medical and Dental University). C N O that there is an element of protein/amino acid collagen compound, serves as a matrix together with HA. As shown in the SEM analysis that the matrix is a porous sheet-shaped (oval) that interconnect with each other, which is good scaffold. The pore is composed of large pores >200 microns and smaller pores between the large pores with a size smaller or equal to 10 microns that can serve for the attachment of osteoblast cell. In conclusion, Opercula bone carp (cyprinus carprio sp.) scaffold could be a new potential xenograft material.

  14. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach.

    Science.gov (United States)

    Yu, Xiaohua; Wang, Liping; Xia, Zengmin; Chen, Li; Jiang, Xi; Rowe, David; Wei, Mei

    2014-02-01

    Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.

  15. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications.

    Science.gov (United States)

    Lee, Jung Heon; Yi, Gyu Sung; Lee, Jin Woong; Kim, Deug Joong

    2017-12-01

    The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m 2 /g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m 2 /g. Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its

  16. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Wenwen; Tanaka, Akinobu; Momosaki, Kyoko; Yamamoto, Shinji; Zhang, Fabi; Guo, Qixin; Noguchi, Hideyuki

    2015-01-01

    Highlights: • Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode was synthesized. • Structural and electrochemical properties of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 were studied. • Ti substituted cathodes exhibit enhanced cycleability and rate performance. • Ti substitution has impact on stabilizing the P2 structure during cycling. -- Abstract: Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode material with the composition of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 has been synthesized by solid state method. The influence of Ti substitution for Mn on the structure, morphology and electrochemical performances of P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 has been investigated. X-ray diffraction (XRD) results of Ti substituted sample show that they exhibit same diffraction patterns as those of pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 . Progressive change in the lattice parameters of Ti substituted samples suggests that Mn was successfully substituted by Ti. In contrast to P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 which shows step-type voltage profiles, Ti substituted samples show sloping voltage profiles. Drastic capacity fade occurred for P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode, while Ti substituted cathodes still show high capacity retention over 92% after 25 cycles at the voltage range of 2.0-4.3 V. Even cycled at high upper cut-off voltage of 4.5 V, Ti=0.20 sample can deliver a reversible capacity of 140 mAhg −1 with the capacity retention over 92% after 25 cycles. Furthermore, Ti substituted cathodes exhibit enhanced rate capability over pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode. Comparison of the Ex-situ XRD results of the cycled P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 and its substituted samples provides evidence that the improved electrochemical performance of Ti substituted cathodes would be attributed to the stabilization of the structure with Ti substitution

  17. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  18. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  19. Composites organiques-inorganiques pour la substitution et la réparation osseuse : concepts, premiers résultats et potentialités Organic-inorganic composites for bone substitute and bone repair applications: concepts, first results and potentialities

    Directory of Open Access Journals (Sweden)

    Peroglio Marianna

    2013-11-01

    Full Text Available Ce document présente un très bref aperçu de l'intérêt des matériaux composites organique – inorganique pour la substitution et la réparation osseuse. Deux types de composites sont présentés. Dans une première partie, des matériaux poreux en céramique ou bio-verre élaborés par la technologie des poudres sont imprégnés par un polymère. Cette imprégnation se traduit par une forte augmentation de l'énergie à la rupture du squelette céramique, permettant de limiter le risque de rupture fragile. L'augmentation des propriétés mécaniques des substituts osseux céramiques par une phase polymère peut être mise en regard des mécanismes de renforcement présents dans l'os et du rôle du collagène sur la ténacité de celui-ci. Dans une deuxième partie, des composites denses sont élaborés par des technologies de plasturgie, qui permettent de réaliser des produits de formes complexes. Les phases polymères et céramiques sont ici choisies pour leurs caractères respectifs résorbable et ostéo-inducteur. Ces composites permettent la création rapide d'hydroxyapatite à leur surface et accélèrent la guérison osseuse. A terme, ils sont résorbés. Ces deux exemples démontrent les potentialités de tels multi-matériaux architecturés pour la réalisation de substituts osseux plus résistants mécaniquement et apportant de nouvelles fonctionnalités, ainsi que pour la production de produits d'ostéosynthèse favorisant les processus de guérison osseuse. Here we show a brief outline of organic-inorganic composites for bone substitute and bone repair applications. Two types of composites are presented. In a first strategy, porous ceramics and bioactive glasses processed by sintering methods are impregnated by a polymer. The strong improvement of the mechanical properties of the ceramic scaffolds by a polymer phase can be linked to the one present in bone with the role of collagen on bone toughness. In a second strategy, a

  20. [Mastoid obliteration with a highly porous bone grafting material in combination with cartilage].

    Science.gov (United States)

    Punke, C; Goetz, W; Just, T; Pau, H-W

    2012-09-01

    An open mastoid cavity might lead to various problems for the patient. Chronic inflammation of the cavity with secretion, changes in the acoustic behavior, vertigo in restricted situations and an impaired self-cleaning function might affect the patient. For surgical treatment reducing of the size of such cavities have been described. Besides autologous materials such as hydroxyapatite or alloplastic substances as tricalcium phosphate have been previously used. A very slow resorption of these materials with rejection has been described. The new ceramic NanoBone® was fabricated in a sol-gel process at 700 °C depositing unsintered hydroxylapatite in a SiO2 structure. This method provides a nano/microstructure of high porosity of the resulting matrix. 20 patients were reexamined after an average of 2 years and 5 months after obliteration of the open mastoid cavity with NanoBone®. We compared pre- and postoperative findings in terms of otorrhea, frequency of medical consultation, vertigo and otoscopic findings. In 5 patients, in addition, a postoperative CT scan of the temporal bones was used for evaluation of osteoinduction and osteointegration. After obliteration of the open mastoid cavity with NanoBone ® we observed an uneventfully healing. After surgery we achieved a reduction of vertigo, otorrhea and frequency of medical consultations for the single patient. The obliteration of an open mastoid cavity with NanoBone ® is a safe alternative method relative to the surgical techniques with autologous materials. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review.

    Science.gov (United States)

    Chavda, Suraj; Levin, Liran

    2018-02-01

    Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.

  3. Improved Optical and Morphological Properties of Vinyl-Substituted Hybrid Silica Materials Incorporating a Zn-Metalloporphyrin

    Directory of Open Access Journals (Sweden)

    Zoltán Dudás

    2018-04-01

    Full Text Available This work is focused on a novel class of hybrid materials exhibiting enhanced optical properties and high surface areas that combine the morphology offered by the vinyl substituted silica host, and the excellent absorption and emission properties of 5,10,15,20-tetrakis(N-methyl-4-pyridylporphyrin-Zn(II tetrachloride as a water soluble guest molecule. In order to optimize the synthesis procedure and the performance of the immobilized porphyrin, silica precursor mixtures of different compositions were used. To achieve the requirements regarding the hydrophobicity and the porous structure of the gels for the successful incorporation of porphyrin, the content of vinyltriacetoxysilane was systematically changed and thoroughly investigated. Substitution of the silica gels with organic groups is a viable way to provide new properties to the support. An exhaustive characterization of the synthesized silica samples was realised by complementary physicochemical methods, such as infrared spectroscopy (FT-IR, absorption spectroscopy (UV-Vis and photoluminescence, nuclear magnetic resonance spectroscopy (29Si-MAS-NMR transmission and scanning electron microscopy (TEM and SEM, nitrogen absorption (BET, contact angle (CA, small angle X ray and neutron scattering (SAXS and SANS. All hybrids showed an increase in emission intensity in the wide region from 575 to 725 nm (Q bands in comparison with bare porphyrin. By simply tuning the vinyltriacetoxysilane content, the hydrophilic/hydrophobic profile of the hybrid materials was changed, while maintaining a high surface area. Good control of hydrophobicity is important to enhance properties such as dispersion, stability behaviour, and resistance to water, in order to achieve highly dispersible systems in water for biomedical applications.

  4. The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications.

    Science.gov (United States)

    Govindaraj, Dharman; Rajan, Mariappan; Munusamy, Murugan A; Alarfaj, Abdullah A; Sadasivuni, Kishor Kumar; Kumar, S Suresh

    2017-11-01

    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  6. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    OpenAIRE

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models t...

  7. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair.

    Science.gov (United States)

    Cao, Lei; Li, Xiaokang; Zhou, Xiaoshu; Li, Yong; Vecchio, Kenneth S; Yang, Lina; Cui, Wei; Yang, Rui; Zhu, Yue; Guo, Zheng; Zhang, Xing

    2017-03-22

    Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.

  8. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    Science.gov (United States)

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  9. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute

    International Nuclear Information System (INIS)

    Abbah, S.A.; Lu, W.W.; Chan, D.; Cheung, K.M.C.; Liu, W.G.; Zhao, F.; Li, Z.Y.; Leong, J.C.Y.; Luk, K.D.K.

    2006-01-01

    This study aims to investigate the survival and osteogenic behavior of murine-derived adipose-tissue stromal cells (ATSCs) encapsulated in alginate microcapsules thereby instigating further studies in this cell delivery strategy for in vivo osteogenesis. Cell viability was quantified using a tetrazolium-based assay and osteogenic differentiation was evaluated by both alkaline-phosphatase (ALP) histochemistry and osteocalcin mRNA analysis. Following microencapsulation, cell numbers increased from 3.9 x 10 3 on day 1 to 7.8 x 10 3 on day 7 and maintained excellent viability in the course of 21-day culture. ALP was 6.9, 5.5, and 3.2 times higher than monolayer cultures on days 7, 14, and 21, respectively. In addition, osteocalcin mRNA was detectable in encapsulated cultures earlier (day 14) than monolayer cultures. We conclude that alginate microcapsules can act as three-dimensional matrix for ATSC proliferation and has potential for use as injectable, biodegradable scaffold in bone tissue engineering

  10. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments.

    Science.gov (United States)

    Mondal, Subrata; Ghosh, Rajesh

    2017-09-01

    The goal of this study is to develop a realistic three dimensional FE model of intact ankle joint. Three dimensional FE model of the intact ankle joint was developed using computed tomography data sets. The effect of muscle force, ligaments and proper material property distribution of bone on stress distribution across the intact ankle joint was studied separately. Present study indicates bone material property, ligaments and muscle force have influence on stress distribution across the ankle joint. Proper bone material, ligaments and muscle must be considered in the computational model for pre-clinical analysis of ankle prosthesis.

  11. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  12. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly.

    Science.gov (United States)

    Malgo, F; Hamdy, N A T; Rabelink, T J; Kroon, H M; Claessen, K M J A; Pereira, A M; Biermasz, N R; Appelman-Dijkstra, N M

    2017-03-01

    Acromegaly is a rare disease caused by excess growth hormone (GH) production by the pituitary adenoma. The skeletal complications of GH and IGF-1 excess include increased bone turnover, increased cortical bone mass and deteriorated microarchitecture of trabecular bone, associated with a high risk of vertebral fractures in the presence of relatively normal bone mineral density (BMD). We aimed to evaluate tissue-level properties of bone using impact microindentation (IMI) in well-controlled patients with acromegaly aged ≥18 years compared to 44 controls from the outpatient clinic of the Centre for Bone Quality. In this cross-sectional study, bone material strength index (BMSi) was measured in 48 acromegaly patients and 44 controls with impact microindentation using the osteoprobe. Mean age of acromegaly patients (54% male) was 60.2 years (range 37.9-76.5), and 60.5 years (range 39.8-78.6) in controls (50% male). Patients with acromegaly and control patients had comparable BMI (28.2 kg/m 2  ± 4.7 vs 26.6 kg/m 2  ± 4.3, P = 0.087) and comparable BMD at the lumbar spine (1.04 g/cm 2  ± 0.21 vs 1.03 g/cm 2  ± 0.13, P = 0.850) and at the femoral neck (0.84 g/cm 2  ± 0.16 vs 0.80 g/cm 2  ± 0.09, P = 0.246). BMSi was significantly lower in acromegaly patients than that in controls (79.4 ± 0.7 vs 83.2 ± 0.7; P acromegaly after reversal of long-term exposure to pathologically high GH and IGF-1 levels. Our findings also suggest that methods other than DXA should be considered to evaluate bone fragility in patients with acromegaly. © 2017 European Society of Endocrinology.

  13. Changing patterns in the use, recycling, and material substitution of mercury in the United States

    Science.gov (United States)

    Wilburn, David R.

    2013-01-01

    Environmental concerns have led to numerous regulations that have dramatically decreased the reported production and use of mercury in the United States since the 1980s. Government legislation and subsequent industry actions have led to increased collection of mercury-containing materials and the recovery of mercury through recycling. Mercury emissions have been reduced and effective alternatives to mercury products have been developed for many applications. This study updates and quantifies the changes in demand, supply, use, and material flow for mercury in various sectors in the United States that have taken place since 1996. Nearly all primary mercury produced in the United States is derived as a byproduct of processing of gold and silver ore in Nevada. Since 2001, annual production of mercury from gold and silver mining in Nevada has decreased by 22 percent overall because ore from greater depths containing low grade mercury is recovered, and mercury emissions from this source have decreased by 95 percent as a result of increased regulation and improved collection and suppression technology. The distribution of consumption of mercury in the United States has changed as a result of regulation (elimination of large-scale mercury use in the paint and battery sectors), reduction by consumers (decommissioning of mercury-cell chloralkali manufacturing capacity), and technological advances (improvements in dental, lighting, and wiring sectors). Mercury use in the chloralkali sector, the leading end-use sector in the United States in 1996, has declined by 98 percent from 136 metric tons (t) in 1996 to about 0.3 t in 2010 because of increased processing and recycling efficiencies and plant closures or conversion to other technologies. As plants were closed, mercury recovered from the infrastructure of decommissioned plants has been exported, making the United States a net exporter of mercury, even though no mercury has been produced as the primary product from mines in

  14. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material.

    Science.gov (United States)

    Kinoshita, Kazuhiko; Hibi, Hideharu; Yamada, Yoichi; Ueda, Minoru

    2008-01-01

    Bilateral maxillary distraction was performed at a higher rate in rabbits to determine whether locally applied tissue-engineered osteogenic material (TEOM) enhances bone regeneration. The material was an injectable gel composed of autologous mesenchymal stem cells, which were cultured then induced to be osteogenic in character, and platelet-rich plasma (PRP). After a 5-day latency period, distraction devices were activated at a rate of 2.0 mm once daily for 4 days. Twelve rabbits were divided into 2 groups. At the end of distraction, the experimental group of rabbits received an injection of TEOM into the distracted tissue on one side, whereas, saline solution was injected into the distracted tissue on the contralateral side as the internal control. An additional control group received an injection of PRP or saline solution into the distracted tissue in the same way as the experimental group. The distraction regenerates were assessed by radiological and histomorphometric analyses. The radiodensity of the distraction gap injected with TEOM was significantly higher than that injected with PRP or saline solution at 2, 3, and 4 weeks postdistraction. The histomorphometric analysis also showed that both new bone zone and bony content in the distraction gap injected with TEOM were significantly increased when compared with PRP or saline solution. Our results demonstrated that the distraction gap injected with TEOM showed significant new bone formation. Therefore, injections of TEOM may be able to compensate for insufficient distraction gaps.

  15. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    Science.gov (United States)

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The effect of distal ulnar implant stem material and length on bone strains.

    Science.gov (United States)

    Austman, Rebecca L; Beaton, Brendon J B; Quenneville, Cheryl E; King, Graham J W; Gordon, Karen D; Dunning, Cynthia E

    2007-01-01

    Implant design parameters can greatly affect load transfer from the implant stem to the bone. We have investigated the effect of length or material of distal ulnar implant stems on the surrounding bone strains. Eight cadaveric ulnas were instrumented with 12 strain gauges and secured in a customized jig. Strain data were collected while loads (5-30 N) were applied to the medial surface of the native ulnar head. The native ulnar head was removed, and a stainless steel implant with an 8-cm-long finely threaded stem was cemented into the canal. After the cement had cured, the 8-cm stem was removed, leaving a threaded cement mantle in the canal that could accept shorter threaded stems of interest. The loading protocol was then repeated for stainless steel stems that were 7, 5, and 3 cm in length, as well as for a 5-cm-long titanium alloy (TiAl(6)V(4)) stem. Other stainless steel stem lengths between 3 and 7 cm were tested at intervals of 0.5 cm, with only a 20 N load applied. No stem length tested matched the native strains at all gauge locations. No significant differences were found between any stem length and the native bone at the 5th and 6th strain gauge positions. Strains were consistently closer to the native bone strains with the titanium stem than the stainless steel stem for each gauge pair that was positioned on the bone overlying the stem. The 3-cm stem results were closer to the native strains than the 7-cm stem for all loads at gauges locations that were on top of the stem. The results from this study suggest that the optimal stem characteristics for distal ulnar implants from a load transfer point of view are possessed by shorter (approximately 3 to 4 cm) titanium stems.

  17. The Development of Biomimetic Spherical Hydroxyapatite/Polyamide 66 Biocomposites as Bone Repair Materials

    Directory of Open Access Journals (Sweden)

    Xuesong Zhang

    2014-01-01

    Full Text Available A novel biomedical material composed of spherical hydroxyapatite (s-HA and polyamide 66 (PA biocomposite (s-HA/PA was prepared, and its composition, mechanical properties, and cytocompatibility were characterized and evaluated. The results showed that HA distributed uniformly in the s-HA/PA matrix. Strong molecule interactions and chemical bonds were presented between the s-HA and PA in the composites confirmed by IR and XRD. The composite had excellent compressive strength in the range between 95 and 132 MPa, close to that of natural bone. In vitro experiments showed the s-HA/PA composite could improve cell growth, proliferation, and differentiation. Therefore, the developed s-HA/PA composites in this study might be used for tissue engineering and bone repair.

  18. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad [Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000 (Pakistan); Ahmad, Ishtiaq; Ali, Ihsan [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Muhammad Azhar [Department of Physics, Islamia University, Bahawalpur (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Rana, M.U. [Center of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Ali, Akbar [Department of Basic Sciences, Riphah International University, Islamabad-44000 (Pakistan); Ahmad, Mukhtar, E-mail: ahmadmr25@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-05-01

    A series of single phase spinel ferrites having chemical formula Mg{sub 0.5}Zn{sub 0.5}Pr{sub x}Fe{sub 2−x}O{sub 4} (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M{sub s}) decreases whereas coercivity (H{sub c}) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M{sub s}) decreases whereas (H{sub c}) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials.

  19. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    International Nuclear Information System (INIS)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad; Ahmad, Ishtiaq; Ali, Ihsan; Akhtar, Majid Niaz; Khan, Muhammad Azhar; Abbas, Ghazanfar; Rana, M.U.; Ali, Akbar; Ahmad, Mukhtar

    2015-01-01

    A series of single phase spinel ferrites having chemical formula Mg 0.5 Zn 0.5 Pr x Fe 2−x O 4 (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M s ) decreases whereas coercivity (H c ) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M s ) decreases whereas (H c ) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials

  20. Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    Directory of Open Access Journals (Sweden)

    R. V. Deev

    2015-01-01

    Full Text Available Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.

  1. Effect of VO43− substitution for PO43− on electrochemical properties of the Li3Fe2(PO4)3 cathode materials

    International Nuclear Information System (INIS)

    Yang, Yonggang; Zhang, Yongguang; Hua, Zhengshen; Wang, Xin; Peng, Huifen; Bakenov, Zhumabay

    2016-01-01

    Graphical abstract: VO 4 3− –substituted Li 3 Fe 2 (PO 4 ) 3 samples were prepared by sol-gel method. The VO 4 3− substitution remarkably improves the rate capability and cycling performance of the Li 3 Fe 2 (PO 4 ) 3 due to improved conductivity and enhanced lithium ion diffusion. - Highlights: • Mixed anion effect was used to improve electrochemical properties of Li 3 Fe 2 (PO 4 ) 3 . • The VO 4 3− substitution improved rate capability and cyclability of Li 3 Fe 2 (PO 4 ) 3 . • The Li 3 Fe 2 (PO 4 ) 2.55 (VO 4 ) 0.45 material shows the excellent electrochemical performance. - Abstract: In this research, VO 4 3− substitution was used to improve electrochemical properties of the Nasicon Li 3 Fe 2 (PO 4 ) 3 cathode material. The VO 4 3− substitution resulted in formation of a homogeneous compound Li 3 Fe 2 (PO 4 ) 3-x (VO 4 ) x in a composition range of x ≤ 0.45; further introduction of VO 4 3− led to precipitation of some other phases. It was shown that the VO 4 3− substituted samples presented discharging capacity higher than that of bare non-substituted Nasicon and the reported Ti 4+ and Mn 2+ doped ones. The Li 3 Fe 2 (PO 4 ) 2.55 (VO 4 ) 0.45 material exhibited excellent cycling stability and rate capability, and retained a capacity of 91.8 mAh g −1 after 60 cycles at 2C charge-discharge rate. This value is one of the highest reported to date for the Li 3 Fe 2 (PO 4 ) 3 compound, and was about 48% higher than that of the latter. The electrochemical performance enhancements for the VO 4 3− substituted samples were attributed to the reduction of charge transfer resistance, increase of electrical conductivity, and fast lithium ion diffusion behavior. Hence, the obtained results proved that the VO 4 3− anion substitution for PO 4 3− is a powerful technique to improve the electrochemical performance of the studied Nasicon compound.

  2. Enamel matrix protein derivative plus synthetic bone substitute for the treatment of mandibular Class II furcation defects: a case series.

    Science.gov (United States)

    Queiroz, Lucas Araujo; Santamaria, Mauro; Casati, Marcio; Silverio, Karina; Nociti-Junior, Francisco; Sallum, Enilson

    2015-03-01

    The aim of this study is to report on the treatment of mandibular Class II furcation defects with enamel matrix protein derivative (EMD) combined with a βTCP/HA (β-tricalcium phosphate/hydroxyapatite) alloplastic material. Thirteen patients were selected. All patients were nonsmokers, systemically healthy, and diagnosed with chronic periodontitis; had not taken medications known to interfere with periodontal tissue health and healing; presented one Class II mandibular furcation defect with horizontal probing equal to or greater than 4 mm at buccal site. The clinical parameters evaluated were probing depth (PD), relative gingival margin position (RGMP), relative vertical clinical attachment level (RVCAL), and relative horizontal clinical attachment level (RHCAL). A paired Student t test was used to detect differences between the baseline and 6-month measurements, with the level of significance of .05. After 6 months, the treatment produced a statistically significant reduction in PD and a significant gain in RVCAL and RHCAL, but no observable change in RGMP. RVCAL ranged from 13.77 (± 1.31) at baseline to 12.15 (± 1.29) after 6 months, with a mean change of -1.62 ± 1.00 mm (P < .05). RHCAL ranged from 5.54 (± 0.75) to 2.92 (± 0.92), with a mean change of -2.62 ± 0.63 mm (P < .05). After 6 months, 76.92% of the patients improved their diagnosis to Class I furcation defects while 23.08% remained as Class II. The present study has shown that positive clinical results may be expected from the combined treatment of Class II furcation defects with EMD and βTCP/HA, especially considering the gain of horizontal attachment level. Despite this result, controlled clinical studies are needed to confirm our outcomes.

  3. Artrodese na coluna cervical utilizando SICAP como substituto de enxerto ósseo Artrodesis en la columna cervical utilizando SICAP como sustituto de injerto óseo Cervical spine fusion utilizing silicated calcium phosphate bone graft substitute (SICAP

    Directory of Open Access Journals (Sweden)

    Juliano Fratezi

    2011-01-01

    Tech EE.UU, Reino Unido es un injerto óseo compuesto de calcio-fosfato con una sustitución de silicato en la estructura química, con una estructura tridimensional que parece hueso natural. MÉTODOS: 19 pacientes fueron sometidos a fusión ósea cervical y analizados retrospectivamente. La evaluación radiográfica y la evaluación clínica fueron realizadas utilizandose el cuestionario Neck Disability Index y la escala análoga del dolor (VAS pre y postoperación. RESULTADOS: El período promedio de seguimiento postoperatorio fue de 14 meses ± 5 meses (7-30 meses. Once pacientes fueron sometidos a fusión vía anterior; 5 pacientes vía posterior y 3 pacientes vía anterior y posterior. La revisión radiográfica mostró 19/19 (100% de fusión ósea, ningún caso presentó subsidencia, rotura o soltura de material de implante o movimiento en los niveles fusionados. Ningún ejemplo de osificación heterotópica o de crecimiento óseo intracanal fue observado. Clínicamente, el promedio de las puntuaciones del Neck Disability disminuyeron 13,3 puntos (promedio preop. de 34,5, postop. de 21,2, mejora de 39%, el promedio de VAS para dolor cervical disminuyó 2 puntos (2,7 preop. para 0,7 postop.; mejora de 74,1%. No fueron observadas complicaciones como infección, osteólisis o edema excesivo de las partes blandas. CONCLUSIÓN: Los resultados preliminares obtenidos en esta serie feuron estimulantes con el uso de SICaP como injerto óseo, con sólida fusión ósea obtenida en todos los casos y sin formación de osificación heterotópica o crecimiento de hueso intracanal. SIcaP demuestra ser un sustituto confiable para el injerto óseo autólogo en la columna cervical.OBJECTIVE: Bone graft substitutes have been developed to obviate the need for autograft from the iliac crest and its resultant complications. SiCaP (Actifuse, ApaTech US, UK is a calcium phosphate bone graft substitute with selective controlled silicate substitution in a patented 3-dimensional structure

  4. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids

    Science.gov (United States)

    Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela

    2016-03-01

    A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.

  5. Sterilisation of allograft cortical bone using gamma irradiation: effect on strength and material ultrastructure

    International Nuclear Information System (INIS)

    Price, R.; Walters, M.

    1996-01-01

    Full text: The use of allograft bone in revision joint and limb salvage surgery is widespread and increasing (Buck B.E. et al, Clin Orthop 303: 8-17, 1994). To reduce the risk of disease transmission from donor graft contamination (particularly HIV and hepatitis) sterilisation is practiced worldwide. Gamma (γ)-irradiation using a dose of 1.5 - 2.5 Mrads is common. However, γ-irradiation is known to reduce bone strength, though the extent and mechanisms are controversial (eg Bright RW et al, Trans Orthop Res Soc 3: 210, 1978). We measured the effect of γ-irradiation on bone strength and properties reflecting bone material ultrastructure. Diaphyseal bone was obtained from the femur of a 47 year-old male would-be donor with suspicious hepatitis serology. Beams of cortical bone (long axes parallel to the femur) were cut using a low speed diamond saw bathed in Ringer's solution. Four groups were irradiated with γ-rays (0, 1.5, 2.5 and 5.0±0.5[SD] Mrads). Blinded investigations were performed: Ultimate stress (Ult Stress, N= 16 replicates in each dose group). Each beam was loaded at its midpoint at a rate of 25 mm/min until failure, while its ends were supported 40 mms apart. Ult stress was calculated from 3-point bending theory using the load vs displacement curve and the cross-sectional area of the break (Power RA et al, submitted to J Bone and Joint Surg). Differential scanning calorimetry (DSC) was performed over the range -15 to +5 deg C. Samples were demineralized and small (7-10 mg) blocks were cut and sealed in stainless steel calorimetry capsules. The enthalpy (reflecting the normalised free water content) was calculated from the sample mass plus area under the heat capacity curve. Pyridinoline collagen (acid-insoluble) crosslinks (Pyrid, N=10) (Randall D et al, JBone and Min Res, 1996, in press) were determined from 5-mm 3 demineralised, freeze dried samples. Small and medium angle X-ray diffraction (XRD, N=5). Demineralised bone was sliced into thin

  6. Is dibotermin alfa a cost-effective substitute for autologous iliac crest bone graft in single level lumbar interbody spine fusion?

    Science.gov (United States)

    Svedbom, Axel; Paech, Daniel; Leonard, Catherine; Donnell, David; Song, Fujian; Boszcyk, Bronek; Rothenfluh, Dominique A; Lloyd, Andrew; Borgman, Benny

    2015-11-01

    To evaluate the cost-effectiveness of dibotermin alfa compared with autologous iliac crest bone graft (ICBG) for patients undergoing single level lumbar interbody spinal fusion in a UK hospital setting. An individual patient data (IPD) meta-analysis of six randomized controlled clinical trials and two single arm trials compared dibotermin alfa on an absorbable collagen implantation matrix (ACIM) (n = 456) and ICBG (n = 244) on resource use, re-operation rates, and SF-6D (Short form 6-dimension) health utility (total N = 700). Failure-related second surgery, operating time, post-operative hospital stay, and quality-adjusted life years (QALYs) derived from the IPD meta-analysis were included as inputs in an economic evaluation undertaken to assess the cost-effectiveness of dibotermin alfa/ACIM versus ICBG for patients undergoing single level lumbar interbody spinal fusion. A four year time horizon and the United Kingdom (UK) National Health Service (NHS) and Personal Social Services (PSS) perspective was adopted in the base case, with sensitivity analyses performed to gauge parameter uncertainty. In the base case analysis, patients treated using dibotermin alfa/ACIM (12 mg pack) accrued 0.055 incremental QALYs at an incremental cost of £ 737, compared with patients treated with ICBG. This resulted in an incremental cost-effectiveness ratio (ICER) of £ 13,523, indicating that at a willingness-to-pay threshold of £ 20,000, dibotermin alfa/ACIM is a cost-effective intervention relative to ICBG from the NHS and PSS perspective. In a UK hospital setting, dibotermin alfa/ACIM is a cost-effective substitute for ICBG for patients who require lumbar interbody arthrodesis.

  7. [Guided bone regeneration: general survey].

    Science.gov (United States)

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  8. Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.

    Science.gov (United States)

    Zhao, Song; Peng, Lingjie; Xie, Guoming; Li, Dingfeng; Zhao, Jinzhong; Ning, Congqin

    2014-08-01

    The current nature of tendon-bone healing after rotator cuff (RC) repair is still the formation of granulation tissue at the tendon-bone interface rather than the formation of fibrocartilage, which is the crucial structure in native tendon insertion and can be observed after knee ligament reconstruction. The interposition of calcium phosphate materials has been found to be able to enhance tendon-bone healing in knee ligament reconstruction. However, whether the interposition of these kinds of materials can enhance tendon-bone healing or even change the current nature of tendon-bone healing after RC repair still needs to be explored. The interposition of calcium phosphate materials during RC repair would enhance tendon-bone healing or change its current nature of granulation tissue formation into a more favorable process. Controlled laboratory study. A total of 144 male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon, followed by delayed repair after 3 weeks. The animals were allocated into 1 of 3 groups: (1) repair alone, (2) repair with Ca5(PO4)2SiO4 (CPS) bioceramic interposition, or (3) repair with hydroxyapatite (HA) bioceramic interposition at the tendon-bone interface. Animals were sacrificed at 2, 4, or 8 weeks postoperatively, and microcomputed tomography (micro-CT) was used to quantify the new bone formation at the repair site. New fibrocartilage formation and collagen organization at the tendon-bone interface was evaluated by histomorphometric analysis. Biomechanical testing of the supraspinatus tendon-bone complex was performed. Statistical analysis was performed using 1-way analysis of variance. Significance was set at P repair, CPS bioceramic significantly increased the area of fibrocartilage at the tendon-bone interface compared with the control and HA groups. Moreover, CPS and HA bioceramics had significantly improved collagen organization. Biomechanical tests indicated that the CPS and HA groups have greater ultimate

  9. Material rhetoric: spreading stones and showing bones in the study of prehistory.

    Science.gov (United States)

    Van Reybrouck, David; de Bont, Raf; Rock, Jan

    2009-06-01

    Since the linguistic turn, the role of rhetoric in the circulation and the popular representation of knowledge has been widely accepted in science studies. This article aims to analyze not a textual form of scientific rhetoric, but the crucial role of materiality in scientific debates. It introduces the concept of material rhetoric to understand the promotional regimes in which material objects play an essential argumentative role. It analyzes the phenomenon by looking at two students of prehistory from nineteenth-century Belgium. In the study of human prehistory and evolution, material data are either fairly abundant stone tools or very scarce fossil bones. These two types of material data stand for two different strategies in material rhetoric. In this article, the first strategy is exemplified by Aimé Rutot, who gathered great masses of eoliths (crudely chipped stones which he believed to be prehistoric tools). The second strategy is typified by the example of Julien Fraipont, who based his scientific career on only two Neanderthal skeletons. Rutot sent his "artifacts" to a very wide audience, while Fraipont showed his skeletons to only a few selected scholars. Unlike Rutot, however, Fraipont was able to monitor his audience's interpretation of the finds by means of personal contacts. What an archaeologist gains in reach, he or she apparently loses in control. In this article we argue that only those scholars who find the right balance between the extremes of reach and control will prove to be successful.

  10. Bone cell-material interactions on metal-ion doped polarized hydroxyapatite

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    The objective of this work is to study the influence of Mg 2+ and Sr 2+ dopants on in vitro bone cell-material interactions of electrically polarized hydroxyapatite [HAp, Ca 10 (PO 4 ) 6 (OH) 2 ] ceramics with an aim to achieve additional advantage of matching bone chemistry along with the original benefits of electrical polarization treatment relevant to biomedical applications. To achieve our research objective, commercial phase pure HAp has been doped with MgO, and SrO in single, and binary compositions. All samples have been sintered at 1200 deg. C for 2 h and subsequently polarized using an external d.c. field (2.0 kV/cm) at 400 deg. C for 1 h. Combined addition of 1 wt.% MgO/1 wt.% SrO in HAp has been most beneficial in enhancing the polarizability in which stored charge was 4.19 μC/cm 2 compared to pure HAp of 2.23 μC/cm 2 . Bone cell-material interaction has been studied by culturing with human fetal osteoblast cells (hFOB) for a maximum of 7 days. Scanning electron microscope (SEM) images of cell morphology reveal that favorable surface properties and dopant chemistry lead to good cellular adherence and spreading on negatively charged surfaces of both Sr 2+ and Mg 2+ doped HAp samples over undoped HAp. MTT assay results at 7 days show the highest viable cell densities on the negatively charged surfaces of binary doped HAp samples, while positive charged doped HAp surfaces exhibit limited cellular growth in comparison to neutral surfaces.

  11. Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study

    Directory of Open Access Journals (Sweden)

    Jana TURJANICOVÁ

    2013-06-01

    Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.

  12. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration

    OpenAIRE

    Paknejad, M.; Shayesteh, Y. Soleymani; Yaghobee, S.; Shariat, S.; Dehghan, M.; Motahari, P.

    2012-01-01

    Objective: Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Materials and Methods: Twelve New Zea...

  13. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration

    OpenAIRE

    M. Paknejad; Y. Soleymani Shayesteh; S. Yaghobee; S. Shariat; M. Dehghan; P. Motahari

    2012-01-01

    Objective: Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influ-ence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Materials and Methods: Twelve New Ze...

  14. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  15. Molecular and polymeric uranyl and thorium hybrid materials featuring methyl substituted pyrazole dicarboxylates and heterocyclic 1,3-diketones

    Science.gov (United States)

    Carter, Korey P.; Kerr, Andrew T.; Taydakov, Ilya V.; Cahill, Christopher L.

    2018-02-01

    A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.

  16. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    Science.gov (United States)

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with

  17. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    Science.gov (United States)

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers

  18. A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants

    International Nuclear Information System (INIS)

    Jonge, Lise T. de; Ju, J.; Leeuwenburgh, S.C.G.; Yamagata, Y.; Higuchi, T.; Wolke, J.G.C.; Inoue, K.; Jansen, J.A.

    2010-01-01

    Surface modification of implant materials with biomolecule coatings is of high importance to improve implant fixation in bone tissue. In the current study, we present two techniques for the deposition of biologically active enzyme coatings onto implant materials. The well-established thin film ElectroSpray Deposition (ESD) technique was compared with the SAW-ED technique that combines high-frequency Surface Acoustic Wave atomization with Electrostatic Deposition. By immobilizing the enzyme alkaline phosphatase (ALP) onto implant surfaces, the influence of both SAW-ED and ESD deposition parameters on ALP deposition efficiency and ALP biological activity was investigated. ALP coatings with preserved enzyme activity were deposited by means of both the SAW-ED and ESD technique. The advantages of SAW-ED over ESD include the possibility to spray highly conductive protein solutions, and the 60-times faster deposition rate. Furthermore, significantly higher deposition efficiencies were observed for the SAW-ED technique compared to ESD. Generally, it was shown that protein inactivation is highly dependent on both droplet dehydration and the applied electrical field strength. The current study shows that SAW-ED is a versatile and flexible technique for the fabrication of functionally active biomolecule coatings.

  19. Comparative analysis of guided bone regeneration using autogenous tooth bone graft material with and without resorbable membrane

    Directory of Open Access Journals (Sweden)

    Ji-Young Lee

    2013-09-01

    Conclusion: Both groups showed clinically acceptable bone regeneration without any eventful complications. Within the limitation of this study, we can carefully conclude that the use of resorbable membrane is not a critical factor in GBR when using AutoBT.

  20. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    Science.gov (United States)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  1. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    International Nuclear Information System (INIS)

    Qin Ling; Leung, Kwok Sui; Griffith, J.F.

    2007-01-01

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  2. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials.

    Science.gov (United States)

    Giorgio, Ivan; Andreaus, Ugo; Scerrato, Daria; dell'Isola, Francesco

    2016-10-01

    In this paper, the phenomena of resorption and growth of bone tissue and resorption of the biomaterial inside a bicomponent system are studied by means of a numerical method based on finite elements. The material behavior is described by a poro-viscoelastic model with infiltrated voids. The mechanical stimulus that drives these processes is a linear combination of density of strain energy and viscous dissipation. The external excitation is represented by a bending load slowly variable with sinusoidal law characterized by different frequencies. Investigated aspects are the influence of the load frequency, of type of the stimulus and of the effective porosity on the time evolution of the mass densities of considered system.

  3. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    Science.gov (United States)

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  4. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature

    International Nuclear Information System (INIS)

    Bayani, Mojtaba; Torabi, Sepehr; Shahnaz, Aysan; Pourali, Mohammad

    2017-01-01

    This study aims to provide a literature review on nanocrystalline hydroxyapatite (n-HA). n-HA constitutes the principle inorganic part of hard tissues. Therefore, preparation of commercial synthetic analogues, the so-called ‘biomimetic’, has gained a lot of attention since it can precisely mimic the physicochemical features of biological apatite compounds. Due to its improved osseointegrative properties, n-HA may represent a promising class of bone graft materials. n-HA binds to the bone and by stimulation of osteoblast activity and enhancing local growth factors it improves bone healing. Periodontitis is an inflammatory condition in response to microbial plaque that leads to periodontal tissue destruction and osseous defects in alveolar bone. A review of the extant literature reveals that n-HA has certain advantages in periodontal tissue regeneration including minimal patient morbidity, better biocompatibility, and lack of toxicity

  5. Characterization of biocomposites of sheep hydroxyapatite (SHA)/shellac/sugar as bone filler material

    Science.gov (United States)

    Triyono, Joko; Rizha, Yushak; Triyono, Teguh

    2018-04-01

    The use of biomaterials in orthopedics is increasing. This led to the growth of innovations in the field of medicine, one of them is the development of biomaterials. Study of Sheep Hydroxyapatite (SHA)/shellac/sugar biocomposite characterization was to determine the phase of the material, porosity, hardness and compressive strength of them. This research was conducted to develop new types of biomaterials that can be used as bone filler material. The analysis that used in this research was dry methods. The results showed that observation of XRD (X-Ray Diffraction) shows the pattern of diffraction 2θ: 31.6472°, 32.7753°, 32.0723°, The highest hardness of SHA/shellac/sugar ratio was 70:30% (7.38±0.1395 VHN) and the lowest at 50:50% (4.91±0.37 VHN). The highest Diametral Tensile Strength (DTS) test was 70:30% (5.43±1.395 MPa) and the lowest at 50:50% (3.10±0.26 MPa). SEM observations are performed to see the material porosity.

  6. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog.

    LENUS (Irish Health Repository)

    Bashara, Haitham

    2012-08-01

    The aim of the present study was to evaluate the effects of a novel bone substitute system (Natix(®)), consisting of porous titanium granules (PTG) and a bovine-derived xenograft (Bio-Oss(®)), on hard tissue remodelling following their placement into fresh extraction sockets in dogs.

  7. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  8. An analysis of bones and other materials collected by Cape Vultures ...

    African Journals Online (AJOL)

    We compared bones and non-faunal items collected by Cape Vultures at the Blouberg and Kransberg colonies. Bones from the base of the nesting cliffs were on average longer than those from the crops and stomachs of birds. Bones from the Blouberg cliff base were on average shorter than those from the Kransberg.

  9. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    Science.gov (United States)

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which

  10. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    Science.gov (United States)

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  11. Sealing ability of a new calcium silicate based material as a dentin substitute in class II sandwich restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Raji Viola Solomon

    2014-01-01

    Full Text Available Background: Class ll sandwich restorations are routinely performed where conventional Glass ionomer cement (GIC or Resin-modified GIC (RMGIC is used as a base or dentin substitute and a light curing composite resin restorative material is used as an enamel substitute. Various authors have evaluated the microleakage of composite resin restorations where glass ionomer cement has been used as a base in class II sandwich restorations, but a literature survey reveals limited studies on the microleakage analysis of similar restorations with biodentine as a dentin substitute, as an alternative to glass ionomer cement. The aim of this study is: To evaluate the marginal sealing efficacy of a new calcium-silicate-based material (Biodentine as a dentin substitute, at the cervical margins, in posterior class II sandwich restorations.To compare and evaluate the microleakage at the biodentine/composite interface with the microleakage at the resin-modified GIC/composite interface, in posterior class II open sandwich restorations. To compare the efficacy between a water-based etch and rinse adhesive (Scotch bond multipurpose and an acetone-based etch and rinse adhesive (Prime and bond NT, when bonding biodentine to the composite. To evaluate the enamel, dentin, and interfacial microleakage at the composite and biodentine/RMGIC interfaces. Materials and Methods: Fifty class II cavities were prepared on the mesial and distal surfaces of 25 extracted human maxillary third molars, which were randomly divided into five groups of ten cavities each: (G1 Biodentine group, (G2 Fuji II LC GIC group, (G3 Biodentine as a base + prime and bond NT + Tetric N-Ceram composite, (G4 Biodentine + scotchbond multi-purpose + Tetric N-Ceram composite, (G5 Fuji II LC as a base + prime and bond NT+ Tetric-N Ceram composite. The samples were then subjected to thermocycling, 2500× (5°C to 55°C, followed by the dye penetration test. Scores are given from 0 to 3 based on the depth of

  12. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development of Magnesium and Siloxane-containing Vaterite and its Composite Materials for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shinya eYamada

    2015-12-01

    Full Text Available Development of novel biomaterials with Mg2+, Ca2+ and silicate ions releasability for bone regeneration is now in progress. Several inorganic ions have been reported to stimulate bone-forming cells. We featured Ca2+, silicate and especially Mg2+ ions as growth factors for osteoblasts. Various biomaterials, such as ceramic powders and organic-inorganic composites, releasing the ions have been developed and investigated in their cytocompatibilities in our previous work. Through the investigation, providing the three ions was found to be effective to activate osteogenic cells. Mg and siloxane-containing vaterite (MgSiV was prepared by a carbonation process as an inorganic particles, which can provide simultaneously releasing ability of Ca2+, silicate and Mg2+ ions to biodegradable polymers. Poly(L-lactic acid (PLLA- and bioactive PLLA-based composites containing vaterite coatings were discussed on their degradability and cytocompatibility using a metallic Mg substrate as Mg2+ ion source. PLLA/SiV composite film, which has a releasability of silicate ions besides Ca2+ ion, was coated on a pure Mg substrate to be compared with the PLLA/V coating. The degradability and releasability of inorganic ions were morphologically and quantitatively monitored in a cell culture medium. The bonding strength between the coatings and Mg substrates was one of the key factors to control Mg2+ ion release from the substrates. The cell culture tests were conducted using mouse osteoblast-like cells (MC3T3-E1 cells; cellular morphology, proliferation and differentiation on the materials were evaluated. The PLLA/V and PLLA/SiV coatings on Mg substrates were found to enhance the proliferation; especially the PLLA/SiV coating possessed a higher ability of inducing the osteogenic differentiation of the cells.

  15. Mesenchymal Stem Cells and Platelet Gel Improve Bone Deposition within CAD-CAM Custom-Made Ceramic HA Scaffolds for Condyle Substitution

    Directory of Open Access Journals (Sweden)

    L. Ciocca

    2013-01-01

    Full Text Available Purpose. This study evaluated the efficacy of a regenerative approach using mesenchymal stem cells (MSCs and CAD-CAM customized pure and porous hydroxyapatite (HA scaffolds to replace the temporomandibular joint (TMJ condyle. Methods. Pure HA scaffolds with a 70% total porosity volume were prototyped using CAD-CAM technology to replace the two temporomandibular condyles (left and right of the same animal. MSCs were derived from the aspirated iliac crest bone marrow, and platelets were obtained from the venous blood of the sheep. Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Sheep were sacrificed 4 months postoperatively. The HA scaffolds were explanted, histological specimens were prepared, and histomorphometric analysis was performed. Results. Analysis of the porosity reduction for apposition of newly formed bone showed a statistically significant difference in bone formation between condyles loaded with MSC and condyles without (P<0.05. The bone ingrowth (BI relative values of split-mouth comparison (right versus left side showed a significant difference between condyles with and without MSCs (P<0.05. Analysis of the test and control sides in the same animal using a split-mouth study design was performed; the condyle with MSCs showed greater bone formation. Conclusion. The split-mouth design confirmed an increment of bone regeneration into the HA scaffold of up to 797% upon application of MSCs.

  16. Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution.

    Science.gov (United States)

    Ciocca, L; Donati, D; Ragazzini, S; Dozza, B; Rossi, F; Fantini, M; Spadari, A; Romagnoli, N; Landi, E; Tampieri, A; Piattelli, A; Iezzi, G; Scotti, R

    2013-01-01

    This study evaluated the efficacy of a regenerative approach using mesenchymal stem cells (MSCs) and CAD-CAM customized pure and porous hydroxyapatite (HA) scaffolds to replace the temporomandibular joint (TMJ) condyle. Pure HA scaffolds with a 70% total porosity volume were prototyped using CAD-CAM technology to replace the two temporomandibular condyles (left and right) of the same animal. MSCs were derived from the aspirated iliac crest bone marrow, and platelets were obtained from the venous blood of the sheep. Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Sheep were sacrificed 4 months postoperatively. The HA scaffolds were explanted, histological specimens were prepared, and histomorphometric analysis was performed. Analysis of the porosity reduction for apposition of newly formed bone showed a statistically significant difference in bone formation between condyles loaded with MSC and condyles without (P < 0.05). The bone ingrowth (BI) relative values of split-mouth comparison (right versus left side) showed a significant difference between condyles with and without MSCs (P < 0.05). Analysis of the test and control sides in the same animal using a split-mouth study design was performed; the condyle with MSCs showed greater bone formation. The split-mouth design confirmed an increment of bone regeneration into the HA scaffold of up to 797% upon application of MSCs.

  17. THE USE OF NATURAL TRASS FROM SAYUTAN MAGETAN AND LIME FROM NGAMPEL BLORA AS THE MATERIAL OF CEMENT SUBSTITUTION FOR MORTAR MIXTURE

    Directory of Open Access Journals (Sweden)

    Muhammad Nurzain

    2015-05-01

    Full Text Available Construction works in the Regency of Magetan, as well as in the mountain area far from capital cities and remote from transportation facilities, require large amount of material. In order to cope with the need of sand, people uses natural trass which are plenty to be found in the area. Test and research on its characteristic and strength with its potentials to be used as cement substitution have never been carried out. Lime was taken from Ngampel village, Blora as it is commonly sold in the area. The planned mixture of lime-trass paste was in the effort to obtain the best composition. The weight ratios used were 100%:0%, 80%:20%, 60%:40%, 40%:60%, 20%:80 and 0%:100%. The mortar mixture with cement substitution was 100%, 80%, 60%, 40%, 20% and 0%.The compressive strength of the lime-trash mixture was between 0.000 MPa and 2.545 MPa. The mortar compressive strength achieved was 0.373 MPa - 26.585 MPa. The test results of mortar compressive strength showed that the more cement substitution amount used, the less the compressive strength would be. The mortar compressive strength increased in line to the age of the mortar. The mortar tensile strength obtained was 0.000 MPa - 2.169 MPa. The block compressive strength obtained was 3.336 MPa - 3.403 MPa. Water absorbency of the block was 15.831% -16.056%.

  18. Importance and possibilities of secondary cycles (recycling), substitution and innovation in mineral raw and primary material supply

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Part 1-4 of the series ''The basis of raw materials supply'' is intended to bring about a better understanding of the ''Concept for the supply of Austria with mineral raw- and primary materials''. Part 3 deals with recovery of raw material from old- and waste material as an important contribution to an extension of the supply's basis and to an improvement of raw material utilization.

  19. Design, Synthesis and Optoelectronic Properties of Unsymmetrical Oxadiazole Based Indene Substituted Derivatives as Deep Blue Fluoroscent Materials.

    Science.gov (United States)

    Belavagi, Ningaraddi S; Deshapande, Narahari; Pujar, G H; Wari, M N; Inamdar, S R; Khazi, Imtiyaz Ahmed M

    2015-09-01

    A series of novel unsymmetrically substituted indene-oxadiazole derivatives (3a-f) have been designed and synthesized by employing palladium catalysed Suzuki cross coupling reaction in high yields. The structural integrity of all the novel compounds was established by (1)H, (13)C NMR and LC/MS analysis. These compounds are amorphous in nature and are remarkably stable to long term storage under ambient conditions. The optoelectronic properties have been studied in detail using UV-Vis absorption and Fluorescence spectroscopy. All compounds emit intense blue to green-blue fluoroscence with high quantum yields. Time resolved measurments have shown life times in the range of 1.28 to 4.51 ns. The density functional theory (DFT) calculations were carried out for all the molecules to understand their structure-property relationships. Effect of concentration studies has been carried out in different concentrations for both absorption and emission properties and from this we have identified the optimized fluoroscence concentrations for all these compounds. The indene substituted anthracene-oxadiazole derivative (3f) showed significant red shift (λmax (emi) = 490 nm) and emits intense green-blue fluoroscence with largest stokes shift of 145 nm. This compound also exhibited highest fluoroscence life time (τ) of 4.51 ns, which is very close to the standard dye coumarin-540A (4.63 ns) and better than fluorescein-548 (4.10 ns). The results demonstrated that the novel unsymmetrical indene-substituted oxadiazole derivatives could play important role in organic optoelectronic applications, such as organic light-emitting diodes (OLEDs) or as models for investigating the fluorescent structure-property relationship of the indene-functionalized oxadiazole derivatives.

  20. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-08-01

    Full Text Available In this work, nanostructured LiMn2O4 (LMO and LiMn2O3.99S0.01 (LMOS1 spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS measurements as a function of state of charge (SOC were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material.

  1. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: first theoretical framework of POM-based heterocyclic aromatic rings.

    Science.gov (United States)

    Janjua, Muhammad Ramzan Saeed Ashraf

    2012-11-05

    This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds

  2. Synergetic Fe substitution and carbon connection in LiMn1−xFexPO4/C cathode materials for enhanced electrochemical performances

    International Nuclear Information System (INIS)

    Yan, Su-Yuan; Wang, Cheng-Yang; Gu, Rong-Min; Sun, Shuai; Li, Ming-Wei

    2015-01-01

    Highlights: • LiMn 0.6 Fe 0.4 PO 4 /C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li + ions diffusion contributes to the optimized rate capability of LiMn 0.6 Fe 0.4 PO 4 . • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO 4 cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn 1−x Fe x PO 4 (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn 1−x Fe x PO 4 crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn 0.6 Fe 0.4 PO 4 /C sample delivers discharge capacities of 160 mA h g −1 at 0.05 C, 148 mA h g −1 at 1 C, and 115 mA h g −1 at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn 1−x Fe x PO 4 /C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn 1−x Fe x PO 4 materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li + /Li), whose heights respectively reflect the redox potentials of Mn 3+ /Mn 2+ and Fe 3+ /Fe 2+ couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn 1−x Fe x PO 4 and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with increasing discharge rate, the ∼3.5 V plateau may slightly elongate. Moreover, the Fe substituted in the partial Mn sites could significantly improve

  3. In vitro and in vivo evaluation of a macro porous β-TCP granule-shaped bone substitute fabricated by the fibrous monolithic process

    International Nuclear Information System (INIS)

    Kim, Young-Hee; Jyoti, M Anirban; Song, Ho-Yeon; Youn, Min-Ho; Lee, Byong-Taek; Youn, Hyung-Sun; Seo, Hyung-Seok

    2010-01-01

    In this study, a new porous beta-tricalcium phosphate (β-TCP) granule was fabricated using the fibrous monolithic (FM) process and its in vitro biocompatibility and in vivo bone formation were evaluated. SEM micrograph images showed that MG-63 cells attached to the surfaces of the implant and were well proliferated. Cellular viability was as high as 75% in a 50% extract dilution solution. cDNA micro array analysis was also carried out. In this analysis, we found a total of 12 up-regulated and 25 down-regulated genes. Four rabbits were used in the in vivo experiments. 3D micro-CT images showed that the formation of new bone was almost three times greater than that of normal trabecular bone (BV/TV). The histomorphometric results correlated with the micro-CT findings; a greater amount of new bone formation and osteoblast lineage along with osteocytes were observed in the implanted animals. Also x-ray radiographic and 2D micro-CT images were taken to demonstrate the superior biodegradability of the porous granule. As biodegradation occurred along with bone formation, 6 months after implantation, the porous granule structure was not distinguishable separately from that of the trabecular bone.

  4. Healing of extraction sockets filled with BoneCeramic® prior to implant placement: preliminary histological findings.

    Science.gov (United States)

    De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo

    2011-03-01

    Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.

  5. Compressive strength and initial water absorption rate for cement brick containing high-density polyethylene (HDPE) as a substitutional material for sand

    Science.gov (United States)

    Ali, Noorwirdawati; Din, Norhasmiza; Sheikh Khalid, Faisal; Shahidan, Shahiron; Radziah Abdullah, Siti; Samad, Abdul Aziz Abdul; Mohamad, Noridah

    2017-11-01

    The rapid growth of today’s construction sector requires high amount of building materials. Bricks, known to have solid properties and easy to handle, which leads to the variety of materials added or replaced in its mixture. In this study, high density polyethylene (HDPE) was selected as the substitute materials in the making of bricks. The reason behind the use of HDPE is because of its recyclable properties and the recycling process that do not emit hazardous gases to the atmosphere. Other than that, the use of HDPE will help reducing the source of pollution by avoiding the millions of accumulated plastic waste in the disposal sites. Furthermore, the material has high endurance level and is weatherproof. This study was carried out on experimenting the substitute materials in the mixture of cement bricks, a component of building materials which is normally manufactured using the mixture of cement, sand and water, following a certain ratios, and left dried to produce blocks of bricks. A series of three different percentages of HDPE were used, which were 2.5%, 3.0% and 3.5%. Tests were done on the bricks, to study its compressive strength and the initial water absorption rate. Both tests were conducted on the seventh and 28th day. Based on the results acquired, for compressive strength tests on the 28th day, the use of 2.5% of HDPE shown values of 12.6 N/mm2 while the use of 3.0% of HDPE shown values of 12.5 N/mm2. Onto the next percentage, 3.5% of HDPE shown values of 12.5 N/mm2.

  6. Genetics of the Steller's Sea Cow (Hydrodamalis gigas): A Study of Ancient Bone Material

    Science.gov (United States)

    Crerar, Lorelei D.

    Georg Wilhelm Steller was born 100 years before Darwin in 1709 and he was part of a vast exploration fifty years before Lewis and Clark explored America. Steller was important to the study of marine mammals because he was the only naturalist to see and describe the great northern sea cow ( Hydrodamalis gigas). Knowledge of an extinct population can be used to aid the conservation of a current population. Extraction of DNA from this extinct animal was performed in order to determine the population structure of the Steller's sea cow. A test was also developed that can definitively state whether or not a random bone sample came from H. gigas. This test could be used by the Fish and Wildlife Service (FWS) and the National Oceanic and Atmospheric Administration (NOAA) to examine material distributed in the North Pacific to determine whether samples are legally traded extinct Steller's sea cow or illegally traded extant marine mammal species protected under the Marine Mammal Protection Act (MMPA).

  7. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Al-substituted {alpha}-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2008-03-01

    Al-substituted {alpha}-cobalt hydroxide was prepared by a potentiostatic deposition process at -1.0 V (vs. Ag/AgCl) onto stainless steel electrodes by using a mixed aqueous solution of cobalt nitrate and aluminum nitrate. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. The SEM images showed changes in the nanostructure of {alpha}-cobalt hydroxide by the addition of Al. Galvanostatic charge-discharge curves showed a drastic improvement in the capacitive characteristics of {alpha}-cobalt hydroxide, with a specific energy increase from 11.3 to 18.7 Wh kg{sup -1} by the substitution of just 8 at.% Al, and a specific capacitance of 843 F g{sup -1} between 0 and 0.4 V. The cycle stability data suggest no significant changes in the discharge characteristics of {alpha}-cobalt hydroxide by the addition of Al. (author)

  9. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.

    Science.gov (United States)

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel

    2014-06-01

    Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment.

    Science.gov (United States)

    Marković, Dejan; Jokanović, Vukoman; Petrović, Bojan; Perić, Tamara; Vukomanović, Biserka

    2014-05-01

    Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA) obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material's particles took place after 25 weeks. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects.

  11. Use of computational methods for substitution and numerical dosimetry of real bones; Utilização de métodos computacionais para substituição e dosimetria numérica de ossos reais

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.C.S.; Gonzalez, K.M.L.; Barbosa, A.J.A.; Lucindo Junior, C.R., E-mail: Islanecristina94@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil); Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-RJ), Recife-PE (Brazil)

    2017-07-01

    Estimating the dose that ionizing radiation deposits in the soft tissues of the skeleton within the cavities of the trabecular bones represents one of the greatest difficulties faced by numerical dosimetry. The Numerical Dosimetry Group (GDN/CNPq) Brazil, Recife-PE has used a method based on micro-CT images. The problem of the implementation of micro-CT is the difficulty in obtaining samples of real bones (OR). The objective of this work was to evaluate the sample of a virtual block of trabecular bone through the nonparametric method based on the voxel frequencies (VF) and samples of the climbing plant called Luffa aegyptica, whose dry fruit is known as vegetal bush (BV) substitution of OR samples. For this, a theoretical study of the two techniques developed by the GDN was made. The study showed in both techniques, after the dosimetric evaluations, that the actual sample can be replaced by the synthetic samples, since they have shown dose estimates close to the actual one.

  12. Plug and play: combining materials and technologies to improve bone regenerative strategies

    NARCIS (Netherlands)

    Moroni, Lorenzo; Nandakumar, A.; Barrère, F.; van Blitterswijk, Clemens; Habibovic, Pamela

    2015-01-01

    Despite recent advances in the development of biomaterials intended to replace natural bone grafts for the regeneration of large, clinically relevant defects, most synthetic solutions that are currently applied in the clinic are still inferior to natural bone grafts with regard to regenerative

  13. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  14. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  15. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material

    International Nuclear Information System (INIS)

    Araujo, P.M.; Lima, M.G.; Costa, A.C.; Pallone, E.M.

    2016-01-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al_2O_3/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al_2O_3/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  16. Characterization of the interaction between therapeutical carbon ions and bone-like materials and related impact on treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Anna; Durante, Marco [GSI Helmholtzzentrum fuer Schwereionen, Darmstadt (Germany); TU Darmstadt (Germany); Carlino, Antonio [University of Palermo (Italy); Kaderka, Robert; Kraemer, Michael; La Tessa, Chiara; Scifoni, Emanuele [GSI Helmholtzzentrum fuer Schwereionen, Darmstadt (Germany)

    2013-07-01

    Radiotherapy is one of the most common and effective therapies for cancer. The treatment planning system for ions TRiP98 was developed at GSI, Darmstadt. In TRiP98, the interaction between primary radiation and tissue is modeled from experimental data measured in water and rescaled to other tissue. This approximation is not accurate enough for biological materials whose elemental composition besides density deviates significantly from water. The nuclear attenuation of carbon beams in bone-like materials was measured and an estimation of the fragmentation cross section was done. In parallel, the dose profile inhomogeneity predicted by TRiP98 at the interface between water and bones was investigated and measured at HIT (Heidelberg). A 3D treatment plan was delivered in a water phantom equipped with bone targets. Pin-point ionization chambers and X-ray dosimetric films were used for measuring the dose at different positions. As a further step, the measured cross sections of carbon ions in bone have been implemented in TRiP98. The comparison of the dose profiles calculated with the standard and benchmarked versions of the treatment planning will give an estimate of the improvement.

  17. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    Science.gov (United States)

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Substitutional analysis

    CERN Document Server

    Rutherford, Daniel Edwin

    2013-01-01

    Classic monograph, suitable for advanced undergraduates and graduate students. Topics include calculus of permutations and tableaux, semi-normal representation, orthogonal and natural representations, group characters, and substitutional equations. 1968 edition.

  19. Synthesis and structural studies on cerium substituted La0.4Ca0.6MnO3 as solid oxide fuel cell electrode material

    Science.gov (United States)

    Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar

    2018-04-01

    For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.

  20. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    Science.gov (United States)

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  1. The Role of Water Compartments in the Material Properties of Cortical Bone.

    Science.gov (United States)

    Granke, Mathilde; Does, Mark D; Nyman, Jeffry S

    2015-09-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.

  2. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  3. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  4. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok (Thailand); Suntornsaratoon, Panan [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Charoenphandhu, Narattaphol [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Thongbunchoo, Jirawan [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Krishnamra, Nateetip [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Tang, I. Ming [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-05-01

    The present paper studies the physico-chemical, bioactivity and biological properties of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and compares them with those of synthesized HA (sHA) obtained by co-precipitation from chemical solution as a standard. The analysis shows that the FSHA is composed of flat-plate nanocrystal with a narrow width size of about 15–20 nm and having a range of 100 nm in length and that the calcium phosphate ratio (Ca/P) is 2.01 (Ca-rich CaP). Whereas, synthesized HA consists of sub-micron HA particle having a Ca/P ratio of 1.65. Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated in simulated body fluid (SBF) for 7 days. Moreover, the biocompatibility study shows a higher osteoblast like cell adhesion on the FSHA surface than on the sHA substrate after 3 days of culturing. Our results also show the shape of the osteoblast cells on the FSHA changes from being a rounded shape to being a flattened shape reflecting its spreading behavior on this surface. MTT assay and ALP analysis show significant increases in the proliferation and activity of osteoblasts over the FSHA scaffold after 5 days of culturing as compared to those covering the sHA substrates. These results confirm that the bio-materials derived from fish scale (FSHA) are biologically better than the chemically synthesized HA and have the potential for use as a bone scaffold or as regenerative materials. - Highlights: • Preparation of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and their bioactivities • The FSHA is composed of flat-plate nanocrystal with a narrow size of 15–20 nm. • Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated SBF. • In vitro cell availability tests show a higher cell adhesion on the FSHA surface.

  5. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    Science.gov (United States)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  6. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    Science.gov (United States)

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  7. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    Directory of Open Access Journals (Sweden)

    Farah Asa’ad

    2016-01-01

    Full Text Available To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration.

  8. Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material.

    Science.gov (United States)

    Marins, Lucele Vieira; Cestari, Tania Mary; Sottovia, André Dotto; Granjeiro, José Mauro; Taga, Rumio

    2004-03-01

    Over the last few years, various bone graft materials of bovine origin to be used in oromaxillofacial surgeries have entered the market. In the present study, we determined the capacity of a block organic bone graft material (Gen-ox, Baumer SA, Brazil) prepared from bovine cancellous bone to promote the repair of critical size bone injuries in rat calvaria. A transosseous defect measuring approximately 8mm in diameter was performed with a surgical trephine in the parietal bone of 25 rats. In 15 animals, the defects were filled with a block of graft material measuring 8mm in diameter and soaked in the animal's own blood, and in the other 10 animals the defects were only filled with blood clots. The calvariae of rats receiving the material were collected 1, 3 and 6 months after surgery, and those of animals receiving the blood clots were collected immediately and 6 months after surgery. During surgery, the graft material was found to be of easy handling and to adapt perfectly to the receptor bed after soaking in blood. The results showed that, in most animals treated, the material was slowly resorbed and served as a space filling and maintenance material, favoring angiogenesis, cell migration and adhesion, and bone neoformation from the borders of the lesion. However, a foreign body-type granulomatous reaction, with the presence of numerous giant cells preventing local bone neoformation, was observed in two animals of the 1-month subgroup and in one animal of the 3-month subgroup. These cases were interpreted as resulting from the absence of demineralization and the lack of removal of potential antigen factors during production of the biomaterial. We conclude that, with improvement in the quality control of the material production, block organic bone matrix will become a good alternative for bone defect repair in the oromaxillofacial region due to its high osteoconductive capacity.

  9. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    NARCIS (Netherlands)

    Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element

  10. Micro-mechanical modeling of the cement-bone interface: the effect of friction morphology and material properties on the micromechanical response

    NARCIS (Netherlands)

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement–bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement–bone interface were analyzed using a finite element approach. Finite element

  11. Preparation of dietary fibre-enriched materials from preharvest dropped apples and their utilisation as a high-fibre flour substitute.

    Science.gov (United States)

    Kim, Yujeong; Kim, Yongwook; Bae, In Young; Lee, Hyeon Gyu; Lee, Suyong

    2013-06-01

    Preharvest dropped apples from a weather disaster are generally discarded or used in animal feed due to reduced market value. In this study, they were utilised to produce dietary fibre-enriched materials (DFEMs) and their baking performance in a food system was then evaluated as a high-fibre and low-calorie flour substitute. Hydrothermal treatment and fractionation of preharvest dropped apple powder produced fibre-rich fractions (856.2 g kg(-1)). The use of DFEMs increased the pasting properties of wheat flour and improved dough mixing stability. When DFEMs were incorporated in the cookie formulation (2, 4 and 6 g dietary fibre per serving), the cookie dough exhibited increased elongational viscosity and solid-like behaviour which became more pronounced with increasing levels of DEFMs. After baking, reduced spread was observed in DFEM cookies which could be readily attributed to their rheological characteristics. However, greater moisture retention by DFEMs produced cookie samples with softer texture. DFEMs prepared from preharvest dropped apples could be successfully evaluated in a cookie model system as a high-fibre and low-calorie substitute for wheat flour. This study suggests a new value-added application of preharvest dropped fruits, positively extending their use for better healthful diets. © 2012 Society of Chemical Industry.

  12. (1-3)(1-6)-β-glucan-enriched materials from Lentinus edodes mushroom as a high-fibre and low-calorie flour substitute for baked foods.

    Science.gov (United States)

    Kim, Juyoung; Lee, Seung Mi; Bae, In Young; Park, Hyuk-Gu; Gyu Lee, Hyeon; Lee, Suyong

    2011-08-15

    Extensive physiological and biological emphasis has been placed on pharmaceutical and medicinal uses of mushrooms containing β-glucans, but their incorporation into processed functional foods is quite limited. Thus, low-grade Lentinus edodes mushrooms were utilised to produce β-glucan-enriched materials (BGEMs), which were evaluated as a high-fibre and low-calorie substitute for wheat flour. The fractions obtained from Lentinus edodes mushrooms contained 514 g kg⁻¹ of (1-3)-β-glucans with (1-6)-β-linked side chains and the chemical structure was confirmed by ¹³C NMR and FTIR spectroscopy. Replacement of a portion of the wheat flour with BGEMs resulted in the solutions with lower values of pasting parameters and also caused significant changes in starch gelatinisation. When BGEMs were incorporated into cake formulations, batter viscosity increased with more shear-thinning behaviours and elastic properties improved. Overall, the cakes containing more BGEMs showed decreased volume and increased hardness while no significant differences were observed between the control and BGEM cakes containing 1 g of β-glucan per serving. As a wheat flour substitute, the BGEMs that were prepared from low-grade Lentinus edodes mushrooms, could be successfully used to produce cakes containing 1 g of β-glucan per serving with quality attributes similar to those of the control. Copyright © 2011 Society of Chemical Industry.

  13. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.

    Science.gov (United States)

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Zhang, Junfeng; Qin, Haiyan; Hu, Qingang

    2016-01-01

    Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. The present study focused on patient-personalized bone tissue engineering. Human induced pluripotent stem cells

  14. Horizontal Bone Reconstruction on sites with different amounts of native bone: a retrospective study

    Directory of Open Access Journals (Sweden)

    André Antonio Pelegrine

    2018-04-01

    Full Text Available Abstract: The lack of guidelines for bone augmentation procedures might compromise decision making in implantology. The objective of this study was to perform a retrospective study to verify the outcomes of horizontal bone reconstruction in implant dentistry with different types of materials and amounts of native bone in the recipient bed to allow for a new guideline for horizontal bone reconstruction. One hundred preoperative CT scans were retrospectively evaluated and categorized in accordance to horizontal bone defects as presence (Group P or absence (Group A of cancellous bone in the recipient bed. Different approaches were used to treat the edentulous ridge and the outcomes were defined either as satisfactory or unsatisfactory regarding the possibility of implant placement. The percentage distribution of the patients according to the presence or absence of cancellous bone was 92% for Group P and 8% for Group A. In Group P, 98% of the patients had satisfactory outcomes, and the use of autografts had 100% of satisfactory outcomes in this group. In Group A, 37.5% of the patients had satisfactory outcomes, and the use of autografts also yielded 100% of satisfactory outcomes. The use of allografts and xenografts in Group A had 0% and 33.3% of satisfactory outcomes, respectively. Therefore, it seems reasonable to speculate that the presence of cancellous bone might be predictive and predictable when the decision includes bone substitutes. In cases of absence of cancellous bone in the recipient bed, the use of a vitalized graft seems to be mandatory.

  15. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    Science.gov (United States)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  16. Identification of proteinaceous material in the bone of the dinosaur Iguanodon.

    Science.gov (United States)

    Embery, Graham; Milner, Angela C; Waddington, Rachel J; Hall, Rachel C; Langley, Martin S; Milan, Anna M

    2003-01-01

    This study has directed attention at the search for bone-related proteins in an extract of demineralized rib bone of the 120 mya Iguanodon. The inner compact bone was demineralized and the GuCl extract resolved into 11 fractions using anion exchange chromatography, which all contained silver-reactive proteins with various amino acid profiles. Two specific fractions, iv and xi, revealed characteristics typical of contemporary phosphoproteins and proteoglycans, respectively. Fraction iv, 43-57 kDa, contained a high ratio of aspartate and serine, although no phosphate was discernable. Fraction xi contained a band of 41-47 kDa and was rich in chondroitin sulphate and hyaluronan. In addition an early eluting fraction was immunoreactive with an antibody against osteocalcin. A cancellous bone fraction from the same bone sample was also analyzed using N-terminal sequencing and revealed potential similarities with cystatin. While we do not claim to have identified the presence of intact proteins, this study has value in demonstrating that extruded extracellular matrix is protected by its capacity to induce mineralization, which subsequently is important in conserving detectable protein products in ancient skeletal tissues.

  17. [Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].

    Science.gov (United States)

    Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu

    2016-02-01

    Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.

  18. Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoride-containing water with safe drinking water.

    Science.gov (United States)

    Podder, Santosh; Chattopadhyay, Ansuman; Bhattacharya, Shelley

    2011-10-01

    Treatment of mice with 15 mg l(-1) sodium fluoride (NaF) for 30 days increased the number of cell death, chromosomal aberrations (CAs) and 'cells with chromatid breaks' (aberrant cells) compared with control. The present study was intended to determine whether the fluoride (F)-induced genotoxicity could be reduced by substituting high F-containing water after 30 days with safe drinking water, containing 0.1 mg F ions l(-1). A significant fall in percentage of CAs and aberrant cells after withdrawal of F-treatment following 30 days of safe water treatment in mice was observed which was highest after 90 days, although their levels still remained significantly high compared with the control group. This observation suggests that F-induced genotoxicity could be reduced by substituting high F-containing water with safe drinking water. Further study is warranted with different doses and extended treatment of safe water to determine whether the induced damages could be completely reduced or not. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Enhancement of Electrochemical Performance of LiMn2O4 Spinel Cathode Material by Synergetic Substitution with Ni and S

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-05-01

    Full Text Available Nickel and sulfur doped lithium manganese spinels with a nominal composition of LiMn2−xNixO4–ySy (0.1 ≤ x ≤ 0.5 and y = 0.01 were synthesized by a xerogel-type sol-gel method followed by subsequent calcinations at 300 and 650 °C in air. The samples were investigated in terms of physicochemical properties using X-ray powder diffraction (XRD, transmission electron microscopy (EDS-TEM, N2 adsorption-desorption measurements (N2-BET, differential scanning calorimetry (DSC, and electrical conductivity studies (EC. Electrochemical characteristics of Li/Li+/LiMn2−xNixO4–ySy cells were examined by galvanostatic charge/discharge tests (CELL TEST, electrochemical impedance spectroscopy (EIS, and cyclic voltammetry (CV. The XRD showed that for samples calcined at 650 °C containing 0.1 and 0.2 mole of Ni single phase materials of Fd-3m group symmetry and nanoparticles size of around 50 nm were obtained. The energy dispersive X-ray spectroscopy (EDS mapping confirmed homogenous distribution of nickel and sulfur in the obtained spinel materials. Moreover, it was revealed that the adverse phase transition at around room temperature typical for the stoichiometric spinel was successfully suppressed by Ni and S substitution. Electrochemical results indicated that slight substitution of nickel (x = 0.1 and sulfur (y = 0.01 in the LiMn2O4 enhances the electrochemical performance along with the rate capability and capacity retention.

  20. Operator substitution

    NARCIS (Netherlands)

    Hautus, M.L.J.

    1994-01-01

    Substitution of an operator into an operator-valued map is defined and studied. A Bezout-type remainder theorem is used to derive a number of results. The tensor map is used to formulate solvability conditions for linear matrix equations. Some applications to system theory are given, in particular

  1. Tonemic Substitution

    African Journals Online (AJOL)

    Ezenwafor

    grammatical constructions. The choice of substitutable tonemes as observed from the analyzed data is highly. Ezenwafordependent on the intuitive judgement of the native speaker. This work shows with adequate data, that regular tonemic changes are not always meaningful in Ekwulobia lect. Such tonemic alternations are ...

  2. Biological background of dermal substitutes

    NARCIS (Netherlands)

    van der Veen, V. C.; van der Wal, M.B.; van Leeuwen, M.C.; Ulrich, M.; Middelkoop, E.

    2010-01-01

    Dermal substitutes are of major importance in treating full thickness skin defects, both in acute and chronic wounds. In this review we will outline specific requirements of three classes of dermal substitutes:-natural biological materials, with a more or less intact extracellular matrix

  3. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    International Nuclear Information System (INIS)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang

    2010-01-01

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 ∼ 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic

  4. Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic.

    Science.gov (United States)

    Dervišević, Irma; Minić, Duško; Kamberović, Željko; Ćosović, Vladan; Ristić, Mirjana

    2013-06-01

    In this paper, we have analyzed parts of printed circuit board (PCB) and liquid crystal display (LCD) screens of mobile phones and computers, quantitative and qualitative chemical compositions of individual components, and complete PCBs were determined. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) methods were used to determine the temperatures of phase transformations, whereas qualitative and quantitative compositions of the samples were determined by X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) analyses. The microstructure of samples was studied by optical microscopy. Based on results of the analysis, a procedure for recycling PCBs is proposed. The emphasis was on the effects that can be achieved in the recycling process by extraction of some parts before the melting process. In addition, newly developed materials can be an adequate substitute for some of the dangerous and harmful materials, such as lead and arsenic are proposed, which is in accordance with the European Union (EU) Restriction of the use of certain hazardous substances (RoHS) directive as well as some alternative materials for use in the electronics industry instead of gold and gold alloys.

  5. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  6. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Gridelli, Bruno; Gerlach, Jörg C

    Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.

  7. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Bone Formation with Deproteinized Bovine Bone Mineral or Biphasic Calcium Phosphate in the Presence of Autologous Platelet Lysate: Comparative Investigation in Rabbit

    Directory of Open Access Journals (Sweden)

    Carole Chakar

    2014-01-01

    Full Text Available Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL and particles of either deproteinized bovine bone mineral (DBBM or biphasic calcium phosphate (BCP, two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P<0.001 while the residual material area was lower (60%; P<0.001 than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.

  9. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bovine bone for white ceramic

    International Nuclear Information System (INIS)

    Souza, J.L. de; Harima, E.; Leite, J.I.P.; Monteiro, F.M.; Bezerra, M.T.T.

    2011-01-01

    The porcelain is composed of feldspar, kaolin and about 50% for bovine bone ashes. This work aims to analyze the properties acquired by the substitution of kaolin by its waste. For characterization of raw materials chemical analyzes were made by X-Ray Fluorescence (XRF) and mineralogical analysis by X-Ray Diffraction (XRD). Four formulations were produced varying the percentage of waste materials of kaolin and bone ashes of 25 and 55% by weight. The samples were sintered at temperatures of 1150, 1200 and 1250 deg C. The technological tests realized were: water absorption (WA), apparent porosity (AP), apparent density (AD) and linear retraction (LR). Improvement in the physical-mechanical properties of the samples with increasing temperature were observed, and 1250 deg C obtained 0.69% of WA, 1.22% AP, 2.26 g / cm3 AD, and 0.52% LR

  11. Advanced Glycation Endproducts and Bone Material Properties in Type 1 Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mishaela R Rubin

    Full Text Available Fractures, particularly at the lower extremities and hip, are a complication of diabetes. In both type 1 (T1D and type 2 diabetes (T2D, fracture risk is disproportionately worse than that predicted from the measurement of bone mineral density. Although an explanation for this discrepancy is the presence of organic matrix abnormalities, it has not been fully elucidated how advanced glycation endproducts (AGEs relate to bone deterioration at both the macroscopic and microscopic levels. We hypothesized that there would be a relationship between skeletal AGE levels (determined by Raman microspectroscopy at specific anatomical locations and bone macroscopic and microscopic properties, as demonstrated by the biomechanical measures of crack growth and microindentation respectively. We found that in OVE26 mice, a transgenic model of severe early onset T1D, AGEs were increased by Raman (carboxymethyl-lysine [CML] wildtype (WT: 0.0143 ±0.0005 vs T1D: 0.0175 ±0.0002, p = 0.003 at the periosteal surface. These differences were associated with less tough bone in T1D by fracture mechanics (propagation toughness WT: 4.73 ± 0.32 vs T1D: 3.39 ± 0.24 NM/m1/2, p = 0.010 and by reference point indentation (indentation distance increase WT: 6.85 ± 0.44 vs T1D: 9.04 ± 0.77 μm; p = 0.043. Within T1D, higher AGEs by Raman correlated inversely with macroscopic bone toughness. These data add to the existing body of knowledge regarding AGEs and the relationship between skeletal AGEs with biomechanical indices.

  12. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    Science.gov (United States)

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  13. Microscopy and image analysis based approaches for the species-specific identification of bovine and swine bone containing material

    Directory of Open Access Journals (Sweden)

    Matteo Ottoboni

    2014-05-01

    Full Text Available The aim of this study was to evaluate the potential of image analysis measurements in combination with the official analytical method for the detection of constituents of animal origin in feedstuffs, in distinguishing between bovine and swine (bone containing material. Authentic samples of controlled origin containing bovine or swine meat and bone meals were analysed by the microscopic method, in accordance with the official analytical method. Sediment fractions of each sample were observed with a compound microscope at X40. A total of 362 bone fragment lacunae images were recorded and processed through image analysis software, deriving 30 geometric variables for each lacuna. Results indicated that not only were most variables significantly (P<0.001 different between bovine and swine samples, but also that two thirds of the same variables were bigger in bovine than in swine. This information, however, does not seem to be so effective in practice since bovine and swine features and measurements overlapped. It can be concluded that the microscopic method even when combined with image analysis does not fit all the requirements for accurately identifying prohibited ingredients of animal origin. A combined approach with other methods is therefore recommended.

  14. Lateral approach for maxillary sinus membrane elevation without bone materials in maxillary mucous retention cyst with immediate or delayed implant rehabilitation: case reports.

    Science.gov (United States)

    Han, Ji-Deuk; Cho, Seong-Ho; Jang, Kuk-Won; Kim, Seong-Gwang; Kim, Jung-Han; Kim, Bok-Joo; Kim, Chul-Hun

    2017-08-01

    This case series study demonstrates the possibility of successful implant rehabilitation without bone augmentation in the atrophic posterior maxilla with cystic lesion in the sinus. Sinus lift without bone graft using the lateral approach was performed. In one patient, the cyst was aspirated and simultaneous implantation under local anesthesia was performed, whereas the other cyst was removed under general anesthesia, and the sinus membrane was elevated in a second process, followed by implantation. In both cases, tapered 11.5-mm-long implants were utilized. With all of the implants, good stability and appropriate bone height were achieved. The mean bone level gain was 5.73 mm; adequate bone augmentation around the implants was shown, the sinus floor was moved apically, and the cyst was no longer radiologically detected. Completion of all of the treatments required an average of 12.5 months. The present study showed that sufficient bone formation and stable implantation in a maxilla of insufficient bone volume are possible through sinus lift without bone materials. The results serve to demonstrate, moreover, that surgical treatment of mucous retention cyst can facilitate rehabilitation. These techniques can reduce the risk of complications related to bone grafts, save money, and successfully treat antral cyst.

  15. EXPERIMENTAL DEVELOPMENT OF BIO-BASED POLYMER MATRIX BUILDING MATERIAL AND FISH BONE DIAGRAM FOR MATERIAL EFFECT ON QUALITY

    Directory of Open Access Journals (Sweden)

    Asmamaw Tegegne

    2014-06-01

    Full Text Available These days cost of building materials are continuously increasing and the conventional construction materials for this particular purpose become low and low. The weight of conventional construction materials particularly building block is heavy and costly due to particularly cement. Thus, the objective of this paper is to develop an alternative light weight, high strength and relatively cost effective building material that satisfy the quality standard used in the country. A bio-based polymer matrix composite material for residential construction was experimentally developed. Sugar cane bagasse, thermoplastics (polyethylene g roup sand and red ash were used as materials alternatively. Mixing of the additives,melting of the hermoplastics, molding and curing (dryingwere the common methods used on the forming process of the samples. Mechanical behavior evaluation (testing of the product was carried out. Totally 45 specimens were produced and three replicate tests were performed per each test type. Quality analysis was carried out for group B material using Ishikawa diagram. The tensile strength of group A specimen was approximately 3 times greater than that of group B specimens. The compression strength of group A specimens were nearly 2 times greater than group B. Comparing to the conventional building materials(concert block and agrostoneproduced in the country, which the compression strength is 7Mpa and 16Mpa respectively, the newly produced materials show much better results in which Group A is 25.66 Mpa and group B is 16.66 Mpa. energy absorption capacity of group A specimens was approximately 3 times better than that of group B. Water absorption test was carried out for both groups and both showed excellent resistivity. Group A composite material specimens, showed better results in all parameters.

  16. Osteogenic cells on bio-inspired materials for bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Vagaská, Barbora; Bačáková, Lucie; Filová, Elena; Balík, Karel

    2010-01-01

    Roč. 59, č. 3 (2010), s. 309-322 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA106/06/1576; GA ČR GA106/09/1000; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z30460519 Keywords : multi-phase composites * nanoroughness * bone implants Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.646, year: 2010

  17. [The historical materials of stomatology in the oracle bone inscriptions of the Yin-Shang Dynasties].

    Science.gov (United States)

    Li, Xiaojun; Zhu, Lang

    2015-07-01

    Some oracle bone inscriptions of the Yin-Shang Dynasties were related to the stomatology, including special terms of diseases of the mouth, tongue and teeth which were classified, and proper nouns of some special diseases. Moreover, witch doctors' exploration for the causes of oral diseases, the observation on different stages of oral diseases, and the records of oral disease treatment were also involved. All of these reflected the sprouting stage of stomatology in the Yin-Shang Dynasties in ancient China.

  18. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over.

    Science.gov (United States)

    Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim

    2018-03-21

    Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.

  19. OSTEOSYNTHESIS OF THE METACARPAL BONE WITH BIOABSORBABLE MATERIALS: A CASE REPORTS

    Directory of Open Access Journals (Sweden)

    Ernest Novak

    2004-04-01

    Full Text Available Background. Recent advances in biomaterial technology make it possible to produce easy-to-handle implants for osteosynthesis with ultra-high strenght and excellent biocompatibility. Biomechanical studies have shown that fixation rigidity achieved with self-reinforced (SR pins, screws and miniplates is comparable with that of metallic fixation methods. Internal fixation by means of bioabsorbable plates, screws, and pins can be used to stabilize some fractures of small bones in the hand.We report our experience with three cases where internal fixation with a SR (poly-L/DL-lactide 70/30; SR-P (L/DL LA 70/30, BioSorbTMFX miniplates and screws was carried out for stabilization of a metacarpal shaft fracture and thumb replantation.Conclusions. After bone healing is complete, metallic osteosynthesis devices become unnecessary or can even be harmful. Metallic implant-related long-term complications and secondary removal operation are avoided by using of bioabsorbable osteosynthesis devices for metacarpal bones osteosynthesis.

  20. Foreign Body Giant Cell-Related Encapsulation of a Synthetic Material Three Years After Augmentation.

    Science.gov (United States)

    Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram

    2016-06-01

    Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.

  1. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  2. A novel bio-inorganic bone implant containing deglued bone

    Indian Academy of Sciences (India)

    With the aim of developing an ideal bone graft, a new bone grafting material was developed using deglued bone, chitosan and gelatin. Deglued bone (DGB) which is a by-product of bone glue industries and has the close crystallographic similarities of hydroxyapatite was used as main component in the preparation of bone ...

  3. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    Science.gov (United States)

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in

  4. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications

    International Nuclear Information System (INIS)

    Sevilla, P.; Aparicio, C.; Planell, J.A.; Gil, F.J.

    2007-01-01

    Metallic porous materials are designed to allow the ingrowth of living tissue inside the pores and to improve the mechanical anchorage of the implant. In the present work, tantalum and nickel-titanium porous materials have been characterized. The tantalum foams were produced by vapour chemical deposition (CVD/CVI) and the NiTi foams by self-propagating high temperature synthesis (SHS). The former exhibited an open porosity ranging between 65 and 73% and for the latter it ranged between 63 and 68%. The pore sizes were between 370 and 440 μm for tantalum and between 350 and 370 μm for nickel-titanium. The Young's modulus in compression of the foams studied, especially for tantalum, were very similar to those of cancellous bone. This similitude may be relevant in order to minimize the stress shielding effect in the load transfer from the implant to bone. The strength values for NiTi foam are higher than for tantalum, especially of the strain to fracture which is about 23% for NiTi and only 8% for tantalum. The fatigue endurance limit set at 10 8 cycles is about 7.5 MPa for NiTi and 13.2 MPa for tantalum. The failure mechanisms have been studied by scanning electron microscopy

  5. Stable nickel-substituted spinel cathode material (LiMn1.9Ni0.1O4) for lithium-ion batteries obtained by using a low temperature aqueous reduction technique

    CSIR Research Space (South Africa)

    Kunjuzwa, Niki

    2016-11-01

    Full Text Available A nickel substituted spinel cathode material (LiMn1.9Ni0.1O4) with enhanced electrochemical performance was successfully synthesized by using a locally-sourced, low-cost manganese precursor, electrolytic manganese dioxide (EMD), and NiSO4·6H2O as a...

  6. Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2-xO4; 0≤x≤0.2) for lithium ion battery: enhancing energy storage, capacity retention, and lithium ion transport

    CSIR Research Space (South Africa)

    Kebede, MA

    2014-01-01

    Full Text Available Spherically shaped Ni-substituted LiNi(subx)Mn(sub2-x)O(sub4) (x=0, 0.1, 0.2) spinel cathode materials for lithium ion battery with high first cycle discharge capacity and remarkable cycling performance were synthesized using the solution...

  7. Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone.

    Science.gov (United States)

    El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T

    2002-01-01

    The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key

  8. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: In vivo study in a nonloaded goat model

    NARCIS (Netherlands)

    Walschot, L.H.B.; Aquarius, R.; Schreurs, B.W.; Verdonschot, Nicolaas Jacobus Joseph; Buma, P.

    2012-01-01

    Aims: Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium

  9. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model.

    NARCIS (Netherlands)

    Walschot, L.H.B.; Aquarius, R.J.; Schreurs, B.W.; Verdonschot, N.J.; Buma, P.

    2012-01-01

    AIMS: Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium

  10. Structural properties of a bone-ceramic composite as a promising material in spinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, I. A., E-mail: IKirilova@mail.ru; Sadovoy, M. A.; Podorozhnaya, V. T., E-mail: VPodorognaya@niito.ru; Taranov, O. S. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation); Klinkov, S. V.; Kosarev, V. F. [Christianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk (Russian Federation); Shatskaya, S. S. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk (Russian Federation)

    2015-11-17

    The paper describes the results of in vitro tests of composite bone-ceramic implants and procedures for modifying implant surfaces to enhance osteogenesis. Analysis of CBCI ESs demonstrated that they have a porous structure with the mean longitudinal pore size of 70 µm and the mean transverse pore size of 46 µm; surface pores are open, while inner pores are closed. Elemental analysis of the CBCI surface demonstrates that CBCIs are composed of aluminum and zirconium oxides and contain HA inclusions. Profilometry of the CBCI ES surface revealed the following deviations: the maximum deviation of the profile in the sample center is 15 µm and 16 µm on the periphery, while the arithmetical mean and mean square deviations of the profile are 2.65 and 3.4 µm, respectively. In addition, CBCI biodegradation products were pre-examined; a 0.9% NaCl solution was used as a comparison group. Potentially toxic and tissue accumulated elements, such as cadmium, cobalt, mercury, and lead, are present only in trace amounts and have no statistically significant differences with the comparison group, which precludes their potential toxic effects on the macroorganism. Ceramic-based CBCI may be effective and useful in medicine for restoration of the anatomic integrity and functions of the bone tissue.

  11. Hydroxyapatite/collagen bone-like nanocomposite.

    Science.gov (United States)

    Kikuchi, Masanori

    2013-01-01

    Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.

  12. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    Directory of Open Access Journals (Sweden)

    Christine Knabe

    2017-07-01

    Full Text Available This study examines the effect of a hyaluronic acid (HyAc containing tricalcium phosphate putty scaffold material (TCP-P and of a particulate tricalcium phosphate (TCP-G graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1 for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I, alkaline phosphatase (ALP, osteocalcin (OC and bone sialoprotein (BSP. Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc.

  13. Comparative study of new autologous material, bone-cartilage composite graft, for ossiculoplasty with Polycel® and Titanium.

    Science.gov (United States)

    Kong, J S; Jeong, C Y; Shim, M J; Kim, W J; Yeo, S W; Park, S N

    2018-04-01

    Ossiculoplasty is a surgical procedure that recreates sound transmission of the middle ear in conductive hearing loss. Various materials have been used for ossicular reconstruction, but the most ideal material for ossiculoplasty remains controversial. The purpose of this study was to introduce a novel method of autologous ossiculoplasty, bone-cartilage composite graft (BCCG) and to compare its surgical results with different types of ossiculoplastic prostheses. A retrospective study was performed in a tertiary referral centre. Data of 275 patients who received ossiculoplasty using the three different materials of BCCG, Polycel ® and titanium were analysed according to type of ossiculoplasty: partial or total ossicular replacement prosthesis (PORP or TORP). Hearing results, complication rates and clinical parameters including age, sex, past history, preoperative diagnosis and surgery type were compared among different groups. Ossiculoplasty with BCCG showed satisfactory hearing outcomes and the lowest complication rate among the three different materials. In particular, its extrusion rate was 0%. We propose that the BCCG technique is a useful alternative method for ossiculoplasty, with proper patient selection. © 2017 John Wiley & Sons Ltd.

  14. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials

    Science.gov (United States)

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M.; Peterson, Deforest; Stone, Julia M.; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-01

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering.

  15. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials.

    Science.gov (United States)

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M; Peterson, Deforest; Stone, Julia M; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-11

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite

    Directory of Open Access Journals (Sweden)

    André Boziki Xavier do Carmo

    2018-01-01

    Full Text Available ABSTRACT Objective: This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA as bone substitute materials. Methods: Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group. After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. Results: The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05. We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039 in both groups. Conclusion: The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.

  17. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  18. P(3HB) based magnetic nanocomposites: smart materials for bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Akaraonye, E.; Filip, J.; Šafaříková, Miroslava; Salih, V.; Keshavarz, T.; Knowles, J.C.; Roy, I.

    -, č. 2016 (2016), č. článku 3897592. ISSN 1687-4110 Institutional support: RVO:60077344 Keywords : composite films * dispersions * elastic moduli * intelligent materials * nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2016

  19. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Street 18, Novosibirsk, 630128 (Russian Federation); Komarova, E. G., E-mail: katerina@ispms.tsc.ru; Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Academicheskii Pr. 2/4, Tomsk, 634055 (Russian Federation)

    2016-08-02

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  20. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.

    Science.gov (United States)

    Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2014-02-01

    Lamellar bone is the most common bone type in humans. The predominant components of individual lamellae are plywood-like arrays of mineralized collagen fibrils aligned in different directions. Using a dual-beam electron microscope and the Serial Surface View (SSV) method we previously identified a small, but significantly different layer in rat lamellar bone, namely a disordered layer with collagen fibrils showing little or no preferred orientation. Here we present a 3D structural analysis of 12 SSV volumes (25 complete lamellae) from femora of 3 differently aged human individuals. We identify the ordered and disordered motifs in human bone as in the rat, with several significant differences. The ordered motif shows two major preferred orientations, perpendicular to the long axis of the bone, and aligned within 10-20° of the long axis, as well as fanning arrays. At a higher organizational level, arrays of ordered collagen fibrils are organized into 'rods' around 2 to 3μm in diameter, and the long axes of these 'rods' are parallel to the lamellar boundaries. Human bone also contains a disordered component that envelopes the rods and fills in the spaces between them. The disordered motif is especially well-defined between adjacent layers of rods. The disordered motif and its interfibrillar substance stain heavily with osmium tetroxide and Alcian blue indicating the presence of another organic component in addition to collagen. The canalicular network is confined to the disordered material, along with voids and individual collagen fibrils, some of which are also aligned more or less perpendicular to the lamellar boundaries. The organization of the ordered fibril arrays into rods enveloped in the continuous disordered structure was not observed in rat lamellar bone. We thus conclude that human lamellar bone is comprised of two distinct materials, an ordered material and a disordered material, and contains an additional hierarchical level of organization composed of

  1. Material properties and in vitro biocompatibility of a newly developed bone cement

    Directory of Open Access Journals (Sweden)

    Elke Mitzner

    2009-01-01

    Full Text Available In this study mechanical properties and biocompatibility (In Vitro of a new bone cement were investigated. A new platform technology named COOL is a variable composite of dissolved, chemically modified PMMA and different bioceramics. COOL cures at body temperature via a classical cementation reaction. Compressive strengths ranging from 3.6 ± 0.8 to 62.8 ± 1.3 MPa and bending strengths ranging from 9.9 ± 2.4 to 26.4 ± 3.0 MPa were achieved with different COOL formulations. Porosity varied between 31 and 43%. Varying the components of each formulation mechanical properties and porosity could be adjusted. In Vitro biocompatibility studies with primary human osteoblasts (pHOB in direct contact with different COOL formulations, did not reveal any signs of toxicity. In contrast to Refobacin® R, cells incubated with COOL showed similar density, viability and ALP activity compared to control, if specimen were added immediately to the cell monolayer after preparation. In conclusion, COOL has promising mechanical properties in combination with high biocompatibility In Vitro and combines different advantages of both CPCs and PMMA cements by avoiding some of the respective shortcomings.

  2. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile

    Directory of Open Access Journals (Sweden)

    Bronckers Antonius LJJ

    2006-02-01

    Full Text Available Abstract Background Polymethyl-methacrylate (PMMA beads releasing antibiotics are used extensively to treat osteomyelitis, but require surgical removal afterwards because they do not degrade. Methods As an alternative option, this report compares the in vitro gentamicin release profile from clinically used, biodegradable carrier-materials: six injectable cements and six granule-types. Cement cylinders and coated granules containing 3% gentamicin were submerged in dH2O and placed in a 48-sample parallel drug-release system. At regular intervals (30, 90, 180 min. and then every 24 h, for 21 days, the release fluid was exchanged and the gentamicin concentration was measured. The activity of released gentamicin was tested on Staphylococcus aureus. Results All combinations showed initial burst-release of active gentamicin, two cements had continuous-release (17 days. The relative release of all cements (36–85% and granules (30–62% was higher than previously reported for injectable PMMA-cements (up to 17% and comparable to other biodegradable carriers. From the cements residual gentamicin could be extracted, whereas the granules released all gentamicin that had adhered to the surface. Conclusion The high release achieved shows great promise for clinical application of these biodegradable drug-carriers. Using the appropriate combination, the required release profile (burst or sustained may be achieved.

  3. [Currently available skin substitutes].

    Science.gov (United States)

    Oravcová, Darina; Koller, Ján

    2014-01-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. Autologous split or full-thickness skin graft are the best definitive burn wound coverage, but it is constrained by the limited available sources, especially in major burns. Donor site morbidities in term of additional wounds and scarring are also of concern of the autograft application. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. This paper reviews currently available skin substitutes, produced in not for-profit skin banks as well as commercially available. They are divided according to type of material included, as biological, biosynthetic and synthetic and named respectively.

  4. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  5. Relleno de cavidades óseas en cirugía maxilofacial con materiales autólogos Bone cavity augmentation in maxillofacial surgery using autologous material

    Directory of Open Access Journals (Sweden)

    P. Infante-Cossío

    2007-02-01

    Full Text Available Aunque se han descrito numerosos materiales para rellenar una cavidad ósea, el mejor material sigue siendo el hueso autólogo corticoesponjoso o particulado, que puede formar hueso nuevo por mecanismos de osteogénesis, osteinducción y osteoconducción. El cirujano oral y maxilofacial debe conocer las propiedades biológicas y las características fundamentales de los materiales autólogos, las diferentes técnicas de obtención y sus aplicaciones clínicas. Como zonas donantes se emplean preferentemente las intraorales, el filtro de hueso y los raspadores para pequeños defectos, y el hueso ilíaco, tibia o calota cuando se requiere más cantidad. No existen estudios concluyentes respecto a la asociación de injertos óseos con membranas. La combinación de injertos autólogos con otros materiales de relleno, ha desembocado en múltiples estudios, sin que se puedan establecer conclusiones definitivas por el momento. El hueso autólogo es de elección para el relleno de cavidades óseas, ya que es útil para dar solución a variadas situaciones clínicas de forma simple, rápida y segura.Although a large number of materials have been described for augmenting bone cavities, the best material is still autologous cortical-cancellous bone or bone chip, which can form new bone through osteogenesis, osteoinduction and osteoconduct ion mechanisms. The oral and maxillofacial surgeon needs to be familiar with the biological properties and the fundamental characteristics of autologous material, the different techniques for obtaining it and its clinical application. Donor sites should preferably be intraoral. Bone filters and scrapers should be used for small defects, and the iliac, tibial or calvaria bones [should be used] when more quantity is required. There are no conclusive studies with regard to combining bone grafts with membranes. The combination of autologous grafts with other augmentation material has led to multiple studies, although

  6. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  7. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  8. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium <