WorldWideScience

Sample records for bone morphogenetic protein-1

  1. Bone morphogenetic proteins: Periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Subramaniam M Rao

    2013-01-01

    Full Text Available Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search. All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  2. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406. PMID:19727989

  3. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  4. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-04-01

    Full Text Available Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs. BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.

  5. Multifunctional Bone Morphogenetic Protein System in Endocrinology

    Directory of Open Access Journals (Sweden)

    Otsuka,Fumio

    2013-04-01

    Full Text Available New biological activities of bone morphogenetic proteins (BMPs in the endocrine system have recently been revealed. The BMP system is composed of approximately 30 ligands and preferential combinations of type I and type II receptors. The BMP system not only induces bone formation but also plays unique tissue-specific roles in various organs. For instance, the ovarian BMP system is a physiological inhibitor of luteinization in growing ovarian follicles. In the ovary, the expression of oocyte-derived BMP-15 is critical for female reproduction. In the pituitary, BMP-4 is a key player for initial development of the anterior pituitary, while it is also functionally involved in some differentiated pituitary tumors, including prolactinoma and Cushingʼs disease. In the adrenal glands, BMP-6 and BMP-4 modulate aldosterone and catecholamine production, respectively, which contributes to a functional interaction between the cortex and medulla. In the present review, recent advances in BMP biology in the field of endocrinology are described and the possibility for clinical application of BMP activity is discussed.

  6. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    OpenAIRE

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu; Zeng, Junwen

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue i...

  7. Hepatoregenerative role of bone morphogenetic protein-9

    Science.gov (United States)

    Sosa, Ivan; Cvijanovic, Olga; Celic, Tanja; Cuculic, Drazen; Crncevic-Orlic, Zeljka; Vukelic, Lucian; Cvek, Sanja Zoricic; Dudaric, Luka; Bosnar, Alan; Bobinac, Dragica

    2011-01-01

    Summary Bone morphogenetic protein-9 (BMP-9) is a member of the transforming growth factor beta (TGF-β) superfamily of cytokines, which regulate cell growth and differentiation during embryogenesis. Apart of that, the hypoglycemic potential of BMP-9 is of great interest. It has been confirmed that BMP-9, like insulin, improves glycemia in diabetic mice and regulates directional glucose metabolism in hepatocytes; therefore it is proposed to be a candidate hepatic insulin-sensitizing substance (HISS). In liver fibrosis, due to the portocaval shunt, insulin bypasses the organ and the liver undergoes atrophy. Parenteral administration of insulin reverses atrophy by stimulating mitogenic activity of the hepatocytes. Because BMP-9 has a signaling pathway similar to other BMPs and insulin, it is to be expected that BMP-9 has a certain regenerative role in the liver, supporting the above-mentioned is evidence of BMP-9 expression in Dissè’s spaces and BMP-7’s mitogenic activity in mucosal cells. However, further studies are needed to confirm the possible regenerative role of BMP-9. PMID:22129908

  8. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: What is the evidence?

    NARCIS (Netherlands)

    E.M.M. van Lieshout (Esther); V. Alt (Volker)

    2016-01-01

    textabstractDespite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substi

  9. Bone Morphogenetic Protein 4 Mediates Human Embryonic Germ Cell Derivation

    OpenAIRE

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; John D Gearhart; Kerr, Candace L.

    2010-01-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recom...

  10. The history and histology of bone morphogenetic protein.

    Science.gov (United States)

    Murray, Samuel S; Brochmann Murray, Elsa J; Wang, Jeffrey C; Duarte, Maria Eugenia Leite

    2016-07-01

    Bone morphogenetic proteins are a group of structurally related proteins within the TGF-β superfamily of proteins with a diverse repertoire of functions in embryonic and adult organisms. As is apparent from the name, the members first characterized participate in bone growth, development, and remodeling. The "morphogenic" activity per se is defined as the induction of a recapitulation of endochondral bone formation by appropriate stem cells. The regenerative capacity of bone has been recognized since ancient times. The mechanism, applications, and conceptual basis of bone transplantation, bone implantation, ectopic bone formation, and exogenously induced bone formation have been studied by many investigators for more than a century. This review examines the efforts to characterize this activity in the European and American literature over approximately the last century. Because of the inherently complex nature of the process induced by these molecules (inflammation, stem cell proliferation, cartilage differentiation, replacement of cartilage with bone) it is important to evaluate previous investigations through a histological perspective. The cellular basis of the contemporary bioassay for BMP activity is illustrated and discussed from the histological point of view. PMID:26907674

  11. Bone morphogenetic proteins: from structure to clinical use

    Directory of Open Access Journals (Sweden)

    Granjeiro J.M.

    2005-01-01

    Full Text Available Bone morphogenetic proteins (BMPs are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.

  12. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    International Nuclear Information System (INIS)

    Highlights: → Harmine promotes the activity and mRNA expression of ALP. → Harmine enhances the expressions of osteocalcin mRNA and protein. → Harmine induces osteoblastic mineralization. → Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. → BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related β-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of BMPs and activating BMP and Runx2

  13. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    Science.gov (United States)

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinase-2 (TIMP-2). Methods We used confocal fluorescence microscopy (CFM) to study BMP-2 distribution in HSF cells and frozen human scleral sections. The influence of rhBMP-2 on cell proliferation at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, and 100 ng/ml) was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effects of rhBMP-2 on the cell cycle were investigated with flow cytometric analysis. Reverse transcription polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine MMP-2 and TIMP-2 mRNAs and secreted proteins in HSF that were incubated with rhBMP-2. Results BMP-2 protein expression from human sclera was confirmed by CFM. Cell proliferation was significantly increased with 100 ng/ml rhBMP-2 in a time-dependent manner (p<0.05). The HSF cell cycle moved to the S and S+G2M phases after rhBMP-2 stimulation at 100 ng/ml compared to normal cells (p<0.05). TIMP-2 mRNA levels were significantly increased in HSF incubated for 24 h with 100 ng/ml rhBMP-2 (p<0.01). A 48 h incubation with 10 ng/ml or 100 ng/ml rhBMP-2 resulted in significantly increased TIMP-2 mRNA and protein expression and significantly decreased MMP-2 mRNA expression (p<0.01) while MMP-2 protein expression significantly decreased at 100 ng/ml rhBMP-2 (p<0.01). Conclusions Human sclera fibroblasts expressed BMP-2, which promoted cell proliferation, and elicited changes in MMP-2 and TIMP-2

  14. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    International Nuclear Information System (INIS)

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants - Highlights: • Demineralized bone matrix (DBM) was gamma-irradiated for sterilization. • Irradiated DBM had higher alkaline phosphatase and osteocalcin production. • It was reasoned the more released bone morphogenetic proteins by irradiation. • This result supports the application of radiation sterilization for bone implants

  15. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    OpenAIRE

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed i...

  16. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  17. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation.

    Science.gov (United States)

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; Gearhart, John D; Kerr, Candace L

    2011-02-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recombinant human BMP4 could influence EGC derivation and/or human PGC survival. We found that the addition of recombinant BMP4 increased the number of human PGCs after 1 week of culture in a dose-responsive manner. The efficiency of EGC derivation and maintenance in culture was also enhanced by the presence of recombinant BMP4 based on alkaline phosphatase and OCT4 staining. In addition, an antagonist of the BMP4 pathway, Noggin, decreased PGC proliferation and led to an increase in cystic embryoid body formation. Quantitative real-time (qRT)-polymerase chain reaction analyses and immunostaining confirmed that the constituents of the BMP4 pathway were upregulated in EGCs versus PGCs. Downstream activators of the BMP4 pathway such as ID1 and phosphorylated SMADs 1 and 5 were also expressed, suggesting a role of this growth factor in EGC pluripotency. PMID:20486775

  18. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    Science.gov (United States)

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-06-10

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  19. A novel, truncated human bone morphogenetic protein-2:construction, expression ,functions and clinical potential

    Institute of Scientific and Technical Information of China (English)

    XU Fang

    2001-01-01

    @@ Introduction As a member of the bone morphogenetic protein (BMP) family, BMP-2 plays important roles not only in bone regeneration and bone repair but also in cell proliferation, apoptosis, differentiation and morphogenesis. The BMP-2 remarkable ability to stimulate new bone growth results in the development of a novel therapy strategy for bone mass defect due to accidents or diseases. Because the BMP-2 itself, in conjunction with a suitable matrix, is sufficient to stimulate genesis of new bone, the genetically engineered BMP-2 has good applied prospects.

  20. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2.

    Science.gov (United States)

    Igai, Hitoshi; Chang, Sung Soo; Gotoh, Masashi; Yamamoto, Yasumichi; Yamamoto, Masaya; Tabata, Yasuhiko; Yokomise, Hiroyasu

    2008-01-01

    We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin. PMID:18204324

  1. Comparative experiment of four different materials as carriers of Bone morphogenetic protein to repair long bone defect

    Institute of Scientific and Technical Information of China (English)

    WEI Kuan-hai; PEI Guo-xian; YANG Run-gong

    2001-01-01

    @@ OBJECTIVE To investigate the effects of four different materials as carriers of bone morphogenetic protein (BMP) to repair long bone defect. METHODS 12 mm radius bone defects were made. They were divided into 4 groups in random and repaired respectively with the vascular muscle flap combined with FS/BMP (group A), vascular muscle flap/BMP (group B), bloodless muscle flap/BMP (group C) and autolyzed antigen-extracted allogeneic bone (AAA)/BMP (group D).Their abilities of bone forming to repair bone defects were observed.

  2. Successful treatment of a humeral capitulum osteonecrosis with bone morphogenetic protein-7 combined with autologous bone grafting

    OpenAIRE

    Marsell, Richard; Hailer, Nils P

    2014-01-01

    We present the case of a 27-year-old female with subcortical osteonecrosis of the humeral capitulum. Percutaneous retrograde drilling of the lesion and application of recombinant human bone morphogenetic protein (BMP)-7 were combined with autologous bone grafting. At follow-up the patient was almost pain-free, had normalized her range of motion, and radiography showed consolidation of the lesion without any heterotopic bone formation. By timing surgery prior to subchondral collapse, biomechan...

  3. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats we

  4. The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter

    OpenAIRE

    Sulzbacher, I; Birner, P; Trieb, K; Pichlbauer, E; Lang, S.

    2002-01-01

    Aims: The expression of bone morphogenetic proteins (BMPs) was analysed in 47 osteosarcomas to determine differences in the expression of BMP subtypes and to correlate expression with response to chemotherapy, in addition to the disease free and overall survival of patients.

  5. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); J.C. van den Beukel (Johanna); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  6. Ectopic bone induction in porous apatite-wollastonite-containing glass ceramic combined with bone morphogenetic protein.

    Science.gov (United States)

    Ijiri, S; Nakamura, T; Fujisawa, Y; Hazama, M; Komatsudani, S

    1997-06-15

    To accelerate the integration of ceramic implants with the surrounding bone and to search for a suitable carrier for bone morphogenetic protein (BMP), we studied ectopic bone induction in porous apatite-wollastonite-containing glass ceramic (A-W GC) combined with partially purified bovine BMP (bBMP) and recombinant Xenopus BMP-4/7 (rxBMP-4/7). Porous A-W GC rods [4 mm in diameter, 5 mm in height, 70% porosity, 200 microns mean pore size, 17.54 +/- 3.82 MPa (mean +/- SD) compressive strength] were used. An apatite coating formed on the surface of porous A-W GC that had been immersed in simulated body fluid at 36.5 degrees C for 7 days. In experiment 1, porous A-W GC rods were combined with either bBMP, collagen, or with both bBMP and collagen. The rods were implanted into subcutaneous pouches in rats and were harvested 4 weeks after implantation. Low-energy radiographic, scanning electron microscopic (SEM), and histological examinations showed ectopic bone formation and within the rods only in the porous A-W GC combined with the bBMP and collagen group. Quantitative analysis also revealed that this group alone showed a significant increase in bone formation. In experiment 2, porous A-W GC rods were combined with rxBMP and collagen, implanted into rats, and harvested as described above. SEM and histological examination showed ectopic bone formation around and within the rods. Because of its relatively high mechanical strength, ease of handling, and good osteoinductivity, porous A-W GC combined with BMP and collagen may be clinically useful in patients with large cancellous bone defects or craniomaxillofacial lesions. PMID:9189820

  7. Imaging symptomatic bone morphogenetic protein-2-induced heterotopic bone formation within the spinal canal: case report.

    Science.gov (United States)

    Chryssikos, Timothy; Crandall, Kenneth M; Sansur, Charles A

    2016-05-01

    Heterotopic bone formation within the spinal canal is a known complication of bone morphogenetic protein-2 (BMP-2) and presents a clinical and surgical challenge. Imaging modalities are routinely used for operative planning in this setting. Here, the authors present the case of a 59-year-old woman with cauda equina syndrome following intraoperative BMP-2 administration. Plain film myelographic studies showed a region of severe stenosis that was underappreciated on CT myelography due to a heterotopic bony lesion mimicking the dorsal aspect of a circumferentially patent thecal sac. When evaluating spinal stenosis under these circumstances, it is important to carefully consider plain myelographic images in addition to postmyelography CT images as the latter may underestimate the true degree of stenosis due to the potentially similar radiographic appearances of evolving BMP-2-induced heterotopic bone and intrathecal contrast. Alternatively, comparison of sequentially acquired noncontrast CT scans with CT myelographic images may also assist in distinguishing BMP-2-induced heterotopic bony lesions from the thecal sac. Further studies are needed to elucidate the roles of the available imaging techniques in this setting and to characterize the connection between the radiographic and histological appearances of BMP-2-induced heterotopic bone. PMID:26824586

  8. Effect of sterilization and delivery systems on the osteoinductivity of reindeer bone morphogenetic protein extract

    OpenAIRE

    Pekkarinen, T. (Tarmo)

    2005-01-01

    Abstract Bone morphogenetic proteins (BMPs) constitute a large family of osteoinductive proteins. Different BMPs are widely used in animal experiments and increasingly in the field of bone surgery. However, the sterilization of BMPs and the choice of a suitable mode of delivery, which binds and slowly releases BMP molecules, are still under intensive investigation. The aims of this study were to evaluate the effects of ethylene oxide and gamma sterilizations and different delivery syst...

  9. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence?

    Science.gov (United States)

    Van Lieshout, Esther M M; Alt, Volker

    2016-01-01

    Despite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substitutes are often used for stabilizing the implant and for providing a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials are available. Products generally contain hydroxyapatite, tricalcium phosphate, dicalcium phosphate, calcium phosphate cement, calcium sulfate (plaster of Paris), or combinations of the above. Products have been used for the treatment of osteoporotic fractures of the proximal humerus, distal radius, vertebra, hip, and tibia plateau. Although there is generally consensus that screw augmentation increased the biomechanical properties and implant stability, the results of using these products for void filling are not unequivocal. In osteoporotic patients, Bone Morphogenetic Proteins (BMPs) have the potential impact to improve fracture healing by augmenting the impaired molecular and cellular mechanisms. However, the clinical evidence on the use of BMPs in patients with osteoporotic fractures is poor as there are no published clinical trials, case series or case studies. Even pre-clinical literature on in vitro and in vivo data is weak as most articles focus on the beneficial role for BMPs for restoration of the underlying pathophysiological factors of osteoporosis but do not look at the specific effects on osteoporotic fracture healing. Limited data on animal experiments suggest stimulation of fracture healing in ovariectomized rats by the use of BMPs. In conclusion, there is only limited data on the clinical relevance and optimal indications for the use of bone graft substitute materials and BMPs on the treatment of osteoporotic fractures despite the clinical benefits of these materials in other clinical indications. Given the

  10. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Han Sun

    2015-01-01

    Full Text Available Objective: The purpose of this study was to review the current status of calcium phosphate (CaP scaffolds combined with bone morphogenetic proteins (BMPs or mesenchymal stem cells (MSCs in the field of bone tissue engineering (BTE. Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.

  11. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits

    OpenAIRE

    Li, Wenju; Wei, Haifeng; Xia, Chunmei; Zhu, Xiaomeng; Hou, Guozhu; Xu, Feng; Xinghua SONG; Zhan, Yulin

    2015-01-01

    Purpose: Transferring the bone morphogenetic protein 2 (BMP-2) genes into the tissues or cells can improve the bone healing of the fracture has been widely accepted. We evaluated the efficiency of using gene gun to transfer the BMP-2 gene thereby affected the healing of a fractured bone. Methods: The vector coding for BMP-2 was constructed by a non-replicating encephalo-myocarditis virus (ECMV)-based vector. The segmental bone defect (1.5 cm) model was created by a wire-saw at the middle part...

  12. Bone morphogenetic protein 7 induces cementogenic differentiation of human periodontal ligament-derived mesenchymal stem cells.

    Science.gov (United States)

    Torii, D; Tsutsui, T W; Watanabe, N; Konishi, K

    2016-01-01

    Bone morphogenetic protein 7 (BMP-7) is a multifunctional differentiation factor that belongs to the transforming growth factor superfamily. BMP-7 induces gene expression of protein tyrosine phosphatase-like, member A/cementum attachment protein (PTPLA/CAP) and cementum protein 1 (CEMP1), both of which are markers of cementoblasts and cementocytes. In the previous study, we reported that BMP-7 treatment enhanced PTPLA/CAP and CEMP1 expression in both normal and immortal human periodontal ligament (PDL) cells. To elucidate the molecular mechanisms of the gene expression of these molecules, in this study, we identified a functional transcription activator binding region in the promoter region of PTPLA/CAP and CEMP1 that is responsive to BMP signals. Here, we report that some short motifs termed GC-rich Smad-binding elements (GC-SBEs) that are located in the human PTPLA/CAP promoter and CEMP1 promoter are BMP-7 responsive as analyzed with luciferase promoter assays. On the other hand, we found that transcription of Sp7/Osterix and PTPLA/CAP was up-regulated after 1 week of BMP-7 treatment on purified normal human PDL cells as a result of gene expression microarray analysis. Furthermore, transcription of Sp7/Osterix, runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALP) was up-regulated after 2 weeks of BMP-7 treatment, whereas gene expression of osteo/odontogenic markers such as integrin-binding sialoprotein (IBSP), collagen, type I, alpha 1 (COL1A1), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP) was not up-regulated in purified normal or immortal human PDL cells as a result of qRT-PCR. The results suggest that BMP-7 mediates cementogenesis via GC-SBEs in human PDL cells and that its molecular mechanism is different from that for osteo/odontogenesis. PMID:25464857

  13. Epidemiologic trends in the utilization, demographics, and cost of bone morphogenetic protein in spinal fusions

    OpenAIRE

    Louie, Philip K.; Hassanzadeh, Hamid; Singh, Kern

    2014-01-01

    Bone morphogenetic protein (BMP) utilization as an adjunct for spinal arthrodesis has gained considerable momentum among spine surgeons. Despite carrying Food and Drug Administration approval for only single level anterior lumbar interbody fusion from L4-S1, the majority of BMP administration is in “off label” settings. Over the last decade, BMP utilization has increased in all facets of spine surgery with the only exception being the anterior cervical spine, in which a downward trend resulte...

  14. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

    OpenAIRE

    Fu-Yuan Teng; Wen-Cheng Chen; Yin-Lai Wang; Chun-Cheng Hung; Chun-Chieh Tseng

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-...

  15. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    OpenAIRE

    Grefhorst, Aldo; van den Beukel, Johanna C; van Houten, E Leonie AF; Steenbergen, Jacobie; Visser, Jenny A.; Themmen, Axel PN

    2015-01-01

    Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FG...

  16. A fucoidan from Nemacystus decipiens disrupts angiogenesis through targeting bone morphogenetic protein 4.

    Science.gov (United States)

    Wang, Wucheng; Chen, Huanjun; Zhang, Lei; Qin, Yi; Cong, Qifei; Wang, Peipei; Ding, Kan

    2016-06-25

    A sulfated and acetylated fucoidan, named NDH01, was extracted from seaweed Nemacystus decipiens. NDH01 was composed of mannose, glucuronic acid, fucose, sulfate group and acetyl group in the molar ratio of 3.0: 14.4: 82.6: 34.3: 13.9. The backbone of NDH01 was fucose-free core, composed of α-d-1,2-Manp and β-d-1,4-GlcpA disaccharide repeat unit. The branches were attached at the C3, C4 and C6 of α-d-1,2-Manp. The sidechain was composed of α-l-1,3,4-Fucp, α-l-1,4-Fucp, α-l-1,3-Fucp and α-l-1,4-GlcpA. The sulfate group was linked to C4 of α-l-1,3,4-Fucp, whereas, acetyl group was branched on C2 of α-l-1,2,3-Fucp. NDH01 could disrupt tube formation and inhibit the migration as well as cell growth of human microvascular endothelial cells. Besides, phosphorylation of Smad/1/5/8, Erk and FAK was significantly inhibited by NDH01. Further studies uncovered that NDH01 blocked Smad1/5/8 signaling via interacting with bone morphogenetic protein 4 and downregulating bone morphogenetic protein 4 expression. The results suggested that NDH01 might be an angiogenesis inhibitor through targeting bone morphogenetic protein 4. PMID:27083822

  17. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    OpenAIRE

    Um, In-Woong; Hwang, Suk-Hyun; Kim, Young-Kyun; Kim, Moon-Young; Jun, Sang-Ho; Ryu, Jae-Jun; Jang, Hyon-Seok

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM...

  18. A novel method of isolation of a bone-morphogenetic-protein-like protein from ossein.

    Science.gov (United States)

    Mythili, J; Padmavathy, S; Chandrakasan, G

    2001-08-01

    A new bone-morphogenetic-protein (BMP)-like protein has been isolated through a new protocol from a novel source, ossein. The BMP-like protein was hydrophilic and characterized through Fourier-transform IR studies, SDS/PAGE and coupled with a neutral binder, hydroxypropylmethylcellulose (HPMC) for control release. The IR spectrum of the protein showed peaks in tandem with BMP from bone matrix, and its molecular mass was in the range 18-21 kDa. Sustained release from the surface of HPMC was achieved for a period of 3 days. PMID:11483152

  19. Influence of ethylene oxide sterilization on the activity of native reindeer bone morphogenetic protein

    OpenAIRE

    Pekkarinen, T. (Tarmo); Hietala, O.; Lindholm, T. S.; Jalovaara, P.

    2003-01-01

    We studied the effects of ethylene oxide sterilization (Steri-Vac 4XL, temperature 29°C, exposure time 4 h 10 min, ethylene oxide concentration 860 mg/l) on the osteoinductivity of partially purified native reindeer bone morphogenetic protein (BMP) in a hind leg muscle pouch model of male NMRI mice. BMP was administered in implants containing 3 mg in a collagen carrier. Implants without sterilization and without BMP served as controls. New bone formation was evaluated based on the calcium yie...

  20. [Ectopic osteogenesis in vivo using bone morphogenetic protein-2 derived peptide loaded biodegradable hydrogel].

    Science.gov (United States)

    Zhao, Jingjing; Fang, Zhenhua; Huang, Ruokun; Xiao, Kai; Li, Jing; Xie, Ming; Kan, Wusheng

    2014-08-01

    We investigated the development of an injectable, biodegradable hydrogel composite of poly(trimethylene carbonate)-F127-poly(trimethylene carbonate)(PTMC11-F127-PTMC11 )loaded with bone morphogenetic protein-2 (BMP-2) derived peptide P24 for ectopic bone formation in vivo and evaluated its release kinetics in vitro. Then we evaluated P24 peptide release kinetics from different concentration of PTMC11-F127-PTMC11 hydrogel in vitro using bicinchoninic acid (BCA)assay. P24/ PTMC11-F127-PTMC11 hydrogel was implanted into each rat's erector muscle of spine and ectopic bone formation of the implanted gel in vivo was detected by hematoxylin and eosin stain (HE). PTMC11-F127-PTMC11 hydrogel with concentration more than 20 percent showed sustained slow release for one month after the initial burst release. Bone trabeculae surround the P24/ PTMC11-F127-PTMC11 hydrogel was shown at the end of six weeks by hematoxylin and eosin stain. These results indicated that encapsulated bone morphogenetic protein (BMP-2) derived peptide P24 remained viable in vivo, thus suggesting the potential of PTMC11-F127-PT- MC11 composite hydrogels as part of a novel strategy for localized delivery of bioactive molecules. PMID:25508424

  1. Influence of bone morphogenetic protein type IA receptor conditional knockout in lens on expression of bone morphogenetic protein 4 in lens

    Institute of Scientific and Technical Information of China (English)

    Qi; Zhao; Jiang-Yue; Zhao; Jin-Song; Zhang

    2015-01-01

    AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P <0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.

  2. Effects of bone morphogenetic protein-2 on bone cells in primary culture: immunohistochemical and electronmicroscopical studies

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Prochnow, N.; Mueller, K.M. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Bochum (Germany). Inst. fuer Pathologie; Wiemann, M.; Schirrmacher, K.; Bingmann, D. [Essen Univ. (Germany). Inst. fuer Physiologie; Sebald, W. [Wuerzburg Univ. (Germany). Inst. fuer Physiologische Chemie II

    2001-02-01

    Bone morphogenetic protein 2 (BMP-2), among other morphogenetic effects on non osseous tissues, promotes bone formation in vivo. Therefore, BMP-2 may accelerate the integration of osseous implants. Although the effects of BMPs on cell proliferation have been studied extensively in vivo or in cell lines, little is published about effects on bone cells in primary cultures, especially on cell differentiation. As such information is a prerequisite to understand and to control effects of BMPs on cells at the surface of implant materials, the present experiments aimed to describe effects of BMP-2 on primary cultures derived from calvarial fragments of neonatal rats. The cells were stimulated with 50 nM BMP-2 added to the nutrient medium for 3 or 6 days. Light- and electronmicroscopical studies showed that cells in the sprouting zones were larger and more often spindle shaped. Stimulated cells had more nucleoli than control cells and the endoplasmic reticulum was widened. They retained properties of typical bone cells: An immunhistochemical analysis showed that stimulated cells increased the activity of alkaline phosphatase, they secreted collagen type I and to a minor extent collagen type III. In BMP-2 treated cells the pattern of cells stained for actin, desmin and vimentin hardly changed whereas extracellular fibronectin appeared to be less cross-linked in BMP-2 treated cultures. The distribution and labeling strength of osteocalcin, a specific marker protein of bone cells did not change markedly. After exposure to BMP-2 cells tended to detach from the cover slips. Electron microscopy showed a reduced number of cell processes possibly facilitating the detachment and/or mobility. Stimulated cells contained an increased number of lamellar bodies which may reflect an increased synthesis and/or membrane turnover. Staining of non-osseous cells with anti-CD68-or anti-myeloid antibodies revealed that the small percentage of these cells regularly occurring in primary cultures

  3. Bone morphogenetic protein in complex cervical spine surgery: A safe biologic adjunct?

    OpenAIRE

    Lebl, Darren R.

    2013-01-01

    The advent of recombinant DNA technology has substantially increased the intra-operative utilization of biologic augmentation in spine surgery over the past several years after the Food and Drug Administration approval of the bone morphogenetic protein (BMP) class of molecules for indications in the lumbar spine. Much less is known about the potential benefits and risks of the “off-label” use of BMP in the cervical spine. The history and relevant literature pertaining to the use of the “off-l...

  4. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    Science.gov (United States)

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  5. Bone Morphogenetic Proteins in Craniofacial Surgery: Current Techniques, Clinical Experiences, and the Future of Personalized Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Kristofer E. Chenard

    2012-01-01

    Full Text Available Critical-size osseous defects cannot heal without surgical intervention and can pose a significant challenge to craniofacial reconstruction. Autologous bone grafting is the gold standard for repair but is limited by a donor site morbidity and a potentially inadequate supply of autologous bone. Alternatives to autologous bone grafting include the use of alloplastic and allogenic materials, mesenchymal stem cells, and bone morphogenetic proteins. Bone morphogenetic proteins (BMPs are essential mediators of bone formation involved in the regulation of differentiation of osteoprogenitor cells into osteoblasts. Here we focus on the use of BMPs in experimental models of craniofacial surgery and clinical applications of BMPs in the reconstruction of the cranial vault, palate, and mandible and suggest a model for the use of BMPs in personalized stem cell therapies.

  6. Point-counter-point debate: the association between recombinant human bone morphogenetic protein utilization and complications in spine surgery

    OpenAIRE

    Siemionow, Kris; Sundberg, Eric; Tyrakowski, Marcin; Nandyala, Sreeharsha V.; Singh, Kern

    2014-01-01

    Bone morphogenetic proteins (BMPs) have been utilized in spine surgery for over 10 years as a bone graft substitute. Potential BMP-related adverse effects including retrograde ejaculation and heterotopic neuroforaminal bone formation have been described. Additionally, some studies have suggested an association between BMP and cancer. Inconsistencies exist in the published spine literature with regards to the incidence and association of complications with BMP utilization. In a point-counterpo...

  7. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O;

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance.......Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and...... BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation. Treatment of these cells with BMP7 for 3 days prior to adipogenic induction restored differentiation and...

  8. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    Science.gov (United States)

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-01-01

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment. PMID:26400336

  9. Recombinant human bone morphogenetic protein-2 in debridement and impacted bone graft for the treatment of femoral head osteonecrosis.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available The purpose of this study was to compare the clinical outcomes of impacted bone graft with or without recombinant human bone morphogenetic protein-2 (rhBMP-2 for osteonecrosis of the femoral head (ONFH. We examined the effect of bone-grafting through a window at the femoral head-neck junction, known as the "light bulb" approach, for the treatment of ONFH with a combination of artificial bone (Novobone mixed with or without rhBMP-2. A total of 42 patients (72 hips were followed-up from 5 to 7.67 years (average of 6.1 years. The patients with and without BMP were the first group (IBG+rhBMP-2 and the second group (IBG, respectively. The clinical effectiveness was evaluated by Harris hip score (HHS. The radiographic follow-up was evaluated by pre-and postoperative X-ray and CT scan. Excellent, good, and fair functions were obtained in 36, 12, and 7 hips, respectively. The survival rate was 81.8% and 71.8% in the first and second group, respectively. However, the survival rate was 90.3% in ARCO stage IIb, c, and only 34.6% in ARCO stage IIIa (P<0.05. It was concluded that good and excellent mid-term follow-up could be achieved in selected patients with ONFH treated with impacted bone graft operation. The rhBMP-2 might improve the clinical efficacy and quality of bone repair.

  10. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2

    Directory of Open Access Journals (Sweden)

    Thanyaphoo Suphannee

    2016-09-01

    Full Text Available Silicon-substituted calcium phosphate (Si-CaP was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2 was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future.

  11. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2.

    Science.gov (United States)

    Thanyaphoo, Suphannee; Kaewsrichan, Jasadee

    2016-09-01

    Silicon-substituted calcium phosphate (Si-CaP) was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP) cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2) was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future. PMID:27383886

  12. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    汤亭亭; 徐小良; 戴尅戎; 郁朝锋; 岳冰; 楼觉人

    2005-01-01

    Objective: To evaluate the osteogenic potential of bone morphogenetic protein (BMP)-2 gene transfected goat bone marrow-derived mesenchymal stem cells (MSCs). Methods: Goat bone marrow- derived MSCs were transfected by Adv-human bone morphogenetic protein (hBMP)-2 gene(Group 1), Adv-beta gal transfected MSCs (Group 2)and uninfected MSCs(Group 3). Western blot analysis, alkaline phosphatase staining, Von Kossa staining and transmission electron microscopy were adopted to determine the phenotype of MSCs. Then the cells were injected into thigh muscles of the nude mice. Radiographical and histological evaluations were performed at different intervals. Results: Only Adv-hBMP-2 transfected MSCs produced hBMP-2. These cells were positive for alkaline phosphatase staining at the 12th day and were positive for Von Kossa staining at the 16th day after gene transfer. Electron microscopic observation showed that there were more rough endoplasmic reticulum, mitochondria and lysosomes in Adv-hBMP-2 transfected MSCs compared to MSCs of other two groups. At the 3rd and 6th weeks after cell injection, ectopic bones were observed in muscles of nude mice of Group 1. Only fibrous tissue or a little bone was found in other two groups. Conclusions: BMP-2 gene transfected MSCs can differentiate into osteoblasts in vitro and induce bone formation in vivo.

  13. The Use of Bone Morphogenetic Protein in Pediatric Cervical Spine Fusion Surgery: Case Reports and Review of the Literature

    OpenAIRE

    Molinari, Robert W.; Molinari, Christine

    2015-01-01

    Study Design Case report. Objective There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric cervical spine. The outcomes and complications involving the off-label use of bone morphogenetic protein (BMP)-2 in the pediatric cervical spine are not clearly defined. The purpose of this article is to report successful fusion without complications in two pediatric patients who had instrumented occipitocervical fusion using low-dose BMP-2. Meth...

  14. The application of bone morphogenetic proteins to periodontal and peri-implant tissue regeneration: A literature review

    OpenAIRE

    Sasikumar, Karuppanan P.; Sugumari Elavarasu; Jayaprakash S Gadagi

    2012-01-01

    Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development and the demonstration of stem cells in periodontal ligament have set the stage for periodontal regenerative therapy and tissue engineering. Furthermore, recent approval by the Food and Drug Administration of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in periodon...

  15. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    Science.gov (United States)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  16. Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Zaid, Khaled Waleed; Chantiri, Mansour; Bassit, Ghassan

    2016-01-01

    Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-β superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein?2 (rhBMP?2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma. PMID:27039814

  17. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo.

    Science.gov (United States)

    Teng, Fu-Yuan; Chen, Wen-Cheng; Wang, Yin-Lai; Hung, Chun-Cheng; Tseng, Chun-Chieh

    2016-01-01

    This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use. PMID:26977141

  18. Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Fu-Yuan Teng

    2016-01-01

    Full Text Available This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2 is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH; and sandblasting, alkali heating, and etching (SMART. Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use.

  19. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    Science.gov (United States)

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  20. Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna.

    Science.gov (United States)

    Bae, Ji-Hoon; Song, Hae-Ryong; Kim, Hak-Jun; Lim, Hong-Chul; Park, Jung-Ho; Liu, Yuchun; Teoh, Swee-Hin

    2011-10-01

    The choice of an appropriate carrier and its microarchitectural design is integral in directing bone ingrowth into the defect site and determining its subsequent rate of bone formation and remodeling. We have selected a three-dimensional polycaprolactone (PCL) scaffold with an interconnected honeycomb-like porous structure to provide a conduit for vasculature ingrowth as well as an osteoconductive pathway to guide recruited cells responding to a unique triphasic release of osteoinductive bone morphogenetic proteins (BMP) from these PCL scaffolds. We hypothesize that the use of recombinant human bone morphogenetic protein 2 (rhBMP2)-PCL constructs promotes rapid union and bone regeneration of a large defect. Results of our pilot study on a unilateral 15 mm mid-diaphyseal segmental rabbit ulna defect demonstrated enhanced bone healing with greater amount of bone formation and bridging under plain radiography and microcomputed tomography imaging when compared with an empty PCL and untreated group after 8 weeks postimplantation. Quantitative measurements showed significantly higher bone volume fraction and trabecular thickness, with lower trabecular separation in the rhBMP2-treated groups. Histology evaluation also revealed greater mature bone formation spanning across the entire scaffold region compared with other groups, which showed no bone regeneration within the central defect zone. We highlight that it is the uniqueness of the scaffold having a highly porous network of channels that promoted vascular integration and allowed for cellular infiltration, leading to a discontinuous triphasic BMP2 release profile that mimicked the release profile during natural repair mechanisms in vivo. This study serves as preclinical evidence demonstrating the potential of combining osteoinductive rhBMP2 with our PCL constructs for the repair of large defects in a large animal model. PMID:21682591

  1. Osteoinductivity assay of the variability of repeated extractions of bone morphogenetic proteins from bovine bone at different times

    Institute of Scientific and Technical Information of China (English)

    HU Zhen-ming 胡侦明; Sean AF Peel; Cameron ML Clokie

    2004-01-01

    Objective:To observe the activity of repeated extracts of bone matrix and the production of purified bone morphogenetic proteins (BMPs).Methods: BMPs were extracted 1- 4 times from fresh bovine cortical bone by the modified Urist's method, with each collected precipitate separated and lyophilized as partially purified BMPs. Another fresh bovine bone was extracted three times and the precipitates were mixed and lyophilized. Meanwhile, the alkaline phosphatase (ALP)activity was measured by an in vitro assay employing cultured C2C12 mouse myoblast cells through the osteoinductivity of bovine BMPs extracted four times at days 1, 4, 7, and 14, and the correlation between BMPs quantities and costing during extraction processes was analyzed.Results:The purified and the cost showed a positive correlation(r=0.969).To separate and lyophilize each collected precipitate as partially purified BMPs raised the cost,and mixed precipitates also cost much.ALPactivities of 1st and mixed extractions of BMPs were shown to be highly osteoinductive and keep a significantly high level(P<0.05-0.01)4 days after culturing compared with the 2nd,3rd and 4th extractions,especially the control group.However,the more times the extraction ws done,the less activity of BMPs was shown and more costing was.The x-ray and histological analysis also showed that the 1st extraction of BMPs induced more ossicles and new bone formation.Conclusions:The results indicated that BMPs enhanced the abilities of osteoinductiviyt in C2C12 culture in vitro.The first extraction of BMPsfrom bone is fitfull,4th extractions are unnecessary for they cost more and waste more time,say nothing of mixed extractions.

  2. Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts is mediated by bone morphogenetic protein-6.

    Science.gov (United States)

    Boden, S D; Hair, G; Titus, L; Racine, M; McCuaig, K; Wozney, J M; Nanes, M S

    1997-07-01

    Glucocorticoids (GCs) at physiological concentrations promote osteoblast differentiation from fetal calvarial cells, calvarial organ cultures, and bone marrow stromal cells; however, the cellular pathways involved are not known. Bone morphogenetic proteins (BMPs) are recognized as important mediators of osteoblast differentiation. Specific roles for individual BMPs during postembryonic membranous bone formation have yet to be determined. We recently reported that GC potentiated the osteoblast differentiation effects of BMP-2 and BMP-4, but not of BMP-6, which, by itself, was the most potent of the three. In the present study, we used fetal rat secondary calvarial cultures to study the role of BMP-6 during early osteoblast differentiation. Treatment with the GC triamcinolone (10(-9) M) resulted in a 5- to 8-fold increase in BMP-6 steady-state messenger RNA levels, peaking at 12 h. In contrast, BMPs -2, -4, -5, -7, and transforming growth factor (TGF)-beta1 messenger RNA levels increased by less than 2-fold, after GC treatment, compared with untreated control cultures at 24 h. BMP-6 protein secretion increased 6- to 7-fold by 12 h and 12-fold (from 7.5 to 90 ng/ml) by 24 h, as measured by quantitative Western analysis. Treatment of cells with oligodeoxynucleotides antisense to BMP-6 diminished secretion of BMP-6 protein and significantly inhibited the GC-induced differentiation, as determined by a 10-fold decrease in the number of mineralized bone nodules, compared with controls that were treated with sense oligonucleotides or no oligonucleotides (ANOVA, P < 0.05). The antisense oligonucleotide inhibition of differentiation was rescued by treatment with exogenous recombinant human BMP-6. We conclude that GC-induced differentiation of osteoblasts from the pluripotent precursors is mediated, in part, by BMP-6. These results suggest that BMP-6 has an important and unique role during early osteoblast differentiation. PMID:9202223

  3. Transient brown adipocyte-like cells derive from peripheral nerve progenitors in response to bone morphogenetic protein 2.

    Science.gov (United States)

    Salisbury, Elizabeth A; Lazard, Zawaunyka W; Ubogu, Eroboghene E; Davis, Alan R; Olmsted-Davis, Elizabeth A

    2012-12-01

    Perineurial-associated brown adipocyte-like cells were rapidly generated during bone morphogenetic protein 2 (BMP2)-induced sciatic nerve remodeling in the mouse. Two days after intramuscular injection of transduced mouse fibroblast cells expressing BMP2 into wild-type mice, there was replication of beta-3 adrenergic receptor(+) (ADRB3(+)) cells within the sciatic nerve perineurium. Fluorescence-activated cell sorting and analysis of cells isolated from these nerves confirmed ADRB3(+) cell expansion and their expression of the neural migration marker HNK1. Similar analysis performed 4 days after BMP2 delivery revealed a significant decrease in ADRB3(+) cells from isolated sciatic nerves, with their concurrent appearance within the adjacent soft tissue, suggesting migration away from the nerve. These soft tissue-derived cells also expressed the brown adipose marker uncoupling protein 1 (UCP1). Quantification of ADRB3-specific RNA in total hind limb tissue revealed a 3-fold increase 2 days after delivery of BMP2, followed by a 70-fold increase in UCP1-specific RNA after 3 days. Expression levels then rapidly returned to baseline by 4 days. Interestingly, these ADRB3(+) UCP1(+) cells also expressed the neural guidance factor reelin. Reelin(+) cells demonstrated distinct patterns within the injected muscle, concentrated toward the area of BMP2 release. Blocking mast cell degranulation-induced nerve remodeling resulted in the complete abrogation of UCP1-specific RNA and protein expression within the hind limbs following BMP2 injection. The data collectively suggest that local BMP2 administration initiates a cascade of events leading to the expansion, migration, and differentiation of progenitors from the peripheral nerve perineurium to brown adipose-like cells in the mouse, a necessary prerequisite for associated nerve remodeling. PMID:23283549

  4. Chemically-Conjugated Bone Morphogenetic Protein-2 on Three-Dimensional Polycaprolactone Scaffolds Stimulates Osteogenic Activity in Bone Marrow Stromal Cells

    OpenAIRE

    Zhang, Huina; Migneco, Francesco; Lin, Chia-Ying; Hollister, Scott J.

    2010-01-01

    Poly(ε-caprolactone) (PCL) has received considerable attention in bone tissue engineering. However, the lack of osteoinductive ability of PCL limits its application. The aim of this study was to directly attach bone morphogenetic protein-2 (BMP-2) to PCL scaffolds by a crosslinking conjugation method and to investigate whether the bound BMP-2 maintained bioactivity in vitro. Immunofluorescent staining against BMP-2 and quantitative enzyme-linked immunosorbent assay measurements demonstrated t...

  5. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2) Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    OpenAIRE

    Salih Gulsen; Dilek Cokeliler; Hilal Goktas; Aysu Kucukturhan; Bilgehan Ozcil; Hakan Caner

    2014-01-01

    Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2) could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and unc...

  6. Bone morphogenetic protein 6 polymorphisms are associated with radiographic progression in ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Young Bin Joo

    Full Text Available Nearly 25 genetic loci associated with susceptibility to ankylosing spondylitis (AS have been identified by several large studies. However, there have been limited studies to identify the genes associated with radiographic severity of the disease. Thus we investigated which genes involved in bone formation pathways might be associated with radiographic severity in AS.A total of 417 Korean AS patients were classified into two groups based on the radiographic severity as defined by the modified Stoke' Ankylosing Spondylitis Spinal Score (mSASSS system. Severe AS was defined by the presence of syndesmophytes and/or fusion in the lumbar or cervical spine (n = 195. Mild AS was defined by the absence of any syndesmophyte or fusion (n = 170. A total of 251 single nucleotide polymorphisms (SNPs within 52 genes related to bone formation were selected and genotyped. Odds ratios (OR and 95% confidence interval (95% CI were analysed by multivariate logistic regression controlling for age at onset of symptoms, sex, disease duration, and smoking status as covariates.We identified new loci of bone morphogenetic protein 6 (BMP6 associated with radiographic severity in patients with AS that passed false discovery rate threshold. Two SNPs in BMP6 were significantly associated with radiologic severity [rs270378 (OR 1.97, p = 6.74 × 10(-4 and rs1235192 [OR 1.92, p = 1.17 × 10(-3] adjusted by covariates.This is the first study to demonstrate that BMP6 is associated with radiographic severity in AS, supporting the role wingless-type like/BMP pathway on radiographic progression in AS.

  7. Injectable calcium phosphate cement and fibrin sealant recombined human bone morphogenetic protein-2 composite in vertebroplasty: an animal study

    OpenAIRE

    Qian, Guang; Dong, Youhai; Yang, Wencheng; Wang, Minghai

    2012-01-01

    Polymethylmethacrylate (PMMA) is currently the most commonly-used material, but it may induce adjacent vertebral fracture due to low degradation and high strength. Our study evaluated the feasibility of injectable calcium phosphate cement (ICPC) and fibrin sealant (FS) as an injectable compound carrier of human bone morphogenetic protein-2 (rhBMP-2) in New Zealand rabbits for vertebroplasty. Results showed ICPC/FS/rhBMP-2 composites induced alkaline phosphatase most effectively at 2 and 4 wee...

  8. Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension

    OpenAIRE

    Wang, Yang-Kao; Yu, Xiang; Cohen, Daniel M.; Wozniak, Michele A.; Yang, Michael T.; Gao, Lin; Eyckmans, Jeroen; Chen, Christopher S.

    2011-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BM...

  9. The bone morphogenetic protein receptor-1A pathway is required for lactogenic differentiation of mammary epithelial cells in vitro

    OpenAIRE

    Perotti, C.; Karayazi, Ö.; Moffat, S.; Shemanko, C. S.

    2012-01-01

    Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gla...

  10. Potential bone-inducing activity in vitro of recombinant human bone morphogenetic protein-7 from a CHO expression system

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-yan; SHI Wei-wei; WANG Hao; LI Bo-hua; YANG Yang; TAN Min; XUE Jing-ya; GUO Ya-jun

    2005-01-01

    Objective: To express the recombinant human bone morphogenetic protein-7 (rhBMP-7) in Chinese hamster ovary(CHO) cells, and to establish the in vitro biological activity assay of rhBMP-7.Methods: Human BMP-7 cDNA was subcloned into p114 mammalian expression vector and transfected to CHO cells by using the Lipofectamine2000 transfection method. CHO cell supernatants were harvested and analyzed to identify the molecule mass of secreted rhBMP-7 and examine its biological activity in vitro to stimulate the synthesis of alkaline phophatase(ALP), a characteristic of osteoblast phenotypes. Results:rhBMP-7 was produced stably in CHO cells, as a processed mature disulfide-linked homodimer, with an apparent molecular mass of 36 000. Examination of the rhBMP-7 biological activity showed that rhBMP-7 specifically stimulated the production of ALP(4-fold increase at 100 ng of rhBMP-7/ml). Conclusion: The rhBMP-7 from CHO expression system has significant biological activity in induction of osteoblast phenotype, which demonstrates rhBMP-7 has the potential bone regeneration activity.

  11. Recombinant human bone morphogenetic protein-7 expressed from CHO cells possessing the activity of bone-induced in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoyan; WANG Hao; YANG Yang; TAN Min; XUE Jingya; NI Haidong; GUO Yajun

    2006-01-01

    Objective To express the recombinant human bone morphogenetic protein-7 (rhBMP-7) in Chinese hamster ovary (CHO) cells and to establish the in vitro biological activity assay of rhBMP-7. Methods Human BMP-7 cDNA was subcloned into pcDNA3.1 mammalian expression vector and transfected to CHO cells by using the lipofectin transfection method. BMP-7 expression cell culture supernatants were harvested and purified for target protein. To analyze the bioactivity of the secreted rhBMP-7, a novel in vitro assay was established by measuring its alkaline phosphatase (ALP) stimulating of osteoblast cell line, W-20-17. Results BMP-7 stably expressing cell clone was selected, which secreted mature disulfide-linked homodimer form of hBMP-7 and had an apparent molecular weight of 36kDa. rhBMP-7 with >95% purity was obtained using 3 step chromatography method. Bioactivity assay showed that the purified protein specifically stimulated W-20-17 cell producing ALP, with a 4-fold increase of ALP activity at 100ng/ml or more, and the EC50 of 15.6ng/ml. Conclusion Purified rhBMP-7 from this CHO expression system has significant biological activity in induction of osteoblast phenotype, which demonstrates potential bone regeneration activity.

  12. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    YIN Xiao-xue; CHEN Zhong-qiang; LIU Zhong-jun; MA Qing-jun; DANG Geng-ting

    2007-01-01

    Background lcariine is a flavonoid isolated from a traditional Chinese medicine Epimedium pubescens and is the main active compound of it. Recently, Epimedium pubescens was found to have a therapeutic effect on osteoporosis. But the mechanism is unclear. The aim of the study was to research the effect of lcariine on the proliferation and differentiation of human osteoblasts.Methods Human osteoblasts were obtained byinducing human marrow mesenchymal stem cells (hMSCs) directionally and were cultured in the presence of various concentrations of lcariine. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of lcariine on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of calcified nodules were assayed to observe the effect on cell differentiation.The expression of bone morphogenetic protein 2 (BMP-2) mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR).Results Icariine (20 μg/ml) increased significantly the proliferation of human osteoblasts. And, lcariine (10 μg/ml and 20μg/ml) increased the activity of ALP and the amount of calcified nodules of human osteoblasts significantly (P<0.05).BMP-2 mRNA synthesis was elevated significantly in response to lcariine (20 μg/ml).Conclusions lcariine has a direct stimulatory effect on the proliferation and differentiation of cultured human osteoblastcells in vitro, which may be mediated by increasing production of BMP-2 in osteoblasts.

  13. Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Philip Owens

    Full Text Available Bone Morphogenetic Proteins (BMPs are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.

  14. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  15. Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Jill C Richardson

    2010-01-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  16. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    Science.gov (United States)

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  17. The expression and potential function of bone morphogenetic proteins 2 and 4 in bovine trophectoderm

    Directory of Open Access Journals (Sweden)

    Pennington Kathleen A

    2012-02-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs were first described for their roles in bone formation, but they now also are known to possess additional activities, including those relating to embryogenesis. The objectives of this work were to 1 determine if peri-attachment bovine conceptuses and bovine trophoblast cells (CT1 contain transcripts for BMP2 and 4, an innate inhibitor noggin (NOG, and BMP2/4 receptors (BMPRII, ACVR1, BMPR1A, BMPR1B, and 2 determine if BMP2 or 4 supplementation to CT1 cells affects cell proliferation, differentiation or trophoblast-specific gene expression. Methods RNA was isolated from day 17 bovine conceptuses and CT1 cells. After RT-PCR, amplified products were cloned and sequenced. In other studies CT1 cells were treated with BMP2 or 4 at various concentrations and effects on cell viability, cell differentiation and abundance of IFNT and CSH1 mRNA were evaluated. Results Transcripts for BMP2 and 4 were detected in bovine conceptuses and CT1 cells. Also, transcripts for each BMP receptor were detected in conceptuses and CT1 cells. Transcripts for NOG were detected in conceptuses but not CT1 cells. Cell proliferation was reduced by BMP4 but not BMP2 supplementation. Both factors reduced IFNT mRNA abundance but had no effect on CSH1 mRNA abundance in CT1 cells. Conclusions The BMP2/4 ligand and receptor system presides within bovine trophectoderm prior to uterine attachment. BMP4 negatively impacts CT1 cell growth and both BMPs affect IFNT mRNA abundance.

  18. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    Institute of Scientific and Technical Information of China (English)

    Audrey Rakian; Wu-Chen Yang; Jelica Gluhak-Heinrich; Yong Cui; Marie A Harris; Demitri Villarreal; Jerry Q Feng; Mary MacDougall; Stephen E Harris

    2013-01-01

    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey’s fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp71 (Osterix1) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and a-SMA1 cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOSp7-Cre-EGFP. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOSp7-Cre-EGFP. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.

  19. Basic science and spine literature document bone morphogenetic protein increases cancer risk

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2014-01-01

    Full Text Available Background: Increasingly, clinical articles document that bone morphogenetic protein (BMP/INFUSE: Medtronic, Memphis, TN, USA and its derivatives utilized in spinal surgery increase the risk of developing cancer. However, there is also a large body of basic science articles that also document that various types of BMP and other members of the TGF-Beta (transforming growth factor beta family promote the growth of different types of cancers. Methods: This review looks at many clinical articles citing BMP/INFUSE′s role, largely "off-label", in contributing to complications encountered during spinal surgery. Next, however, specific attention is given to the clinical and basic science literature regarding how BMP and its derivatives (e.g. members of the TGF-beta family may also impact the development of breast and other cancers. Results: Utilizing BMP/INFUSE in spine surgery increased the risk of cancers/new malignancy as documented in several studies. For example, Carragee et al. found that for single-level instrumented posterolateral fusions (PLF using high-dose rhBMP-2 (239 patients vs. autograft (control group; n = 224, the risks of new cancers at 2 and 5 years postoperatively were increased. In laboratory studies, BMP′s along with other members of the TGF-Beta family also modulated/contributed to the proliferation/differentiation of breast cancer (e.g. bone formation/turnover, breast cancer-related solid tumors, and metastases, lung, adrenal, and colon cancer. Conclusions: BMP/INFUSE when utilized clinically in spinal fusion surgery appears to promote cancer at higher rates than observed in the overall population. Furthermore, BMP and TGF-beta are correlated with increased cancer growth both in the clinic and the laboratory.

  20. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    Science.gov (United States)

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  1. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion

    Directory of Open Access Journals (Sweden)

    Jen-Chung Liao

    2016-07-01

    Full Text Available Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2 vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6 was implanted with collagen-β-tricalcium phosphate (TCP-hydroxyapatite (HA, Group II (n = 6 was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6 was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA. Spinal fusion was examined using computed tomography (CT, manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12, 8 in Group II (67%, 8/12, and 12 in Group III (100%, 12/12. The fusion rate, determined by manual palpation, was 0% (0/6 in Group I, 0% (0/6 in Group II, and 83% (5/6 in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits.

  2. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  3. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    International Nuclear Information System (INIS)

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O2 plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration

  4. Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration.

    Science.gov (United States)

    González-Sastre, Alejandro; Molina, Ma Dolores; Saló, Emili

    2012-01-01

    Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea. PMID:22451003

  5. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    Institute of Scientific and Technical Information of China (English)

    Cui-Ping Xu; Wen-Min Ji; Gijs R van den Brink; Maikel P Peppelenbosch

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells.METHODS: Fifty-four adult male Wistar rats were randomly divided into three groups: A normal control (NC) group, a partial hepatectomized (PH) group and a sham operated (SO) group. To study the effect of liver regeneration on BMP-2 expression, rats were sacrificed before and at different time points after PH or the sham intervention (6, 12, 24 and 48 h). For each time point, six rats were used in parallel. Expression and distribution of BMP-2 protein were determined in regenerating liver tissue by Western blot analysis and immunohistochemistry. Effects of BMP-2 on cell proliferation of human Huh7 hepatoma cell line were assessed using an MTT assay.RESULTS: In the normal liver strong BMP-2 expression was observed around the central and portal veins. The expression of BMP-2 decreased rapidly as measured by both immunohistochemistry and Western blot analysis.This decrease was at a maximum of 3.22 fold after 12 h and returned to normal levels at 48 h after PH. No significant changes in BMP-2 immunoreactivity were observed in the SO group. BMP-2 inhibited serum induced Huh7 cell proliferation.CONCLUSION: BMP-2 is expressed in normal adult rat liver and negatively regulates hepatocyte proliferation.The observed down regulation of BMP-2 following partial hepatectomy suggests that such down regulation may be necessary for hepatocyte proliferation.

  6. Hypermethylation leads to bone morphogenetic protein 6 downregulation in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Yinghua He

    Full Text Available BACKGROUND: In the liver, bone morphogenetic protein 6 (BMP-6 maintains balanced iron metabolism. However, the mechanism that underlies greater BMP-6 expression in hepatocellular carcinoma (HCC tissue than adjacent non-cancerous tissue is unclear. This study sought to investigate the epigenetic mechanisms of BMP-6 expression by analysing the relationship between the DNA methylation status of BMP-6 and the expression of BMP-6. METHODS: Methylation-specific polymerase chain reaction (PCR, bisulphite sequencing PCR, the MethyLight assay, and quantitative real-time PCR were performed to examine BMP-6 methylation and mRNA expression levels. Immunohistochemistry (IHC was performed on tissue arrays to evaluate the BMP-6 protein level. RESULTS: BMP-6 mRNA expression was approximately 84.09% lower in HCC tissues than in adjacent non-cancerous tissues, and this low level of expression was associated with a poor prognosis. Moreover, the hypermethylation observed in HCC cell lines and HCC tissues was correlated with the BMP-6 mRNA expression level, and this correlation was validated following treatment with 5-aza-CdR, a demethylation agent. In addition, BMP-6 DNA methylation was upregulated by 68.42% in 114 clinical HCC tissue samples compared to adjacent normal tissues, whereas the BMP-6 staining intensity was downregulated by 77.03% in 75 clinical HCC tissue samples in comparison to adjacent normal tissues. Furthermore, elevated expression of BMP-6 in HCC cell lines inhibited cell colony formation. CONCLUSIONS: Our results suggest that BMP-6 CpG island hypermethylation leads to decreased BMP-6 expression in HCC tissues.

  7. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence.

    Directory of Open Access Journals (Sweden)

    Jaqueline Sudiman

    Full Text Available Developmental competence of in vitro matured (IVM oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15 or growth differentiation factor (GDF9 to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/- FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(PH, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/- FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2% compared to controls (43.3±2.4%, 28.9±3.7% and to mature GDF9+FSH (36.1±3.0%. The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(PH, and reduced glutathione (GSH levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.

  8. Bone morphogenetic protein 15 may promote follicle selection in the hen.

    Science.gov (United States)

    Stephens, C S; Johnson, P A

    2016-09-01

    In the hen, optimal ovulation rate depends on selection of a single follicle into the pre-ovulatory hierarchy. Follicle selection is associated with increased oocyte growth and changes in gene expression in granulosa cells surrounding the oocyte, in preparation for ovulation. This study investigated the expression, function and regulation of bone morphogenetic protein-15 (BMP15) during follicle development in the hen. BMP15 mRNA expression was analyzed in the ooplasm and granulosa cells of 3mm follicles and was confirmed to be primarily in the ooplasm. BMP15 was detected by immunoblotting in 6 and 8mm follicles near the time of follicle selection. Expression of mRNA for BMP15 receptors (BMPR1B and BMPR2) in granulosa cells increased with follicle size, indicating that BMP15 may play an important role around follicle selection. The function of BMP15 was examined by culturing granulosa cells from 3-5mm and 6-8mm follicles with recombinant human BMP15 (rhBMP15). BMP15 increased expression of follicle stimulating hormone receptor (FSHR) mRNA and decreased anti-Müllerian hormone (AMH) mRNA and occludin (OCLN), factors associated with follicle maturation and growth in the hen. Hormonal regulation of BMP15 was assessed by whole follicle culture with estradiol (E2) which increased BMP15 mRNA expression. The distinct expression pattern of BMP15 and its receptors, coupled with the effects of BMP15 to increase FSHR mRNA and decrease AMH mRNA and OCLN mRNA and protein expression suggest that the oocyte may have a role in follicle selection in the chicken. PMID:27340039

  9. Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue.

    Science.gov (United States)

    Sobolewski, Anastasia; Rudarakanchana, Nung; Upton, Paul D; Yang, Jun; Crilley, Trina K; Trembath, Richard C; Morrell, Nicholas W

    2008-10-15

    Heterozygous germline mutations in the gene encoding the bone morphogenetic protein type II receptor cause familial pulmonary arterial hypertension (PAH). We previously demonstrated that the substitution of cysteine residues in the ligand-binding domain of this receptor prevents receptor trafficking to the cell membrane. Here we demonstrate the potential for chemical chaperones to rescue cell-surface expression of mutant BMPR-II and restore function. HeLa cells were transiently transfected with BMPR-II wild type or mutant (C118W) receptor constructs. Immunolocalization studies confirmed the retention of the cysteine mutant receptor mainly in the endoplasmic reticulum. Co-immunoprecipitation studies of Myc-tagged BMPR-II confirmed that the cysteine-substituted ligand-binding domain mutation, C118W, is able to associate with BMP type I receptors. Furthermore, following treatment with a panel of chemical chaperones (thapsigargin, glycerol or sodium 4-phenylbutyrate), we demonstrated a marked increase in cell-surface expression of mutant C118W BMPR-II by FACS analysis and confocal microscopy. These agents also enhanced the trafficking of wild-type BMPR-II, though to a lesser extent. Increased cell-surface expression of mutant C118W BMPR-II was associated with enhanced Smad1/5 phosphorylation in response to BMPs. These findings demonstrate the potential for rescue of mutant BMPR-II function from the endoplasmic reticulum. For the C118W mutation in the ligand-binding domain of BMPR-II, cell-surface rescue leads to at least partial restoration of BMP signalling. We conclude that enhancement of cell-surface trafficking of mutant and wild-type BMPR-II may have therapeutic potential in familial PAH. PMID:18647753

  10. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    Science.gov (United States)

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. PMID:27208502

  11. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    Science.gov (United States)

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  12. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    International Nuclear Information System (INIS)

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration

  13. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  14. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  15. GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass

    OpenAIRE

    Menon, Prashanthi; Yin, Guoyong; Smolock, Elaine M.; Zuscik, Michael J.; Yan, Chen; Berk, Bradford C.

    2010-01-01

    G-protein coupled receptor (GPCR) kinase 2 interacting protein-1 (GIT1) is a scaffold protein expressed in various cell types including neurons, endothelial and vascular smooth muscle cells. The GIT1 knockout (KO) mouse has a pulmonary phenotype due to impaired endothelial function. Because GIT1 is tyrosine phosphorylated by Src kinase, we anticipated that GIT1 KO should have a bone phenotype similar to Src KO. Microcomputed tomography of the long bones revealed that GIT1 KO mice have a 2.3-f...

  16. Compound soft regenerated skull material for repairing dog skull defects using bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold

    Institute of Scientific and Technical Information of China (English)

    Zhidong Shi; Mingwang Liu; Zhongzong Qin; Qinmei Wang; Ying Guo; Haiyong He; Zhonghe Yu

    2008-01-01

    BACKGROUND: In previous studies of skull defects and regeneration, bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold have been cocultured with osteoblasts.OBJECTIVE: To verify the characteristics of the new skull regenerated material after compound soft regenerated skull material implantatiom.DESIGN, TIME AND SETTING: The self-control and inter-group control animal experiment was perfurmed at the Sun Yat-sen University, China from February to July 2007.MATERIALS: Twenty-tour healthy adult dogs of both genders weighing 15-20 kg were used in this study. Nanohydroxyapatite as a scaffold was cocultured with osteoblasts. Using demineralized canine bone matrix as a carrier, recombinant human bone morphogenetic protein-2 was employed to prepare compound soft regenerated skull material. Self-designed compound soft regenerated skull material was implanted in models of skull defects.METHODS: Animals were randomly assigned into two groups, Group A (n = 16) and Group B (n = 8).Bilateral 2.5-cm-diameter full-thickness parietal skull defects were made in all animals. In Group A, the right side was reconstructed with calcium alginate gel, osteoblasts, and nanomcter bone meal composite;the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. In Group B, the right side was kept as a simple skull detect, and the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite.MAIN OUTCOME MEASURES: Bone regeneration and histopathological changes at the site of the skull defect were observed with an optical microscope and a scanning electron microscope after surgery.The ability to form bone was measured by alizarin red S staining. In vitro cultured osteoblasts were observed for morphology.RESULTS: One month following surgery, newly formed bone trabeculae mostly covered the

  17. The Use of Platelet Rich Plasma, Bone Morphogenetic Protein-2 and Different Scaffolds in Oral and Maxillofacial Surgery - Literature Review in Comparison with Own Clinical Experience

    OpenAIRE

    Karl-Heinz Schuckert; Stefan Jopp; Magdalena Osadnik

    2011-01-01

    ABSTRACT Objectives The purpose of this article was to review and critically assess the use of platelet rich plasma, recombinant human bone morphogenetic protein-2 and different scaffolds (i.e. tricalciumphosphate, polycaprolactone, demineralized bone matrix and anorganic bovine bone mineral) in oral and maxillofacial surgery comparing the relevant literature and own clinical experience. Material and Methods A literature review was conducted using MEDLINE, MEDPILOT and COCHRANE DATABASE OF SY...

  18. Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits

    OpenAIRE

    Fritz Thorey; Henning Menzel; Corinna Lorenz; Gerhard Gross; Andrea Hoffmann; Henning Windhagen

    2011-01-01

    Background: Intramembranous bone formation is essential in uncemented joint replacement to provide a mechanical anchorage of the implant. Since the discovery of bone morphogenic proteins (BMPs) by Urist in 1965, many studies have been conducted to show the influence of growth factors on implant ingrowth. In this study, the influence of bone morphogenetic protein-2 (rhBMP-2) and transforming growth factor β2 (TGF-β2) on implant osseointegration was investigated. Materials and Methods: Thir...

  19. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Jianjun Li; Liang Wu; Mingliang Yang; Feng Gao; Li Yuan

    2014-01-01

    To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improve-ments in locomotor function in injured rats, combined administration of both treatments had a signiifcantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.

  20. The Use of Platelet Rich Plasma, Bone Morphogenetic Protein-2 and Different Scaffolds in Oral and Maxillofacial Surgery - Literature Review in Comparison with Own Clinical Experience

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Schuckert

    2011-01-01

    Full Text Available Objectives: The purpose of this article was to review and critically assess the use of platelet rich plasma, recombinant human bone morphogenetic protein-2 and different scaffolds (i.e. tricalciumphosphate, polycaprolactone, demineralized bone matrix and anorganic bovine bone mineral in oral and maxillofacial surgery comparing the relevant literature and own clinical experience.Material and Methods: A literature review was conducted using MEDLINE, MEDPILOT and COCHRANE DATABASE OF SYSTEMATIC REVIEWS. It concentrated on manuscripts and overviews published in the last five years (2006-2010. The key terms employed were platelet rich plasma, bone morphogenetic proteins and their combinations with the above mentioned scaffolds. The results of clinical studies and animal trials were especially emphasized. The statements from the literature were compared with authors’ own clinical data.Results: New publications and overviews demonstrate the advantages of platelet rich plasma in bone regeneration. The results from the literature review were discussed and compared with the publications detailing authors’ own experiences.Conclusions: A favourable outcome concerning newly grown bone was achieved combining platelet rich plasma in addition to optimal matrices with or without recombinant human bone morphogenetic protein-2, depending on the clinical case. As a consequence, the paradigm shift from transplantation of autogenous bone to bone tissue engineering appears promising.

  1. The Use of Bone Morphogenetic Protein in Pediatric Cervical Spine Fusion Surgery: Case Reports and Review of the Literature.

    Science.gov (United States)

    Molinari, Robert W; Molinari, Christine

    2016-02-01

    Study Design Case report. Objective There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric cervical spine. The outcomes and complications involving the off-label use of bone morphogenetic protein (BMP)-2 in the pediatric cervical spine are not clearly defined. The purpose of this article is to report successful fusion without complications in two pediatric patients who had instrumented occipitocervical fusion using low-dose BMP-2. Methods A retrospective review of the medical records was performed, and the patients were followed for 5 years. Two patients under 10 years of age with upper cervical instability were treated with occipitocervical instrumented fusion using rigid occipitocervical fixation techniques along with conventionally available low-dose BMP-2. A Medline and PubMed literature search was conducted using the terms "bone morphogenetic protein," "BMP," "rh-BMP2," "bone graft substitutes," and "pediatric cervical spine." Results Solid occipitocervical fusion was achieved in both pediatric patients. There were no reported perioperative or follow-up complications. At 5-year follow-up, radiographs in both patients showed successful occipital cervical fusion without evidence of instrumentation failure or changes in the occipitocervical alignment. To date, there are few published reports on this topic. Complications and the appropriate dosage application in the pediatric posterior cervical spine remain unknown. Conclusions We describe two pediatric patients with upper cervical instability who achieved successful occipital cervical fusion without complication using off-label BMP-2. This report underscores the potential for BMP-2 to achieve successful arthrodesis of the posterior occipitocervical junction in pediatric patients. Use should be judicious as complications and long-term outcomes of pediatric BMP-2 use remain undefined in the existing literature. PMID:26835215

  2. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  3. Possible Involvement of Smad Signaling Pathways in Induction of Odontoblastic Properties in KN-3 Cells by Bone Morphogenetic Protein-2: A Growth Factor to Induce Dentin Regeneration

    Directory of Open Access Journals (Sweden)

    Ayako Washio

    2012-01-01

    Full Text Available We examined the effects of bone morphogenetic protein-2 (BMP-2 on growth, differentiation, and intracellular signaling pathways of odontoblast-like cells, KN-3 cells, to clarify molecular mechanisms of odontoblast differentiation during pulp regeneration process. After treatment with BMP-2, the cell morphology, growth, alkaline phosphatase (ALP activity, and the activation and expression of BMP-induced intracellular signaling molecules, such as Smad1/5/8 and Smad6/7, as well as activities of dentin sialoprotein (DSP and dentin matrix protein 1 (DMP1, were examined. BMP-2 had no effects on the morphology, growth, or ALP activity of KN-3 cells, whereas it induced the phosphorylation of Smad1/5/8 and expression of Smad6/7. BMP-2 also induced the expressions of DSP and DMP-1. Our results suggest that KN-3 cells may express an odontoblastic phenotype with the addition of BMP-2 through the activation of Smad signaling pathways.

  4. The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells.

    Science.gov (United States)

    Bolander, J; Ji, W; Geris, L; Bloemen, V; Chai, Y C; Schrooten, J; Luyten, F P

    2016-01-01

    When combining osteogenic progenitor cells such as human periosteum derived cells (hPDCs) with osteoconductive biomaterials like calcium phosphate (CaP)-scaffolds, in vivo bone formation can be achieved. This process is dependent on the early activation of Bone morphogenetic protein (BMP)-signalling. However, the bone forming process is slow and routinely only a limited amount of bone and bone marrow is formed. Therefore, we hypothesised that a robust clinically relevant outcome could be achieved by adding more physiological levels of potent BMP-ligands to these cell- and CaP-based constructs. For this, hPDCs were characterised for their responsiveness to BMP-ligands upon in vitro 2D stimulation. BMP-2, -4, -6 and -9 robustly induced osteochondrogenic differentiation. Subsequently, these ligands were coated onto clinically approved CaP-scaffolds, BioOss® and CopiOs®, followed by hPDC-seeding. Protein lysates and conditioned media were investigated for activation of BMP signalling pathways. Upon in vivo implantation, the most abundant bone formation was found in BMP-2 and BMP-6-coated scaffolds. Implanted cells actively contributed to the newly formed bone. Remnants of cartilage could be observed in BMP-coated CopiOs®-constructs. Computational analysis displayed that the type of BMP-ligand as well as the CaP-scaffold affects skeletal tissue formation, observed in a qualitative as well as quantitative manner. Furthermore, the in vitro mechanism appears to predict the in vivo outcome. This study presents further evidence for the potential of BMP-technology in the development of clinically relevant cell-based constructs for bone regenerative strategies. PMID:26728496

  5. Prolonged propagation of rat neural stem cells relies on inhibiting autocrine/paracrine bone morphogenetic protein and platelet derived growth factor signals

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Liangfu Zhou; Xing Wu; Hua Liu; Qiang Yuan; Ying Mao; Jin Hu

    2011-01-01

    Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.

  6. Bone morphogenetic protein-9 suppresses growth of myeloma cells by signaling through ALK2 but is inhibited by endoglin

    International Nuclear Information System (INIS)

    Multiple myeloma is a malignancy of plasma cells predominantly located in the bone marrow. A number of bone morphogenetic proteins (BMPs) induce apoptosis in myeloma cells in vitro, and with this study we add BMP-9 to the list. BMP-9 has been found in human serum at concentrations that inhibit cancer cell growth in vitro. We here show that the level of BMP-9 in serum was elevated in myeloma patients (median 176 pg/ml, range 8–809) compared with healthy controls (median 110 pg/ml, range 8–359). BMP-9 was also present in the bone marrow and was able to induce apoptosis in 4 out of 11 primary myeloma cell samples by signaling through ALK2. BMP-9-induced apoptosis in myeloma cells was associated with c-MYC downregulation. The effects of BMP-9 were counteracted by membrane-bound (CD105) or soluble endoglin present in the bone marrow microenvironment, suggesting a mechanism for how myeloma cells can evade the tumor suppressing activity of BMP-9 in multiple myeloma

  7. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Directory of Open Access Journals (Sweden)

    E Ferreira

    2012-07-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs with electrotransferred bone morphogenetic protein-2 (BMP-2 transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications.

  8. Healing patterns of critical size bony defects in rats after grafting with bone substitutes soaked in recombinant human bone morphogenetic protein-2: histological and histometric evaluation.

    Science.gov (United States)

    Mokbel, N; Naaman, N; Nohra, J; Badawi, N

    2013-09-01

    The aim of the study was to evaluate the effect of different bone substitutes soaked in recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of critical size defects in calvarial bone. Defects were created in 24 Sprague Dawley rats. The rhBMP-2 was diluted to obtain a final concentration of 0.2mg/ml. Rats were divided into four groups and treated as follows: in the first group the defect was filled with anorganic bovine bone mineral (ABBM) and rhBMP-2, the second group was treated with freeze-dried bone allograft (FDBA) and rhBMP-2, and the third group was treated with autogenous bone (AUTO). In the control group the defects were left untreated. Animals were killed after 8weeks and calcified histological sections prepared. Histometric measurements showed that mean (SD) bone formation was 4.00 (1.69)mm(2) in the ABBM group, 2.56 (1.06)mm(2) in the FDBA group, and 2.30 (0.34)mm(2) in the AUTO group. The difference between the ABBM group and the other 3 groups was significant (p<0.0001) with a mean bone formation of 0.82 (0.25)mm(2) in the control group. There was no significant difference between the FDBA and the AUTO groups (p=0.96). Within the limits of this study we concluded that the addition of rhBMP-2 to bone substitutes was efficacious in regenerating bone in critical size bone defects in calveria in rats. PMID:22939894

  9. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin;

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used in ...

  10. Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    OpenAIRE

    Marc-Frederic Pastor; Thilo Floerkemeier; Frank Witte; Jens Nellesen; Fritz Thorey; Henning Windhagen; Mathias Wellmann

    2012-01-01

    Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes corr...

  11. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Baad-Hansen, Thomas Einer; Overgaard, S; Lind, M;

    2007-01-01

    weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own. ProOsteon alone cannot be recommended as a......Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  12. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  13. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model.

    Science.gov (United States)

    Ampuja, M; Alarmo, E L; Owens, P; Havunen, R; Gorska, A E; Moses, H L; Kallioniemi, A

    2016-06-01

    Bone morphogenetic protein 4 (BMP4) is a key regulator of cell proliferation and differentiation. In breast cancer cells, BMP4 has been shown to reduce proliferation in vitro and interestingly, in some cases, also to induce migration and invasion. Here we investigated whether BMP4 influences breast cancer metastasis formation by using a xenograft mouse model. MDA-MB-231 breast cancer cells were injected intracardially into mice and metastasis formation was monitored using bioluminescence imaging. Mice treated with BMP4 developed metastases slightly earlier as compared to control animals but the overall number of metastases was similar in both groups (13 in the BMP4 group vs. 12 in controls). In BMP4-treated mice, bone metastases were more common (10 vs. 7) but adrenal gland metastases were less frequent (1 vs. 5) than in controls. Immunostaining revealed no differences in signaling activation, proliferation rate, blood vessel formation, EMT markers or the number of cancer-associated fibroblasts between the treatment groups. In conclusion, BMP4 caused a trend towards accelerated metastasis formation, especially in bone. More work is needed to uncover the long-term effects of BMP4 and the clinical relevance of these findings. PMID:26970275

  14. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hassan AH

    2015-07-01

    Full Text Available Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA and polycaprolactone (PCL, to prepare sustained-release injectable nanoparticles (NPs of bone morphogenetic protein-2 (BMP-2 for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2 containing grafting material for the repair of alveolar bone clefts.Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for

  15. Implanting hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 and hyaluronic acid into distal femoral metaphysis of rabbits

    Institute of Scientific and Technical Information of China (English)

    PENG Lei; BIAN Wei-guo; LIANG Fang-hui; XU Hua-zi

    2008-01-01

    Objective: To assess the osseointegration capability of hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 (BMP-2) and hyaluronic acid to repair defects in the distal femur metaphysis in rabbits. Methods: Porous titanium implants were made by sintering titanium powder at high temperature, which were coated with hydroxyapatite by alkali and heat treatment and with BMP-2 combined with bone regeneration materials. And hyaluronic acid was further used as delivery system to prolong the effect of BMP-2. The implants were inserted into the metaphysis of the distal femur of rabbits. The animals were killed at 6, 12 and 24 weeks to accomplish histological and biomechanical analyses. Results: According to the result of histological analysis, the osseointegration in BMP-2 group was better than that of the HA-coated porous titanium group. In push-out test, all the samples had bigger shear stress as time passed by. There was statistical difference between the two groups in 6 and 12 weeks but not in 24 weeks. Conclusion: Hydroxyapatite-coated porous titanium with BMP-2 and hyaluronic acid has a good effect in repairing defects of distal fumur in rabbits, which is a fine biotechnology for future clinical application.

  16. Bone Morphogenetic Protein 4,Bone Morphogenetic Protein 7 and Polycystic Ovary Syndrome%骨形态蛋白4和骨形态蛋白7与多囊卵巢综合征

    Institute of Scientific and Technical Information of China (English)

    黄晓; 金洁雯; 王勇

    2014-01-01

    多囊卵巢综合征(PCOS)是育龄妇女最常见的生殖内分泌紊乱疾病之一。以稀发排卵或不排卵、高雄激素血症以及形态学上的多囊卵巢为主要表现特征。迄今为止,其病因和病理机制尚不清楚。有研究显示,PCOS的形成与卵源性的某些转录因子有关,如转化生长因子β(TGF-β)。骨形态蛋白4(BMP4)和BMP7是TGF-β超家族的重要成员,在卵泡的形成、排卵、颗粒细胞的生长成熟和凋亡中发挥重要作用。因此了解BMP4和BMP7在女性生殖系统的调节作用,对研究PCOS的病因机制以及治疗有重要价值。%Polycystic ovary syndrome (PCOS) is one of the common endocrine disorder affecting women of reproductive age,and is characterized by oligo-or anovulation,hyperandrogenism and polycystic ovaries. Some findings show that the cause of PCOS has something to do with the abnormal regulation of transcription factors ,such as the Transforming Growth Factor-beta (TGF-β) superfamily. Bone Morphogenetic Protein 4 (BMP4) and Bone Morphogenetic Protein 7 (BMP7) are both important members in TGF-βsuperfamily, and play an significant role in the folliculogenesis、ovulation and the development and apotosis of granulosa cells in ovary. As a result,in order to know more about the pathogenesis and treatment of PCOS, it is necessary to make clear the regulation function of BMP4 and BMP7 in female reproductive system.

  17. Three-Dimensional Upper Lip and Nostril Sill Changes After Cleft Alveolus Reconstruction Using Autologous Bone Grafting Versus Recombinant Human Bone Morphogenetic Protein-2.

    Science.gov (United States)

    Raposo-Amaral, Cassio Eduardo; Denadai, Rafael; Alonso, Nivaldo

    2016-06-01

    Cleft alveolus in patients with unilateral complete cleft lip and palate has been alternatively reconstructed with recombinant human bone morphogenetic protein (rhBMP)-2. However, its effects on upper lip and nostril sill anatomy are not known. Thus, the objective of this investigation was to assess and compare upper lip and nostril sill changes after cleft alveolus reconstruction with autologous bone from the iliac crest region and rhBMP-2. Patients were randomly allocated into 2 groups. In group 1, autologous bone from the iliac crest region was used to fill the cleft alveolus (n = 4), and in group 2, rhBMP-2 was used to fill the cleft alveolus (n = 8). Preoperatively and at one after the surgery, computerized tomography (CT) was performed. Reformatted CT imaging was used to perform cephalometric linear measurements of the upper lip and nostril sill regions. Inter- and intragroup data of the pre and postoperative reformatted CT measurements of the upper lip and nostril sill regions did not show differences (P >0.05) in cutaneous upper lip height and projection, nostril sill elevation, and subnasale projection. There were no significant upper lip and nostril sill anatomical changes after cleft alveolus reconstruction using autologous bone grafting and rhBMP-2. PMID:27244210

  18. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1.

    Directory of Open Access Journals (Sweden)

    Helena H Ritchie

    Full Text Available Dentin sialoprotein (DSP and phosphophoryn (PP, acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP(240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP(240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG(447↓D(448DPN. DSP-PP(240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP(430 and PP(240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog, we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1 that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP(240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP(240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP(240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP1 in processing DSP-PP in dentin matrix.

  19. Osseointegration of titanium implants by addition of recombinant bone morphogenetic protein 2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtinger, T.K.; Mueller, R.T.; Schuermann, N.; Oldenburg, M. [Essen Univ. (Germany). Dept. of Orthopaedic Surgery; Wiemann, M. [Inst. of Physiology, Univ. of Essen (Germany); Chatzinikolaidou, M.; Jennissen, H.P. [Inst. of Physiological Chemistry, Univ. of Essen (Germany); Rumpf, H.M.

    2001-12-01

    The osseointegration of long-term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP-2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP-2 on the formation of new bone around titanium implants was studied. A total of 8 titanium-alloy cylinders (Ti-6Al-4V) with a plasma spray coating (TPS; 400 {mu}m thickness) were implanted into femoral condyles of mature sheep: rhBMP-2 solution (1 {mu}g) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP-2-free controls. Two of these controls exhibited an additional calciumphosphate-coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow-up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP-2-solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS-controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP-2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long-term implants (e.g. joint replacements) with rhBMP-2-biocoating for humans. (orig.)

  20. Mechanism of recombinant human bone morphogenetic protein-2 in repairing hematopoietic injury in mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Objective: To investigate the mechanism of recombinant human bone morphogenetic protein-2 (rhBMP-2) in repairing hematopoietic injury in mice irradiated with γ-ray. To prepare SRY gene probe and study the effect of rhBMP-2 in repairing hematopoietic injury in mice by in situ hybridization. Methods: Twenty-two BALB/c female mice were randomly divided into the irradiated group and BMP treated group, respectively. Bone marrow cells of normal male mice were transplanted into 22 female mice post-irradiation to 8.5 Gy of 60Co γ rays. The left femurs of the survived female mice were re-irradiated with 9 Gy 14 days later. Mice in BMP treated group were given rhBMP-2 20 mg/kg while those in control group were treated with 0.9% saline by intraperitoneal injection every day for 6 days. These mice were killed 14 days later and paraffin sections of femurs were made. The SRY gene was detected with in situ hybridization. Results: There were more positive blots in the left femurs of the mice in irradiated group than those in BMP treated group (T=155.0, P0.05). The number of positive blots in the left femurs of the mice in BMPtreated group was significantly less than those in the right femurs of the mice in two groups (T=155.0, 55.0, P<0.05). Conclusions: No donor cell of male mice was detected in the left femurs of BMP treated group, suggesting that rhBMP-2 promoted the restoration of residuary bone marrow cells. Thus, rhBMP-2 promotes the proliferation or differentiation of residuary mesenchymal stem cells, improves hematopoietic microenvironment and accelerates the hematopoietic restoration. (authors)

  1. Use of recombinant human bone morphogenetic protein-2 as an adjunct for instrumented posterior arthrodesis in the occipital cervical region: An analysis of safety, efficacy, and dosing

    OpenAIRE

    D Kojo Hamilton; Smith, Justin S.; Reames, Davis L.; Williams, Brian J.; Shaffrey, Christopher I.

    2010-01-01

    Background: There have been few reports on the use of recombinant human bone morphogenetic protein (rhBMP)-2 in posterior spine. However, no study has investigated the dosing, safety, and efficacy of its use in the posterior atlantoaxial, and/or craniovertebral junction. Recent case report of the cytokine-mediated inflammatory reaction, following off label use of rhBMP-2 as an adjunct for cervical fusion, particularly in complex cases, has increased concern about complications associated with...

  2. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    OpenAIRE

    Desislava Abadjieva; Elena Kistanova

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at ...

  3. Autocrine Bone Morphogenetic Protein-9 signals via Activin Receptor Like Kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation

    OpenAIRE

    Herrera, Blanca; van Dinther, Maarten; ten Dijke, Peter; Inman, Gareth J.

    2009-01-01

    Bone morphogenetic proteins (BMPs) act as central regulators of ovarian physiology and may be involved in ovarian cancer development. In an effort to understand these processes we characterized TGFβ/BMP receptor and Smad expression in immortalised ovarian surface epithelial cells (IOSE) and a panel of ovarian cancer cell lines. These studies prompted us to evaluate the potential role of BMP9 signalling in ovarian cancer. Using siRNA, ligand trap, inhibitor and ligand stimulation approaches we...

  4. Conversion of the Nipple to Hair-Bearing Epithelia by Lowering Bone Morphogenetic Protein Pathway Activity at the Dermal-Epidermal Interface

    OpenAIRE

    Mayer, Julie Ann; Foley, John; de la Cruz, Damon; Chuong, Cheng-ming; Widelitz, Randall

    2008-01-01

    Epithelial appendages, such as mammary glands and hair, arise as a result of epithelial-mesenchymal interactions. Bone morphogenetic proteins (BMPs) are important for hair follicle morphogenesis and cycling and are known to regulate a wide variety of developmental processes. For example, overexpression of BMPs inhibits hair follicle formation. We hypothesized that the down-regulation of the BMP signaling pathway in the basal epidermis expands regions that are competent to form hair follicles ...

  5. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    OpenAIRE

    Zhenya Gao; Lijun Huo; Dongmei Cui; Xiao Yang; Junwen Zeng

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cu...

  6. Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

    OpenAIRE

    Nehleh Zarei Fard; Tahereh Talaei-Khozani; Soghra Bahmanpour; Tahereh Esmaeilpour

    2015-01-01

    Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, we investigated the role of two different exposure times to BMP4 in cell viability, embryoid body (E...

  7. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future. PMID:25376489

  8. Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton

    Directory of Open Access Journals (Sweden)

    Włodarski Krzysztof

    2007-12-01

    Full Text Available Abstract Background Differences in duration of bone healing in various parts of the human skeleton are common experience for orthopaedic surgeons. The reason for these differences is not obvious and not clear. Methods In this paper we decided to measure by the use of real-time RT-PCR technique the level of expression of genes for some isoforms of bone morphogenetic proteins (BMPs, whose role is proven in bone formation, bone induction and bone turnover. Seven bone samples recovered from various parts of skeletons from six cadavers of young healthy men who died in traffic accidents were collected. Activity of genes for BMP-2, -4 and -6 was measured by the use of fluorescent SYBR Green I. Results It was found that expression of m-RNA for BMP-2 and BMP-4 is higher in trabecular bone in epiphyses of long bones, cranial flat bones and corpus mandibulae then in the compact bone of diaphyses of long bones. In all samples examined the expression of m-RNA for BMP-4 was higher than for BMP-2. Conclusion It was shown that m-RNA for BMP-6 is not expressed in the collected samples at all. It is postulated that differences in the level of activation of genes for BMPs is one of the important factors which determine the differences in duration of bone healing of various parts of the human skeleton.

  9. EFFECTS OF TRANSFORMING GROWTH FACTOR β AND RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 ON HUMAN PERIODONTAL LIGAMENT FIBROBLASTS

    Institute of Scientific and Technical Information of China (English)

    司晓辉; 刘正

    2001-01-01

    Objective To evaluate the effects of transforming growth factor β(TGF-β) and recombinant human bone morphogenetic protein 2 (rhBMP2) on human periodontal ligament fibroblasts ( HPDLFs ). Methods HPDLFs were done primary culture to detect the distinct concentrations of TGF-β and rhBMP2 on its proliferation, alkaline phosphatase (ALP) activity, osteocalcin ( OC) synthesis and formation of the mineralized nodules, respectively. Results TGF-β(5~100ng /ml) significantly stimulated the proliferation of HPDLFs. The ALP activity of HPDLFs was evaluated evidently by 5ng /ml TGF-β. TGF-β(0.5~100ng /ml) had no effects on OC synthesis and formation of the mineralized nodules of HPDLFs. rhBMP2 (0.25~2mg/ ml) had no rernarkable effect on the proliferation of HPDLFs. The ALP activity, OC synthesis and formation of the mineralized nodules of HPDLFs were significantly stimulated by 0.5~2mg/ml rhBMP2. Conclusion The effects of TGF-β and rhBMP2 on HPDLFs are dose-dependent. TGF-β can stimulate HPDLFs to express the early marker of osteoblastic phenotype , and it lacks the ability to promote maturation of the osteogenic phenotype. rhBMP2 can not only stimulate the expression but also promote the maturation of osteoblastic phenotype of HPDLFs.

  10. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  11. Expression analysis of bone morphogenetic protein 4 between fat and lean birds in adipose tissue and serum.

    Science.gov (United States)

    Cheng, B H; Leng, L; Wu, M Q; Zhang, Q; Zhang, X Y; Xu, S S; Cao, Z P; Li, Y M; Luan, P; Li, H

    2016-07-01

    The objectives of the present study were to characterize the tissue expression of chicken (Gallus gallus) bone morphogenetic protein 4 (BMP4) and compare differences in its expression in abdominal fat tissue and serum between fat and lean birds and to determine a potential relationship between the expression of BMP4 and abdominal fat tissue growth and development. The results showed that chicken BMP4 messenger RNA (mRNA) and protein were expressed in various tissues, and the expression levels of BMP4 transcript and protein were relatively higher in adipose tissues. In addition, the mRNA and protein expression levels of BMP4 in abdominal fat tissue of fat males were lower than those of lean males at 1, 2, 5, and 7 wk of age (P < 0.05). Furthermore, the serum BMP4 content of fat males was lower than that of lean males at 7 wk of age (P < 0.05). BMP4 mRNA expression levels were significantly higher in preadipocytes than those in mature adipocytes (P < 0.05), and the expression level decreased during differentiation in vitro (P < 0.05). These results suggested that chicken BMP4 might affect abdominal fat deposition through differences in its expression level. The results of this study will provide basic molecular information for studying the role of BMP4 in the regulation of adipogenesis in avian species. PMID:26945137

  12. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells.

    Science.gov (United States)

    Malaver-Ortega, Luis F; Sumer, Huseyin; Jain, Kanika; Verma, Paul J

    2016-02-01

    Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation. PMID:26660942

  13. Human bone morphogenetic protein-2 gene transfer induces human mesenchymal stem cell proliferation and differentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    李军; 范清宇; 钱济先; 马保安; 周勇; 张明华

    2004-01-01

    Objective: To identify eukaryotic expression vector of human bone morphogenetic protein 2 pcDNA3/BMP2, verify its expression in transfected human mesenchymal stem cells (hMSCs) and the effect on hMSCs differentiation.Methods: The BMP2 gene was cloned into a eukaryotic expression vector pcDNA3. Transfected the recombinant into hMSCs by liposome. Immunnohistochemistry and in situ hybridization methods were used to identify the expression of BMP2 mRNA and protein; ALP and Von Kossa stains were performed to identify the BMP2 gene differentiated effect on the hMSCs. Results: The pcDNA3/BMP2 fragments were as large as theory. BMP2 mRNA and protein were expressed and synthesized both in 48 h and 4 weeks after transfection, the ALP and Ca deposit exhibition, which marked the osteogenic lineage of hMSCs,were enhanced and sped. Conclusion: Transfection of pcDNA3/BMP2 is able to provide transient and persistent expression in hMSCs, and promote the MSCs differentiation to osteogenic lineage.

  14. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation

    Institute of Scientific and Technical Information of China (English)

    Hong Shen; Guo-Jiang Huang; Yue-Wen Gong

    2003-01-01

    AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.

  15. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    Science.gov (United States)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  16. Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins.

    Science.gov (United States)

    Indjeian, Vahan B; Kingman, Garrett A; Jones, Felicity C; Guenther, Catherine A; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M

    2016-01-14

    Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form. PMID:26774823

  17. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Rey-Rico

    2011-04-01

    Full Text Available In situ gelling solutions for minimally invasive local application of bone growth factors are attracting increasing attention as efficient and patient-friendly alternative to bone grafts and solid scaffolds for repairing bone defects. Poloxamines, i.e., X-shaped poly(ethylene oxide-poly(propylene oxide block copolymers with an ethylenediamine core (Tetronic®, were evaluated both as an active osteogenic component and as a vehicle for rhBMP-2 injectable implants. After cytotoxicity screening of various poloxamine varieties, Tetronic 908, 1107, 1301 and 1307 solutions were chosen as the most cytocompatible and their sol-to-gel transitions were rheologically characterized. Viscoelastic gels, formed at 37 ºC, sustained protein release under physiological-like conditions. Formulations of rhBMP-2 led to differentiation of mesenchymal stem cells to osteoblasts, quantified as alkaline phosphatase activity with a maximum at day 7, and to mineralized nodules. Interestingly, poloxamine solely gels led to an initial proliferation of the mesenchymal stem cells (first week, followed by differentiation to osteoblasts (second to third week. Histochemical analysis revealed that Tetronic 908 is only osteoinductive; Tetronic 1107 is mostly osteoinductive, although its use leads to a minor differentiation to adipocytes; Tetronic 1307, solely or loaded with rhBMP-2, causes differentiation of both osteoblasts and adipocytes. Enhanced expression levels of CBFA-1 and collagen type I were observed for Tetronic 908, 1107 and 1307, both solely and combined with rhBMP-2. The intrinsic osteogenic activity of poloxamines (not observed for Pluronic F127 offers novel perspectives for bone regeneration using minimally invasive procedures (i.e., injectable scaffolds and overcoming the safety and the cost/effectiveness concerns associated with large scale clinical use of recombinant growth factors.

  18. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Chun; Ma, Xueqin; Li, Tao; Zhang, Qiqing

    2015-09-01

    Osteoarthritis, a common joint degeneration, can cause breakdown of articular cartilage with the presence of lubricin metabolic abnormalities. Lubricin is a multi-level chondroprotective mucinous glycoprotein in articular joints. Joint defect and infection is elevated and accompanied by accelerated cartilage lesions involving degradation and loss of lubricin. However, a novel, heterocyclic compound called kartogenin (KGN) was discovered to stimulate chondrogenic differentiation of bone-derived mesenchymal stem cells (BMSCs). And the synergistic effect of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7) could provoke lubricin accumulation. This paper attempted to explore the connection between accumulation of lubricin and the effect of TGF-β1, BMP-7 and/or KGN. Hence, we investigated the expression and secretion of lubricin in BMSCs treated with different combinations of TGF-β1, BMP-7, and/or KGN. Using an in vitro BMSCs system, we observed the content of lubricin from BMSCs treated with TGF-β1, BMP-7, and KGN was the highest at both the protein level and the gene level. The accumulation of lubricin was enhanced coordinately by the increase of synthesis and decrease of degradation possibly via c-Myc and adamts5 pathway. These results further suggested that supplementation of the defect parts with lubricin by using growth factors and small molecules showed a promising potential on preventing joint deterioration in patients with acquired or genetic deficiency of lubricin in the future of regenerative medicine. PMID:25857705

  19. Management of subtrochanteric femur fractures with internal fixation and recombinant human bone morphogenetic protein-7 in a patient with osteopetrosis: a case report

    Directory of Open Access Journals (Sweden)

    Golden Robert D

    2010-05-01

    Full Text Available Abstract Introduction Osteopetrosis is a group of conditions characterized by defects in the osteoclastic function of the bone resulting in defective bone resorption. Clinically, the condition is characterized by a dense, sclerotic, deformed bone which, despite an increased density observable by radiography, often results in an increased propensity to fracture and delayed union. Case Presentation We report the case of a 27-year-old Asian man presenting with bilateral subtrochanteric femur fractures. He had a displaced right subtrochanteric femur fracture after a low-energy fall, which was treated surgically. The second fracture that our patient endured was diagnosed as a stress fracture ten weeks later when he complained of pain in the contralateral left thigh. By that time, the right-sided fracture exhibited no radiographic evidence of healing, and when the left-sided stress fracture was being treated surgically, bone grafting with recombinant human bone morphogenetic protein-7 was also performed on the right side. Conclusion While there are no data supporting the use of bone morphogenic proteins in the management of delayed healing in patients with osteopetrosis, no other reliable osteoinductive grafting options are available to treat this condition. Both fractures in our patient healed, but based on the serial radiographic assessment it is uncertain to what degree the recombinant human bone morphogenetic protein-7 may have contributed to the successful outcome. It may have also contributed to the formation of heterotopic bone around the fracture site. Further investigation of the effectiveness and indications of bone morphogenic protein use for the management of delayed fracture healing in patients with osteopetrosis is warranted.

  20. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  1. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  2. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  3. Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro

    Directory of Open Access Journals (Sweden)

    McCaskie Andrew W

    2010-05-01

    Full Text Available Abstract Background The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products and medicine (tissue engineering, prosthetic implants, cancer and developmental biology. We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface. Results A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation in vitro over 28 days (in the complete absence of other osteogenic supplements. In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis. Conclusion These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days and long term (weeks effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.

  4. Profile of serum alkaline phosphatase after inoculation of mononuclear cells and bone morphogenetic protein in the repair of osteochondral defects in rabbits

    Directory of Open Access Journals (Sweden)

    Luiz Augusto de Souza

    2011-12-01

    Full Text Available In this study, serum alkaline phosphatase activity was measured in response to the repair of osteochondral defects in twenty-four New Zealand rabbits. The animals were divided into three groups: a control (GC, those treated with bone marrow mononuclear cells (GCM and those that received mononuclear cells with autologous bone morphogenetic protein (BMP + GCM. After exposing the trochlear groove of the left stifle joint, a wedge-shaped segment was removed. Later, the defect was filled with an osteochondral autograft preserved in 98% glycerin. For the GC group, only the bone graft was performed. For the GCM, in addition to the graft, 2x106 seed mononuclear cells were implanted. For the GCM + BMP, the same number of cells, associated with 1μg of bone morphogenetic protein, were intraarticularly administered. The osteoblastic response was measured by analyzing the serum alkaline phosphatase on day 0 (preoperative 3, 15, 30, and 45 after surgery, and by radiographic examinations. Analysis of variance in randomized blocks, factorial and Tukey’s test (p = 0.05 were made. The overall mean GCM was superior to the other groups and the highest rates were among the 15th and 45th days postoperatively. The discrepancy in values between individuals of the same group casts doubts on the veracity of the test.

  5. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas;

    2007-01-01

    ) and TNF-related apoptosis-inducing ligand (TRAIL) in HVSMC. All three growth factors decreased OPG protein production significantly; these results were paralleled by reduced OPG mRNA expression. TRAIL mRNA levels were also decreased. RANKL mRNA expression declined when treated with TGF-beta1 but were......The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved in the...... transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  6. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects.

    Science.gov (United States)

    Jones, Tamsin E M; Day, Robert C; Beck, Caroline W

    2013-11-01

    The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. PMID:23981117

  7. Patterns of bone morphogenetic protein-2 expression in smooth muscle tumors of the uterine corpus and other uterine tissues.

    Science.gov (United States)

    Fadare, Oluwole; Renshaw, Idris L; Liang, Sharon X

    2011-07-01

    Bone morphogenetic proteins (BMPs) are extracellular, multifunctional growth factors that constitute the largest subset of the transforming growth factor β superfamily. BMP2 is involved in cardiovascular embryogenesis, in addition to a variety of other postnatal functions, such as neovascularization, osteoinduction, tumor signaling, and in the uterus, stromal decidualization at the implantation site. Estrogen receptor signaling is common in smooth muscle tumors of the uterus, and preclinical models suggest significant interactions between BMP2 and estrogen receptor-mediated signaling. The purpose of this study is to define the patterns of BMP2 expression, as assessed by immunohistochemistry, in smooth muscle tumors and other tissues of the uterine corpus, and to establish whether BMP2 expression has any prognostic significance in uterine leiomyosarcomas. BMP2 was positive (cytoplasmic pattern, typically focal) in 24% of leiomyosarcomas and 20.7% of leiomyomata, but was either infrequently expressed or not expressed in all other tissues evaluated, including normal myometrium and endometrium, endometrial stromal tumors, typical adenomyoma, adenomyosis, and serosal endometriosis. The endothelial cells of small, thin-walled vessels were frequently, but not invariably immunoreactive for BMP2. There was no significant difference between BMP2⁺ and BMP⁻ leiomyosarcomas regarding average tumor size, average patient age, microvessel density, and proportions with high tumor grade, advanced stage and frequency of death from disease on follow-up. Two (29%) of 7 BMP2⁺ leiomyosarcomas were estrogen receptor+, compared with 5 (50%) of 10 BMP2⁻ leiomyosarcomas, a statistically insignificant difference (P=0.62). It is concluded that BMP2 is only expressed in a minority of smooth muscle tumors of the uterine corpus, and lacks prognostic significance in leiomyosarcomas. BMP2 is rarely expressed in the other nonendothelial tissues of the human uterine corpus that were

  8. Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels.

    Science.gov (United States)

    Bosman, Erika A; Lawson, Kirstie A; Debruyn, Joke; Beek, Lisette; Francis, Annick; Schoonjans, Luc; Huylebroeck, Danny; Zwijsen, An

    2006-09-01

    Smad5 is an intracellular mediator of bone morphogenetic protein (Bmp) signalling. It is essential for primordial germ cell (PGC) development, for the development of the allantois and for amnion closure, as demonstrated by loss of Bmp signalling. By contrast, the appearance of ectopic PGC-like cells and regionalized ectopic vasculogenesis and haematopoiesis in thickened Smad5(m1/m1) amnion are amnion defects that have not been associated with loss of Bmp signalling components. We show that defects in amnion and allantois can already be detected at embryonic day (E) 7.5 in Smad5 mutant mice. However, ectopic Oct4-positive (Oct4(+)) and alkaline phosphatase-positive (AP(+)) cells appear suddenly in thickened amnion at E8.5, and at a remote distance from the allantois and posterior primitive streak, suggesting a change of fate in situ. These ectopic Oct4(+), AP(+) cells appear to be Stella negative and hence cannot be called bona fide PGCs. We demonstrate a robust upregulation of Bmp2 and Bmp4 expression, as well as of Erk and Smad activity, in the Smad5 mutant amnion. The ectopic expression of several Bmp target genes in different domains and the regionalized presence of cells of several Bmp-sensitive lineages in the mutant amnion suggest that different levels of Bmp signalling may determine cell fate. Injection of rBMP4 in the exocoelom of wild-type embryos can induce thickening of amnion, mimicking the early amnion phenotype in Smad5 mutants. These results support a model in which loss of Smad5 results paradoxically in gain of Bmp function defects in the amnion. PMID:16887830

  9. Union Rate and Complications in Spine Fusion with Recombinant Human Bone Morphogenetic Protein-7: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Vavken, Julia; Vavken, Patrick; Mameghani, Alexander; Schaeren, Stefan

    2016-03-01

    Study Design Systematic review and meta-analysis. Objective The objective of this meta-analysis was to evaluate the current best evidence to assess effectiveness and safety of recombinant human bone morphogenetic protein-7 (rhBMP-7) as a biological stimulant in spine fusion. Methods Studies were included if they reported on outcomes after spine fusion with rhBMP-7. The data was synthesized using Mantel-Haenszel pooled risk ratios (RRs) with 95% confidence intervals (CIs). Main end points were union rate, overall complications, postoperative back and leg pain, revision rates, and new-onset cancer. Results Our search produced 796 studies, 6 of which were eligible for inclusion. These studies report on a total of 442 patients (328 experimental, 114 controls) with a mean age of 59 ± 11 years. Our analysis showed no statistically significant differences in union rates (RR 0.97, 95% CI 0.84 to 1.11, p = 0.247), overall complications (RR 0.92, 95% CI 0.71 to 1.20, p = 0.545), postoperative back and leg pain (RR 1.03, 95% CI 0.48 to 2.19, p = 0.941), or revision rate (RR 0.81, 95% CI 0.47 to 1.40, p = 0.449). There was a mathematical indicator of increased tumor rates, but with only one case, the clinical meaningfulness of this finding is questionable. Conclusion We were not able to find data in support of the use of rhBMP-7 for spine fusion. We found no evidence for increased complication or revision rates with rhBMP-7. On the other hand, we also found no evidence in support of improved union rates. PMID:26933613

  10. Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera

    Institute of Scientific and Technical Information of China (English)

    Qing; Wang; Mei-Lan; Xue; Gui-Qiu; Zhao; Mei-Guang; Liu; Yu-Na; Ma; Yan; Ma

    2015-01-01

    AIM: To identify the presence of various bone morphogenetic proteins(BMPs) and their receptors in normal sclera of human, rat and guinea pigs, and to determine whether their expression changed with form-deprivation myopia(FDM) in guinea pig sclera.METHODS: The expression of BMPs and BMP receptors were detected using reverse transcription polymerase chain reaction(RT-PCR) and immunofluorescence. Two-week-old guinea pigs were monocularly form-deprived with a translucent lens. After fourteen days induction of FDM, total RNA was isolated and subjected to RT-PCR to examine the changes of BMPs and BMP receptors in tissues from the posterior sclera. Western blotting analysis was used to investigate their changes in protein levels.RESULTS: Human sclera expressed m RNAs for BMP-2,-4,-5,-7,-RIA,-RIB and BMP-RII. Conversely, rat sclera only expressed m RNA for BMP-7 and BMP-RIB,while the expression of BMPs and BMP receptors in guinea pigs were similar to that of humans. Human sclera also expresses BMP-2,-4,-5,-7 in protein level.Fourteen days after the induction of myopia, significant decreased expressions for BMP-2 and BMP-5 in the posterior sclera of FDM-affected eyes(P <0.05 vs internal control eyes).· CONCLUSION: Various BMPs were expressed in human and guinea pig sclera. In the posterior sclera,expressions of BMP-2 and BMP-5 significantly decreased in FDM eyes. This finding indicates that various BMPs as components of the scleral cytokines regulating tissue homeostasis and provide evidence that alterations in the expression of BMP-2 and BMP-5 are associated with sclera remodeling during myopia induction.

  11. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    Science.gov (United States)

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers. PMID:14601724

  12. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Raj K. [The George Washington University School of Medicine, Washington, DC (United States); Moncayo, Valeria M.; Pierre-Jerome, Claude; Terk, Michael R. [Emory University School of Medicine, Radiology Department, Musculoskeletal Division, Atlanta, GA (United States); Smitson, Robert D. [Emory University School of Medicine, Atlanta, GA (United States)

    2010-05-15

    A 45-year-old man presented with vertebral collapse at L5 as an initial manifestation of multiple myeloma and underwent spinal fusion surgery using recombinant human bone morphogenetic protein-2 (rhBMP-2). Subsequent computed tomography (CT) scans and X-rays revealed heterotopic ossification of the left psoas muscle, pelvis, and anterior abdominal wall. While the occurrence of heterotopic ossification has previously been reported when rhBMP-2 has been used for spinal fusion surgery, this case demonstrates that it can occur to a much greater degree than previously seen. (orig.)

  13. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds.

    Science.gov (United States)

    Zhao, Jun; Shen, Gang; Liu, Changsheng; Wang, Shaoyi; Zhang, Wenjie; Zhang, Xiaochen; Zhang, Xiuli; Ye, Dongxia; Wei, Jie; Zhang, Zhiyuan; Jiang, Xinquan

    2012-01-01

    Calcium phosphate cements (CPCs), which are widely used in bone regeneration, possess good biocompatibility and osteoconductivity and have been demonstrated to be candidate carriers for bone growth factors. However, limited release of growth factors from CPCs and slow degradation of the materials are not desirable for certain clinical applications. Previous studies have shown that calcium-deficient hydroxyapatite (CDHA) from CPCs presents more rapid degradation rate than CPCs. In this study, a hybrid growth factor delivery system was prepared by using bone morphogenetic protein 2 (BMP-2) loaded CDHA porous scaffold with sulfated chitosan (SCS) coating for improved release profile. We tested the BMP-2 release characteristic of CDHA/BMP-2/SCS composite in vitro and its ability to repair rat calvarial bone defects. A higher percentage of BMP-2 was released when sulfated chitosan coating was present compared with CDHA/BMP-2 group. Eight weeks postoperation, the repaired crania were evaluated by microcomputed tomography, sequential fluorescent labeling, histological analysis, and immunohistochemistry. CDHA/BMP-2/SCS group promoted the most extensive new bone formation than CDHA/BMP-2 and CDHA groups. Our observations suggest that sulfated chitosan coating could enhance the release profile of CDHA/BMP-2 composite in vitro and promote new bone formation in vivo. The hybrid CDHA/BMP-2/SCS system is a promising growth factor delivery strategy for bone regeneration. PMID:21830854

  14. Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders

    Directory of Open Access Journals (Sweden)

    Wu Yan-Ting

    2012-12-01

    Full Text Available Abstract Background The counselling of poor ovarian responders about the probability of pregnancy remains a puzzle for gynaecologists. The aim of this study was to optimise the management of poor responders by investigating the role of the oocyte-derived factor bone morphogenetic protein-15 (BMP-15 combined with chronological age in the prediction of the outcome of in-vitro fertilisation-embryo transfer (IVF-ET in poor responders. Methods A retrospective study conducted in a university hospital. A total of 207 poor ovarian responders who reached the ovum pick-up stage undergoing IVF/intracytoplasmic sperm injection (ICSI with three or fewer follicles no less than 14 mm on the day of oocyte retrieval were recruited from July 1, 2008 to December 31, 2009. Another 215 coinstantaneous cycles with normal responses were selected as controls. The BMP-15 levels in the follicular fluid (FF of the 207 poor responders were analysed by western blot. Based on the FF BMP-15 level and age, poor responders were sub-divided into four groups. The main outcome measures were the FF BMP-15 level, implantation rate, pregnancy rate, and live birth rate. Results The implantation rate (24.2% vs. 15.3%, chemical pregnancy rate (40% vs. 23.7%, clinical pregnancy rate (36.5% vs. 20.4% and live birth rate (29.4% vs. 15.1% in the high BMP-15 group were significantly higher than those in the low BMP-15 group. Furthermore, poor responders aged less than or equal to 35 years with a higher FF BMP-15 level had the best implantation, pregnancy and live birth rates, which were comparable with those of normal responders. Conclusions Our study suggests a potential role of BMP-15 in the prediction of the IVF outcome. A high FF BMP-15 combined with an age less than or equal to 35 years may be used as a potential indicator for repeating IVF cycles in poor ovarian responders.

  15. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  16. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development

    International Nuclear Information System (INIS)

    To investigate the expression of bone morphogenetic protein (BMP)-2/4 during early tooth development after irradiation and calcium-deficient diet. The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohistochemically with anti-BMP-2/4 antibody. At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  17. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dai Hee; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyunghee University, Seoul (Korea, Republic of)

    2000-09-15

    To investigate the expression of bone morphogenetic protein (BMP)-2/4 during early tooth development after irradiation and calcium-deficient diet. The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohistochemically with anti-BMP-2/4 antibody. At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  18. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  19. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    International Nuclear Information System (INIS)

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation

  20. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model.

    Science.gov (United States)

    Li, Donghai; Deng, Liqing; Yang, Zhouyuan; Xie, Xiaowei; Kang, Pengde; Tan, Zhen

    2016-04-01

    Antigen-free bovine cancellous bone has good performances of porous network structures and mechanics with antigen extracted. To develop a bioactive scaffold for enhancing bone repair and evaluate its biological property, rhBMP-2 loaded with antigen-free bovine cancellous bone was used to treat tibial bone defect. Twenty-four healthy adult goats were chosen to establish goat defects model and randomly divided into four groups. The goats were treated with rhBMP-2/antigen-free bovine cancellous bone scaffolds (group A), autogenous cancellous bone graft (group B), porous tricalciumphosphate scaffolds (group C) and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The gray value of radiographs was used to evaluate the healing of the defects, which revealed that the group A had a better outcome of defect healing compared with group C at 4, 8 and 12 weeks, respectively (p difference between groups A and B was without significance at each time (p > 0.05). The newly formed bone area was calculated from histological sections, and the results indicated that the amount of new bone in group A increased significantly compared with that in group C (p  0.05) at 4, 8 and 12 weeks, respectively. In addition, the expression of collagen I and vascular endothelial growth factor by real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group C (p = 0.034, p = 0.032, respectively), but no significant differences were found when compared with that in group B (p = 0.36, p = 0.54, respectively). At the same time, group C presented better results than group D on bone defects healing. Therefore, the composites of antigen-free bovine cancellous bone loaded with rhBMP-2 have a good osteoinductive activity and capacity to promote the repair of bone defects. PMID:26801475

  1. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case.

    Science.gov (United States)

    Schuckert, Karl-Heinz; Jopp, Stefan; Teoh, Swee-Hin

    2009-03-01

    This publication describes the clinical case of a 71-year-old female patient. Using polycaprolactone (PCL) scaffold, platelet-rich plasma (PRP) and recombinant human bone morphogenetic protein-2 (rhBMP-2), a critical-sized defect in the anterior mandible was regenerated using de novo-grown bone. A bacterial infection had caused a periimplantitis in two dental implants leading to a large destruction in the anterior mandible. Both implants were removed under antibiotic prophylaxis. A PCL scaffold was prepared especially for this clinical case. In a second procedure with antibiotic prophylaxis, the bony defect was reopened. The PCL scaffold was fitted and charged with PRP and rhBMP-2 (1.2 mg). After complication-free wound healing, the radiological control demonstrated de novo-grown bone in the anterior mandible 6 months postoperatively. Dental implants were inserted in a third operation. A bone biopsy of the newly grown bone, as well as of the bordering local bone, was taken and histologically examined. The bone samples were identical and presented vital laminar bone. PMID:18767969

  2. Recombinant Bone Morphogenetic Protein 2 Stimulates the Remodeling Chitosan-Based Porous Scaffold Into Hyaline-like Cartilage: Study in Heterotopic Implantation

    Directory of Open Access Journals (Sweden)

    Nurshat M. Gaifullin

    2013-09-01

    Full Text Available To study the morphology of remodeling the chitosan-based three-dimensional porous scaffold, containing bone morphogenetic protein-2 (BMP-2 for chondroinduction, the experiments with heterotopic implantation using 28 Wistar rats were carried out. Scaffolds with growth factor (n=12 or without it (n=12, against intact control (n=4 were implanted subcutaneously. Classical methods of histology and morphometry as well as immune histochemical markers (CD-68, CD-31, MMP-9, TIMP-1, and osteonectin expression, one used to investigate zone of remodeling in euthanized animals at 4 and 8 weeks after implantation. The BMP-2 application provides more intensive and rapid new cartilage formation from the scaffold matter. The additional chondroinductive effect proved more intensive settlement and proliferation of chondral cells in the regenerate, expression of chondral phenotype with the building the hyaline-like matrix, and the supporting necessary balance between the matrix metalloproteinases and their tissue inhibitors.

  3. In vivo local co-delivery of recombinant human bone morphogenetic protein-7 and pamidronate via poly-D, L-lactic acid

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2010-12-01

    Full Text Available The effects of bone anabolic agents such as bone morphogenetic proteins (BMPs have the potential to be augmented by co-treatment with an anti-catabolic such as a bisphosphonate. We hypothesised that the effects of bisphosphonates on BMP-induced bone anabolism would be dose dependent, and we aimed to test this in a small animal model. Agents were delivered locally using a biodegradable poly-d, l-lactic-acid (PDLLA polymer delivery system. Recombinant human BMP-7 (25 µg was tested with a range of doses of the bisphosphonate pamidronate (0.02 mg, 0.2 mg and 2 mg local PAM; 0.3 mg/kg and 3 mg/kg thrice-weekly systemic PAM versus BMP-7 alone. Polymer pellets were surgically implanted in the hind limbs of female C57BL6/J mice (8-10 week and ectopic bone nodules were harvested at 3 and 8 weeks post-operatively. At 3 weeks, local low dose PAM (0.02 mg induced a 102% increase in rhBMP-7 induced bone volume (p<0.01 as measured by miroCT, and this was comparable to systemic PAM (0.3 mg/kg thrice-weekly. In contrast, local high dose PAM (2 mg resulted in a 97% decrease in bone volume (p<0.01. Radiography and histology indicated that the polymer vehicle was still largely present at 8 weeks indicating inefficient biodegradation. This is the first study to validate the utility of local co-delivery of BMP/bisphosphonate via biodegradable polymer and supports the continued refinement of more advanced bioresorbable delivery systems for clinical applications.

  4. Effect of recombinant human bone morphogenetic protein 2/polylactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis

    Institute of Scientific and Technical Information of China (English)

    Zhao-Xun; Pan; Hong-Xin; Zhang; Ye-Xin; Wang; Long-Di; Zhai; Wei; Du

    2014-01-01

    Objective:To observe the effect of recombinant human bone morphogenetic protein 2/polylactide-co-glycolic acid(rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis.Methods:Bilateral femoral head necrosis models of rabbit were established by steroid injection.A total of 48 rabbits(96 femoral head necrosis) were randomly divided into 4groups:Group A,control group with12 rabbits,24 femoral head necrosis;Group B,treated with rhBMP-2/PLCA implantation after core depression,with 12 rabbits,24 femoral head necrosis;Group C,treated with rhBMP-2 implantation after core depression,with 12 rabbits,24 femoral head necrosis;Croup D treated with core depression group without implantation,with 12 rabbits,24 femoral head necrosis.All animals were sacrificed after 12 weeks.The ability of repairing bone defect was evaluated by X-ray radiograph.Bone mineral density analysis of the defect regions were used to evaluate the level of ossification.The morphologic change and bone formation was assessed by HE staining.The angiogenesis was evaluated by VEGF immunohistochemistry.Results:The osteogenetic ability and quality of femoral head necrosis in group B were better than those of other groups after 12 weeks by X-ray radiograph and morphologic investigation.And the angiogenesis in group B was better than other groups.Group C had similar osteogenetic quality of femoral head necrosis and angiogenesis with group D.Conclusions:The treatment of rhBMP-2/PLCA implantation after core depression can promote the repair of rabbit femoral head necrosis.It is a promising and efficient synthetic bone material to treat the femoral head necrosis.

  5. Healing of segmental ulnar defects in dog using bioresorbable calcium phosphate cement added with recombinant human bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Ohura, K.; Hamanishi, C. [Kinki Univ. School of Medicine, Osaka (Japan). Dept. of Orthopaedic Surgery; Irie, H. [Olympus Optical Co., Ltd., Tokyo (Japan)

    2001-07-01

    Bioresorbable calcium phosphate cement (BCPC) cylinders soaked with 100 {mu}g of rhBMP-2 were implanted into 21 mm segmental ulnar defects in dogs. New bone induced around cylinders united both bone segments in 3 weeks. As the cylinder dissolved, the induced bone was remodeled into the compact bone by 9 weeks. However, the cement cylinder implanted without BMP did not dissolve and that defect did not recover bone continuity in 9 weeks. Mechanical test at 9 weeks showed that the BMP group achieved 71% union and 63% of bone strength compared to normal ulna. However, other two groups, the implantation of the cylinder alone and no implantation, did not unite any case. The implantation of thin cylinders of BCPC soaked with small amount of rhBMP-2 repaired large bone defects of high mammal fast. Added with more BMP, it will be possible to apply this biocompatible composite even in clinical cases. (orig.)

  6. Effects of secretive bone morphogenetic protein 2 induced by gene transfection on the biological changes of NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-bin; WANG Juan; LU Chun; TANG Gui-xia

    2005-01-01

    Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 cells incubated with secretive BMP2 that was induced by gene transfection through transwell. Methods Eukaryonic expression vector (pcDNA3.1-B2) was transfered into NIH3T3 cells with SofastTM,a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH3T3 cells were co-cultured with hBMP2 gene transfecting cells through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed. Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 cells. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells. Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast cells.

  7. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    Directory of Open Access Journals (Sweden)

    Abdollah Ghorbanzadeh

    2015-10-01

    Full Text Available Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2 and nano-hydroxyapatite (n- HA adjacent to MG-63 cell line.Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT assay was used. Alkaline phosphatase (ALP activity and oste- ogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test.Results: The n-HA/CS mixture significantly promoted cell growth in comparison to pure calcium sulfate (CS. Moreover, addition of rhBMP2 to CS (P=0.02 and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03.Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation.

  8. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  9. Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene.

    Science.gov (United States)

    Graves, D T; Alsulaimani, F; Ding, Y; Marks, S C

    2002-08-01

    Tooth eruption involves the movement of a tooth from its site of development within the alveolar bone to its functional position in the oral cavity. Because this process is dependent upon monocytes and formation of osteoclasts, it represents an excellent model for examination of these processes under developmental regulation. We investigated the functional role of monocyte chemoattractant protein-1 (MCP-1) in monocyte recruitment and its impact on bone resorption by examining each parameter in MCP-1(-/-) mice as compared with wild-type controls during tooth eruption. The peak number of monocytes occurred on day 5 in the MCP-1(-/-) mice and on day 9 in the wild-type mice. The peak number of osteoclasts followed the same pattern, occurring sooner in the MCP-1(-/-) (day 5) than in wild-type mice (day 9). Consistent with this, MCP-1(-/-) mice had an accelerated rate of tooth eruption in the early phase when the teeth first entered the oral cavity as compared with the wild-type mice. However, there was accelerated eruption in the wild-type group in the later phase of tooth eruption. When examined at the molecular level, inducible nitric oxide synthase (iNOS) and interleukin-11 and -6 were expressed at considerably higher levels in the experimental group with accelerated tooth eruption. This is the first report identifying these factors as potential modulators of bone resorption that can accelerate the rate of tooth eruption. We conclude that, at early timepoints, monocyte recruitment occurs by MCP-1-independent mechanisms. However, at a later timepoint, MCP-1 may play a contributory role in the recruitment of monocytic cells, allowing the wild-type animals to catch up. PMID:12151080

  10. Effect on cochlea function of guinea pig after controlled release recombinant human bone morphogenetic protein 2 transplanted into the middle ear

    Institute of Scientific and Technical Information of China (English)

    LI Xue-sheng; SUN Jian-jun; JIANG Wei; LIU Xiao

    2010-01-01

    Background The recombinant human bone morphogenetic protein 2 (rhBMP-2) has been used to induce osteogenesis in animals' middle ear and this technique is possible to be used to reconstruct the defects of ossicles. The side effects of the rhBMP-2 in middle ear should be observed before using in clinic. Thus we prepared the controlled release rhBMP-2 and implanted it into the acoustic bulla of guinea pigs. The effect on the cochlea was observed. Methods We prepared the acellular cancellous bone, accompanied with rhBMP-2. The material accompanied with rhBMP-2 was implanted into one acoustic bulla of the animal and the opposite side of the acoustic bulla was implanted with acellular cancellous bone without rhBMP-2. Totally 20 guinea pigs were undergone this procedure. After the operation, the auditory brainstem response (ABR) of the animals was tested according to the time sequence. Three months after the operation, the animals were sacrificed. The osteogenesis induced by rhBMP-2, the acoustic bulla and cochlea affected by rhBMP-2 were observed. The structures of hair cells were observed after silver nitrate staining. Results The animals were recovered soon after surgery. The hearing thresholds of the animals were declined slightly just after the surgery and come back completely after 3 months. Also, the bulla and cochlea were normal in shape. The osteogenesis occurred in the pore of the acellular cancellous bone with rhBMP-2. There was not any abnormal hyperplasia of bone in the bulla and cochlea. The articulation between the stapes and oval window was not merged. The shapes of the hair cells were normal and there was no obvious deletion of the hair cells compared with control group. Conclusions The controlled release rhBMP-2 transplanted into the middle ear could induce osteogenesis in the bulla of the animals. It did not affect the shape of the bulla and the hearing threshold of the animal, and did not induce the abnormal hyperplasia of bone in the bulla and might

  11. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.

    Science.gov (United States)

    Chen, S-H; Wang, X-L; Xie, X-H; Zheng, L-Z; Yao, D; Wang, D-P; Leng, Y; Zhang, G; Qin, L

    2012-08-01

    A local delivery system with sustained and efficient release of therapeutic agents from an appropriate carrier is desirable for orthopedic applications. Novel composite scaffolds made of poly (lactic-co-glycolic acid) with tricalcium phosphate (PLGA/TCP) were fabricated by an advanced low-temperature rapid prototyping technique, which incorporated either endogenous bone morphogenetic protein-2 (BMP-2) (PLGA/TCP/BMP-2) or phytomolecule icaritin (ICT) (PLGA/TCP/ICT) at low, middle and high doses. PLGA/TCP served as control. In vitro degradation, osteogenesis and release tests showed statistical differences among PLGA/TCP/ICT, PLGA/TCP and PLGA/TCP/BMP-2 groups, where PLGA/TCP/ICT had the desired slow release of bioactive icaritin in a dose-dependent manner, whereas there was almost no BMP-2 release from the PLGA/TCP/BMP-2 scaffolds. PLGA/TCP/ICT significantly increased more ALP activity, upregulated mRNA expression of osteogenic genes and enhanced calcium deposition and mineralization in rabbit bone marrow stem cells cultured on scaffolds compared with the other two groups. These results indicate the desired degradation rate, osteogenic capability and release property in PLGA/TCP/ICT composite scaffold, as icaritin preserved its bioactivity and structure after incorporation, while PLGA/TCP/BMP-2 did not show an initially expected osteogenic potential, owing to loss of the original bioactivity of BMP-2 during its incorporation and fabrication procedure. The results suggest that PLGA/TCP composite scaffolds incorporating osteogenic ICT might be a promising approach for bone tissue bioengineering and regeneration. PMID:22543006

  12. The Chordin Morphogenetic Pathway.

    Science.gov (United States)

    De Robertis, Edward M; Moriyama, Yuki

    2016-01-01

    The ancestral Chordin/bone morphogenetic protein (BMP) signaling pathway that establishes dorsal-ventral (D-V) patterning in animal development is one of the best understood morphogenetic gradients, and is established by multiple proteins that interact with each other in the extracellular space-including several BMPs, Chordin, Tolloid, Ont-1, Crossveinless-2, and Sizzled. The D-V gradient is adjusted redundantly by regulating the synthesis of its components, by direct protein-protein interactions between morphogens, and by long-range diffusion. The entire embryo participates in maintaining the D-V BMP gradient, so that for each action in the dorsal side there is a reaction in the ventral side. A gradient of Chordin is formed in the extracellular matrix that separates ectoderm from endomesoderm, called Brachet's cleft in Xenopus. The Chordin/BMP pathway is self-organizing and able to scale pattern in the dorsal half of bisected embryos or in Spemann dorsal lip transplantation experiments. PMID:26970622

  13. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    Science.gov (United States)

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  14. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review.

    Science.gov (United States)

    de Castro, Fernanda Cavallari; Cruz, Maria Helena Coelho; Leal, Claudia Lima Verde

    2016-08-01

    Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-β) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review. PMID:26954112

  15. Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    The purposes of this study were to determine the pharmacokinetics of recombinant human bone morphogenetic protein-2 (rhBMP-2) from a polyurethane (PUR)-based porous scaffold and to determine the biological responses of human mesenchymal stem cells (hMSCs) to the rhBMP-2 released from those scaffolds. The rhBMP-2 was incorporated into the PUR three-dimensional (3D) porous scaffolds and release profiles were determined using enzyme-linked immunosorbent assay. The bioactivity of the rhBMP-2 containing releasates was determined using hMSCs and compared with exogenous rhBMP-2. Release of rhBMP-2 from PUR-based systems was bi-phasic and characterized by an initial burst followed by a sustained release for up to 21 days. Expression of alkaline phosphatase activity by hMSCs treated with the rhBMP-2 releasates was significantly greater than the cells alone (control) throughout the time periods. Furthermore, after 14 days of culture, the hMSCs cultured with rhBMP-2 releasate had a greater amount of mineralization compared to exogenous rhBMP-2. Overall, the rhBMP-2 release from the PUR-based scaffolds was sustained for 21 days and the releasates appeared to be bioactive and promoted earlier osteogenic differentiation and mineralization of hMSCs than the exogenous rhBMP-2. (paper)

  16. Experimental study of bone morphogenetic proteins-2 slow release from an artificial trachea made of biodegradable materials: evaluation of stenting time.

    Science.gov (United States)

    Yamamoto, Yasumichi; Okamoto, Taku; Goto, Masashi; Yokomise, Hiroyasu; Yamamoto, Masaya; Tabata, Yasuhiko

    2003-01-01

    We manufactured an artificial trachea that slowly releases bone morphogenetic protein 2 (BMP-2) and used it to replace a section of the canine trachea. We made a three-layered prosthesis composed of an outer layer of gelatin sponge, a middle layer of collagen sponge, and an inner silicone tube. BMP-2 solution was soaked into the gelatin sponge layer. An approximately 3 cm length of the canine trachea was resected, and the artificial trachea was inserted into the resulting gap and anastomosed. The implanted portion was covered by periosteum. At 2, 4, and 8 weeks after surgery, the inner silicone tube was removed. Soon after removal of the silicone tube at 2 and 4 weeks, the dogs died of choking because of collapse of the trachea. One dog whose silicone tube was removed at 8 weeks was able to survive without choking. At 6 months after removal of the silicone tube, the bronchoscopic findings revealed that the gap in the trachea had been closed by regenerated tissue and covered by mucosa. We have demonstrated that our artificial trachea slowly releasing BMP-2 requires at least 8 weeks to achieve regeneration of solid tissue to support the tracheal gap. PMID:14524559

  17. Vascular Calcification in Chronic Kidney Disease is Induced by Bone Morphogenetic Protein-2 via a Mechanism Involving the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Shu Rong

    2014-11-01

    Full Text Available Background: Vascular calcification (VC, in which vascular smooth muscle cells (VSMCs undergo a phenotypic transformation into osteoblast-like cells, is one of the emergent risk factors for the accelerated atherosclerosis process characteristic of chronic kidney disease (CKD. Phosphate is an important regulator of VC. Methods: The expression of different smooth muscle cell or osteogenesis markers in response to high concentrations of phosphate or exogenous bone morphogenetic protein 2 (BMP-2 was examined by qRT-PCR and western blotting in rat VSMCs. Osteocalcin secretion was measured by radioimmunoassay. Differentiation and calcification of VSMCs were examined by alkaline phosphatase (ALP activity assay and Alizarin staining. Short hairpin RNA-mediated silencing of β-catenin was performed to examine the involvement of Wnt/β-catenin signaling in VSMC calcification and osteoblastic differentiation induced by high phosphate or BMP-2. Apoptosis was determined by TUNEL assay and immunofluorescence imaging. Results: BMP-2 serum levels were significantly higher in CKD patients than in controls. High phosphate concentrations and BMP-2 induced VSMC apoptosis and upregulated the expression of β-catenin, Msx2, Runx2 and the phosphate cotransporter Pit1, whereas a BMP-2 neutralization antibody reversed these effects. Knockdown of β-catenin abolished the effect of high phosphate and BMP-2 on VSMC apoptosis and calcification. Conclusions: BMP-2 plays a crucial role in calcium deposition in VSMCs and VC in CKD patients via a mechanism involving the Wnt/β-catenin pathway.

  18. Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mehdi Forouzandeh-Moghadam

    2009-01-01

    Full Text Available Background: Specific growth factors and feeder layers seem to have important roles in in vitroembryonic stem cells (ESCs differentiation. In this study,the effects of bone morphogenetic protein4 (BMP4 and mouse embryonic fibroblasts (MEFs co-culture system on germ cell differentiationfrom mouse ESCs were studied.Materials and Methods: Cell suspension was prepared from one-day-old embryoid body (EBand cultured for four days in DMEM medium containing 20% fetal bovine serum (FBS in thefollowing groups: simple culture (SC, simple culture with BMP4 (SCB, co-culture (CO-C andco-culture with BMP4 (CO-CB. Expression of piwi-like homolog 2 (Piwil2, the germ cell-specificgene, was evaluated in the different study groups by using quantitative real time polymerase chainreaction (RT-PCR. Testis was used as a positive control.Results: The maximum and minimum Piwil2 expression was observed in SC and SCB groups,respectively. A significant difference was observed in Piwil2 expression between SCB and otherstudy groups (p<0.05.Conclusion: The findings of this study showed that neither the addition of BMP4 in culture mediumnor the use of MEFs as a feeder layer have a positive effect on late germ cell induction from mouseESCs.

  19. Single nucleotide polymorphism of bone morphogenetic protein 4 gene: A risk factor of non-syndromic cleft lip with or without palate

    Science.gov (United States)

    Savitha, Sathyaprasad; Sharma, S. M.; Veena, Shetty; Rekha, R.

    2015-01-01

    Background: The bone morphogenetic protein (BMP) signalling pathway is crucial in a number of developmental processes and is critical in the formation of variety of craniofacial elements including cranial neural crest, facial primordium, tooth, lip and palate. It is an important mediator in regulation of lip and palate fusion, cartilage and bone formation. Aim: To study the role of mutation of BMP4 genes in the aetiology of non-syndromic cleft lip with or without palate (NSCL ± P) and identify it directly from human analyses. Materials and Methods: A case-control study was done to evaluate whether BMP4T538C polymorphism, resulting in an amino acid change of Val=Ala (V152A) in the polypeptide, is associated with NSCL ± P in an Indian paediatric population. Genotypes of 100 patients with NSCL ± P and 100 controls (in whom absence of CL ± P was confirmed in three generations) were detected using a polymerase chain reaction-restriction fragment length polymorphism strategy. Logistic regression was performed to evaluate allele and genotype association with NSCLP. Results: Results showed significant association between homozygous CC genotype with CL ± P (odds ratio [OR]-5.59 and 95% confidence interval [CI] = 2.85-10.99). The 538C allele carriers showed an increased risk of NSCL ± P as compared with 538 T allele (OR - 4.2% CI = 2.75-6.41). Conclusion: This study suggests an association between SNP of BMP4 gene among carriers of the C allele and increased risk for NSCLP in an Indian Population. Further studies on this aspect can scale large heights in preventive strategies for NSCLP that may soon become a reality. PMID:26424979

  20. Single nucleotide polymorphism of bone morphogenetic protein 4 gene: A risk factor of non-syndromic cleft lip with or without palate

    Directory of Open Access Journals (Sweden)

    Sathyaprasad Savitha

    2015-01-01

    Full Text Available Background: The bone morphogenetic protein (BMP signalling pathway is crucial in a number of developmental processes and is critical in the formation of variety of craniofacial elements including cranial neural crest, facial primordium, tooth, lip and palate. It is an important mediator in regulation of lip and palate fusion, cartilage and bone formation. Aim: To study the role of mutation of BMP4 genes in the aetiology of non-syndromic cleft lip with or without palate (NSCL ± P and identify it directly from human analyses. Materials and Methods: A case-control study was done to evaluate whether BMP4T538C polymorphism, resulting in an amino acid change of Val=Ala (V152A in the polypeptide, is associated with NSCL ± P in an Indian paediatric population. Genotypes of 100 patients with NSCL ± P and 100 controls (in whom absence of CL ± P was confirmed in three generations were detected using a polymerase chain reaction-restriction fragment length polymorphism strategy. Logistic regression was performed to evaluate allele and genotype association with NSCLP. Results: Results showed significant association between homozygous CC genotype with CL ± P (odds ratio [OR]-5.59 and 95% confidence interval [CI] = 2.85-10.99. The 538C allele carriers showed an increased risk of NSCL ± P as compared with 538 T allele (OR - 4.2% CI = 2.75-6.41. Conclusion: This study suggests an association between SNP of BMP4 gene among carriers of the C allele and increased risk for NSCLP in an Indian Population. Further studies on this aspect can scale large heights in preventive strategies for NSCLP that may soon become a reality.

  1. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar

    Institute of Scientific and Technical Information of China (English)

    Sunyoung Choi; Tae-Jun Cho; Soon-Keun Kwon; Gene Lee; Jaejin Cho

    2013-01-01

    The periodontal ligament-derived mesenchymal stem cell is regarded as a source of adult stem cells due to its multipotency. However, the proof of chondrogenic potential of the cells is scarce. Therefore, we investigated the chondrogenic differentiation capacity of periodontal ligament derived mesenchymal stem cells induced by transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-6. After isolation of periodontal ligament stem cells (PDLSCs) from human periodontal ligament, the cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 20% fetal bovine serum (FBS). A mechanical force initiated chondrogenic differentiation of the cells. For chondrogenic differentiation, 10 μg ·L-1 TGF-β3 or 100 μg ·L-1 BMP-6 and the combination treating group for synergistic effect of the growth factors. We analyzed the PDLSCs by fluorescence-activated cell sorting and chondrogenesis were evaluated by glycosaminoglycans assay, histology, immunohistochemistry and genetic analysis. PDLSCs showed mesenchymal stem cell properties proved by FACS analysis. Glycosaminoglycans contents were increased 217% by TGF-β3 and 220% by BMP-6. The synergetic effect of TGF-β3 and BMP-6 were shown up to 281% compared to control. The combination treatment increased Sox9, aggrecan and collagen II expression compared with not only controls, but also TGF-β3 or BMP-6 single treatment dramatically. The histological analysis also indicated the chondrogenic differentiation of PDLSCs in our conditions. The results of the present study demonstrate the potential of the dental stem cell as a valuable cell source for chondrogenesis, which may be applicable for regeneration of cartilage and bone fracture in the field of cell therapy.

  2. Expression of Bone Morphogenetic Protein-2 in the Chondrogenic and Ossifying Sites of Calcific Tendinopathy and Traumatic Tendon Injury Rat Models

    Directory of Open Access Journals (Sweden)

    Chan Lai

    2009-07-01

    Full Text Available Abstract Background Ectopic chondrogenesis and ossification were observed in a degenerative collagenase-induced calcific tendinopathy model and to a lesser extent, in a patellar tendon traumatic injury model. We hypothesized that expression of bone morphogenetic protein-2 (BMP-2 contributed to ectopic chondrogenesis and ossification. This study aimed to study the spatial and temporal expression of BMP-2 in our animal models. Methods Seventy-two rats were used, with 36 rats each subjected to central one-third patellar tendon window injury (C1/3 group and collagenase-induced tendon injury (CI group, respectively. The contralateral limb served as controls. At week 2, 4 and 12, 12 rats in each group were sacrificed for immunohistochemistry and RT-PCR of BMP-2. Results For CI group, weak signal was observed at the tendon matrix at week 2. At week 4, matrix around chondrocyte-like cells was also stained in some samples. In one sample, calcification was observed and the BMP-2 signal was observed both in the calcific matrix and the embedded chondrocyte-like cells. At week 12, the staining was observed mainly in the calcific matrix. Similar result was observed in C1/3 group though the immunopositive staining of BMP-2 was generally weaker. There was significant increase in BMP-2 mRNA compared to that in the contralateral side at week 2 and the level became insignificantly different at week 12 in CI group. No significant increase in BMP-2 mRNA was observed in C1/3 group at all time points. Conclusion Ectopic expression of BMP-2 might induce tissue transformation into ectopic bone/cartilage and promoted structural degeneration in calcific tendinopathy.

  3. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP and Biogenic Silica (Bio-Silica, as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    Directory of Open Access Journals (Sweden)

    Florian Draenert

    2013-03-01

    Full Text Available Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP and biogenic silica (bio-silica have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation. In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.

  4. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    Science.gov (United States)

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery. PMID:25825118

  5. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    Directory of Open Access Journals (Sweden)

    Desislava Abadjieva

    Full Text Available Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP 15 and growth differentiation factor (GDF 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR. The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  6. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    Science.gov (United States)

    Abadjieva, Desislava; Kistanova, Elena

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  7. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    International Nuclear Information System (INIS)

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca2+Cao2+ has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Cao2+ signaling in odontogenesis remains unclear. We found that elevated Cao2+ increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca2+ increased the stability of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca2+ channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca2+, suggesting that the Ca2+ influx from Ca2+ channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca2+-sensing receptors (CaSR) and only respond slightly to other cations such as Sr2+ and spermine, suggesting that dental pulp cells respond to Cao2+ to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Cao2+ among cations.

  8. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    Science.gov (United States)

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  9. Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

    Directory of Open Access Journals (Sweden)

    Nehleh Zarei Fard

    2015-03-01

    Full Text Available Background: Activation of bone morphogenetic protein 4 (BMP4 signaling pathway in embryonic stem (ES cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, we investigated the role of two different exposure times to BMP4 in cell viability, embryoid body (EB, size, and cavitation of ES cells. Methods: Embryonic stem cells (R1 and B1 lines were released from the feeder cell layers and were cultured using EBs protocol by using the hanging drop method and monolayer culture system. The cells were cultured for 5 days with 100 ng/mL BMP4 from the beginning (++BMP4 or after 48 h (+BMP4 of culture and their cell number were counted by trypan blue staining. The data were analyzed using non-parametric two-tailed Mann-Whitney test. P<0.05 was considered as significant. Results: In EB culture protocol, cell number significantly decreased in +BMP4 culture condition with greater cavity size compared to the ++BMP4 condition at day 5 (P=0.009. In contrast, in monolayer culture system, there was no significant difference in the cell number between all groups (P=0.91. Conclusion: The results suggest that short-term exposure of BMP4 is required to promote cavitation in EBs according to lower cell number in +BMP4 condition. Different cell lines showed different behavior in cavitation formation.

  10. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  11. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ariadne Cristiane Cabral Cruz

    2012-12-01

    Full Text Available Bone morphogenetic protein type 2 (BMP-2 is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs in medium supplemented with ascorbate and β-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2 or absence (ASCs+OM of BMP-2. The alkaline phosphatase (ALP activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II, osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity, intermediate (osteonectin and osteocalcin, or final (calcium deposition phases, suggesting that the exogenous addition of BMP-2 did not improve

  12. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    International Nuclear Information System (INIS)

    Research highlights: → Acerogenin A stimulated osteoblast differentiation in osteogenic cells. → Acerogenin A-induced osteoblast differentiation was inhibited by noggin. → Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. → Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  13. Effects of Different Doses of Bone Morphogenetic Protein 4 on Viability and Proliferation Rates of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zohreh Makoolati

    2009-01-01

    Full Text Available Objective: In this study, we examined the effect of different doses of bone morphogeneticprotein 4 (BMP4 on CCE mouse embryonic stem cells (ESCs viability andproliferation rates in order to improve the outcome of induction processes and make asystem with highest viability and proliferation rates for further studies on BMP4 roles inmultiple developmental stages.Materials and Methods: Expression of Oct-4 was studied and confirmed in this cellline immunocytochemically. Also, in order to evaluate the proliferation and viabilityrates in BMP4-treated cells, ESCs were cultured in Dulbecco's Modified Eagle Medium(DMEM containing different doses of BMP4 (0, 0.01, 0.1, 1, 5, 25, 50 and 100ng/ml.The mean number of whole cells and living cells were considered as proliferation andsurvival rates respectively. Data analysis was done with ANOVA test.Results: The results showed that there were significant differences between the meanpercent of viability between 1ng/ml and 0 ng/ml (control and 50 and 100 ng/ml BMP4(p≤0.01, as well as between 5 ng/ml and 0, 0.01, 0.1, 25, 50 and 100 ng/ml BMP4(p≤ 0.02. Also, significant differences were observed in proliferation rates between 5ng/ml and 0, 0.01, 0.1, 1, 25 and 100 ng/ml BMP4 (p≤0.01, 25 ng/ml and 0.01, 1 and5 ng/ml BMP4 (p≤0.01, as well as between 50 ng/ml and 0.01 and 0.1 ng/ml BMP4(p≤0.001.Conclusion: The results suggest that addition of 5ng/ml BMP4 had the best effects onthe proliferation and viability rates of CCE mouse ESCs.

  14. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Tasuku [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Ichikawa, Saki [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yonezawa, Takayuki; Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Akihisa, Toshihiro [College of Science and Technology, Nihon University, Tokyo (Japan); Woo, Je Tae [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Michi, Yasuyuki; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  15. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-04-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  16. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells.

    Science.gov (United States)

    Mendes, Luis Filipe; Tam, Wai Long; Chai, Yoke Chin; Geris, Liesbet; Luyten, Frank P; Roberts, Scott J

    2016-05-01

    Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches. PMID:27018617

  17. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  18. Effect of recombinant human bone morphogenetic protein-2 on a novel lung cancer spine metastasis model in rodents.

    Science.gov (United States)

    Sonn, Kevin A; Kannan, Abhishek S; Bellary, Sharath S; Yun, Chawon; Hashmi, Sohaib Z; Nelson, John T; Ghodasra, Jason H; Nickoli, Michael S; Parimi, Vamsi; Ghosh, Anjan; Shawen, Nicholas; Ashtekar, Amruta; Stock, Stuart R; Hsu, Erin L; Hsu, Wellington K

    2016-07-01

    Lung cancer is the second most prevalent cancer. Spinal metastases are found in 30-90% of patients with death attributed to cancer. Due to bony destruction caused by metastases, surgical intervention is often required to restore spinal alignment and stability. While some research suggests that BMP-2 may possess tumorigenic effects, other studies show possible inhibition of cancer growth. Thirty-six athymic rats underwent intraosseous injection of lung adenocarcinoma cells into the L5 vertebral body. Cells were pre-treated with vehicle control (Group A) or rhBMP-2 (Group B) prior to implantation. At 4 weeks post-implantation, in vivo bioluminescent imaging (BLI) was performed to confirm presence of tumor and quantify signal. Plain radiographs and microComputed Tomography (microCT) were employed to establish and quantitate osteolysis. Histological analysis characterized pathologic changes in the vertebral body. At 4 weeks post-implantation, BLI showed focal signal in the L5 vertebral body in 93% of Group A animals and 89% of Group B animals. Average tumor burden by BLI radiance was 7.43 × 10(3)  p/s/cm(2) /sr (Group A) and 1.11 × 10(4)  p/s/cm(2) /sr (Group B). Radiographs and microCT demonstrated osteolysis in 100% of animals showing focal BLI signal. MicroCT demonstrated significant bone loss in both groups compared to age-matched controls but no difference between study groups. Histological analysis confirmed tumor invasion in the L5 vertebral body. These findings provide a reliable in vivo model to study isolated spinal metastases from lung cancer. Statement of Clinical Significance: The data support the notion that exposure to rhBMP-2 does not promote the growth of A549 lung cancer spine lesions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1274-1281, 2016. PMID:26694749

  19. Simultaneous gene transfer of bone morphogenetic protein (BMP) -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    OpenAIRE

    Kawai, Mariko; Bessho, Kazuhisa; Maruyama, Hiroki; Miyazaki, Jun-ichi; Yamamoto, Toshio

    2006-01-01

    Background: Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS.

  20. Use of recombinant human bone morphogenetic protein-2 as an adjunct for instrumented posterior arthrodesis in the occipital cervical region: An analysis of safety, efficacy, and dosing

    Directory of Open Access Journals (Sweden)

    D Kojo Hamilton

    2010-01-01

    Full Text Available Background: There have been few reports on the use of recombinant human bone morphogenetic protein (rhBMP-2 in posterior spine. However, no study has investigated the dosing, safety, and efficacy of its use in the posterior atlantoaxial, and/or craniovertebral junction. Recent case report of the cytokine-mediated inflammatory reaction, following off label use of rhBMP-2 as an adjunct for cervical fusion, particularly in complex cases, has increased concern about complications associated with the product. Objective: To assess the safety, efficacy, and dosing of rhBMP-2 as an adjunct for instrumented posterior atlantoaxial and/or craniovertebral junction arthrodesis. Materials and Methods: We included all patients treated by the senior author that included posterior atlantoaxial and/or craniovertebral junction instrumented fusion using rhBMP-2 from 2003 to 2008 with a minimum two year follow-up. Diagnosis, levels fused, rhBMP-2 dose, complications, and fusion were assessed. Results: Twenty three patients with a mean age of 60.9 years (range 4 - 89 years and an average follow-up of 45 months (range 27 to 84 months met inclusion criteria. The indications for surgery included, atlantoaxial instability (n = 16, basilar invagination (n = 6, and kyphoscoliosis (n = 1. The specific pathologic diagnosis included type 2 dens fracture (n = 7, complex C1 and C2 ring fracture (n = 2, chordoma (n = 2, degenerative/osteoporosis (n = 3, rheumatoid disease (n = 8, and pseudogout (n = 1. The average rhBMP-2 dose was 2.38 mg/level, with a total of 76 levels treated (average 3.3 levels, SD= 1.4 levels. There were no complications. During the most recent follow-up, all patients had achieved fusion. Conclusions: In a series of patients with complex pathology and/or rheumatoid arthritis, 100% fusion rate was achieved with adjunct use of rhBMP-2, with a safe and effective average rhBMP-2 dose of 2.38 mg per level.

  1. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Zhenya Gao

    Full Text Available All-trans retinoic acid (ATRA plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2 and matrix metalloproteinase 2 (MMP-2 and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19 cells.The effects of ATRA (concentrations from 10-9 to 10-5 mol/l on the expression of retinoic acid receptors (RARs in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10-9 to 10-5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR and enzyme-linked immunosorbent assay (ELISA. The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ.RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10-9 to 10-5 mol/l with a maximum effect observed at 10-6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10-6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135.ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.

  2. Alterations in bone morphogenetic protein 15, growth differentiation factor 9, and gene expression in granulosa cells in preovulatory follicles of dairy cows given porcine LH.

    Science.gov (United States)

    Behrouzi, Amir; Colazo, Marcos Germán; Ambrose, Divakar Justus

    2016-04-15

    In a previous work, using porcine LH (pLH) in lieu of GnRH for synchronizing ovulation in dairy cows improved pregnancy rates without increasing plasma progesterone concentrations after ovulation. The LH profile is known to remain elevated above basal concentrations (≥1 ng/mL) for up to 20 hours in pLH-treated cows compared to less than 6 hours in GnRH-treated cows. Because LH triggers a cascade of signaling networks in the preovulatory follicle to promote final maturation and support oocyte competence, we hypothesized that dissimilar LH profiles will differentially regulate the intrafollicular factors and expression of downstream genes associated with improved oocyte competence. Specific objectives were to determine differences in the abundance of oocyte-secreted factors in the preovulatory follicular fluid and target genes in granulosa cells associated with oocyte competence, in response to exogenous porcine LH or GnRH-induced endogenous bovine LH exposure, in dairy cows. Follicular contents were aspirated by a transvaginal ultrasound-guided procedure from the preovulatory follicle of cyclic, nonlactating Holstein cows 21 ± 1 hour after administration of either pLH (25-mg) or GnRH (100-μg). Mature forms of bone morphogenetic protein 15, growth differentiation factor 9, and transforming growth factorβ1 were approximately 2-fold more abundant in pLH-treated cows which were exposed to an extended, low LH profile, than in GnRH-treated cows that had a short, high LH profile. The relative abundance of messenger RNA for cyclooxygenase-2, LH receptor, and progesterone receptor in granulosa cells, was about two-, eight-, and two-fold higher, respectively, in cows subjected to pLH than GnRH treatment. We infer that the improved pregnancy rate after pLH-induced ovulation reported previously, occurred through greater activation of intrafollicular transforming growth factor-β1 superfamily members, as these proteins promote cumulus expansion and oocyte competence

  3. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroyuki [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Kanaya, Sousuke; Hamaji, Nozomu; Sato, Hisae; Shimauchi, Hidetoshi [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2010-04-16

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stability of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.

  4. Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy.

    Science.gov (United States)

    Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun

    2016-07-01

    In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. c

  5. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Science.gov (United States)

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  6. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    Science.gov (United States)

    Gao, Zhenya; Huo, Lijun; Cui, Dongmei; Yang, Xiao; Zeng, Junwen

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated

  7. Evaluation of osteogenic cell differentiation in response to bone morphogenetic protein or demineralized bone matrix in a critical sized defect model using GFP reporter mice.

    Science.gov (United States)

    Alaee, Farhang; Hong, Seung-Hyun; Dukas, Alex G; Pensak, Michael J; Rowe, David W; Lieberman, Jay R

    2014-09-01

    We evaluated the osteoprogenitor response to rhBMP-2 and DBM in a transgenic mouse critical sized defect. The mice expressed Col3.6GFPtopaz (a pre-osteoblastic marker), Col2.3GFPemerald (an osteoblastic marker) and α-smooth muscle actin (α-SMA-Cherry, a pericyte/myofibroblast marker). We assessed defect healing at various time points using radiographs, frozen, and conventional histologic analyses. GFP signal in regions of interest corresponding to the areas of new bone formation was quantified using a novel computer assisted algorithm. All defects treated with rhBMP-2 healed. In contrast, the majority of the defects in the DBM (27/30) and control (28/30) groups did not heal. Quantitation of pre-osteoblasts demonstrated a maximal response (% GFP + cells/TV) in the Col3.6GFPtopaz mice at day 7 (7.2% ± 6.0, p Col2.3GFP cells was seen at days 14 (8.04% ± 5.0) and 21 (8.31% ± 4.32), p < 0.05. In contrast, DBM and control groups showed a limited osteogenic response at all time points. In conclusion, we demonstrated that the BMP and DBM induce vastly different osteogenic responses which should influence their clinical application as bone graft substitutes. PMID:24888702

  8. Simultaneous gene transfer of bone morphogenetic protein (BMP -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Directory of Open Access Journals (Sweden)

    Miyazaki Jun-ichi

    2006-08-01

    Full Text Available Abstract Background Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. Conclusion The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.

  9. Zellbiologie des Chondrozyten im Hinblick auf die Arthroseentstehung: Rolle der knorpelspezifischen Wachstumsfaktoren Cartilage-Derived Morphogenetic Proteins

    Directory of Open Access Journals (Sweden)

    Erlacher L

    1999-01-01

    Full Text Available Cartilage-derived morphogenetic proteins-1 and -2 (CDMP-1 and -2 sind Wachstumsfaktoren der Bone morphogenetic protein-Gruppe, die bei der embryonalen Skelettentwicklung maßgeblich beteiligt ist. In vivo führten CDMP-1 und -2 zur Neubildung von Knorpel- und Knochengewebe und mittels in vitro Untersuchungen an Knorpelzellen wurde eine Stimulation der Proteoglykansynthese nachgewiesen. Rezeptorbindungsstudien zeigten eine spezifische Bindung an den BMPR-IB/BMPR-II Rezeptorkomplex. Weiters konnte anhand immunhistochemischer Untersuchungen die Expression von CDMP-1 und -2 in gesundem als auch osteoarthrotischem Gelenksknorpel erbracht werden. In einem in vitro Modell für Osteoarthrose führten beide CDMPs nachhaltig zu einer Steigerung der Proteoglykansynthese und somit zu einer Förderung der Reparaturmechanismen des Knorpelgewebes.

  10. Effects of bone morphogenetic protein-4 on spatial memory and cholinergic expression in the dentate gyrus after fornix-fimbria transection in rats

    Institute of Scientific and Technical Information of China (English)

    Lei Liu; Yilong Xue; Jingkun Pan; Yazhuo Hu; Yuhong Gao; Yun Luo

    2008-01-01

    BACKGROUND: Previous experiments have confirmed bone morphogenetic proteins (BMPs) upregulate cholinergic expression in neurons isolated from the embryonic rat hippocampus and cerebral cortex. Therefore, BMPs could be useful for treating Alzheimer's disease and other neurodegenerative diseases. OBJECTIVE: BMP-4 was infused into the hippocampal dentate gyrus of fornix-fimbria transected rats to test the effects of BMP-4 on cholinergic expression in dentate gyrus neurons, and to observe changes in spatial memory behavior. DESIGN: A randomized controlled animal experiment. SETTING: Department of Neurosurgery and Laboratory for Cell Biology, Institute of Geriatrics, General Hospital of Chinese PLA.MATERIALS: Twenty-seven healthy adult male Sprague Dawley (SD) rats, weighing 250-300 g, were provided by the Laboratory Animal Center of the General Hospital of Chinese PLA. Reagents: BMP-4 (B-2680, Sigma Company) and choline acetyl transferase (ChAT) antibody (AB5042, Chemicon Company) were used in this study. Equipments: a rat stereotaxic instrument (type: SN-2N, Narushige Group, Japan) and Image-prog-plus image analysis software (Media Cybernetics company, USA) were used in this study. The protocol was carried out in accordance with ethical guidelines for the use and care of animals.METHODS: This experiment was performed in the Institute of Geriatrics, General Hospital of Chinese PLA between July 2004 and March 2005. Rats were randomly divided into 4 groups: Alzheimer's disease group (n = 7), normal control group (n = 5), BMP-4-Alzheimer's disease group (n = 8), and model group (n = 7). In the Alzheimer's disease group, the left hippocampal fornix-fimbria of rats was transected to mimic Alzheimer's disease symptoms. In the BMP-4-Alzheimer's disease group, 1 μL BMP-4 (10 mg/L) was perfused into the left dentate gyrus with a microinjector at 1 μL/min. In the model group, 1 μL saline was perfused into the same position by the same method. Twenty-eight days after injection

  11. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration in a rodent model: a description of the bone repair by light microscopy

    Science.gov (United States)

    Pinheiro, Antonio Luiz B.; Aciole, Gilberth T. S.; Soares, Luiz G. P.; Correia, Neandder A.; N. dos Santos, Jean

    2011-03-01

    We carried out a histological analysis on surgical bone defects grafted or not with MTA, treated or not with LED, BMPs and GBR. We have used several models to assess the effects of laser on bone. Benefits of the isolated or combined use them on bone healing has been suggested. There is no previous report on their association with LED light. 90 rats were divided into 10 groups. On Groups II and I the defect were filled with the clot. On Group II, were further irradiated. On groups III-VI, defect was filled with MTA + Collagen gel (III); animals of group IV were further irradiated. On groups V and VI, the defects filled with the MTA were covered with a membrane. Animals of Group VI were further irradiated. On Groups VII and VIII a pool of BMPs was added to the MTA and was further irradiated. On groups IX and X, the MTA + BMP graft was covered with a membrane. On group X, the defect was further irradiated. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 54s, 0.3W/cm2, 16 J/cm2) was applied at 48 h intervals during 15 days. Specimens were taken, processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA seemed not being affected by LED light. However, its use positively affected healing around the graft. It is concluded that MTA is not affected by the LED light due to it characteristics, but beneficial results with LED usage was found.

  12. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco

    Science.gov (United States)

    Ceresoli, Valentina; Mainieri, Davide; Del Fabbro, Massimo; Weinstein, Roberto; Pedrazzini, Emanuela

    2016-01-01

    Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs. PMID:27047526

  13. Effect of recombinant human bone morphogenetic protein 2/poly-lactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis

    Institute of Scientific and Technical Information of China (English)

    Zhao-Xun Pan; Hong-Xin Zhang; Ye-Xin Wang; Long-Di Zhai; Wei Du

    2014-01-01

    Objective:To observe the effect of recombinant human bone morphogenetic protein 2/poly-lactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis. Methods: Bilateral femoral head necrosis models of rabbit were established by steroid injection. A total of 48 rabbits (96 femoral head necrosis) were randomly divided into 4 groups: Group A, control group with12 rabbits, 24 femoral head necrosis;Group B, treated with rhBMP-2/PLGA implantation after core depression, with 12 rabbits, 24 femoral head necrosis;Group C, treated with rhBMP-2 implantation after core depression, with 12 rabbits, 24 femoral head necrosis;Group D treated with core depression group without implantation, with 12 rabbits, 24 femoral head necrosis. All animals were sacrificed after 12 weeks. The ability of repairing bone defect was evaluated by X-ray radiograph. Bone mineral density analysis of the defect regions were used to evaluate the level of ossification. The morphologic change and bone formation was assessed by HE staining. The angiogenesis was evaluated by VEGF immunohistochemistry. Results: The osteogenetic ability and quality of femoral head necrosis in group B were better than those of other groups after 12 weeks by X-ray radiograph and morphologic investigation. And the angiogenesis in group B was better than other groups. Group C had similar osteogenetic quality of femoral head necrosis and angiogenesis with group D. Conclusions:The treatment of rhBMP-2/PLGA implantation after core depression can promote the repair of rabbit femoral head necrosis. It is a promising and efficient synthetic bone material to treat the femoral head necrosis.

  14. Morphogenetic roles of acetylcholine.

    OpenAIRE

    Lauder, J. M.; Schambra, U B

    1999-01-01

    In the adult nervous system, neurotransmitters mediate cellular communication within neuronal circuits. In developing tissues and primitive organisms, neurotransmitters subserve growth regulatory and morphogenetic functions. Accumulated evidence suggests that acetylcholine, (ACh), released from growing axons, regulates growth, differentiation, and plasticity of developing central nervous system neurons. In addition to intrinsic cholinergic neurons, the cerebral cortex and hippocampus receive ...

  15. 骨形态发生蛋白-9对兔骨髓间充质干细胞诱导分化作用%Differentiation induced by bone morphogenetic protein-9 of rabbit bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    谭富强; 刘渤; 刘浠; 欧东; 易威威; 温亚枫

    2015-01-01

    目的 分离、培养并鉴定新西兰兔骨髓间充质干细胞(BMSCs),观察BMSCs经腺病毒重组人骨形态发生蛋白-9(AdBMP-9)诱导后的成骨分化及其在明胶海绵上的生长.方法 采用全骨髓培养分离提取兔BMSCs,噻唑蓝(MTT)检测第2、3、4、5代细胞的增殖.流式细胞仪检测兔BMSCs表面抗原CD44和CD34.利用AdBMP-9转染第3代BMSCs,分别于诱导后7、14 d行碱性磷酸酶(ALP)染色、茜素红S染色和免疫荧光染色检测早期和晚期成骨标志物碱性磷酸酶、钙结节及骨钙素(OC)的表达.同时在14 d行油红O染色观察其成脂分化能力,荧光显微镜下观察BMSCs与明胶海绵复合生长.结果 成功分离提取兔BMSCs,经传代,细胞由长梭形变为短梭形,第3代形态、大小趋于稳定.MTT检测发现第2、3、4、5代细胞均呈对数生长,生长曲线近似“S”型,第2代细胞生长最慢,第4代生长最快(P<0.05).流式细胞仪检测显示,CD44和CD34的阳性率分别为94.38%和2.63%.AdBMP-9诱导后,可检测到早期和晚期成骨标志物及脂滴的生成,转染后的BMSCs可较好地与明胶海绵复合生长.结论 采用全骨髓培养法可分离得到较纯的兔BMSCs,在AdBMP-9诱导下,其可向成骨、成脂分化,且能较好地与明胶海绵复合生长.%Objective To isolate,culture and purify the New Zealand rabbit bone marrow mesenchymal stem cells (BMSCs),research the osteogenic differentiation ability of BMSCs induced by recombinant adenovirus bone morphogenetic protein-9 (AdBMP-9) and the growth of BMSCs on absorbable gelatin sponge,expect to provide cytology basis for the study of bone tissue engineering.Methods Separated and obtained BMSCs by whole bone marrow culture method,the proliferation of the 2nd,3rd,4th,and 5th cell passages were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT).Flow cytometry was used to confirm the expression of surface antigen marker CD34 and CD44.Take the

  16. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Bank, Ruud A; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2009-08-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added. PMID:19231972

  17. Multifunctional Thin Film Biomatrice Biosensor in a Degradable Scaffold Containing Bone Morphogenetic Protein-2 (BMP-2) for Controlled Release in Skeletal Tissue Engineering

    Science.gov (United States)

    McDaniel, Harvey; Lomax, Linda

    2001-03-01

    Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused

  18. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures

    Science.gov (United States)

    Lupo, Giuseppe; Novorol, Claire; Smith, Joseph R.; Vallier, Ludovic; Miranda, Elena; Alexander, Morgan; Biagioni, Stefano; Pedersen, Roger A.; Harris, William A.

    2013-01-01

    Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification. PMID:23576785

  19. 带血供肌瓣作为骨形态发生蛋白载体修复骨缺损的实验研究%Vascular muscle flap combined with bone morphogenetic protein for forming bone bridge to repair bone defect: experimental study

    Institute of Scientific and Technical Information of China (English)

    裴国献; 杨润功; 魏宽海; 金丹

    2001-01-01

    Objective To investigate the effect of vascular muscle flap as a carrier of bone morphogenetic protein (BMP) to repair long bone defect. Methods Vascular muscle flap with BMP and BMP alone were implanted into the experimental models. Their conditions of new bone formation were observed and compared. Additionally, bone defects were divided into 4 groups in random and repaired respectively with the vascular muscle flap combined with FS/BMP (group A), vascular muscle flap/BMP (group B), bloodless muscle flap/BMP (group C), and autolyzed antigen-extracted allogeneic bone (AAA)/BMP (group D). Their abilities of bone forming were observed. Results In the group of vascular muscle flap combined with BMP, a large amount of cartilage was formed in the gaps of muscles by 3 weeks. The cartilage was absorbed and replaced by normal bone containing hematopoietic bone marrow by 6 weeks with obvious muscle cell atrophy. The wet bone weight of the new bone was (253.52±20.63) mg,which was significantly larger than that of the control group (172.22±13.95) mg (P<0.01).In group A,the cartilage formed by 3 weeks and woven bone formed by 6 weeks;the haversion system formed and muscle cells disappeared by 9 weeks.Natural bone was found and the Tmax measured with torsion test was (0.82±0.04) N*m.The calcium content was (174.55±5.11) μg/g by 12 weeks.The ability of new bone formation in the 4 groups was in the following order: group A was similar to group D, group A>group B>group C. Conclusions Vascular muscle flap can serve as an effective carrier for BMP. Vascular muscle flap combined with FS as carrier is better than vascular muscle flap as a carrier alone.%目的探讨带血供肌瓣作为骨形态发生蛋白(BMP)载体修复骨缺损的可行性。方法观察带血供肌瓣复合BMP和单纯BMP组修复骨缺损时的成骨情况;对纤维蛋白粘合剂、带血供肌瓣、无血运肌瓣、同种异体脱钙骨4种不同BMP载体的成骨能力进行

  20. Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Fritz Thorey

    2011-01-01

    Conclusions: No differences between BMP-2 alone and a combination of BMP-2+TGF-β2 could be seen in the present study. However, the results of this study confirm the results of other studies that a coating with growth factors is able to enhance bone implant ingrowth. This may be of importance in defect situations during revision surgery to support the implant ingrowth and implant anchorage.

  1. Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Mehrkens

    2012-09-01

    Full Text Available Engineered osteogenic constructs for bone repair typically involve complex and costly processes for cell expansion. Adipose tissue includes mesenchymal precursors in large amounts, in principle allowing for an intraoperative production of osteogenic grafts and their immediate implantation. However, stromal vascular fraction (SVF cells from adipose tissue were reported to require a molecular trigger to differentiate into functional osteoblasts. The present study tested whether physiological doses of recombinant human BMP-2 (rhBMP-2 could induce freshly harvested human SVF cells to generate ectopic bone tissue. Enzymatically dissociated SVF cells from 7 healthy donors (1 x 106 or 4 x 106 were immediately embedded in a fibrin gel with or without 250 ng rhBMP-2, mixed with porous silicated calcium-phosphate granules (Actifuse®, Apatech (final construct size: 0.1 cm3 and implanted ectopically for eight weeks in nude mice. In the presence of rhBMP-2, SVF cells not only supported but directly contributed to the formation of bone ossicles, which were not observed in control cell-free, rhBMP-2 loaded implants. In vitro analysis indicated that rhBMP-2 did not involve an increase in the percentage of SVF cells recruited to the osteogenic lineage, but rather induced a stimulation of the osteoblastic differentiation of the committed progenitors. These findings confirm the feasibility of generating fully osteogenic grafts using an easily accessible autologous cell source and low amounts of rhBMP-2, in a timing compatible with an intraoperative schedule. The study warrants further investigation at an orthotopic site of implantation, where the delivery of rhBMP-2 could be bypassed thanks to the properties of the local milieu.

  2. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    International Nuclear Information System (INIS)

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis

  3. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.H.; Yu, C.C.; Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China); Ma, X.J. [Ningxia Medical Autonomous Region of the First People' s Hospital, Department of Orthopedic Surgery, Yinchuan (China); Yang, X.C.; Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China)

    2013-10-02

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  4. Pregnancy-associated plasma protein-a production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15.

    Science.gov (United States)

    Matsui, Motozumi; Sonntag, Barbara; Hwang, Seong Soo; Byerly, Tara; Hourvitz, Ariel; Adashi, Eli Y; Shimasaki, Shunichi; Erickson, Gregory F

    2004-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) is the major IGF binding protein-4 (IGFBP-4) protease in follicular fluid, consistent with its proposed role in folliculogenesis. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. Here we show that FSH and oocytes regulate PAPP-A expression in granulosa cells (GCs). By in situ hybridization, ovary PAPP-A mRNA was markedly increased by pregnant mare serum gonadotropin treatment, and the message was localized to the membrana GCs but not cumulus GCs (CGCs) of dominant follicles. To explore the mechanism, we used primary cultures of rat GCs. Control (untreated) cells produced little or no PAPP-A spontaneously. Conversely, FSH markedly stimulated PAPP-A mRNA and protein in a dose- and time-dependent fashion. Interestingly, PAPP-A expression in isolated CGCs was also strongly induced by FSH, and the induction was inhibited by added oocytes. To investigate the nature of the inhibition, we tested the effect of oocyte-derived bone morphogenetic protein-15 (BMP-15). BMP-15 alone had no effect on basal levels of PAPP-A expression by cultures of membrana GCs or CGCs. However, BMP-15 markedly inhibited the FSH stimulation of PAPP-A production in a dose-dependent manner. The cleavage of IGFBP-4 by conditioned media from FSH-treated GCs was completely inhibited by anti-PAPP-A antibody, indicating the IGFBP-4 protease secreted by GCs is PAPP-A. These results demonstrate stimulatory and inhibitory roles for FSH and BMP-15, respectively, in regulating PAPP-A production by GCs. We propose that FSH and oocyte-derived BMP-15 form a controlling network that ensures the spatiotemporal pattern of GC PAPP-A expression in the dominant follicle. PMID:15087430

  5. Bases teóricas y aplicación clínica de las proteínas morfogenéticas óseas en cirugía maxilofacial Base theories and the clinical application of bone morphogenetic proteins in maxillofacial surgery

    Directory of Open Access Journals (Sweden)

    C.M. Ardila Medina

    2009-06-01

    Full Text Available Uno de los grandes avances en la neoformación ósea ha sido la identificación de factores de crecimiento importantes para ella como son las proteinas morfogenéticas óseas (PMO que regulan la diferenciación ósea y cartilaginosa in vivo. La depuración, clonación genética y expresión de las PMO han establecido las bases para el análisis celular y molecular del desarrollo y la regeneración ósea. El estudio genético de las PMO señala que son esenciales para la función normal animal y en la osteogénesis postfetal es importante en el desarrollo embrionario orgánico, esquelético y de los tejidos dentales y craneofaciales. La disponibilidad de las PMO proporciona retos y oportunidades para mejorar los conocimientos que regulan la regeneración ósea con el fin de optimizar los resultados en el paciente.One of the fundamental advances in bone neoformation has been the identification of important growth factors like the bone morphogenetic proteins that regulate live cartilage and bone differentiation. The cleansing, genetic cloning and expression of recombinant human bone morphogenetic proteins (BMP have laid the basis for cellular and molecular analysis of bone development and regeneration. The genetic study of the BMPs indicates that they are essential to the normal development and function of animals. BMP post-natal bone development is also very important in embryonic organic, skeletal, craniofacial and dental tissue development. The availability of BMPs provides several challenges and opportunities to improve insights into the mechanisms that regulate the regeneration of bone for optimal outcome in the patient.

  6. Effects of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) in grade III open tibia fractures treated with unreamed nails-A clinical and health-economic analysis.

    Science.gov (United States)

    Alt, Volker; Borgman, Benny; Eicher, Alexander; Heiss, Christian; Kanakaris, Nikolaos K; Giannoudis, Peter V; Song, Fujian

    2015-11-01

    Recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) is licensed in Europe for open tibia fractures treated with unreamed nails. However, there is limited data available on the specific use of rhBMP-2 in combination with unreamed nails for open tibia fractures. The intention of the current study was to evaluate the medical and health-economic effects of rhBMP-2 in Gustilo-Anderson grade III open tibia fractures treated with unreamed nails based on individual patient data from two previously published studies. Linear regression analysis was performed on raw data of 90 patients that were either treated by standard of care with soft tissue management and unreamed nailing (SOC group) (n=50) or with rhBMP-2 in addition to soft tissue management and unreamed nailing (rhBMP-2 group) (n=40). For all types of revision, a significant lower percentage of patients (27.5%) of the rhBMP-2 group had to be revised compared to 48% of the patients of the SOC group (p=0.04). When only invasive secondary interventions such as bone grafting and nail exchange were considered, there was also a statistically significant reduction in the rhBMP-2 group with a revision rate of 10.0% (4 of 40 patients) compared to the SOC group with a revision rate of 28.0% (14 of 50 patients) (p=0.01). Mean fracture healing time of 228 days in the rhBMP-2 compared to 266 days in the SOC group was not statistically significant (p=0.24). Health-economic analysis based on a societal perspective with calculation of overall treatment costs after initial surgery and including productivity losses revealed savings of €6,239 per patient for Germany and €4,752 for the UK in favour of rhBMP-2 which was mainly driven by reduction of productivity losses. In conclusion, rhBMP-2 reduces secondary interventions in patients with grade III open tibia fractures treated with an unreamed nail and its use leads to financial savings for Germany and the UK from a societal perspective. PMID:26374949

  7. The Effect of Recombinant Human Bone Morphogenetic Protein on the Proliferation and Alkaline Phosphalase Activity Becomefibre Cell%重组人骨形成蛋白对成纤维细胞增殖和碱性磷酸酶活性表达的影响

    Institute of Scientific and Technical Information of China (English)

    张翠; 韩金祥; 宋长征; 王世力; 张更林; 梁浩

    2003-01-01

    Objective To study the alkaline phosphalase activity in cells of expression of recombinant human bonemorphogenetic protein - 7 of becomefibre. Methods Alkaline phosphalase activity and cells prolifeyalion. The by using PNPPand MTT colorimetry methods. Results The BMP concentration been 7.0μg/L ~ 70μg/L of cell have increased, the alkalinephosphalase activity of high expression. Conclusion By the BMP- 7 effect high expression ALPase and cells proliferation. Theeffects of bone morphogenetic protein with high concentration cells prolifeyalion and ALPase expression.

  8. Molecular mechanism of bone formation and regeneration

    Institute of Scientific and Technical Information of China (English)

    Akira Yamaguchi

    2008-01-01

    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  9. 重组人骨形态发生蛋白2调节人脂肪间充质干细胞表达血管内皮生长因子***★%Recombinant human bone morphogenetic protein-2 adjusts expression of vascular endothelial growth factor in human adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    曹鑫; 金格勒; 杨毅; 陈慧锦; 殷剑

    2013-01-01

    BACKGROUND: Recombinant bone morphogenetic protein-2 can promote tissue engineering bone vascularization, but its biological rules targeting human cel s are not clear. At present, there is in which report on recombinant bone morphogenetic protein-2 adjusts the expression of vascular endothelial growth factor in human cel s. OBJECTIVE: To observe and compare the expression of vascular endothelial growth factor in human adipose-derived mesenchymal stem cel s on gene level and protein level at different time points after induced with human recombinant bone morphogenetic protein-2. METHODS: Adipose-derived mesenchymal stem cel s were separated from adult human adipose tissues and cultured until passage 3, then divided into induced group and control group. The cel s in the induced group were induced by human recombinant bone morphogenetic protein-2 which final concentration was 100 μg/L, then the samples were col ected at 3, 6, 12, 18, 24, 36 and 48 hours after induction. Reverse transcription-PCR and enzyme-linked immunosorbent assay were used to detect vascular endothelial growth factor expression on gene level and protein level, compared with the control group. RESULTS AND CONCLUSION: Human recombinant bone morphogenetic protein-2 adjusted vascular endothelial growth factor expression of adipose mesenchymal stem cel s in a time-dependent manner, and the expression of vascular endothelial growth factor changed at different time points. Compared with the control group, human recombinant bone morphogenetic protein-2 could suppress vascular endothelial growth factor expression at 3-6 hours (P < 0.05), while at 18-24 hours, human recombinant bone morphogenetic protein-2 could promote vascular endothelial growth factor expression (P < 0.05). These two time periods should be paid attention when using human recombinant bone morphogenetic protein-2 to promote tissue engineering bone vascularization.%  背景:重组人骨形态发生蛋白2可以促进组织工程骨

  10. Application of bone morphogenetic protein 2 loaded nano-hydroxyapatite artificial bone in the correction and fusion of adult idiopathic scoliosis%骨形态发生蛋白2纳米人工骨在成人特发性脊柱畸形矫正融合中的应用

    Institute of Scientific and Technical Information of China (English)

    胡文; 黄旗凯; 苏佳灿; 李明

    2012-01-01

    背景:复合骨形态发生蛋白2 纳米人工骨具有独特的生物特性,模仿天然骨的成分及结构特征,可为细胞提供与天然骨相类似的微环境.目的:观察复合骨形态发生蛋白2 纳米人工骨与同种异体骨植骨在成人特发性脊柱畸形矫正融合的临床效果.方法:回顾分析69 例成人特发性脊柱侧弯患者资料,分别采用复合骨形态发生蛋白2 纳米人工骨移植36 例,同种异体骨移植33 例,植骨后第3,6 个月拍摄脊柱全长正侧位片,观察植骨融合情况.结果与结论:69 例患者畸形明显矫正,3,6 个月的影像学观测两组均可见骨小梁生长.植骨后6 个月,复合骨形态发生蛋白2 纳米人工骨组明显融合33 例,同种异体骨组26 例.复合骨形态发生蛋白2 纳米人工骨组早期融合率高于同种异体骨组(P < 0.05).提示成人特发性脊柱侧凸后路矫形手术中,复合骨形态发生蛋白2 纳米人工骨是比较理想的骨移植材料,在融合效果方面优于同种异体骨.%BACKGROUND: Bone morphogenetic protein 2 (BMP-2) loaded nano-hydroxyapatite artificial bone has unique biological properties that can imitate the component and structure of natural bone. It can provide cells a microenvironment which is similar to that of natural bone. OBJECTIVE: To investigate the clinical effects of BMP-2 loaded nano-hydroxyapatite artificial bone and allogeneic bone grafting on the correction and fusion of adult idiopathic scoliosis. METHODS: A retrospective review of 69 patients with adult idiopathic scoliosis was performed. These patients were randomly divided into two groups: group A and group B. In group A, 36 patients were received BMP-2 loaded nano-hydroxyapatite artificial bone; in group B, 33 patients were received allogeneic bone grafting. The anterioposterior and lateral full spinal films were taken at 3 and 6 months after operation, and the spinal fusion status in the two groups were observed and compared. RESULTS

  11. Correlation of trace element zinc with bone morphogenetic protein 7 and Stro-1+cells in proximal femur:predicting hip prosthesis life%股骨近端微量元素Zn与骨形态发生蛋白7及Stro-1+细胞的相关性:预测髋关节假体寿命

    Institute of Scientific and Technical Information of China (English)

    傅晓东; 王伟力; 沈奕; 李晓淼

    2014-01-01

    BACKGROUND:The correlation of zinc with Stro-1+cells and bone morphogenetic protein 7 surrounding the prosthesis may affect the bone fusion and survival rate in hip prosthesis. OBJECTIVE:To analyze the correlation of zinc content with Stro-1+cells and bone morphogenetic protein 7 in proximal femur. METHODS:Bone samples were obtained from the discarded metaphysis region of the proximal femur in 24 patients with primary total hip replacement. Bone marrow mesenchymal stem cells were cultured in vitro. At 14 days after culture, Stro-1+cells in bone marrow mesenchymal stem cells were detected using flow cytometry. Bone morphogenetic protein 7 expression in cellsupernatant was detected using enzyme-linked immunosorbent assay. Zinc content in supernatant was measured using radio-immunity assay. RESULTS AND CONCLUSION:No significant difference in the zinc content was detected in different age groups and different gender groups. Zinc content was positively associated with Stro-1+cells and bone morphogenetic protein 7 expression. The further study of the trace element zinc in proximal femur can predict and intervene the longevity of hip prosthesis.%背景:假体周围微量元素Zn的含量与骨形态发生蛋白7、Stro-1+细胞相关性可能影响髋关节假体的骨融合与生存率。  目的:分析股骨近端微量元素Zn与骨形态发生蛋白7、Stro-1细胞的相关性。  方法:24例初次髋关节置换患者,取术中股骨矩开槽时废弃骨块,提取细胞后体外培养骨髓间充质干细胞。培养14 d采用流式细胞仪检测骨髓间充质干细胞中的Stro-1+细胞,酶联免疫吸附测定试剂盒检测培养细胞离心上清液中骨形态发生蛋白7的表达,放射免疫荧光法检测培养细胞离心上清液中Zn含量。  结果与结论:Zn含量在不同年龄组及不同性别组差异无显著性意义;Zn与Stro-1+、骨形态发生蛋白7正相关联系。关于股骨近端微量元素Zn的进一

  12. Bio-oss combined with fibrin glue and bone morphogenetic protein-2 to repair mandibular defects%纤维蛋白胶复合骨形态发生蛋白2塑形Bio-oss修复下颌骨缺损**★

    Institute of Scientific and Technical Information of China (English)

    田刚; 徐晓刚; 周中华; 高建勇

    2013-01-01

      背景:Bio-oss 的颗粒状结构通常应用于洞形缺损的充填性移植,对于三壁以上的缺损修复难以成形。目的:评价 Bio-oss 以纤维蛋白胶复合骨形态发生蛋白2作为赋形材料后的成骨性能。方法:拔除9条杂种犬双侧下颌第2,4前臼齿及第2臼齿,造成1 cm×1 cm 的骨缺损区,将 Bio-oss+纤维蛋白胶+骨形态发生蛋白2、Bio-oss+纤维蛋白胶及 Bio-oss 材料分别植入第2,4前臼齿及第2臼齿骨缺损区。结果与结论:各组软组织均一期愈合。Bio-oss 复合纤维蛋白胶后,骨粉结合紧密,不易剥离。术后4,8,12周时 Bio-oss+纤维蛋白胶+骨形态发生蛋白2组新生骨百分率均高于其他两组(P <0.05)。表明纤维蛋白胶的加入可以解决 Bio-oss 成形困难的问题,骨形态发生蛋白2的加入可促进成骨效果。%BACKGROUND: Bio-oss granular structure is normal y used for hole-shaped defects in the form of fil ing transplantation, but it is difficult to forming for more than three-wal defects. OBJECTIVE: To evaluate the osteogenic activities of Bio-oss after combination with fibrin glue and bone morphogenetic protein-2 in the repair of canine mandibular defects. METHODS: The second and fourth premolar teeth and the second molar teeth were extracted bilateral y in nine hybrid canines, resulting in 1 cm × 1 cm bone defect. Bio-oss, Bio-oss+fibrin glue and Bio-oss+fibrin glue+bone morphogenetic protein-2 were implanted into bone defects of the second, fourth premolar teeth and the second molar teeth, respectively. RESULTS AND CONCLUSION: Stage Ⅰ healing of soft tissues was achieved in al animals. Bio-oss was closely combined with fibrin glue, which was difficult to be separated. The proportion of new bone was higher in the Bio-oss+fibrin glue+bone morphogenetic protein-2 group than in the other two groups at 4, 8, and 12 weeks after extraction (P < 0.05). It shows that fibrin glue can solve the difficulty in

  13. Expression of bone morphogenetic protein-2 during the distraction process in midpalatal suture of rats%腭中缝牵张成骨中骨形成蛋白2的表达

    Institute of Scientific and Technical Information of China (English)

    胡海琨; 周静; 王尧; 李婧; 何武林; 邹淑娟

    2011-01-01

    背景:正畸医生常常通过扩大腭中缝矫正上颌骨横向发育不足.骨形成蛋白2 可以诱导骨和软骨的形成,促进牵张成骨过程中的骨重建.然而关于骨形成蛋白2 在腭中缝牵张成骨中的时间空间表达规律尚不清楚.目的:观察骨形成蛋白2 在大鼠腭中缝牵张成骨过程中的表达规律.方法:实验选用80 只5 周龄雄性Wistar 大鼠,分为实验组和对照组(包括阴性对照和空白对照).将初始力值为50 g 的腭中缝扩大簧黏接到大鼠两侧上颌牙列上建立大鼠腭中缝牵张模型,牵张1,4,7,14 d 后,采用免疫组织化学和实时定量荧光PCR 方法分析骨形成蛋白2 蛋白和mRNA 在各加力时间点的表达.结果与结论:腭中缝扩张后骨形成蛋白2 蛋白表达水平显著增加,且存在时空表达差异,主要定位于腭中缝纤维组织、软骨细胞层、骨细胞和成骨细胞胞浆及其细胞外基质.同时,骨形成蛋白2 mRNA 表达也明显上调.提示腭中缝牵张力可刺激骨缝中骨形成蛋白2 蛋白和mRNA 的合成,在骨缝塑建过程中发挥重要作用.%BACKGROUND: Orthodontists usually use palatal suture expansion to solve the problem of maxillofacial deformity. Some studies have shown that bone morphogenetic protein-2 (BMP-2) can induce bone and cartilage formation, promote the distraction osteogenesis in the process of bone remodeling under mechanical tension forces. However, underlying mechanisms of BMP-2 that drive bone formation during palatal suture expansion remain unknown.OBJECTIVE: To investigate the law of BMP-2 expression in mid-palatal suture remodeling after subjecting to tensional strain loading.METHODS: Wistar male rats of 5 weeks old, with average weight of 70-80 g, were randomly divided into 2 groups, separately, Rats in experimental group were placed on the expansion appliance, with opening loops with an initial force of 50 g applied to mid-palatal suture for periods of 1, 4 ,7 and 14 days

  14. 纳米羟基磷灰石复合骨形态发生蛋白2与骨髓基质干细胞的体外培养%Nano-hydroxyapatite/bone morphogenetic protein-2 culture with bone marrow stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    代平; 张洪; 陈新来; 袁建辉

    2012-01-01

    BACKGROUND: Whether a combination of the nano-hydroxyapatite (nHA) scaffolds with bone morphogenetic protein-2 (BMP-2) is superimposed to promote or inhibit the bone marrow stromal stem cells, as well as its biocompatibility, remain unclear.OBJECTIVE: To observe the biocompatibility and bone formation activity of nHA/BMP-2 co-cultured with rabbit bone marrow stem cells in vitro.METHODS: Bone marrow stem cells obtained from rabbits were cultured and proliferated in DMEM medium in vitro. The cells at the third passage were inoculated into four mediums and according divided into four groups: control group, BMP-2 group, nHa group, and nHa/BMP-2 group. RESULTS AND CONCLUSION: The cell diplo-proliferation time of control group and nHa group was longer than that in BMP-2 group and nHa/BMP-2 group. The cells proliferative activity calculated by MTT assay and bone formation activity based on the alkaline phosphatase method demonstrated statistical significant difference in BMP-2 group and nHa/BMP-2 group compared with control and nHa group (P < 0.01). Experimental findings indicate that, the tissue formation of nHA/BMP-2 not only has good biocompatibility with Bone marrow stem cells, but also could bring into full play the effect of BMP-2 for promoting the proliferation, differentiation, and bone formation activity of bone marrow stem cells.%背景:纳米级羟基磷灰石支架材料复合骨形态发生蛋白2因子组织构建模式组合后对骨髓基质干细胞的作用是叠加促进或抑制作用以及其生物相容性如何?目的:验证纳米羟基磷灰石复合骨形态发生蛋白2与骨髓基质干细胞在体外共同培养下的生物相容性和成骨性.方法:将兔骨髓基质干细胞体外培养、传代和扩增,经鉴定后将第3代细胞分别接种在对照组、骨形态发生蛋白2组、纳米羟基磷灰石组、纳米羟基磷灰石/骨形态发生蛋白2组4种培养液中.结果与结论:对照组和纳米羟基磷灰石组的细胞倍

  15. A new concept for implant fixation: bone-to-bone biologic fixation

    OpenAIRE

    D-Y Kim; J-R Kim; KY Jang; K-B Lee

    2015-01-01

    Many attempts have been made to reduce complications of bone implant, such as pedicle screw loosening. To address this problem, the authors suggest a new concept of bone-to-bone biologic fixation using recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded cannulated pedicle screws. Recombinant human bone morphogenetic protein-2 is an osteoinductive cytokine. Four types of titanium pedicle screws were tested (uncannulated, cannulated with no loading, beta-tricalcium phosphate (TCP)-l...

  16. Bone morphogenetic protein 2 stimulated osteo-chondrogenic differentiation of patellar tendon-derived stem cells isolated from a failed tendon-healing animal model of tendinopathy%骨形态发生蛋白2诱导慢性腱病大鼠肌腱干细胞体外成骨、成软骨分化

    Institute of Scientific and Technical Information of China (English)

    林禹丞; 王宸; 芮云峰; 成心锟; 马良彧

    2014-01-01

    BACKGROUND:The pathogenesis of tendinopathy remains unclear and hence treatment of tendinopathy is usualy paliative. OBJECTIVE:To investigate the effects of bone morphogenetic protein 2 on the osteogenic and chondrogenic differentiation of patelar tendon-derived stem cels isolated from colagenase-induced tendinopathy ratsin vitro. METHODS: Patelar tendon-derived stem cels were isolated from patelar tendons of colagenase-induced tendinopathy rats. The multi-differentiation potential of patelar tendon-derived stem cels at passage 3 was identified by osteogenic, adipogenic and chondrogenic differentiation assays. The patelar tendon-derived stem cels were cultured to the 3rd passage in complete culture medium, and then the cels were divided into two groups with (experimental group) or without recombinant human bone morphogenetic protein 2 (control group) until the cels reached confluence for 7 days. Their osteogenic response to bone morphogenetic protein 2in vitro was examined by alizarin red S staining of calciumnodule formation and quantification assay. The patelar tendon-derived stem cellpelets were cultured in complete culture medium with (experimental group) or without bone morphogenetic protein 2 (control grup) for 21 days. Chondrogenic differentiation of the cellpelets was evaluated by hematoxylin-eosin staining, alcian blue staining, immunohistochemical staining for Sox9 and colagen type II. RESULTS AND CONCLUSION:Primary patelar tendon-derived stem cels from the tendinopathy rats culturedin vitro showed clonal growth; after passage, spindle fibroblast-like and flat-like cels were detectable. The cels were positive for oil red O staining at 10 days after adipogenic induction, positive for alizarin red staining at 7 days after osteogenic induction, and positive for hematoxylin-eosin staining and immunohistochemical staining of colagen type II at 14 days after chondrogenic induction. After patelar tendon-derived stem cels were induced with recombinant human bone

  17. Mineralization reaction during osteogenic differentiation of myoblasts stimulated by bone morphogenetic protein 2***☆%重组人骨形成蛋白2诱导成肌细胞成骨分化中的矿化反应

    Institute of Scientific and Technical Information of China (English)

    张力; 王伟

    2012-01-01

    BACKGROUND: In recent years, it has been confirmed by a variety of ways that myoblasts can differentiate into osteoblasts under the induction of recombinant human bone morphogenetic protein 2 (rhBMP-2).OBJECTIVE: To explore the mineralization reaction during the osteogenic differentiation of myoblasts under the induction of recombinant rhBMP-2 and the feasibility of osteogenic phenotype expression by in vitro induction. METHODS: Myoblasts were isolated and harvested from neonatal Wistar rats using differential velocity adherent technique and trypsinization method. After in vitro culture, purification and identification, myoblasts at passage 3 were induced by a medium containing rhBMP-2 for 21 days. Myoblasts in the control group were cultured in vitro in complete medium without rhBMP-2 for 21 days. RESULTS AND CONCLUSION: After rhBMP-2 induction, myoblast proliferation gradually slowed down. A small quantity of opaque secretory granules were found in the cytoplasm on day 8 after induction; the number of opaque secretory granules increased on day 14 after induction; and a great quantity of opaque secretory granules were found in the cytoplasm on day 21 after induction while the myoblasts without induction fused into contractile myotubes. The alkaline phosphatase activity of the induced myoblasts increased as time extended; myoblasts reacted positively in the alkaline phosphatase staining, immunochemical staining for type Ⅰ collagen and calcium node staining on day 21 after induction. These findings suggest that mineralization reaction is found in rat myoblasts by rhBMP-2 induction and myoblasts can differentiate into osteoblasts under certain inducing conditions in vitro.%背景:近年来成肌细胞在重组人骨形态发生蛋白2诱导下向成骨细胞分化已经通过多种方式得到了证实.目的:探讨成肌细胞在重组人骨形态发生蛋白2诱导下向成骨分化过程的矿化反应及其体外诱导表达成骨表型的可行性.方法:采

  18. 骨形态发生蛋白家族及其受体在生殖调控中的作用%Review of the role of bone morphogenetic protein family and its receptors in the reproductive modulation

    Institute of Scientific and Technical Information of China (English)

    管峰; 杨利国; 程瑞禾; 曹少先

    2005-01-01

    OBJECTIVE:Bone morphogenetic protein (BMP) plays a vital role in the prevention and treatment of skeleton diseases, recently researches on the molecular mechanism of sheep prolific FecB gene indicated that BMP and its receptors have important influence on animal follicular development. In this study the influence of different type BMPs andits receptors on the follicular development was reviewed in order to explore effective modulation on animal reproduction.DATA SOURCES: Computer was applied to retrieve Medline database on the related literatures from January 1998 to June 2005. The retrieval words were "BMP" and "BMPR" that combined respectively. Language in the articles was limited to English. Simultaneously related articles were also computer searched in China periodical full text database and Wanfang databases from January 1996 to December 2005 with the retrieval words of "BMP, BMPR", that limiting the article language to Chinese.STUDY SELECTION: At first, the document was retrieved, altogether 200 studies on BMP and its receptors were enrolled including 140 Chinese literatures and 60 English literatures.DATA EXTRACTION: these literatures were screened and 30 were included for relating to the BMP characteristic, as well as the influence of BMP and its receptors on follicular development and reproductive endocrine.DATA SYNTHESIS: Of the 30 literatures, 18 experiments discussed the function of BMP and its receptors and its signal transduction mechanism,12 were about the influence of different BMP on reproductive cell secretion, as well as receptor mutation on ovulation.CONCLUSION: BMPs family plays vital role in animal reproductive modulation, current experiments prove that the changes of signal transduction due to BMP receptor gene mutation has made breakthrough for the exploration of the prolific mechanism in sheep. Moreover studies on follicular development modulation and ovulation mechanism are liable to provide theoretical reference for the prolific

  19. Effects of different carriers on bone-inducing activity of recombinant human osteogenic protein-1%不同载体对重组人成骨蛋白-1骨诱导活性的影响

    Institute of Scientific and Technical Information of China (English)

    王敏; 韩金祥; 宋长征

    2004-01-01

    BACKGROUND: The carriers of recombinant human osteogenic protein-1(rhOP-1) are limited to collagen. The effects of different carriers on its bone inducing activity still have not been proved. OBJECTIVE: To find an optimal carrier material for rhOP-1 through a comparative studies of the effects of different materials on the bone-inducing activity. DESIGN: A completely randomized, auto-control and mutual control study was used. SETTING AND PARTICIPANTS: Ninety-six male mice of Kunming species were recruited in this study and the experiment was completed at the Animal Laboratory of our center. INTERVENTION: The materials included inactive decalcified bone matrix ( DBM), hydroxyapatite ( HA ), polylactic acid ( PLA), polylactic acid-polyethylene glycol copolymers (PLA-PEG) and polylactic glycollc acid (PLGA), and they were compounded with rhOP-1 respectively, and were then implanted into the medial intermuscular septum of the thighs of mice for 3 weeks. Then, samples were taken to evaluate the effects of the five materials on bone-inducing activity of rhOP-1.MAIN OUTCOME MEASURE: New bone maturity and osteogenic rate were assessed by histological studies, determination of alkaline phosphatase (ALP) level and calcium content of the entopic new bone.RESULTS: Three weeks after implantation, groups of DBM/rhOP-1 (A), rhOP-1 (F) and Eukaryon expressed OP-1 (control VI) all showed new bone formation. Group A was found to have massive bone trabeculac, marrow cavity, and lamellar bones as well as rich blood vessels and bone marrow. Group F showed appearance of woven bones. In Group VI, there appeared compact bone tissues of maturity. In the rest of the groups, there was proliferation of mesenchymal cells, and part of the materials were absorbed, and no bone was found. ALP level and calcium content were significantly higher in every compound group than in control group, and they were higher in Group A than in other experimental groups( F =6. 250, P <0.05). No significant

  20. Proteínas morfogenéticas ósseas associadas a osso esponjoso autógeno na reparação de falhas experimentais na calota craniana de coelhos (Oryctolagus cuniculus Bone morphogenetic proteins associated with autogenous bone graft in the reparation of calvarial experimental defects of rabbits (Oryctolagus cuniculus

    Directory of Open Access Journals (Sweden)

    B.S. Monteiro

    2007-12-01

    ão determinou maior preenchimento ósseo.Aspects of bone repair were evaluated after implantation of bone morphogenetic proteins (BMP in different concentrations. They were carried by autogenous bone graft in defects created on skulls of 20 adult, young female rabbits, randomizedly divided into five experimental groups and were observed at five times. After exposure of skull bones, six bone defects on the fronto-parietal region of each animal were performed. The defect I was not filled, the II was completed filled with 3mg of autogenous bone graft and the defects III, IV, V, and VI were filled with autogenous bone graft associated with 0.5; 1; 2 and 5mg of BMP, respectively. In the post-mortem mesoscopic evaluations, it was observed that, independently of the treatment period of the defects, the bony filling began from the borders to the center, and from the botton to the surface of the lessions. The bony filling of the defect I was the smallest when compared with the others defects, in all the observation moments. It was also verified that until 2mg the higher the concentration of BMP used, better was the bone cover. Microscopically, it was verified in the first evaluations, on the seventh day, that the bony growth started from the borders and from the bottom of the lesion, with mobilization and differentiation of cells deriving from the periosteum and the meninges, respectively. In the subsequent evaluations, the osteoblastic activity also derived from "ossification islands" to ossification centers, located in the center of the flaw. The trabecular formation increased proportionally with the concentration of BMP used, and the apposition and bony organization increased proportionally with the time of observation. The presence of cartilaginous tissue was verified in all the flaws. In conclusion, the use the higher concentration of BMP did not determinate the better new bone formation. The association of BMP with autogenous bone graft contributed to the formation of new bony

  1. 冻干硬脑膜内骨形成蛋白-自固化磷酸钙复合移植修复骨缺损%Repairing bone defects using bone morphogenetic protein and calcium phosphate cement combined with freeze-dried dura mater

    Institute of Scientific and Technical Information of China (English)

    邹国耀; 吴恒烜

    2009-01-01

    背景:骨形成蛋白和自固化磷酸钙各自有着良好的成骨能力,冻干硬脑膜内骨形成蛋白和自固化磷酸钙复合移植存在优化成骨效能的可能性.目的:以冻干硬脑膜为膜材料,观察膜内充填材料骨形成蛋白复合自固化磷酸钙移植修复节段性骨缺损的效果.设计、时间及地点:随机分组设计,动物体内组织病理学对照观察,于2006-07/2007-07在广西医科大学动物实验室完成.对象:健康成年新西兰大白兔28只,雌雄不限,体质量1.5~2.5 kg.方法:实验兔28只,其中4只用于取硬脑膜.其余24只随机分成A,B两大组,每组12只.A组制造双侧兔桡骨中段10 mm的骨缺损.一侧骨缺损用骨形成蛋白、自固化磷酸钙、冻干硬脑膜复合移植修复,为骨形成蛋白组, 另一侧不予处理作为空白对照组.B组制造单侧兔桡骨中段10 mm的骨缺损,用骨髓、自固化磷酸钙、冻干硬脑膜复合移植修复称骨髓组.主要观察指标:于术后第1,2,4,6,8,10,12周分别行双侧桡骨X射线检查.观察骨缺损处的新骨形成及骨修复情况.并于术后第2,4,8,12周切取标本行组织学检查及成骨面积分析.结果:在术后第4,8,12周,骨形成蛋白组的成骨面积大于骨髓组(P<0.05),而在实验早期(术后2周)两组间差异无显著性意义(P>0.05);在实验的各个时期,骨形成蛋白组和骨髓组的成骨面积均明显大于空白组(P<0.01).X射线结果显示,骨形成蛋白组在10~12周出现明显骨痂塑形现象;组织学病理切片结果显示,骨形成蛋白组在12周时桡骨可见成熟骨髓,骨缺损处为成熟的板层骨连接.结论:骨形成蛋白复合自固化磷酸钙与冻干硬脑膜移植具有良好的成骨作用.%BACKGROUND: Both bone morphogenetic protein (BMP) and calcium phosphate cement (CPC) have excellent osteogenic capability, so, it is possible to optimize osteogenic efficiency by combing BMP, CPC and freeze-dried dura mater (FDDM

  2. 激素性股骨头坏死硬化带与骨形态蛋白关系的研究%Study on the relationship between sclerosis rim and bone morphogenetic proteins of osteonecrosis of the femoral head

    Institute of Scientific and Technical Information of China (English)

    石少辉; 李子荣; 王佰亮; 孙伟; 程立明; 潘琳; 王冉东

    2010-01-01

    目的 通过对股骨头坏死(ONFH)患者硬化带形成情况进行回顾性分析及其组织学观察,探讨骨形态蛋白(BMP4)与硬化带关系,为股骨头坏死个性化治疗提供理论依据.方法 2005年11月至2007年11月共治疗激素性ONFH全髋关节置换患者184髋,患者平均年龄(47±7)岁,依此把患者分为高(>54岁)、中(40~54岁)和低(<40岁)3个年龄组,分析比较3组患者硬化带形成比率.从184髋中选取部分股骨头标本,包括高年龄组患者股骨头18髋,低年龄组11髋,中年龄组股骨头标本20髋(有无硬化带形成者各10髋).股骨头冠状面正中剖开,在负重区和非负重区取材,行常规HE染色、苦味酸-天狼星红染色、电镜制备和BMP4蛋白免疫组化染色.BMP4蛋白免疫组化染色强度用图像分析软件计算其平均光密度.结果 硬化带在组织学上表现为骨小梁增粗,结构紊乱,但骨细胞结构同正常骨细胞,且处于高分泌状态.中年龄组ONFH患者硬化带形成比例为71.4%(105/147),显著高于低年龄组患者(45.5%,5/11)和高年龄组患者(38.5%,10/26)(P均<0.01).中年组患者股骨头BMP4平均光密度为0.32±0.14,明显高于低年龄组0.20±0.17和高年龄组0.19±0.27,且差异具有统计学意义(P均<0.05);中年龄组患者无硬化带形成者BMP4平均光密度分别为0.16±0.1l,有硬化带形成患者为0.28±0.13,差异具有统计学意义(P<0.01).有硬化带形成患者出现髋关节疼痛到关节置换时间为(49±11)个月,显著长于无硬化带形成者(15±2)个月,差异具有统计学意义(P<0.01).结论 ONFH患者硬化带形成与BMP4表达强弱呈正相关,BMP的高表达可能促进硬化带的形成.%Objectives To analyze retrospectively the formation and histological changes of sclerosis rim in patients with osteonecrosis of the femoral head ( ONFH), and to study the relationship between bone morphogenetic proteins (BMP4) and sclerosis rim, so as to acquire

  3. 纤维蛋白凝胶复合骨形态发生蛋白和庆大霉素缓释药物对感染性骨缺损的修复%Fibrin glue/bone morphogenetic protein complex plus slow-release gentamicin for repairing infected bone defects in rabbits

    Institute of Scientific and Technical Information of China (English)

    高秋明; 刘兴炎; 董晓萍; 葛宝丰; 白孟海; 陈克明

    2005-01-01

    背景:慢性骨髓炎临床处理较为棘手,手术常需分期进行,目前尚无好的方法予以一期修复.目的:探讨将纤维蛋白凝胶(FG)作为骨形态发生蛋白(BMP)及庆大霉素的共同载体,一期修复感染性骨缺损的可行性.设计:完全随机对照实验研究.单位:解放军兰州军区兰州总医院全军创伤骨科中心.材料:实验在兰州军区兰州总医院骨科研究所完成.对象为体质量1.9~2.4kg的48只成年健康青紫兰兔,雌雄不限,购自甘肃省兰州市生物制品研究所.干预:48只青紫兰兔,制作慢性骨髓炎模型,清创后造成胫骨近侧干骺端内侧1.5 cm长半环形骨缺损,采用3种方法进行处理:A组,植入FG,BMP和庆大霉素复合物;B组,植入FG/BMP复合物,C组,作为空白对照.主要观察指标:术后观察动物一般情况,做骨培养及细菌计数,X射线拍片及组织学检查.结果:A组感染控制及骨修复均良好,感染控制率、再生骨量明显优于B组.B,C两组在感染控制率上无显著差异.C组动物骨修复差.结论:FG,BMP及庆大霉素复合物具有促进成骨及抗感染的双重作用,可用于感染性骨缺损及污染严重的开放性损伤造成的骨缺损的修复.%BACKGROUND: Chronic osteomyelitis is difficult to manage clinically, and two or more operations were commonly needed. No satisfactory method for one-stage repair has been currently available.OBJECTIVE: To examine the possibility of using fibrin glue(FG) as the common carrier for both bone morphogenetic protein(BMP) and gentamicin for one-stage repair of infected bone defects.DESIGN: A completely randomized controlled experiment.SETTING: Center of Orthopaedic Surgery, Lanzhou General Hospital of Lanzhou Area Command of of Chinese PLA.MATERIALS: The experiment was conducted using 48 healthy adult Chinchilla rabbits of either sex on normal diet with body mass of 1.9 to 2.4 kg,provided by the Institute of Biological Products, Lanzhou, Gansu Province

  4. Regulatory Mechanism of Bone Morphogenetic Proteins 6 on Iron Metabolism During Exercise%运动对骨形态发生蛋白6介导的机体铁代谢调节机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙娟; 王海涛; 刘玉倩; 王羽; 王金霞

    2012-01-01

    骨形态发生蛋白6(BMP6)为TGF-β超家族中一员,它产生于骨髓源性间质干细胞(BMSC)及造血干细胞,是一种调节成骨细胞和成软骨细胞分化的骨生长因子,在骨缺损的修复中具有重要作用.运动可促进BMP6的表达.研究发现,BMP6也是铁调素的重要的内源调节子,可以上调铁调素的表达,而铁调素是肠铁吸收的负调节子.因此,运动引起的BMP6表达增加,可以促进机体铁的吸收和释放,从而对运动中维持机体铁的动态平衡有重要的调控作用.%Bone morphogenetic protein 6(BMP6) is a member of the transforming growth factor-β family, it is produced by bone marrow-mesenchymal (BMSC) and hematopoietic stem cells. BMP6 is a potent protein for future treatment strategies of bone regeneration as it is a very important regulator of bone ho-meostasis and is a kind of adjusting the osteoblast and cartilage cells of bone growth factors. Moreover,it is also released by osteoclasts as a key bone coupling factor recruiting osteoblasts to the resorption site. So it has a good application potential in all kinds of bone defect repair. Sports can promote expression of BMP6. Recent study shows that BMP6 can up-regulation of hepcidin expression. However,hepcidin is the negative regulators and down-regulation of intestinal iron absorbing. So exercise-induced increased expression of BMP6 and promotes iron absorption and release. Consequently,to maintain iron homeostasis in the sport has an important regulatory role.

  5. Effects of TiO2 sandblasted and acid-etched titanium on expression of bone morphogenetic protein 2 in human osteoblasts%TiO2喷砂酸蚀处理对钛片表面人成骨细胞BMP-2表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    陆斌; 李建武; 郭义; 杨艳

    2013-01-01

    目的 探讨钛片经过TiO2喷砂酸蚀处理后对人成骨细胞系MG63细胞骨形态发生蛋白2(bone morphogenetic protein,BMP-2)表达水平的影响.方法 将钛片分为3组进行处理:机械打磨组、喷砂组及喷砂酸蚀组,分别进行机械打磨、TiO2喷砂和喷砂酸蚀处理.将人成骨细胞系MG63细胞接种于钛片表面,采用实时定量聚合酶链反应(real-time polymerase chain reaction,RT-PCR)、Western blot检测BMP-2 mRNA及蛋白表达水平.结果 喷砂组及喷砂酸蚀组BMP-2 mRNA及蛋白水平增高,与机械打磨组相比差异有统计学意义(P<0.05),而喷砂组与喷砂酸蚀组之间差异无统计学意义(P>0.05).结论 使用经过TiO2喷砂及喷砂酸蚀处理的钛片进行人成骨细胞培养可促进BMP-2表达.%Objective To explore the effect of TiO 2 sandblasted and acid -etched titanium on the expression of bone morphogenetic pro -tein 2 (BMP-2) in human MG63 cells.Methods Titanium discs (15 mm diameter and 1 mm thickness ) were divided into 3 groups: machine polished group , sandblasted group , sandblasted and acid -etched group.Titanium discs were treated with mechanical polishing , TiO2 sandblasting, sandblasting and acid-etching in three groups , respectively.MG63 cells were cultured on the titanium.The mRNA and protein expression of BMP-2 in MG63 cells were analyzed by real-time polymerase chain reaction (RT-PCR) and Western blot.Results The mRNA and protein levels of BMP -2 were significantly higher in sandblasted group and sandblasted and acid -etched group than in machine polished group ( P 0.05 ).Conclusion After sandblasting and acid -etching, titanium could promote the expression of BMP-2 in human osteoblast.

  6. Subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement and gelatin sponge as the carrier of recombinant bone morphogenetic protein-2 in rats:A comparative study%两种材料复合rhBMP-2诱导大鼠皮下异位成骨的比较研究

    Institute of Scientific and Technical Information of China (English)

    李想; 董纪元; 彭江; 汪爱媛; 睢翔; 赵斌; 刘道宏

    2011-01-01

    Objective To analyze the difference in subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement (CPC) and gelatin sponge as a carrier of recombinant bone morphogenetic protein-2 (rhBMP-2). Methods Thirty Sprague Dawley rats with an average body weight of 200g were divided into groups A-D. CPC+rhBMP-2, CPC, gelatin sponge+rhBMP-2, and gelatin sponge were implanted into the rats after anesthesia. Ten rats were killed 2, 4 and 8 weeks after they were fed under sterile environment. Bone tissue samples were collected from the implantation sites. Tissue mineral density (TMD) and trabecular thickness were detected with micro-CT scanner and analyzed with SPSS 1 OX) statistical software. Bone tissue was fixed in 4% paraformaldehyde for 2 days, embedded in paraffin, and cut into sections. The sections were stained with H&E to observe their histological change. Results The tissue mineral density and trabecular thickness of the samples with rhBMP-2 were higher in two experimental groups 2,4 and 8 weeks after implantation, which increased with the prolongation of time (P<0.05). Conclusion Porous CPC can be used as a carrier of rhBMP-2 for osteogenesis.%目的 分析多孔自固化磷酸钙骨水泥(Calcium Phosphate Cement,CPC)和明胶海绵复合重组人骨形态发生蛋白(Recombinantion Humen Bone Morphogenetic Protein-2,rhBMP-2)诱导大鼠皮下异位成骨的区别.方法 平均质量200g SD大鼠30只,麻醉后分别植入A:多孔CPC复合rhBMP-2(2μg);B:多孔CPC;C:明胶海绵复合rhBMP-2(2μg);D:空白明胶海绵,无菌喂养后分别于2、4、8周各处死10只.对植入部位组织取材,分别进行micro-CT扫描,并使用Micview V2.1三维重建处理软件扫及ABA骨形态分析软件检测,记录组织骨密度(Tissue Mineral Density,TMD)及骨小梁厚度(Trabecular Thickness,Tb.Th).运用SPSS10.0统计软件进行统计学分析.后行甲醛固定2周,石蜡包埋切片,HE染色进行组织学观察.结果 在2、4、8

  7. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  8. 肺动脉高压对内皮祖细胞与骨形成蛋白-2的影响%The effection of idiopathic pulmonary hypertension on endothelial progenitor cells and bone morphogenetic protein-2

    Institute of Scientific and Technical Information of China (English)

    张韩; 李彦明; 刘枫; 万琪琳; 程冠昌; 洪岩; 陈君柱

    2012-01-01

    Objective To investigate the effectiong of idiopathic pulmonary arterial hypertension (IPAH ) on hone morphogenetic protein-2 ( BMP-2 ) and counts of endothelial progenitor cells ( EPC ) , and the co relationg between and BMP-2 and pidmary arterial pressnre(PAP) and the counts of EPC. Methods The patients with IPAH (fi=28 ) diagnosed by the examination of right heart floating catheters for pulmonary arterial pressure were selected as experimental group, and healthy volunteers were selected as control group. The concentration of plasma BMP-2 was detected by using enzyme-linked immnnosorbent assay ( ELISA) and EPC in peripheral blood were counted under the microscope. Results The difference in plasma BMP-2 had statistical significance between IP AN group and contrlo group [ ( 0.1294 ± 0.0292 ) μg/mL vs. (0.0898 ± 0.0295 )μg/mL, P<0.01], and the difference in EPC counts also had statistical significance [ ( 26.75 ± 5.87 ) piece vs. (42.65 ± 8.37 ) picee, P<0.01]. The relation of BMP-2 and PAP was positive, while negative between BMP-2 and EPC. Conclusion IPAH caused the increase of BMP-2 while desease of EPC, the relation between BMP-2 and PAP or BMP-2 and EPC was existed in IPAH patients.%目的 分析特发性肺动脉高压(IPAH)对血浆骨形成蛋白2(BMP-2)的浓度和外周血内皮祖细胞(EPC)数量的影响以及BMP-2与肺动脉压(PAP)及EPC的关系.方法 选取经右心漂浮导管检测肺动脉压确诊的IPAH住院患者28例为试验组;同时选取健康志愿者20例为对照组.采用酶联免疫吸附法(enzyme linked immunosorbent assay,ELISA)法测定血浆BMP-2的浓度,同时显微镜下计数外周血EPC.统计分析两组差异并对BMP-2与PAP和EPC的相关性进行分析.结果 IPAH患者血浆BMP-2水平高于对照组,差异有统计学意义[(0.1294±0.0292)μg/ml vs.(0.0898±0.0295)μg/ml,P<0.01],外周血EPC数量低于正常对照组,EPC数量具差异有统计学意义[(26.75±5.87)个 vs.(42.65±8.37)个,P<0.01].BMP

  9. 医用生物蛋白胶对注射型骨形态发生蛋白成骨活性的影响%Influence of fibrin sealant on osteoinductive ability of inject-type bone morphogenetic protein

    Institute of Scientific and Technical Information of China (English)

    王登虎; 刘建; 李丹; 胡蕴玉; 袁志

    2002-01-01

    Objective To observe influence of fibrin sealant(FS) on osteoinductive ability of inject type BMP.Method The inject type BMP power was dissolved in the main glue part or thrombin part of FS, then mixed with the main glue part or thrombin part of FS into gel, observe coagulating time, then implant composite into the thigh muscle pouch of mice to evaluate their capacity to induce new bone formation, and compared to the single BMP implant group.Result There was no difference in the coagulating time between two mixing method, the osteoinductive ability of implants BMP dissolved in the main glue part or thrombin part of FS group was higher than that of simply BMP implant group.Conclusion FS was perfect carrier to inject type BMP.

  10. Effect of bovine bone morphogenetic proteins on radius fracture healing in rabbits Efeito de proteínas morfogenéticas ósseas de origem bovina na consolidação de fraturas induzidas no rádio de coelhos

    Directory of Open Access Journals (Sweden)

    Alfredo Feio da Maia Lima

    2007-08-01

    Full Text Available PURPOSE: To investigate the effect of bovine bone morphogenetic proteins (bBMPs bound to hydroxyapatite plus collagen in the healing of unstable radius fractures. METHODS: A transverse fracture was induced at the mid of the diaphysis in both radii on 15 Norfolk rabbits with average age of 5.5 months and 3.5kg. A mixture of bBMPs bound to thin powdered hydroxyapatite (bBMP-HA and bovine collagen as agglutinant was applied to the right radius fracture site. The left radius fracture was considered control and no treatment was used. After 30, 60 and 90 days (5 rabbits/period the rabbits were euthanized and the radii were collected for histological analysis. RESULTS: The descriptive histological analysis revealed that repair was similar for both forelimbs. The histomorphometric analysis showed that the mean area of newly formed bone was 867442.16 mm², 938743.00 mm² and 779621.06 mm² for the control forelimbs, and 841118.47 mm², 788038.76mm² and 618587.24 mm² for the treated forelimbs at 30, 60 and 90 days, respectively. Thus the newly formed bone area was 12.17% larger in the forelimbs treated with bBMP-HA/collagen than in the control forelimbs (pOBJETIVO: Investigar a influência de Proteínas Morfogenéticas Ósseas de origem bovina (bBMPs ligadas a hidroxiapatita mais colágeno na consolidação de fraturas instáveis do rádio. MÉTODOS: Em 15 coelhos com aproximadamente 5,5 meses de idade e peso médio de 3,5kg foi realizada uma fratura transversa na porção média da diáfise do rádio de ambos os membros. Na fratura do rádio direito foi aplicada mistura de bBMPs ligadas à hidroxiapatita (bBMP-HA e colágeno bovino como aglutinante e na do rádio esquerdo, considerada controle, nenhum tratamento foi usado. Os coelhos (cinco por período foram submetidos à eutanásia aos 30, 60 e 90 dias após a cirurgia para realização do processamento histológico e análise microscópica. RESULTADOS: A análise histológica descritiva revelou que

  11. Effect of recombinant human bone morphogenetic-4 and recombinant human insulin-like growth factor-Ⅰ on the proliferation and differentiation of rat osteoblasts%人重组骨形成蛋白-4与人重组胰岛素样生长因子-Ⅰ联合应用对大鼠成骨细胞的影响

    Institute of Scientific and Technical Information of China (English)

    万贤凤; 兰泽栋; 曾琳; 赵华; 熊红珍; 包丽娜

    2013-01-01

    目的 探讨人重组骨形成蛋白-4(recombinant human bone morphogenetic protein-4,rhBMP-4)与人重组胰岛素样生长因子-Ⅰ(recombinant human insulin-like growth factor-Ⅰ,rhIGF-Ⅰ)联合应用对大鼠成骨细胞生长增殖及分化能力的影响.方法 取大鼠颅盖骨组织块,采用改良组织块混合酶消化法培养成骨细胞,将第四代成骨细胞与10 ng/mL rhBMP-4(rhBMP-4组)、10 ng/mL rhIGF-Ⅰ(rhIGF-Ⅰ组)、10 ng/mL rhBMP-4加10ng/mLrhIGF-Ⅰ(联合组)、无血清低糖培养基(对照组)共同培养3d,用噻唑蓝法测定细胞的增殖情况,用碱性磷酸酶试剂盒检测细胞碱性磷酸酶的活性,用羟脯氨酸试剂盒检测成骨细胞分泌Ⅰ型胶原的量.结果 第3天时,4组促进大鼠成骨细胞增殖能力测定的光密度值差异具有统计学意义(F =4.080,P=0.016),碱性磷酸酶活性差异具有统计学意义(F=4.070,P=0.016),成骨细胞分泌Ⅰ型胶原的差异具有统计学意义(F=3.204,P=0.038);与对照组相比,rhBMP-4组,rhIGF-Ⅰ组及联合组,都可增强成骨细胞的增殖分化能力,但rhBMP-4和rhIGF-Ⅰ联合应用不比单独应用的作用强.结论 rhBMP-4与rhIGF-Ⅰ联合应用,不能协同促进大鼠成骨细胞增殖及分化能力.

  12. 重组人骨形态发生蛋白2缓释体对铬磨损颗粒诱导的溶骨效应的影响%Slow-release recombinant human bone morphogenetic protein-2 suppresses chromium wear particle-induced osteolysis in rats

    Institute of Scientific and Technical Information of China (English)

    李干; 李奇; 林荔军; 段鑫; 张西旗

    2012-01-01

    Objective To observe the effect of a slow-release recombinant human bone morphogenetic protein-2 (rhBMP-2) formulation on the expressions of receptor activator of nuclear factor-KB ligand (RANKL) and osteoprotegerin (OPG) in a murine air pouch model of bone implantation. Methods A cranial bone allograft was implanted in the air pouch induced on the back of the recipients. The rat models were then randomized into 5 groups, including a blank control group, chromium particle group, and 3 rhBMP-2 groups receiving 50,100 or 200 μg/L slow-release rhBMP-2 in addition to chromium particles. Three weeks later, the expressions of RANKL and OPG in the air pouch was detected using Western blotting and RT-PCR, and the positively stained area for osteoclasts in the bone graft was determined with TRAP staining for drug effect assessment. Results RANKL and OPG expressions were found in the air pouches in all the 5 groups. RANKL and OPG protein and mRNA expressions, RANKL/OPG ratio and osteoclast staining area in the bone graft were the highest in chromium particle group (P0.05). Conclusion Chromium particles can cause osteolysis by increasing the RANKL/OPG ratio in rats, and intervention with slow-release rhBMP-2 can significantly promote bone formation and suppress bone resorption by decreasing RANKL/OPG ratio.%目的 建立大鼠植骨气囊模型,观察在不同浓度重组人骨形态发生蛋白2(rhBMP-2)缓释体干预下气囊内组织的破骨细胞分化因子(RANKL)、骨破坏素(OPG)表达情况.方法 在大鼠背部注入空气形成气囊,取同源大鼠的颅骨植入气囊内.将已制成的植骨气囊模型大鼠分成5组:空白组、铬颗粒组、50 μg/L rhBMP-2缓释体+铬颗粒组、100 μg/L rhBMP-2缓释体+铬颗粒组和200 μg/L rhBMP-2缓释体+铬颗粒组.各组分别用药处理,2周后取出囊腔内组织进行RANKL、OPG的Wester-blot、Rt-PCR检测,并对囊腔内骨片行TRAP染色,用计算机图像分析技术测定骨片破骨细胞染

  13. 慢性肾脏疾病患者各期骨形态蛋白-2水平变化及其影响因素%Changes of plasma bone morphogenetic protein-2 and its related factors in chronic kidney disease patients at different stages

    Institute of Scientific and Technical Information of China (English)

    胡明亮; 黄莺; 雷艳; 刘榕君; 徐庆东; 郑智华

    2013-01-01

    目的 探讨慢性肾脏疾病(chronic kidney disease,CKD)1-5期患者血清骨形态蛋白-2 (Bone morphogenetic protein 2,BMP-2)水平变化及其可能的影响因素. 方法 收集CKD各期的154例血液样本.测定血清BMP-2水平和常规生化测定肾功能、白蛋白、C-反应蛋白(CRP)及钙磷代谢等.并进行相关及多元回归分析. 结果 CKD1~5期各有26、22、26、20、28例,血液透析32例,对照28例.与正常对照比较,CKD4,CKD5期及血液透析患者血清BMP-2水平明显升高;血清BMP-2水平在CKD患者下列情况下显著升高:血磷大于1.4mmol/L或钙磷沉积大于55 mg2/d12;血清白蛋白低于35g/L;C-反应蛋白大于3000 μ g/L.相关分析结果提示,BMP-2与血磷水平,钙磷乘积,C-反应蛋白,血尿素氮,血肌酐呈显著正相关;与血清白蛋白和肾小球滤过率呈显著负相关.多元回归分析示:血磷及CRP显著影响BMP-2的独立因素. 结论 BMP-2在CKD中晚期和血液透析患者血清中明显升高;残存肾功能、钙磷代谢、炎症和白蛋白可能与CKD患者血清BMP-2水平有关;血磷和炎症是影响BMP-2的主要因素.%Objectives To investigate the variation of serum bone morphogenetic protein 2 (BMP-2),and the influences of eGFR,calcium-phosphate metabolism,inflammmation,lipid profile and nutrition index on BMP-2 production in chronic kidney disease (CKD) patients at different stages.Methods A cross-sectional study was performed in 154 CKD patients at different stages.BMP-2 was measured by ELISA,and other biochemistry parameters were assyed as well.Results We enrolled 26,22,26,20,and 28 CKD patients at the stage of 1,2,3,4and 5,respectively,and 32 CKD patients on maintenance hemodialysis (MHD) in this study.Twenty-eight healthy subjects were used as normal controls.(a) Serum BMP-2 increased significantly in CKD patients at stages of 4 and 5 and in those on MHD.(b) Serum BMP-2 was siginificant higher in CKD patients with plasma phosphate >1.4 mmol/l or

  14. Acidic preparations of platelet concentrates release bone morphogenetic protein-2.

    OpenAIRE

    Wahlström, Ola; Linder, Cecilia; Kalén, Anders; Magnusson, Per

    2008-01-01

    BACKGROUND AND PURPOSE: Growth factors released from platelets have potent effects on fracture and wound healing. The acidic tide of wound healing, i.e. the pH within wounds and fractures, changes from acidic pH to neutral and alkaline pH as the healing process progresses. We investigated the influence of pH on lysed platelet concentrates regarding the release of growth factors. MATERIAL AND METHODS: Platelet concentrates free of leukocyte components were lysed and incubated in buffers with p...

  15. Construction and identification of vascular endothelial growth factor 121 and bone morphogenetic protein-2 genes co-expressing recombinant adenovirus vector%血管内皮生长因子121和骨形态蛋白2双基因共表达重组腺病毒载体的构建及鉴定

    Institute of Scientific and Technical Information of China (English)

    钟声; 刘丹平; 刘素伟; 李晓禹; 李谌; 李媛

    2011-01-01

    背景:人血管内皮生长因子121和骨形态蛋白2在激素性股骨头坏死骨缺损中均具有成血管成骨作用,目前国内在以人血管内皮生长因子121和骨形态蛋白2基因联合治疗激素性股骨头坏死方面少有报道.目的:构建人血管内皮生长因子121与人骨形态发生蛋白2双基因腺病毒穿梭质粒.方法:将质粒pShuttle-CMV-VEGF121-IRES-hrGFP-1经Kpn Ⅰ/Xba Ⅰ酶切后,将BMP2片段定向连入pShuttle-CMV- VEGF121-IRES,构建可同时表达2个目的基因重组质粒pShuttle-CMV-V EGF121-IRES-BMP2,注入H5a细胞扩增,铺板,筛选阳性菌落,提取质粒,进行酶切分析及序列测定.将已构建确认正确的腺病毒质粒,经BJ5183-AD-1电转感受态细胞进行电穿孔后,铺板,筛选阳性菌落,提取质粒,进行酶切分析,PCR检测和序列分析.结果与结论:酶切分析及核酸序列测定证实重组质粒构建正确,提示实验成功构建了血管内皮生长121及骨形态蛋白2双基因共表达重组腺病毒载体.%BACKGROUND: Vascular endothelial growth factor 121 (VEGF121) and bone morphogenetic protein-2 (BMP-2) play an important role in the development and formation of bones and vessels. At present, there are few reports about the treatment of pathogenesis of steroid-induced avascular necrosis of the femoral head (SANFH) by VEGF121 combined with BMP-2 gene in China.OBJECTIVE: To construct VEGF121 and BMP-2 genes adenovirus shuttle plasmid pShuttle-CMV-V EGF121-IRES-BMP2. METHODS: After Plasmid pShuttle-CMV-VEGF121-IRES-hrGFP-1 through Kpn I/Xba I, BMP-2 fragments were directionally connected to pShuttle-CMV-VEGF121-IRES. Simultaneous expression of two gene plasmid pShuttle-CMV-VEGF121-IRES was constructed, and injected with H5a cells expansion, planking, screening positive colonies, extracting plasmid, and then was undergo restriction analysis and sequencing. The correct adenovirus plasmid which has been constructed and confirmed after through BJ5183-AD-1

  16. Morphogenetic Litter Types of Bog Spruce Forests

    OpenAIRE

    T. T. Efremova; A. F. Avrova; S. P. Efremov

    2015-01-01

    For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss)-hypnum spruce forest can be characterized as medium thickness (9–17 cm) with high storage of organic matter (77–99 t/ha), which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, w...

  17. 明胶海绵复合重组人骨形态发生蛋白-7植入物的体内异位成骨实验%Experimental study on ectopic osteogenesis by implants of gelatin sponge combined with recombinant human bone morphogenetic protein-7

    Institute of Scientific and Technical Information of China (English)

    王国栋; 李萍; 韩金祥; 王世立; 刘丽娜

    2012-01-01

    目的:考察以明胶海绵为载体的重组人骨形态发生蛋白-7(rhBMP-7)在小鼠体内异位成骨能力,评价大肠杆菌表达的rhBMP-7生物学活性.方法:昆明种小鼠随机分为两组,将复合rh-BMP-7的明胶海绵植入小鼠肌间隙作为实验组,对照组植入明胶海绵,分别于术后1、2、3、4周取出埋植材料,HE染色进行组织学观察,测定蛋白含量、钙含量与碱性磷酸酶(ALP)活性.结果:复合rhBMP-7的明胶海绵组在术后2、3、4周有骨细胞类似细胞和钙化灶的形成,术后2、3、4周蛋白含量、ALP活性和钙含量均明显高于明胶海绵对照组.结论:明胶海绵复合rhBMP-7植入小鼠体内有较强的异位成骨能力,是良好的生物载体,可用于rhBMP-7体内活性检测.%AIM: To investigate the ectopic osteogenetic capacity of gelatin sponge contained with recombinant human bone morphogenetic protein-7 (rhBMP-7) by animal experiment and evaluate the biologic activity of rhBMP-7 ex-pressed in Escherichia coli. METHODS: KM mice were divided into two groups randomly. Gelatin sponge contained with rhBMP-7 were implanted into intramuscular spatium of mice as experimental group, while gelatin sponge were implanted as control group. The mice were sac-rificed and the tissue samples were harvested at 1st, 2nd, 3rd and 4th week after implantation. Tissue response was observed by HE staining. The contents of proteins and calcium were meas-ured and the activities of alkaline phosphatase (ALP) were detected. RESULTS: HE staining showed that some cells similar to osteocytes and calcific tissues were formed in the group of gelat-in sponge contained with rhBMP-7 after implan-tation at 2nd, 3rd and 4th week. The contents of proteins and calcium and the activities of ALP in experimental group were significantly higher than those in the control group which implanted with gelatin sponge at 2nd, 3rd and 4th week. CONCLUSION; The gelatin sponge combined with rhBMP-7 could induce ectopic

  18. 转腺病毒-人骨形态发生蛋白7软骨细胞分泌的透明质酸和Ⅱ型胶原%Secretion of type Ⅱ collagen and hyaluronic acid in chondrocytes transfected by adenovirus-bone morphogenetic protein 7

    Institute of Scientific and Technical Information of China (English)

    张洁; 刘巍; 朱新辉; 周怡

    2011-01-01

    BACKGROUND: Chondrocytes are limited in tissue engineering due to their poor self-dividing capacity and defifferentiation.OBJECTIVE: To investigate the expression of bone morphogenetic protein 7 (BMP-7) in chondrocytes transfected by adenovirus BMP-7 and the effects of transfection on chondrocyte secretion of type Ⅱ collagen and hyaluronic acid.METHODS: Adenoviral vector containing BMP-7 was prepared and then transfected into rabbit passage chondrocytes. BMP-7 mRNA and protein expressions in chondrocytes were detected. Changes in type Ⅱ collagen and hyaluronic acid in chondrocytes were determined.RESULTS AND CONCLUSION: At 48 and 72 hours after transfection, RT -PCR and western blot analysis showed that BMP-7 mRNA and protein expressions in the chondrocytes were increased; RT-PCR and ELISA showed the type Ⅱ collagen and hyaluronic acid in the chondrocytes were also obviously increased. These findings suggest that BMP-7 can be successfully transfected into chondrocytes by adenovirus and promote the secretion of type Ⅱ collagen and hyaluronic acid.%背景:软骨细胞自身分裂能力不强和去分化现象限制了其在组织工程中的应用.目的:观察腺病毒-骨形态发生蛋白7转染兔软骨细胞后骨形态发生蛋白7的表达及其对软骨细胞分泌Ⅱ型胶原和透明质酸功能的影响.方法:包装骨形态发生蛋白7腺病毒载体,将其转染至兔第2代软骨细胞.检测骨形态发生蛋白7 mRNA及蛋白的表达;检测软骨细胞中Ⅱ型胶原和透明质酸的变化.结果与结论:转染腺病毒-骨形态发生蛋白7后48,72 h,RT-PCR和Western blot方法显示软骨细胞表达的骨形态发生蛋白7 mRNA和蛋白均明显增加,RT-PCR和ELISA显示软骨细胞分泌的Ⅱ型胶原和透明质酸也显著增加.说明应用腺病毒可成功将骨形态发生蛋白7转染至兔软骨细胞,并能促进软骨细胞分泌Ⅱ型胶原和透明质酸.

  19. Association of the genetic variations of bone morphogenetic protein 7 gene with diabetes and insulin resistance in Xinjiang Uygur population%骨形态发生蛋白-7基因变异与新疆维吾尔族人糖尿病和胰岛素抵抗的相关性

    Institute of Scientific and Technical Information of China (English)

    严治涛; 李南方; 郭艳英; 姚晓光; 王红梅; 胡君丽

    2011-01-01

    目的 探讨骨形态发生蛋白-7(bone morphogenetic protein 7,BMP7)基因变异与新疆维吾尔族人糖尿病、胰岛素抵抗的关系.方法 采用以流行病学调查为基础的病例-对照研究,选取717名(男276人、女441人)维吾尔族人作为研究对象,根据是否患有糖尿病分成糖尿病组(502例,男191例、女311例)和正常对照组(215人,男85人、女130人).首先在48例维吾尔族糖尿病患者中测序筛查 BMP7基因功能区的变异位点,选取代表性变异位点应用TaqMan-PCR技术在研究人群中进行基因型鉴定并开展病例-对照关联研究.结果 在 BMP7基因的功能区共发现5个新的和8个已知的变异位点.BMP7基因的2个代表性变异位点rs6025422、rs17480735均符合Hardy-Weinberg平衡.男性人群中rs6025422变异的AA、AG、GG基因型在糖尿病组及正常对照组中的频率分布差异有统计学意义(P0.05),而总人群及女性人群中rs6025422变异基因型频率分布在病例、对照组间差异无统计学意义(P>0.05).男性人群中rs6025422变异不同基因型组间空腹血糖、空腹胰岛素水平、HOMA指数存在差异,并且AA、AG、GG 3组呈现递减趋势(P0.05). There was significant difference of genotype distribution of rs6025422 between type 2 diabetes mellitus and control groups in the male population (P0.05), but there was no difference in total and female population (P>0.05). And the means of fasting blood glucose (FBG), fasting insulin and HOMA-index significantly decreased in individuals with AA, AG and GG genotypes of rs6025422 in male population (P0.05). The logistic regression analysis showed that GG genotype of rs6025422 variation might be a protective factor for diabetes in male (OR=0.637,95% confidence interval 0.439-0.923,P<0.05). Conclusion The present study suggests that the rs6025422 polymorphism in BMP7 gene may be associated with diabetes mellitus and insulin resistance in Uygur men.

  20. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  1. Particle gun-mediated bone morphogenetic protein-2 gene transfection for treatment of chronic bone defects%基因枪介导的骨形态发生蛋白2基因转染治疗陈旧性骨缺损

    Institute of Scientific and Technical Information of China (English)

    朱小萌; 王翀; 宋兴华; 詹玉林; 李文举

    2014-01-01

    背景:体内外研究都已证实骨形态发生蛋白具有调节成骨细胞和成软骨细胞的分化、诱导异位骨形成、促进骨折愈合、控制哺乳动物骨骼不同形态特征形成的功能。  目的:使用含有骨形态发生蛋白2基因真核表达质粒的基因枪进行局部基因注射以治疗陈旧骨缺损。  方法:72只新西兰大白兔建立陈旧兔桡骨中段骨缺损模型,按所截骨长度均分1.5 cm组、2.0 cm和2.5 cm组。各组又随机分为治疗组(骨形态发生蛋白2基因转染组)和对照组(自然愈合组)。于转染后1,3,8,9周拍摄X射线平片,1,3,8和9周取骨折间软组织行骨形态发生蛋白2的Western blot检测,于1,3,8和9周时取标本大体观察,评价愈合情况。  结果与结论:①大体标本观察发现治疗组骨痂生成量多于对照组。②治疗组转染后1,3,8,9周的Lane-Sandhu X射线评分优于对照组,差异均有显著性意义(P OBJECTIVE:To treat chronic bone defects using particle gun containing BMP2 gene eukaryotic expression plasmid via local injection. METHODS:A total of 72 healthy New Zealand white rabbits were applied to establish chronic bone defect model in the rabbit radius. According to the length of bone defect, the rabbits were divided into three groups:1.5 cm group, 2.0 cm group, 2.5 cm group. Each group was further randomly assigned into two subgroups:treatment group (BMP-2 gene transfection) and control group (natural y healing). X-ray examinations were performed at 1, 3, 8 and 9 weeks after transfection, and soft tissue between the bone defects was harvested to detect BMP-2 using western blot analysis;and radius specimens were taken for gross observation at the same time points, to evaluate the healing. RESULTS AND CONCLUSION:(1) Gross specimen observation:bone cal us formation in treatment group was general y more than that in control group. (2) Lane-Sandhu X-ray score in treatment group

  2. A morphogenetic study of sporangia-partitioning complex

    Directory of Open Access Journals (Sweden)

    H. K. Goswami

    2015-05-01

    Full Text Available The bilobed sporangia in the species of Anthoceros, Isoetes and Ophioglossum are described. The morphogenetic importance of the process of "fission" in evolutionary development of sporangia in pteridophytes is discussed.

  3. Morphogenetic Litter Types of Bog Spruce Forests

    Directory of Open Access Journals (Sweden)

    T. T. Efremova

    2015-02-01

    Full Text Available For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss-hypnum spruce forest can be characterized as medium thickness (9–17 cm with high storage of organic matter (77–99 t/ha, which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, which depend on the content of mineral inclusions in organogenic substrate and the degree of its drainage. The differentiation of litter subhorizons was performed, visual diagnostic indicators of fermentative layers were characterized, and additional (indexes to indicate their specificity were developed. Peat- and peaty-fermentative, humified-fermentative and (black mold humus-fermentative layers were selected. Peat- and peaty-fermentative layers are characterized by content of platy peat macroaggregates of coarse vegetable composition, the presence of abundant fungal mycelium and soil animals are the primary decomposers – myriopoda, gastropoda mollusks. Humified-fermentative layers are identified by including the newly formed amorphous humus-like substances, nutty-granular structural parts of humus nature and soil animals’ humificators – enchytraeids and earthworms. (Black mold humus-fermentative layers are diagnosed by indicators with similar humified-fermentative, but differ from them in clay-humus composition of nutty-granular blue-grey parts. The nomenclature and classification of moss litter were developed on the basis of their diagnostic characteristics of fermentative layers – peat, peaty, reduced peaty, (black mold humus-peaty, reduced (black mold humus-peaty. Using the method of discriminant analysis, we revealed that the physical-chemical properties, mainly percentage of ash and decomposition degree of plant substrate, objectively

  4. 鸡冠花黄酮对糖尿病大鼠骨形成蛋白表达及肾小管重吸收功能的干预作用%Effect of cristata L flavonoid on expression of bone morphogenetic protein and function of tubular reabsorption of rats with diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    陈正跃; 李万里; 赵辉; 宋向凤; 郭晓玲; 尉辉杰

    2005-01-01

    鼠骨组织骨形成蛋白2表达明显下降,补充鸡冠花黄酮类化合物后动物骨骨形成蛋白2表达升高,糖尿病大鼠的尿钙和尿钠的排出显著降低,肾小管的重吸收功能提高.%BACKGROUND: Cristata L flavonoid is a kind of plant estrin, which possesses multiple physiological function, has no toxicity and adverse effect, and is effective in treating and preventing osteoporosis.OBJECTIVE: To study the effect of cristata L flavonoid on bone morphogenetic protein, urine inorganic salt and content of lysozyme of rats with diabetes mellitus (DM).DESIGN: Randomized grouping design and controlled study.SETTING: Pharmaceutical Laboratory of Xinxiang Medical College.MATERIALS: The experiment was completed in the Xinxiang Medical College from September to December 2003. Totally 24 health male SD rats were randomly divided into three groups: normal control group, diabetes mellitus (DM) group, DM + cristata L flavonoid group with 8 in each group.were injected intraperineally with 60 mg/kg streptozotocin, and 48-72 hours later, blood of rear caudal vein was collected to measure total blood glucose.Rats were determined as DM if the blood glucose was ≥ 16.7 mmol/L; oth erwise, 60 mg/kg streptozotocin was injected once more. After modeling,cristata L flavonoid and rats in normal control group were given the same was measured with atomic absorbency method and content of urine sodium histochemistry of bone morphogenic protein-2 (BMP2) in bone was detected with streptavidin tagged by peroxidase and immunohistochemic expression lysozyme reflected reabsorption function of renal tubule was measured with with t-test. MAIN OUTCOME MEASURES: Comparison between content of calcium, sodium, kalium in urine and lysozyme and immunohistochemic expression of BMP2 10-week intervention later.calcium and sodium in urine in DM model group were obviously higher than those in normal control group, but content of kalium in urine was obviously lower (P < 0.05-0.01). Contents of calcium in urine

  5. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    bone and includes bone collagen, morphogenetic proteins and growth factors. The combination of DBM with CB and with allograft might improve the healing potential of these grafts around non-cemented orthopaedic implants and thereby the implant fixation. Study I investigates the effect of HA...

  6. Distribution of BMP6 in the alveolar bone during mouse mandibular molar eruption

    Czech Academy of Sciences Publication Activity Database

    Oralová, Veronika; Chlastáková, I.; Radlanski, R.J.; Matalová, Eva

    2014-01-01

    Roč. 55, 5-6 (2014), s. 357-366. ISSN 0300-8207 R&D Projects: GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : bone morphogenetic protein * bone resorption * bone apposition Subject RIV: EA - Cell Biology Impact factor: 1.607, year: 2014

  7. Morphogenetically active scaffold for osteochondral repair (polyphosphate/alginate/N,O-carboxymethyl chitosan).

    Science.gov (United States)

    Müller, W E; Neufurth, M; Wang, S; Tolba, E; Schröder, H C; Wang, X

    2016-01-01

    Here we describe a novel bioinspired hydrogel material that can be hardened with calcium ions to yield a scaffold material with viscoelastic properties matching those of cartilage. This material consists of a negatively charged biopolymer triplet, composed of morphogenetically active natural inorganic polyphosphate (polyP), along with the likewise biocompatible natural polymers N,O-carboxymethyl chitosan (N,O-CMC) and alginate. The porosity of the hardened scaffold material obtained after calcium exposure can be adjusted by varying the pre-processing conditions. Various compression tests were applied to determine the local (nanoindentation) and bulk mechanical properties (tensile/compression test system for force measurements) of the N,O-CMC-polyP-alginate material. Determinations of the Young's modulus revealed that the stiffness of this comparably water rich (and mouldable) material increases during successive compression cycles to values measured for native cartilage. The material not only comprises viscoelastic properties suitable for a cartilage substitute material, but also displays morphogenetic activity. It upregulates the expression of genes encoding for collagen type II and aggrecan, the major proteoglycan within the articular cartilage, in human chondrocytes, and the expression of alkaline phosphatase in human bone-like SaOS-2 cells, as revealed in RT qPCR experiments. Further, we demonstrate that the new polyP-based material can be applied for manufacturing 3D solid models of cartilage bone such as of the tibial epiphyseal plate and the superior articular cartilage surface. Since the material is resorbable and enhances the activity of cells involved in regeneration of cartilage tissue, this material has the potential to be used for artificial articular cartilage implants. PMID:26898843

  8. Mistura de proteínas morfogenéticas ósseas, hidroxiapatita, osso inorgânico e colágeno envolta por membrana de pericárdio no preenchimento de defeito ósseo segmentar em coelhos Mixture of bone morphogenetic protein, hydroxyapatite, inorganic bone and collagen interposed by pericardium barrier membrane in the filling of the segmental bone defect in rabbits

    Directory of Open Access Journals (Sweden)

    R.B. Ciani

    2006-02-01

    Full Text Available Avaliou-se o uso de biomaterial de origem bovina na regeneração de defeitos ósseos segmentares empregando-se 12 coelhos, fêmeas, da raça Norfolk, com idade de seis meses e pesos entre 3 e 4,5kg. Realizou-se falha segmentar bilateral de um centímetro de comprimento na diáfise do rádio, com inclusão do periósteo. No membro direito, o defeito foi delimitado por membrana de pericárdio liofilizada, contendo em seu interior mistura de proteínas morfogenéticas ósseas adsorvidas a hidroxiapatita, colágeno liofilizado e osso inorgânico. No membro esquerdo, o defeito não recebeu tratamento. Radiografias foram obtidas ao término do procedimento cirúrgico e aos sete, 30, 60, 90, 120 e 150 dias de pós-operatório. Após eutanásia de seis coelhos aos 60 dias e seis aos 150 dias de pós-cirúrgico, os resultados radiográficos e histológicos mostraram que a regeneração óssea foi inibida nos defeitos segmentares tratados com o biomaterial.Biomaterials of bovine origin in regenerating segmental bone defects were evaluated. Twelve six-month old Norfolk rabbits, weighting 3 to 4.5kg were used. A 1cm long segmental defect was created in the radial diaphysis, including the periosteum, of both forelimbs. In the right forelimb, the defect was filled using a mixture of bone morphogenic proteins adsorbed to hydroxyapatite, agglutinant of lyophilized collagen in granules and anorganic cortical bone in granules delimited by a pericardial membrane. In the left forelimb, the defect did not receive treatment and served as a control. Radiographies were taken immediately after surgery and at seven, 30, 60, 90, 120 and 150 days post-operatively. Six rabbits were euthanized at 60 days and the other six at 150 days post-surgery for histological evaluation. Radiographic and histological results revealed that bone regeneration was inhibited in the segmental defects receiving biomaterials.

  9. A Morphogenetic Design Approach with Embedded Structural Analysis

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Kirkegaard, Poul Henning; Holst, Malene Kirstine

    The present paper explores a morphogenetic design approach with embedded structural analysis for architectural design. A material system based on a combined space truss and membrane system has been derived as a growth system with inspiration from natural growth of plants. The structural system is...

  10. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    OpenAIRE

    Jung-Bo Huh; June-Jip Yang; Kyung-Hee Choi; Ji Hyeon Bae; Jeong-Yeol Lee; Sung-Eun Kim; Sang-Wan Shin

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were fo...

  11. Morphogenetic mechanisms of blood vessel fusion in the Zebrafish embryo

    OpenAIRE

    Herwig, Lukas Walter

    2012-01-01

    The formation of a vascular network requires the connection and formation of a lumen between individual endothelial sprouts, a process called vessel fusion or anastomosis. In the vertebrate trunk of the zebrafish (Danio rerio), the intersegmental vessels (ISVs) develop by angiogenesis, i.e. the formation of new vessels by pre-existing vessels, in a conserved metameric manner, which allows the analysis of morphogenetic mechanisms of blood vessel development. From the dorsal aorta (DA) individu...

  12. Bone Enhancement with BMP-2 for Safe Clinical Translation

    OpenAIRE

    Kisiel, Marta

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) is considered a promising adjuvant for the treatment of bone regeneration. However, BMP-2 delivery in a conventional collagen scaffold needs a high dose to achieve an effective outcome. Moreover, such dosage may lead to serious side effects. The aim of the following thesis was to find clinically acceptable strategies reducing the required dose of BMP-2 by improving the delivery and optimizing the preclinical testing of the new approaches. In all the studie...

  13. A new concept for implant fixation: bone-to-bone biologic fixation.

    Science.gov (United States)

    Kim, D-Y; Kim, J-R; Jang, K Y; Lee, K-B

    2015-01-01

    Many attempts have been made to reduce complications of bone implant, such as pedicle screw loosening. To address this problem, the authors suggest a new concept of bone-to-bone biologic fixation using recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded cannulated pedicle screws. Recombinant human bone morphogenetic protein-2 is an osteoinductive cytokine. Four types of titanium pedicle screws were tested (uncannulated, cannulated with no loading, beta-tricalcium phosphate (TCP)-loaded, and TCP/BMP2 loaded) using 16 miniature pigs. Radiological evaluation was conducted to assess the fusion and loosening of pedicle screws. Twelve weeks after implantation, peak torsional extraction torque was measured, and the pedicle screw and bone interface was evaluated by micro-computed tomography (µCT) and histologic examination. The mean value of the radiological score was significantly greater in the TCP/BMP2 loaded group at 12 weeks post-operation compared to those in the other groups. CT images showed distinct bone formation surrounding TCP/BMP2 loaded cannulated pedicle screws compared to the other groups. Mean extraction torsional peak torque at 12 weeks postoperative was more than 10-fold higher in the TCP/BMP2 loaded pedicle screw group than in the other groups. Bone surface and bone volume, as quantitated through µCT, were higher in the TCP/BMP2 loaded group. Histologic examination revealed bone-to-bone fixation at the interface of pedicle screws and pre-existing bone. Bone-to-bone biologic fixation through the holes of TCP/BMP2 loaded pedicle screws significantly increased fixation strength and represents a novel method that can be applied to osteoporotic or tumour spine surgeries. PMID:25978116

  14. A new concept for implant fixation: bone-to-bone biologic fixation

    Directory of Open Access Journals (Sweden)

    D-Y Kim

    2015-05-01

    Full Text Available Many attempts have been made to reduce complications of bone implant, such as pedicle screw loosening. To address this problem, the authors suggest a new concept of bone-to-bone biologic fixation using recombinant human bone morphogenetic protein-2 (rhBMP-2-loaded cannulated pedicle screws. Recombinant human bone morphogenetic protein-2 is an osteoinductive cytokine. Four types of titanium pedicle screws were tested (uncannulated, cannulated with no loading, beta-tricalcium phosphate (TCP-loaded, and TCP/BMP2 loaded using 16 miniature pigs. Radiological evaluation was conducted to assess the fusion and loosening of pedicle screws. Twelve weeks after implantation, peak torsional extraction torque was measured, and the pedicle screw and bone interface was evaluated by micro-computed tomography (µCT and histologic examination. The mean value of the radiological score was significantly greater in the TCP/BMP2 loaded group at 12 weeks post-operation compared to those in the other groups. CT images showed distinct bone formation surrounding TCP/BMP2 loaded cannulated pedicle screws compared to the other groups. Mean extraction torsional peak torque at 12 weeks postoperative was more than 10-fold higher in the TCP/BMP2 loaded pedicle screw group than in the other groups. Bone surface and bone volume, as quantitated through µCT, were higher in the TCP/BMP2 loaded group. Histologic examination revealed bone-to-bone fixation at the interface of pedicle screws and pre-existing bone. Bone-to-bone biologic fixation through the holes of TCP/BMP2 loaded pedicle screws significantly increased fixation strength and represents a novel method that can be applied to osteoporotic or tumour spine surgeries.

  15. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  16. Bone Grafts

    Science.gov (United States)

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  17. Advanced BMP Gene Therapies for Temporal and Spatial Control of Bone Regeneration

    OpenAIRE

    Wilson, C.G.; Martín-Saavedra, F.M.; Vilaboa, N.; Franceschi, R.T.

    2013-01-01

    Spatial and temporal patterns of bone morphogenetic protein (BMP) signaling are crucial to the assembly of appropriately positioned and shaped bones of the face and head. This review advances the hypothesis that reconstitution of such patterns with cutting-edge gene therapies will transform the clinical management of craniofacial bone defects attributed to trauma, disease, or surgical resection. Gradients in BMP signaling within developing limbs and orofacial primordia regulate proliferation ...

  18. The Effect of Heparan Sulfate Application on Bone Formation during Distraction Osteogenesis

    OpenAIRE

    Gdalevitch, Marie; Kasaai, Bahar; Alam, Norine; DOHIN, Bruno; Lauzier, Dominique; Hamdy, Reggie C.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are recognized for their ability to induce bone formation in vivo and in vitro. Their osteogenic and osteoinductive properties are tightly regulated by the secretion of specific BMP antagonists, which have been shown to physically bind and sometimes be blocked by the extracellular proteoglycan heparan sulphate side chains (from hereon referred to as HS). The purpose of this study was to investigate if local application of 5 µg of HS proteoglycan to a bone re...

  19. Effects on differentiation of steroid-induced bone marrow mesenchymal stem cells of rats by targeting regulation of microRNA-27a on peroxisome proliferator activated receptor-γ and bone morphogenetic protein-2%微小RNA-27a靶向调控过氧化物酶体增殖子活化受体-γ和骨形态发生蛋白-2对激素诱导大鼠骨髓间充质干细胞分化的影响

    Institute of Scientific and Technical Information of China (English)

    王光辉; 李月白; 李明; 谷晨熙; 宋石; 单杰; 赵国强; 王义生

    2015-01-01

    目的 检测微小RNA(miRNA,miR)-27a调控过氧化物酶体增殖子活化受体-γ(PPAR-γ)和骨形态发生蛋白-2(BMP-2)对骨髓间充质干细胞(BMSCs)分化的影响.方法 将培养的40只大鼠BMSCs,随机分4组,正常对照组:细胞不作特殊处理;模型组:细胞给予1×10-7 mol/L地塞米松;无关序列组:将无关序列基因电转入细胞,给予1×10-7 mol/L地塞米松;实验组:将具有双向靶向作用的miR-27a电转入细胞,给予1×10-7 mol/L地塞米松.采用实时荧光定量聚合酶链反应(RT-qPCR)技术测定PPAR-γ和BMP-2 mRNA的相对表达量.结果 处理细胞7d时,实验组细胞中PPAR-γmRNA的相对表达量(1.203±0.111)较模型组(1.877±0.225)、无关序列组(1.913±0.195)明显降低(P<0.05),近似于正常组(1.000)且与其差异无统计学意义(P>0.05).实验组细胞中BMP-2 mRNA的相对表达量(0.832±0.105)较模型组(0.455±0.051)、无关序列组(0.422±0.038)明显升高(P<0.05),近似于正常组(1.000)且与其差异无统计学意义(P>0.05).结论 miR-27a能够有效抑制PPAR-γ表达,维持BMP-2表达.%Objective To explore the effect on the differentiation of steroid-induced bone marrow mesenchymal stem cells (BMSCs) of rats by tarteting regulation of microRNA (miRNA, miR)-27a on peroxisome proliferator-activated receptor-γ (PPAR-γ) and bone morphogenetic protein-2 (BMP-2).Methods BMSCs of 40 rats were expanded and randomly divided into 4 groups.In normal control group, the cells were not treated.In model group, the cells were treated with 1 × 10-7 mol/L dexamethasone.In irrelative sequence group, the cells were electroporated with the irrelative sequence that was ineffective at targeting the PPAR-γgene, and treated with 1 × 10-7 mol/L dexamethasone.In experimental group, the cells were electroporated with miR-27a and treated with 1 × 10-7 mol/L dexamethasone.The real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detected the

  20. Anterior Lumbar Intervertebrai Fusion with Artificial Bone in Place of Autologous Bone

    Institute of Scientific and Technical Information of China (English)

    徐卫国; 陈安民; 冯旭; 印卫锋

    2003-01-01

    The feasibility of anterior lumbar intervertebral fusion with artificial bone in place of au-togenous bone was investigated. Porous hydroxyapatite(HA)/ZrO2 ceramics loading bone morpho-genetic protein (BMP) were implanted after removal of lumbar vertebral disc in rabbits. The adja-cent intervertebral discs were also removed by the same way and autogenous illic bone was implan-ted. SEM observation and biomechanical test were carried out. Compound bone had a bit lower os-teoinductive activity than autogenous bone by SEM(Osteoindutive activity of artificial bone in 12weeks was the same as that of autogenous bone in 9 weeks). Biomechanical test revealed that com-pound bone had lower anti-pull strength than autogenous bone (P<0. 001), but there was no sig-nificant difference in anti-pull strength between compound bone at 12th week and autogenous boneat 9th week (P>0.05). It was concluded that compound bone could be applied for anterior spinalfusion, especially for those patients who can't use autogenous bone.

  1. Morphogenetic responses ofPopulus alba L. under salt stress

    Institute of Scientific and Technical Information of China (English)

    Mejda Abassi; Khaled Mguis; Zoubeir Béjaoui; Ali Albouchi

    2014-01-01

    The morphogenetic responses to salt stress of TunisianPopu-lus alba clones were studied in order to promote their plantation in dam-aged saline areas. One year-old plants of threeP. alba clones (MA-104, MA-195 and OG) were subjected to progressive salt stress by irrigation during two consecutive years. The plants were grown in a nursery, inside plastic receptacles containing sandy soil and were irrigated with tap water (control) or 3-6 g/l NaCl solution. During this study, leaf epinasty, elongation rate, vigor, internode length, plant architecture, and number of buds were evaluated. Test clone response was highly dependent on the applied treatment and degree of accommodation.The most pronounced alterations were induced under 6g/l of NaCl treatment including leaf epinasty, leaf elongation rate delay, vigor decrease, internode length shortening, and morphogenetic modifications. These responses were less noticeable in the MA-104 clone with respect to the two other clones. The salt effect induced a delay in the leaf elongation rate on the MA-195 and OG clones leading to an early leaf maturity. The vigour and internode length of the MA-104 clone was less affected than the other clones. The OG clone was the most salt-sensitive thus, it developed shorter branches and more buds number than MA-195 and MA-104. The effect of long-term salt stress was to induce early flowering of theP. alba clones which suggests that mechanism of salt accommodation could be devel-oped.

  2. Impaired Angiogenesis during Fracture Healing in GPCR Kinase 2 Interacting Protein-1 (GIT1) Knock Out Mice

    OpenAIRE

    Guoyong Yin; Tzong-Jen Sheu; Prashanthi Menon; Jinjiang Pang; Hsin-Chiu Ho; Shanshan Shi; Chao Xie; Elaine Smolock; Chen Yan; Zuscik, Michael J.; Berk, Bradford C.

    2014-01-01

    G protein coupled receptor kinase 2 (GRK2) interacting protein-1 (GIT1), is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesiz...

  3. Bone Biopsy

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging guidance ... limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided procedure ...

  4. Morphogenetic controls on the distribution of the littoral placers along central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gujar, A.R.

    area also has irregular narrow coastline. The drainage is shallow thereby causing decreasing erosion resulting in low sediment input. In view of the above it is envisaged that the morphogenetic control exists over the placer distribution in the littoral...

  5. Cathepsin H indirectly regulates morphogenetic protein-4 (BMP-4) in various human cell lines

    International Nuclear Information System (INIS)

    Cathepsin H is a cysteine protease considered to play a major role in tumor progression, however, its precise function in tumorigenesis is unclear. Cathepsin H was recently proposed to be involved in processing of bone morphogenetic protein 4 (BMP-4) in mice. In order to clarify whether cathepsin H also regulates BMP-4 in humans, its impact on BMP-4 expression, processing and degradation was investigated in prostate cancer (PC-3), osteosarcoma (HOS) and pro-monocytic (U937) human cell lines. BMP-4 expression was founded to be regulated by cathepsin H using PCR array technology and confirmed by real time PCR. Immunoassays including Western blot and confocal microscopy were used to evaluate the influence of cathepsin H on BMP-4 processing. In contrast to HOS, the expression of BMP-4 mRNA in U937 and PC3 cells was significantly decreased by cathepsin H. The different regulation of BMP-4 synthesis could be associated with the absence of the mature 28 kDa cathepsin H form in HOS cells, where only the intermediate 30 kDa form was observed. No co-localization of BMP-4 and cathepsin H was observed in human cell lines and the multistep processing of BMP-4 was not altered in the presence of specific cathepsin H inhibitor. Isolated cathepsin H does not cleave mature recombinant BMP-4, neither with its amino- nor its endopeptidase activity. Our results exclude direct proteolytic processing of BMP-4 by cathepsin H, however, they provide support for its involvement in the regulation of BMP-4 expression

  6. Lineage and morphogenetic analysis of the cardiac valves.

    Science.gov (United States)

    de Lange, Frederik J; Moorman, Antoon F M; Anderson, Robert H; Männer, Jörg; Soufan, Alexandre T; de Gier-de Vries, Corrie; Schneider, Michael D; Webb, Sandra; van den Hoff, Maurice J B; Christoffels, Vincent M

    2004-09-17

    We used a genetic lineage-labeling system to establish the material contributions of the progeny of 3 specific cell types to the cardiac valves. Thus, we labeled irreversibly the myocardial (alphaMHC-Cre+), endocardial (Tie2-Cre+), and neural crest (Wnt1-Cre+) cells during development and assessed their eventual contribution to the definitive valvar complexes. The leaflets and tendinous cords of the mitral and tricuspid valves, the atrioventricular fibrous continuity, and the leaflets of the outflow tract valves were all found to be generated from mesenchyme derived from the endocardium, with no substantial contribution from cells of the myocardial and neural crest lineages. Analysis of chicken-quail chimeras revealed absence of any substantial contribution from proepicardially derived cells. Molecular and morphogenetic analysis revealed several new aspects of atrioventricular valvar formation. Marked similarities are seen during the formation of the mural leaflets of the mitral and tricuspid valves. These leaflets form by protrusion and growth of a sheet of atrioventricular myocardium into the ventricular lumen, with subsequent formation of valvar mesenchyme on its surface rather than by delamination of lateral cushions from the ventricular myocardial wall. The myocardial layer is subsequently removed by the process of apoptosis. In contrast, the aortic leaflet of the mitral valve, the septal leaflet of the tricuspid valve, and the atrioventricular fibrous continuity between these valves develop from the mesenchyme of the inferior and superior atrioventricular cushions. The tricuspid septal leaflet then delaminates from the muscular ventricular septum late in development. PMID:15297379

  7. Morphogenetic classification of coal seam washouts in Donbass mines

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, V.F.; Vashchenko, V.I.

    1982-09-01

    The paper evaluates washout types in coal seams in Donbass mines. Five washout types are characterized: trough-shaped, V-shaped or U-shaped, lentil-shaped, consisting of groups of small lentils and discontinuous washouts which consist of a number of coal and rock partings. Each of the 5 washout types is shown in a scheme. The following aspects of coal seam washouts are discussed: dimensions, shape, angle of inclination of trough walls, washout dimensions in relation to coal seam thickness, rock types filling washout zones. Effects of seam washouts on longwall mining are analyzed. Morphogenetic characteristics of 5 washout groups are given. Investigations show that trough-shaped, U or V-shaped washouts are of epigenetic origin and lentil-shaped, discontinuous washouts consisting of a number of rock and coal partings and washouts with groups of rock lentils are of syngenetic origin. Washout classification is shown in a table. Classification is aimed at optimizing the mining system in washout zones. It considers washout dimensions, washout dimensions in relation to coal seam thickness and rock type filling the washout (sandstone, agrillite or aleurite). System for coding information on washouts is described.

  8. Immortalized mouse dental papilla mesenchymal cells preserve odontoblastic phenotype and respond to bone morphogenetic protein 2

    OpenAIRE

    Wang, Feng; Wu, Li-An; Li, Wentong; Yang, Yuan; Guo, Feng; GAO, QINGPING; Chuang, Hui-Hsiu; SHOFF, LISA; Wang, Wei; Chen, Shuo

    2013-01-01

    Odontogenesis is the result of the reciprocal interactions between epithelial–mesenchymal cells leading to terminally differentiated odontoblasts. This process from dental papilla mesenchymal cells to odontoblasts is regulated by a complex signaling pathway. When isolated from the developing tooth germs, odontoblasts quickly lose their potential to maintain the odontoblast-specific phenotype. Therefore, generation of an odontoblast-like cell line would be a good surrogate model for studying t...

  9. In anemia of multiple myeloma hepcidin is induced by increased bone-morphogenetic protein-2

    Science.gov (United States)

    Hepcidin is the principal iron-regulatory hormone and pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contrib...

  10. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos

    DEFF Research Database (Denmark)

    Dunworth, William P; Cardona-Costa, Jose; Bozkulak, Esra Cagavi;

    2014-01-01

    signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox......RATIONALE: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown. OBJECTIVE...

  11. Strategies to Target the Bone Morphogenetic Protein Signalling Pathway in Lung Disease

    OpenAIRE

    Purcell, James

    2011-01-01

    Lung disease and lung injury are responsible for 20% of deaths of the Irish population every year, and the country has the 2nd highest death rate in Europe for respiratory diseases. Conditions related to the respiratory system are the second largest long term illness by young adults. Lung cancer is the largest cause of cancer related death in Europe as a whole. New and refined mechanisms of drug delivery for the prevention, cure or delayed progression of disease, represents a pathway for t...

  12. Titanium With Nanotopography Induces Osteoblast Differentiation by Regulating Endogenous Bone Morphogenetic Protein Expression and Signaling Pathway.

    Science.gov (United States)

    M S Castro-Raucci, Larissa; S Francischini, Marcelo; N Teixeira, Lucas; P Ferraz, Emanuela; B Lopes, Helena; T de Oliveira, Paulo; Hassan, Mohammad Q; Losa, Adalberto L; Beloti, Marcio M

    2016-07-01

    We aimed at evaluating the effect of titanium (Ti) with nanotopography (Nano) on the endogenous expression of BMP-2 and BMP-4 and the relevance of this process to the nanotopography-induced osteoblast differentiation. MC3T3-E1 cells were grown on Nano and machined (Machined) Ti surfaces and the endogenous BMP-2/4 expression and the effect of BMP receptor BMPR1A silencing in both osteoblast differentiation and expression of genes related to TGF-β/BMP signaling were evaluated. Nano supported higher BMP-2 gene and protein expression and upregulated the osteoblast differentiation compared with Machined Ti surface. The BMPR1A silencing inhibited the osteogenic potential induced by Nano Ti surface as indicated by reduced alkaline phosphatase (ALP), osteocalcin and RUNX2 gene expression, RUNX2 protein expression and ALP activity. In addition, the expression of genes related to TGF-β/BMP signaling was deeply affected by BMPR1A-silenced cells grown on Nano Ti surface. In conclusion, we have demonstrated for the first time that nanotopography induces osteoblast differentiation, at least in part, by upregulating the endogenous production of BMP-2 and modulating BMP signaling pathway. J. Cell. Biochem. 117: 1718-1726, 2016. © 2015 Wiley Periodicals, Inc. PMID:26681207

  13. Connective tissue growth factor and bone morphogenetic proteins in diabetic nephropathy

    NARCIS (Netherlands)

    Nguyen, T.Q.

    2008-01-01

    Diabetes mellitus is a severe and rapidly growing problem in health care, accounting for approximately 150 million patients worldwide. Patients with diabetes are at increased risk to develop diabetic nephropathy, which is currently the most important cause of end-stage renal disease in large parts o

  14. Function and Regulation of Bone Morphogenetic Protein 7 (BMP7) in Cerebral Cortex Development

    OpenAIRE

    Ortega Cano, Juan Alberto

    2011-01-01

    [eng] Brain derived neurotrophic factor (BDNF) is a chemokine which levels are regulated by neuronal activity and could act as a sensor in front of distinct physiologic stimulus, activating the transcription of specific group of genes. In this work we show that BDNF induces the expression of BMP7 in neurons through TrkB receptor and MAPK/ERK pathways, an induction mechanism that is mediated in part by the release of the transcriptional repression exerted by p53 family proteins. BMP member...

  15. Bone Grafts

    Science.gov (United States)

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  16. An Investigation of Coral Based Bioactive Composite Bone in a Critical-sized Cranial Defects

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionNatural coral is a porous three-dimensional biocompatible material with osteo-conductivity~([1]). Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a member of TGF-β family possessing strong osteoinductive properties~([2]). Collagen has been demonstrated efficacy in sustained releasing growth factor due to gradually absorption of collagen matrix~([3]). And bone marrow derived mesenchymal stem cells (BMSCs) have been chosen as seed cells owing to the capacity of differentiating into o...

  17. rBMP Represses Wnt Signaling and Influences Skeletal Progenitor Cell Fate Specification During Bone Repair

    OpenAIRE

    Minear, Steve; Leucht, Philipp; Miller, Samara; Helms, Jill A.

    2010-01-01

    Bone morphogenetic proteins (BMPs) participate in multiple stages of the fetal skeletogenic program from promoting cell condensation to regulating chondrogenesis and bone formation through endochondral ossification. Here, we show that these pleiotropic functions are recapitulated when recombinant BMPs are used to augment skeletal tissue repair. In addition to their well-documented ability to stimulate chondrogenesis in a skeletal injury, we show that recombinant BMPs (rBMPs) simultaneously su...

  18. Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.

    Science.gov (United States)

    Pascalie, Jonathan; Potier, Martin; Kowaliw, Taras; Giavitto, Jean-Louis; Michel, Olivier; Spicher, Antoine; Doursat, René

    2016-08-19

    (divergence of the homology). Such morphogenetic phenotypes open the way to more complex shapes made of a recursive array of core bodies and limbs and, most importantly, to an evolutionary developmental exploration of unplanned functional forms. PMID:27244532

  19. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects

    OpenAIRE

    Kim, Sungwoo; Bedigrew, Katherine; Guda, Teja; Maloney, William J.; Park, Sangwon; Wenke, Joseph C.; Yang, Yunzhi Peter

    2014-01-01

    The purpose of this study was to develop and characterize a novel photo-cross-linkable chitosan-lactide-fibrinogen (CLF) hydrogel and evaluate the efficacy of bone morphogenetic protein-2 (BMP-2) containing CLF hydrogel for osteogenesis in vitro and in vivo. We synthesized the CLF hydrogels and characterized their chemical structure, degradation rate, compressive modulus, and in vitro BMP-2 release kinetics. We evaluated bioactivities of the BMP-2 containing CLF hydrogels (0, 50, 100, and 500...

  20. The rebirth of the morphogenetic field as an explanatory tool in biology

    Directory of Open Access Journals (Sweden)

    Perović Slobodan

    2013-01-01

    Full Text Available I discuss two uses of the concept of the morphogenetic field, a tool of the 19th century biology motivated by particular ontological views of the time, which has been re-emerging and increasingly relevant in explaining microbiological phenomena. I also consider the relation of these uses to the Central Dogma of modern biology as well as Modern Synthesis of Darwinism and genetics. An induced morphogenetic field is determined by a physical (e.g., gravitational field, or it acquires a physical (e.g., visco-elastic field’s characteristics. Such a morphogenetic field presents only a weak challenge to the Central Dogma of Modern Synthesis by indirectly, albeit severely, constraining variability at the molecular level. I discuss explanations that introduce structural inheritance in ciliate protozoa, as well as the experimental evidence on which these arguments are based. The global cellular morphogenetic field is a unit of such inheritance. I discuss relevant cases of structural inheritance in ciliates that bring about internal cellular as well as functional changes and point out that DNA is absent in the cortex and that RNA controls neither intermediary nor the global level of the field. I go on to argue that utilizing knowledge of known physical fields may advance explanations and understanding of the morphogenetic field in ciliates as the unit of both development and inheritance. [Projekat Ministarstva nauke Republike Srbije, br. 179041: Dynamic Systems in nature and society: Philosophical and empirical aspects

  1. Molecular mechanisms of bone formation in spondyloarthritis.

    Science.gov (United States)

    González-Chávez, Susana Aideé; Quiñonez-Flores, Celia María; Pacheco-Tena, César

    2016-07-01

    Spondyloarthritis comprise a group of inflammatory rheumatic diseases characterized by its association to HLA-B27 and the presence of arthritis and enthesitis. The pathogenesis involves both an inflammatory process and new bone formation, which eventually lead to ankylosis of the spine. To date, the intrinsic mechanisms of the pathogenic process have not been fully elucidated, and our progress is remarkable in the identification of therapeutic targets to achieve the control of the inflammatory process, yet our ability to inhibit the excessive bone formation is still insufficient. The study of new bone formation in spondyloarthritis has been mostly conducted in animal models of the disease and only few experiments have been done using human biopsies. The deregulation and overexpression of molecules involved in the osteogenesis process have been observed in bone cells, mesenchymal cells, and fibroblasts. The signaling associated to the excessive bone formation is congruent with those involved in the physiological processes of bone remodeling. Bone morphogenetic proteins and Wnt pathways have been found deregulated in this disease; however, the cause for uncontrolled stimulation remains unknown. Mechanical stress appears to play an important role in the pathological osteogenesis process; nevertheless, the association of other important factors, such as the presence of HLA-B27 and environmental factors, remains uncertain. The present review summarizes the experimental findings that describe the signaling pathways involved in the new bone formation process in spondyloarthritis in animal models and in human biopsies. The role of mechanical stress as the trigger of these pathways is also reviewed. PMID:26838262

  2. The bone-cartilage unit in osteoarthritis.

    Science.gov (United States)

    Lories, Rik J; Luyten, Frank P

    2011-01-01

    Osteoarthritis (OA) refers to a group of mechanically-induced joint disorders to which both genetic and acquired factors contribute. Current pathophysiological concepts focus on OA as a disease of the whole joint. Within these models, the functional unit formed by the articular cartilage and the subchondral bone seems to be of particular interest. Cartilage and bone receive and dissipate the stress associated with movement and loading, and are therefore continuously challenged biomechanically. Recent data support the view that cartilage and bone can communicate over the calcified tissue barrier; vessels reach out from bone into the cartilage zone, patches of uncalcified cartilage are in contact with bone, and microcracks and fissures further facilitate transfer of molecules. Several molecular signaling pathways such as bone morphogenetic proteins and Wnts are hypothesized to have a role in OA and can activate cellular and molecular processes in both cartilage and bone cells. In addition, intracellular activation of different kinase cascades seems to be involved in the molecular crosstalk between cartilage and bone cells. Further research is required to integrate these different elements into a comprehensive approach that will increase our understanding of the disease processes in OA, and that could lead to the development of specific therapeutics or treatment strategies. PMID:21135881

  3. Osteocyte: the unrecognized side of bone tissue.

    OpenAIRE

    Rochefort, Gaël,; Pallu, Stéphane; Benhamou, Claude-Laurent

    2010-01-01

    INTRODUCTION: Osteocytes represent 95% of all bone cells. These cells are old osteoblasts that occupy the lacunar space and are surrounded by the bone matrix. They possess cytoplasmic dendrites that form a canalicular network for communication between osteocytes and the bone surface. They express some biomarkers (osteopontin, beta3 integrin, CD44, dentin matrix protein 1, sclerostin, phosphate-regulating gene with homologies to endopeptidases on the X chromosome, matrix extracellular phosphog...

  4. Phylogeny of subclass Scuticociliatia (Protozoa, Ciliophora) using combined data inferred from genetic, morphological, and morphogenetic evidence

    Science.gov (United States)

    Yi, Zhenzhen; Wang, Yangang; Lin, Xiaofeng; Al-Rasheid, Khaled A. S.; Song, Weibo

    2010-07-01

    Gene sequence-based genealogies of scuticociliates are different from those produced by morphological analyses. For this reason, 11 representative scuticociliates and two ambiguously related genera were chosen to test the ability of combined phylogenetic analyses using both gene sequences and morphological/morphogenetic characteristics. Analyses of both the SSrRNA gene sequences and the combined datasets revealed a consistent branching pattern. While the terminal branches and the order level relationships were generally well resolved, the family level relationships remain unresolved. However, two other trees based on ITS1-5.8S-ITS2 region sequences and morphological/morphogenetic characters showed limited information, due to a lack of informative sites in these two datasets. Our data suggest, however, that the combined analysis of morphological/morphogenetic characters and gene sequences did produce some changes to the phylogenetic estimates of this group.

  5. Gelatin-Modified Bone Substitute with Bioactive Molecules Enhance Cellular Interactions and Bone Regeneration.

    Science.gov (United States)

    Teotia, Arun Kumar; Gupta, Ankur; Raina, Deepak Bushan; Lidgren, Lars; Kumar, Ashok

    2016-05-01

    In this work, we have synthesized injectable bone cement incorporated with gelatin to enhance cellular interaction. Human osteosarcoma Saos-2 cells derived bone morphogenetic proteins (BMP's) and a bisphosphonate (zoledronic acid (0.2 mM)) were also incorporated to cement. In vitro studies conducted using Saos-2 demonstrated enhanced cell proliferation on gelatin (0.2%w/v) cement. The differentiation of C2C12 mouse myoblast cells into bone forming cells showed 6-fold increase in ALP levels on gelatin cement. Polymerase chain reaction (PCR) for bone biomarkers showed osteoinductive potential of gelatin cement. We investigated efficacy for local delivery of these bioactive molecules in enhancing bone substitution qualities of bone cements by implanting in 3.5 mm critical size defect in tibial metaphysis of wistar rats. The rats were sacrificed after 12 weeks and 16 weeks post implantation. X-ray, micro-CT, histology, and histomorphometry analysis were performed to check bone healing. The cement materials slowly resorbed from the defect site leaving HAP creating porous matrix providing surface for bone formation. The materials showed high biocompatibility and initial bridging was observed in all the animals but maximum bone formation was observed in animals implanted with cement incorporated with zoledronic acid followed by cement with BMP's compared to other groups. PMID:27077816

  6. Effects of Cadmium on BMP Induced Bone Formation

    Institute of Scientific and Technical Information of China (English)

    陈秋生; 徐顺清

    2003-01-01

    To demonstrate the direct effects of cadmium on activities of bone morphogenetic protein (BMP), a complex containing BMP and cadmium chloride (CdCl2) was implanted beneath the abdominal skin of young male Wistar rats. The activity of BMP was studied by observing the histological changes, and measuring the activity of alkaline phosphatase (ALP) and acid phosphatase (ACP) and calcium content of the implants at different time points. Our results showed that during bone formation induced by BMP, cadmium inhibited the activities of osteoblasts and osteoclasts, and slowed the deposition of calcium. It is concluded that cadmium can directly affect biological activities of BMP directly.

  7. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  8. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another part of the body is more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 ...

  9. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  10. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun [Department of Ophthalmology, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Liu Guangpeng [Key Laboratory of Tissue Engineering, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhang Peng [Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science (China); Hou Hongliang; Tang Tingting, E-mail: drfanxianqun@126.com [Department of Orthopedics, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China)

    2011-02-15

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  11. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  12. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    Science.gov (United States)

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    The momentum to compose this Leading Opinion on the synergistic induction of bone formation suddenly arose when a simple question was formulated during a discussion session on how to boost the often limited induction of bone formation seen in clinical contexts. Re-examination of morphological and molecular data available on the rapid induction of bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) shows that hTGF-β3 replicates the synergistic induction of bone formation as invocated by binary applications of hOP-1:hTGF-β1 at 20:1 by weight when implanted in heterotopic sites of the rectus abdominis muscle of the Chacma baboon, Papio ursinus. The rapid induction of bone formation in primates by hTGF-β3 may stem from bursts of cladistic evolution, now redundant in lower animal species but still activated in primates by relatively high doses of hTGF-β3. Contrary to rodents, lagomorphs and canines, the three mammalian TGF-β isoforms induce rapid and substantial bone formation when implanted in heterotopic rectus abdominis muscle sites of P. ursinus, with unprecedented regeneration of full thickness mandibular defects with rapid mineralization and corticalization. Provocatively, thus providing potential molecular and biological rationales for the apparent redundancy of osteogenic molecular signals in primates, binary applications of recombinant human osteogenic protein-1 (hOP-1) with low doses of hTGF-β1 and -β3, synergize to induce massive ossicles in heterotopic rectus abdominis, orthotopic calvarial and mandibular sites of P. ursinus. The synergistic binary application of homologous but molecularly different soluble molecular signals has indicated that per force several secreted molecular signals are required singly, synchronously and synergistically to induce optimal osteogenesis. The morphological hallmark of the synergistic induction of bone formation is the rapid differentiation of large osteoid seams enveloping

  13. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  14. Bone tissue as a systemic endocrine regulator.

    Science.gov (United States)

    Zofkova, I

    2015-01-01

    Bone is a target tissue for hormones, such as the sex steroids, parathormon, vitamin D, calcitonin, glucocorticoids, and thyroid hormones. In the last decade, other "non-classic" hormones that modulate the bone tissue have been identified. While incretins (GIP and GLP-1) inhibit bone remodeling, angiotensin acts to promote remodeling. Bone morphogenetic protein (BMP) has also been found to have anabolic effects on the skeleton by activating bone formation during embryonic development, as well as in the postnatal period of life. Bone has also been identified as an endocrine tissue that produces a number of hormones, that bind to and modulate extra-skeletal receptors. Osteocalcin occupies a central position in this context. It can increase insulin secretion, insulin sensitivity and regulate metabolism of fatty acids. Moreover, osteocalcin also influences phosphate metabolism via osteocyte-derived FGF23 (which targets the kidneys and parathyroid glands to control phosphate reabsorption and metabolism of vitamin D). Finally, osteocalcin stimulates testosterone synthesis in Leydig cells and thus may play some role in male fertility. Further studies are necessary to confirm clinically important roles for skeletal tissue in systemic regulations. PMID:25470522

  15. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways

    OpenAIRE

    Choi, Hyuck; Jeong, Byung-Chul; Kook, Min-Suk; Koh, Jeong-Tae

    2016-01-01

    Background Healing of bone defects is a dynamic and orchestrated process that relies on multiple growth factors and cell types. Bone morphogenetic protein 2 (BMP2) is a key growth factor for bone healing, which stimulates mesenchymal stem cells to differentiate into osteoblasts. Betulinic acid (BetA) is a natural pentacyclic triterpenoid from plants. This study aimed to examine combinatory effects of BetA and BMP2 on ectopic bone generation in mice. Results In MC3T3-E1 preosteoblast culture, ...

  16. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  17. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  18. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration.

    Science.gov (United States)

    Huh, Jung-Bo; Yang, June-Jip; Choi, Kyung-Hee; Bae, Ji Hyeon; Lee, Jeong-Yeol; Kim, Sung-Eun; Shin, Sang-Wan

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration. PMID:26184187

  19. Study on Z-H/BMP Toughened Compound Artificial Bone and Its Osteogenesis

    Institute of Scientific and Technical Information of China (English)

    XU Wei-guo; CHEN An-min; SUN Shu-zhen

    2003-01-01

    The purpose of this study was to find a kind of new artificial bone for anterior spinal fusion.ZrO2 stabilized by Y2O3 ( Y- PSZ), porous hydroxyapatite ( HA ) and bone morphogenetic protein (BMP) were used to make artificial compound bone ( Y2O3 ) ZrO2 -HA/ BMP( Z-H/ BMP ) , whose function was tested, microstructure and mineralogic composition constitution were analysised by SEM and XRD , and the corresponding animal tests were porformed. Osteogenesis of the material was observed by eyes, histology and SEM. Experimental results show that the component and ossific activity of Z-H/BMP were satisfactory.

  20. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  1. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model.

    Science.gov (United States)

    Arai, Yuki; Aoki, Kazuhiro; Shimizu, Yasuhiro; Tabata, Yasuhiko; Ono, Takashi; Murali, Ramachandran; Mise-Omata, Setsuko; Wakabayashi, Noriyuki

    2016-07-01

    Tooth extraction causes bone resorption of the alveolar bone volume. Although recombinant human bone morphogenetic protein 2 (rhBMP-2) markedly promotes de novo bone formation after tooth extraction, the application of high-dose rhBMP-2 may induce side effects, such as swelling, seroma, and an increased cancer risk. Therefore, reduction of the necessary dose of rhBMP-2 which can still obtain sufficient bone mass is necessary by developing a new osteogenic reagent. Recently, we showed that the systemic administration of OP3-4 peptide, which was originally designed as a bone resorption inhibitor, had osteogenic ability both in vitro and in vivo. This study evaluated the ability of the local application of OP3-4 peptide to promote bone formation in a murine tooth extraction model with a very low-dose of BMP. The mandibular incisor was extracted from 10-week-old C57BL6/J male mice and a gelatin hydrogel containing rhBMP-2 with or without OP3-4 peptide (BMP/OP3-4) was applied to the socket of the incisor. Bone formation inside the socket was examined radiologically and histologically at 21 days after the extraction. The BMP/OP3-4-group showed significant bone formation inside the mandibular extraction socket compared to the gelatin-hydrogel-carrier-control group or rhBMP-2-applied group. The BMP/OP3-4-applied mice showed a lower reduction of alveolar bone and fewer osteoclast numbers, suggesting that the newly formed bone inside the socket may prevent resorption of the cortical bone around the extraction socket. Our data revealed that OP3-4 peptide promotes BMP-mediated bone formation inside the extraction socket of mandibular bone, resulting in preservation from the loss of alveolar bone. PMID:27118173

  2. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  3. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  4. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  5. Factors affecting morphogenetic potential in oilseed rape roots of the Skrzeszowicki and Start cultivars

    Directory of Open Access Journals (Sweden)

    Janina Rogozińska

    2014-02-01

    Full Text Available The effect of the origin of root segments, seedling age, growth substances and gelled or liquid media were tested in respect to the morphogenetic potential of rape root segments of Skrzeszowicki (high glucosinolate content and Start (low glucosinolate content cultivars. Callus and roots were formed on all root segments after an approximately 2 week growth period; buds were formed after ca. 4 weeks only on segments adjacent to the hypocotyl. Higher concentrations of auxin and cytokinins were required for bud induction. Cultivar differences in the morphogenetic responses of the root segments were found. They were manifested by the more abundant callus formation (BAP+NAA and more numerous lateral roots and buds (KIN+IBA on segments from the Skrzeszowicki cultivar than from the Start cultivar.

  6. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB

    OpenAIRE

    Rolo, Ana; Skoglund, Paul; Keller, Ray

    2008-01-01

    Vertebrate neural tube formation involves two distinct morphogenetic events -convergent extension (CE) driven by medio-lateral cell intercalation, and bending of the neural plate driven largely by cellular apical constriction. However, the cellular and molecular biomechanics of these processes are not understood. Here, using tissue-targeting techniques, we show that the myosin IIB motor protein complex is essential for both these processes, as well as for conferring resistance to deformation ...

  7. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model

    International Nuclear Information System (INIS)

    The reconstruction of segmental bone defects remains an urgent problem in the orthopaedic field, and bone morphogenetic protein-2 (BMP-2) is known for its potent osteoinductive properties in bone regeneration. In this study, chitosan microspheres (CMs) were prepared and combined with absorbable collagen sponge to maintain controlled-release recombinant human bone morphogenetic protein-2 (rhBMP-2). The rhBMP-2-loaded composite scaffolds were implanted into 15 mm radius defects of rabbits and the bone-repair ability was evaluated systematically. CMs were spherical in shape and had a polyporous surface, according to SEM images. The complex scaffold exhibited an ideal releasing profile in vitro. The micro-computed tomographic analysis revealed that the rhBMP-2-loaded composite scaffold not only bridged the defects as early as 4 weeks, but also healed the defects and presented recanalization of the bone-marrow cavity at 12 weeks. These results were confirmed by x-ray. When compared with other control groups, the composite scaffold group remarkably enhanced new bone formation and mechanical properties, as evidenced by bone mineral content evaluation, histological observations and biomechanical testing. Moreover, the biocompatibility and appropriate degradation of the composite scaffold could be obtained. All of these results clearly demonstrated that the composite scaffold is a promising carrier of BMP-2 for the treatment of segmental bone defects. (paper)

  8. Spontaneous morphogenetic juvenilization observed in laboratory populations of vector species of Chagas disease (Triatominae

    Directory of Open Access Journals (Sweden)

    Alina Perlowagora-Szumlewicz

    1973-08-01

    Full Text Available Reported are observations on spontaneous occurring morphogenetic juvenilization in laboratory populations of vector species of Chagas disease. Two general effects have been observed: arrested development and uncoordinated development. These are manifested by supernumerary nymphs (6th stage, intermediate nymphal-adult stages, badly deformed adults developed from 5th instar nymphs, uncoordinated development manifested by grotesque forms of adults, supernumerary adults unable to complete metamorphosis and complete supernumerary adults produced by 6th stage nymphs. The reoccurrence of insects with identical grades of juvenilization in the population is an indication that this is a genetic trait that might be inherited. The factors responsible for morphogenetic juvenilization cannot be transmitted through the juvenilized insects because they are sterile, than they were transmitted through normal insects probably as a recessive or a group recessive factors. The spontaneous morphogenetic juvenilization observed in laboratory populations has a striking similarity to juvenilizing effects induced by application of juvenile hormone analogues, described in the literature and also obtained in our laboratory in a study to be published. Thus it is suggested that both; the altered phenotypes occurring in wild populations and their "phenocopies" induced by the application of juvenile hormone analogues are products of gene controlled identical reactions.

  9. Bone tumor

    Science.gov (United States)

    ... physical exam. Tests that may be done include: Alkaline phosphatase blood level Bone biopsy Bone scan Chest x- ... also affect the results of the following tests: Alkaline phosphatase isoenzyme Blood calcium level Parathyroid hormone Blood phosphorus ...

  10. Conditional Deletion of BMP7 from the Limb Skeleton Does Not Affect Bone Formation or Fracture Repair

    OpenAIRE

    Tsuji, Kunikazu; Cox, Karen; Gamer, Laura; Graf, Daniel; Economides, Aris; Rosen, Vicki

    2010-01-01

    While the osteoinductive activity of recombinant bone morphogenetic protein 7 (BMP7) is well established, evaluation of the role of endogenous BMP7 in bone formation and fracture healing has been hampered by perinatal lethality in BMP7 knockout mice. Here we employ conditional deletion of BMP7 from the embryonic limb prior to the onset of skeletogenesis to create limb bones lacking BMP7. We find that the absence of locally produced BMP7 has no effect on postnatal limb growth, articular cartil...

  11. Immunohistochemical localization of dentin matrix protein 1 in human dentin

    OpenAIRE

    G Orsini; Ruggeri, A.; Mazzoni, A.; Nato, F; Falconi, M; Putignano, A; Di Lenarda, R.; A Nanci; Breschi, L.

    2009-01-01

    Dentin matrix protein 1 (DMP1) is a non-collagenous matrix protein with a recognized role in the formation of mineralized tissues such as dentin. The aim of this study was to analyze the distribution of DMP1 in human dentin by means of immunofluorescence and high-resolution immunogold labeling. Fully developed, sound human dentin specimens were submitted to fluorescence labeling and post-embedding immunolabeling techniques with a rabbit polyclonal antihuman DMP1 antibody followed by correspon...

  12. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-02-01

    Full Text Available The two marine inorganic polymers, biosilica (BS, enzymatically synthesized from ortho-silicate, and polyphosphate (polyP, a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC, mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation. Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2 and alkaline phosphatase (ALP in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that

  13. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    International Nuclear Information System (INIS)

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence

  14. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex

    DEFF Research Database (Denmark)

    Kruse, Thomas; Bork-Jensen, Jette; Gerdes, Kenn

    2005-01-01

    spherical, enlarged and finally lysed. Depletion of each mre gene separately conferred similar gross changes in cell morphology and viability. Thus, the three proteins encoded by mreBCD are all essential and function in the same morphogenetic pathway. Interestingly, the presence of a multicopy plasmid...... carrying the ftsQAZ genes suppressed the lethality of deletions in the mre operon. Using GFP and cell fractionation methods, we showed that the MreC and MreD proteins were associated with the cell membrane. Using a bacterial two-hybrid system, we found that MreC interacted with both MreB and Mre...

  15. [Bone diseases].

    Science.gov (United States)

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw. PMID:26946704

  16. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available Current clinical therapies for critical-sized bone defects (CSBDs remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2 gene-modified MSCs and endothelial progenitor cells (EPCs could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.

  17. BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects

    Science.gov (United States)

    He, Xiaoning; Dziak, Rosemary; Yuan, Xue; Mao, Keya; Genco, Robert; Swihart, Mark; Sarkar, Debanjan; Li, Chunyi; Wang, Changdong; Lu, Li; Andreadis, Stelios; Yang, Shuying

    2013-01-01

    Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2) gene-modified MSCs and endothelial progenitor cells (EPCs) could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone) and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm) caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs. PMID:23565253

  18. Talking Bones.

    Science.gov (United States)

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  19. Bone Markers

    Science.gov (United States)

    ... bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker for bone resorption. It is ... resorption include: N-telopeptide (N-terminal telopeptide of type 1 collagen (NTx)) – a peptide fragment from the amino terminal ...

  20. Histoarchitecture of schistosomal granuloma development and involution: morphogenetic and biomechanical approaches

    Directory of Open Access Journals (Sweden)

    Lenzi Henrique L

    1998-01-01

    Full Text Available The authors present morphogenetic and biomechanical approaches on the concept of the Schistosoma mansoni granulomas, considering them as organoid structures that depend on cellular adhesion and sorting, forming rearrangement into hierarchical concentric layers, creating tension-dependent structures, aiming to acquire round form, since this is the minimal energy form, in which opposing forces pull in equally from all directions and are in balance. From the morphogenetic point of view, the granulomas function as little organs, presenting maturative and involutional stages in their development with final disappearance (pre-granulomatous stages, subdivided in: weakly and/or initial reactive and exudative; granulomatous stages: exudative-productive, productive and involutional. A model for the development of granulomas was suggested, according to the following stages: encapsulating, focal histolysis, fiber production, orientation and compacting and involution and desintegration. The authors concluded that schistosomal granuloma is not a tangled web of individual cells and fibers, but an organized structure composed by host and parasite components, which is not formed to attack the miracidia, but functions as an hybrid interface between two different phylogenetic beings.

  1. Morphogenetic characteristics and demographic patterns of tillers on andropogon grass under different forage allowances

    Directory of Open Access Journals (Sweden)

    Daniel Louçana da Costa Araújo

    2015-10-01

    Full Text Available The objective of this study was to evaluate the morphogenetic and structural characteristics and the demographic patterns of tillering in the grass Andropogon gayanus Kunth var. Bisquamulatus (Hochst Hack. cv. Planaltina subjected to three forage allowances: 11, 15 and 19% of the LW, under continuous grazing by goats. The experimental design for the evaluation of the pasture morphogenetic characteristics was set in (two random blocks, with six replications (tussocks within the block. To evaluate the tillering dynamics and population density, we adopted the experimental design of (two random blocks, in a split-plot arrangement. In the plots, we evaluated the effect of forage allowances and in the subplots, the months of April, May and June. Forage allowances did not affect the leaf elongation rate, leaf senescence or the number of live leaves. The leaf appearance rate was highest at the masses of 11 and 15% of the LW. Managing the pasture with a forage allowance of 19% of the LW increases the stem elongation rate, leaf lifespan and the lengths of leaf and stem. The number of vegetative tillers and the tiller appearance and survival rates are not affected by the forage allowances from 11 to 19% of the LW.

  2. Bone densitometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Alexandersen, P; Møllgaard, A

    1999-01-01

    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone....... The weak response at the distal forearm during antiresorptive treatment has restricted the use of bone densitometry at this region. We describe a new model for bone densitometry at the distal forearm, by which the response obtained is comparable to the response in other regions where bone densitometry...... is much more expensive and technically complicated. By computerized iteration of single X-ray absorptiometry forearm scans we defined a region with 65% trabecular bone. The region was analyzed in randomized, double-masked, placebo- controlled trials: a 2-year trial with alendronate (n = 69), a 1-year...

  3. Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model.

    Science.gov (United States)

    Kang, Sun-Woong; Bae, Ji-Hoon; Park, Su-A; Kim, Wan-Doo; Park, Mi-Su; Ko, You-Jin; Jang, Hyon-Seok; Park, Jung-Ho

    2012-07-01

    The three-dimensional (3D) plotting system is a rapidly-developing scaffold fabrication method for bone tissue engineering. It yields a highly porous and inter-connective structure without the use of cytotoxic solvents. However, the therapeutic effects of a scaffold fabricated using the 3D plotting system in a large segmental defect model have not yet been demonstrated. We have tested two hypotheses: whether the bone healing efficacy of scaffold fabricated using the 3D plotting system would be enhanced by bone marrow-derived mesenchymal stem cell (BMSC) transplantation; and whether the combination of bone morphogenetic protein-2 (BMP-2) administration and BMSC transplantation onto the scaffold would act synergistically to enhance bone regeneration in a large segmental defect model. The use of the combined therapy did increase bone regeneration further as compared to that with monotherapy in large segmental bone defects. PMID:22447098

  4. Bone Regeneration from PLGA Micro-Nanoparticles

    Science.gov (United States)

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  5. Bone Regeneration from PLGA Micro-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Inmaculada Ortega-Oller

    2015-01-01

    Full Text Available Poly-lactic-co-glycolic acid (PLGA is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2. Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.

  6. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    International Nuclear Information System (INIS)

    Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and therapeutic strategies against human cancers

  7. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    OpenAIRE

    Hassan AH; Hosny KM; Murshid ZA; Alhadlaq A; Alyamani A; Naguib G

    2015-01-01

    Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud Univer...

  8. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes

    OpenAIRE

    Mulsant, Philippe; Lecerf, Frédéric; Fabre, Stéphane; Schibler, Laurent; Monget, Philippe; Lanneluc, I; Pisselet, C.; Riquet, Juliette; Monniaux, Danielle; Callebaut, I.; Cribiu, Edmond; Thimonier, J.; Teyssier, J; Bodin, Loys; Cognié, Y

    2001-01-01

    Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 tha...

  9. Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins.

    OpenAIRE

    Wharton, K. A.; Thomsen, G H; Gelbart, W. M.

    1991-01-01

    The 60A gene, a member of the transforming growth factor beta superfamily of signaling proteins, has been identified in Drosophila melanogaster. From its inferred protein sequence we predict the precursor is secreted and processed to release a growth factor-like molecule. The 60A gene is expressed throughout development with peaks of transcription during early embryogenesis, in pupae, and in adult males. The putative 60A protein shows greater sequence similarity to three vertebrate family mem...

  10. Structural studies of human glioma pathogenesis-related protein 1

    International Nuclear Information System (INIS)

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1

  11. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  12. Bone Tumor

    Science.gov (United States)

    ... the knee in either the femur (thigh) or tibia (shinbone). Other common locations include the hip and ... bone that is weakened by a tumor to fracture, or break. This may be severely painful. Occasionally, ...

  13. Your Bones

    Science.gov (United States)

    ... a fall! If you play sports like football, soccer, lacrosse, or ice hockey, always wear all the ... to strengthen your bones is through exercise like running, jumping, dancing, and playing sports. Take these steps ...

  14. BRCA-associated protein 1 mutant cholangiocarcinoma: an aggressive disease subtype

    Science.gov (United States)

    Al-Shamsi, Humaid O.; Anand, Deepa; Shroff, Rachna T.; Jain, Apurva; Zuo, Mingxin; Conrad, Claudius; Vauthey, Jean-Nicolas

    2016-01-01

    Background BRCA-associated protein 1, an enzyme encoded by the BAP1 gene, is commonly mutated in uveal melanoma, mesothelioma, and renal cancers. Tumors with BAP1 mutation follow an aggressive course. BAP1 mutations have also been observed in cholangiocarcinoma (CCA). The clinical phenotype of BAP1 mutant CCA may yield useful prognostic and therapeutic information but has not been defined. Methods The records of CCA patients who underwent next-generation sequencing (NGS) were reviewed, and data on clinical, histopathological, genetic, and radiological features; response to therapy; time to progression; and survival were analyzed. Results Twenty-two cases of BAP1-mutation associated CCA were diagnosed from January 1, 2009, to February 1, 2015, at our center. Twenty patients had intrahepatic CCA and two had extrahepatic CCA. Tumor sizes (largest dimension) ranged from 2 to 16 cm (mean, 8.5 cm). Twelve patients had tumors that were poorly differentiated. Majority of the patients had advanced disease at presentation and 13 had bone metastases. Thirteen patients (59%) experienced rapidly progressive disease following primary therapy (chemotherapy or surgical resection). The mean time to tumor progression was 3.8 months after the first line chemotherapy. Conclusions BAP1 mutation in CCA may be associated with aggressive disease and poor response to standard therapies. Therefore, BAP1-targeted therapies need to be investigated. PMID:27563445

  15. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes.

    Science.gov (United States)

    Nociti, F H; Foster, B L; Tran, A B; Dunn, D; Presland, R B; Wang, L; Bhattacharyya, N; Collins, M T; Somerman, M J

    2014-02-01

    Calcium and phosphorus homeostasis is achieved by interplay among hormones, including 1,25(OH)2D3 (1,25D), parathyroid hormone, and fibroblast growth factor 23 (FGF23), and their interactions with other proteins. For example, mutations in dentin matrix protein 1 (DMP-1) result in increased FGF23 and hypophosphatemic rickets. 1,25D is reported to modulate FGF23; thus, we hypothesized that 1,25D may be involved in modulating DMP-1 in an intermediary step. Murine cementoblasts (OCCM-30) and osteocyte-like cells (MLO-Y4 and MLO-A5), known to express DMP-1, were used to analyze effects of 1,25D on DMP-1 expression in vitro. DMP-1 mRNA levels decreased by 50% (p < .05) in the presence of 1,25D in all cell types, while use of a vitamin D receptor (VDR) agonist (EB1089) and antagonist (23S,25S)-DLAM-2P confirmed that VDR pathway activation was required for this response. Further analysis showed that histone deacetylase recruitment was necessary, but neither protein kinase A nor C pathways were required. In conclusion, our results support the hypothesis that 1,25D regulates DMP-1 expression through a VDR-dependent mechanism, possibly contributing to local changes in bone/tooth mineral homeostasis. PMID:24334408

  16. Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei.

    Science.gov (United States)

    Boyce, Kylie J; Andrianopoulos, Alex

    2013-02-01

    Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei. PMID:23204189

  17. Effects of biofertilizer rates on the structural, morphogenetic and productive characteristics of Piatã grass

    Directory of Open Access Journals (Sweden)

    Marco Antonio Previdelli Orrico Junior

    2012-06-01

    Full Text Available The objective of this study was to investigate the influence of different levels of biofertilizers from cattle and swine manure on the structural, morphogenetic and productive characteristics of Brachiaria brizantha cv. Piatã. The experiment was arranged in a completely randomized factorial design with split plots. The plots were defined by eight treatments: two biofertilizers (cattle and swine, four levels (0, 100, 200 and 300 kg N.ha-1 and subplots by four different cutting periods. The cutting for plant uniformity was performed at 45 days after sowing at 15 cm above the soil surface. The biofertilizeres were applied in a single level, after the cutting of plants, in rates of 0, 0.23 and 0.19, 0.45 and 0.38, 0.68 and 0.57 liters pot-1 for the biofertilizers from cattle and swine manure, respectively. These rates were also equivalent to levels of 0, 100, 200 and 300 kg N.ha-1. There was no significant difference between the types of biofertilizers as there was no interaction between them and the different levels, hence both biofertilizers could be applied without any loss of nutrient intake by the plants used in this experiment. There was a significant difference between the production of green and dry matter, the leaf appearance rate, phyllochron, leaf and pseudostem elongation rates, number of green leaves, final leaf length, number and weight of tillers, according to the increase of nitrogen rates, following linear prediction model. Effect of the cutting periods was also observed, once the plants harvested during the summer presented greater performance of structural and morphogenetic characteristics.

  18. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis.

    Science.gov (United States)

    Peters, Brian M; Palmer, Glen E; Nash, Andrea K; Lilly, Elizabeth A; Fidel, Paul L; Noverr, Mairi C

    2014-02-01

    Vulvovaginal candidiasis, caused primarily by Candida albicans, presents significant health issues for women of childbearing age. As a polymorphic fungus, the ability of C. albicans to switch between yeast and hyphal morphologies is considered its central virulence attribute. Armed with new criteria for defining vaginitis immunopathology, the purpose of this study was to determine whether the yeast-to-hypha transition is required for the hallmark inflammatory responses previously characterized during murine vaginitis. Kinetic analyses of vaginal infection with C. albicans in C57BL/6 mice demonstrated that fungal burdens remained constant throughout the observation period, while polymorphonuclear leukocyte (PMN), S100A8, and interleukin-1β levels obtained from vaginal lavage fluid increased by day 3 onward. Lactate dehydrogenase activity was also positively correlated with increased effectors of innate immunity. Additionally, immunodepletion of neutrophils in infected mice confirmed a nonprotective role for PMNs during vaginitis. Determination of the importance of fungal morphogenesis during vaginitis was addressed with a two-pronged approach. Intravaginal inoculation of mice with C. albicans strains deleted for key transcriptional regulators (bcr1Δ/Δ, efg1Δ/Δ, cph1Δ/Δ, and efg1Δ/Δ cph1Δ/Δ) controlling the yeast-to-hypha switch revealed a crucial role for morphogenetic signaling through the Efg1 and, to a lesser extent, the Bcr1 pathways in contributing to vaginitis immunopathology. Furthermore, overexpression of transcription factors NRG1 and UME6, to maintain yeast and hyphal morphologies, respectively, confirmed the importance of morphogenesis in generating innate immune responses in vivo. These results highlight the yeast-to-hypha switch and the associated morphogenetic response as important virulence components for the immunopathogenesis of Candida vaginitis, with implications for transition from benign colonization to symptomatic infection. PMID

  19. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  20. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms

    Science.gov (United States)

    Horiguchi, Hiroto; Kobune, Masayoshi; Kikuchi, Shohei; Yoshida, Masahiro; Murata, Masaki; Murase, Kazuyuki; Iyama, Satoshi; Takada, Kohichi; Sato, Tsutomu; Ono, Kaoru; Hashimoto, Akari; Tatekoshi, Ayumi; Kamihara, Yusuke; Kawano, Yutaka; Miyanishi, Koji; Sawada, Norimasa; Kato, Junji

    2016-01-01

    The failure of normal hematopoiesis is observed in myeloid neoplasms. However, the precise mechanisms governing the replacement of normal hematopoietic stem cells in their niche by myeloid neoplasm stem cells have not yet been clarified. Primary acute myeloid leukemia and myelodysplastic syndrome cells induced aberrant expression of multiple hematopoietic factors including Jagged-1, stem cell factor and angiopoietin-1 in mesenchymal stem cells even in non-contact conditions, and this abnormality was reverted by extracellular vesicle inhibition. Importantly, the transfer of myeloid neoplasm-derived extracellular vesicles reduced the hematopoietic supportive capacity of mesenchymal stem cells. Analysis of extracellular vesicle microRNA indicated that several species, including miR-7977 from acute myeloid leukemia cells, were higher than those from normal CD34+ cells. Remarkably, the copy number of miR-7977 in bone marrow interstitial fluid was elevated not only in acute myeloid leukemia, but also in myelodysplastic syndrome, as compared with lymphoma without bone marrow localization. The transfection of the miR-7977 mimic reduced the expression of the posttranscriptional regulator, poly(rC) binding protein 1, in mesenchymal stem cells. Moreover, the miR-7977 mimic induced aberrant reduction of hematopoietic growth factors in mesenchymal stem cells, resulting in decreased hematopoietic-supporting capacity of bone marrow CD34+ cells. Furthermore, the reduction of hematopoietic growth factors including Jagged-1, stem cell factor and angiopoietin-1 were reverted by target protection of poly(rC) binding protein 1, suggesting that poly(rC) binding protein 1 could be involved in the stabilization of several growth factors. Thus, miR-7977 in extracellular vesicles may be a critical factor that induces failure of normal hematopoiesis via poly(rC) binding protein 1 suppression. PMID:26802051

  1. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing

    OpenAIRE

    Schrier, Jay A.; Fink, Betsy F.; Rodgers, Janet B.; Vasconez, Henry C; DeLuca, Patrick P.

    2001-01-01

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not...

  2. Effects of Eucommia ulmoides extract on longitudinal bone growth rate in adolescent female rats.

    Science.gov (United States)

    Kim, Ji Young; Lee, Jeong-Il; Song, MiKyung; Lee, Donghun; Song, Jungbin; Kim, Soo Young; Park, Juyeon; Choi, Ho-Young; Kim, Hocheol

    2015-01-01

    Eucommia ulmoides is one of the popular tonic herbs for the treatment of low back pain and bone fracture and is used in Korean medicine to reinforce muscles and bones. This study was performed to investigate the effects of E. ulmoides extract on longitudinal bone growth rate, growth plate height, and the expressions of bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) in adolescent female rats. In two groups, we administered a twice-daily dosage of E. ulmoides extract (at 30 and 100 mg/kg, respectively) per os over 4 days, and in a control group, we administered vehicle only under the same conditions. Longitudinal bone growth rate in newly synthesized bone was observed using tetracycline labeling. Chondrocyte proliferation in the growth plate was observed using cresyl violet dye. In addition, we analyzed the expressions of BMP-2 and IGF-1 using immunohistochemistry. Eucommia ulmoides extract significantly increased longitudinal bone growth rate and growth plate height in adolescent female rats. In the immunohistochemical study, E. ulmoides markedly increased BMP-2 and IGF-1 expressions in the proliferative and hypertrophic zones. In conclusion, E. ulmoides increased longitudinal bone growth rate by promoting chondrogenesis in the growth plate and the levels of BMP-2 and IGF-1. Eucommia ulmoides could be helpful for increasing bone growth in children who have growth retardation. PMID:25087723

  3. Bone densitometer

    International Nuclear Information System (INIS)

    In an x-ray bone densitometer, special calibration techniques are employed to accommodate variations. In one aspect, a bone-like calibration material is interposed and the system determines the calibration data from rays passing only through flesh. In another aspect, a rotating device carries the calibration material through the beam. The specific densitometer shown uses an x-ray tube operated at two different voltages to generate a pencil beam, the energy levels of the x-ray photons being a function of the voltage applied. An integrating detector is timed to integrate the detected signal of the patient-attenuated beam over each pulse, the signals are converted to digital values and a digital computer converts the set of values produced by the raster scan into a representation of the bone density of the patient. Multiple reference detectors with differing absorbers are used by the system to continuously correct for variation in voltage and current of the x-ray tube. Calibration is accomplished by the digital computer on the basis of passing the pencil beam through known bone-representing substance as the densitometer scans portions of the patient having bone and adjacent portions having only flesh. A set of detected signals affected by the calibration substance in regions having only flesh is compared by the computer with a set of detected signals unaffected by the calibration material

  4. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  5. Heterochromatin protein 1 secures survival and transmission of malaria parasites.

    Science.gov (United States)

    Brancucci, Nicolas M B; Bertschi, Nicole L; Zhu, Lei; Niederwieser, Igor; Chin, Wai Hoe; Wampfler, Rahel; Freymond, Céline; Rottmann, Matthias; Felger, Ingrid; Bozdech, Zbynek; Voss, Till S

    2014-08-13

    Clonally variant expression of surface antigens allows the malaria parasite Plasmodium falciparum to evade immune recognition during blood stage infection and secure malaria transmission. We demonstrate that heterochromatin protein 1 (HP1), an evolutionary conserved regulator of heritable gene silencing, controls expression of numerous P. falciparum virulence genes as well as differentiation into the sexual forms that transmit to mosquitoes. Conditional depletion of P. falciparum HP1 (PfHP1) prevents mitotic proliferation of blood stage parasites and disrupts mutually exclusive expression and antigenic variation of the major virulence factor PfEMP1. Additionally, PfHP1-dependent regulation of PfAP2-G, a transcription factor required for gametocyte conversion, controls the switch from asexual proliferation to sexual differentiation, providing insight into the epigenetic mechanisms underlying gametocyte commitment. These findings show that PfHP1 is centrally involved in clonally variant gene expression and sexual differentiation in P. falciparum and have major implications for developing antidisease and transmission-blocking interventions against malaria. PMID:25121746

  6. Cadmium-induced aggregation of iron regulatory protein-1

    International Nuclear Information System (INIS)

    Iron regulatory protein-1 (IRP-1) is central to regulation of iron homeostasis, and has been shown to be sensitive to Cd2+ in vitro. Although Cd2+ induces disulfide-bond formation in many proteins, the critical cysteine residues for iron binding in IRP-1 were shown not to be involved in Cd-induced IRP-1 aggregation in vitro. Here we show that Cd2+ causes polymerization and aggregation of IRP-1 in vitro and in vivo, and decreases in a dose-dependent manner both its RNA-binding and aconitase enzymatic activities, as well as its cytosolic expression. We have used two-dimensional electrophoresis to demonstrate thiol-dependent self-association of purified recombinant IRP-1 treated with Cd2+, as well as self-association in Cd2+-exposed mesangial cells. Circular dichroism spectra confirm significant conformational changes in the purified protein upon Cd2+ exposure. Following Cd2+ treatment, there is increased translocation of inactive IRP-1 to the actin cytoskeletal fraction, and this translocation is diminished by both antioxidant (BHA) treatment and inhibition of CaMK-II. These changes differ from those elicited by manipulation of iron levels. Cadmium-induced translocation of proteins to cellular compartments, and particularly to the cytoskeleton, is becoming a recognized event in Cd2+ toxicity. Polymer-dependent translocation of IRP-1 in Cd2+-exposed cells may underlie effects of Cd2+ on iron homeostasis

  7. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair.

    Science.gov (United States)

    Huang, Chunlan; Ness, Vincent P; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-07-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in 3D formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via multiphoton laser scanning microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3-kb collagen type I promoter-driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We showed that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions with host bone

  8. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone

    Directory of Open Access Journals (Sweden)

    Laure Thibaudeau

    2014-02-01

    Full Text Available The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo.

  9. Osteoblastogenesis and Role of Osteoblasts in Calcıum Homeostasis and Remodeling of Bone

    Directory of Open Access Journals (Sweden)

    Neslihan Başcıl Tütüncü

    2008-05-01

    Full Text Available Bone remodeling is very important for repair of microfractures and fatigue damage and prevention of excessive aging and its consequences. Bone remodeling lasts for about 6-9 months. During this period osteoclasts resorb damaged bone and osteoblasts synthesize new bone. The lifespan of mature osteoclasts is about 15 days and for osteoblasts 3 months. Therefore, the time required for the remodeling of a given segement of bone is much longer than the lifespan of its cells which perform remodeling. A supply of new osteoblasts and osteoclasts are therefore needed for succesful remodeling by the basic multicellular unit. The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone differentiating osteoblast cells. Osteoblast commitment and differentation are controlled by complex activities. Many factors are involved in the regulation of osteoblastogenesis. Bone morphogenetic proteins and the Wnt glycoproteins play crucial roles in signaling osteoblast commitment and differentiation, and are the only known factors capable of initiating osteoblastogenesis from uncommitted progenitors. They can initiate commitment of mesenchymal cells to osteoblastic lineage. The initial cell division is asymmetric, giving rise to another stem cell and a committed osteoprogenitor. After commitment to the osteoblastic lineage, a osteoprogenitor cell gives rise to the transit-amplifying compartment. At this stage osteoprogenitor cells proliferate intensively. After this stage, the cells are more differentiated and give rise to preosteoblasts which express both STRO1, alkaline phosphatase, pyrophosphate, and type 1 collagen. Preosteoblasts are committed to the osteoblast lineage with extensive replicative capacity, but have no self-renewal capacity. Preosteoblasts form the intermediate stage of osteoblastogenesis. The mature osteoblasts express osteopontin, alkaline phosphatase, bone sialoprotein, and osteocalcin. This stage is

  10. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  11. Radiographic Assessment of Bone Formation Using rhBMP2 at Maxillary Periapical Surgical Defects: A Case Series.

    Science.gov (United States)

    Kumar, M Siva; Kumar, M Hari; Vishalakshi, K; Sabitha, H

    2016-04-01

    Periapical cysts are the most common inflammatory odontogenic cysts arising from untreated dental caries with pulp necrosis and periapical infection. The choice of treatment is often influenced by various factors like size, extension of the lesion, proximity to vital structures, systemic condition and compliance of the patient too. The treatment protocol for management of periapical cysts is still under discussion and options vary from conservative treatment by means of endodontic technique to surgical treatment like decompression or a marsupialisation or even to enucleation. Large bony defect secondary to periapical surgery compromising the tooth integrity often requires bone graft to enhance bone formation and thus restoring function at the earliest. The present case series included 10 patients who had established periapical pathology secondary to history of trauma on upper anterior teeth as well patients with history of carious teeth with an apparent failure in root canal therapy. All ten patients were treated with cyst enucleation and apiceotomy along with 1.4cc Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge implantation at surgical defect. Radiographs and clinical examinations were done upto 3 months to evaluate healing. Radiographic and clinical assessments revealed bone regeneration and restoration of the maxillary surgical defects in all 10 patients. No evidence of graft failure was noted. The Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge carrier is thus proved to be a viable option for the treatment of maxillary periapical surgical defects. PMID:27190972

  12. Radiographic Assessment of Bone Formation Using rhBMP2 at Maxillary Periapical Surgical Defects: A Case Series

    Science.gov (United States)

    Kumar, M. Hari; Vishalakshi, K.; Sabitha, H.

    2016-01-01

    Periapical cysts are the most common inflammatory odontogenic cysts arising from untreated dental caries with pulp necrosis and periapical infection. The choice of treatment is often influenced by various factors like size, extension of the lesion, proximity to vital structures, systemic condition and compliance of the patient too. The treatment protocol for management of periapical cysts is still under discussion and options vary from conservative treatment by means of endodontic technique to surgical treatment like decompression or a marsupialisation or even to enucleation. Large bony defect secondary to periapical surgery compromising the tooth integrity often requires bone graft to enhance bone formation and thus restoring function at the earliest. The present case series included 10 patients who had established periapical pathology secondary to history of trauma on upper anterior teeth as well patients with history of carious teeth with an apparent failure in root canal therapy. All ten patients were treated with cyst enucleation and apiceotomy along with 1.4cc Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge implantation at surgical defect. Radiographs and clinical examinations were done upto 3 months to evaluate healing. Radiographic and clinical assessments revealed bone regeneration and restoration of the maxillary surgical defects in all 10 patients. No evidence of graft failure was noted. The Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge carrier is thus proved to be a viable option for the treatment of maxillary periapical surgical defects. PMID:27190972

  13. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  14. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... needle is gently pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  15. What Is Bone?

    Science.gov (United States)

    ... by your browser. Home Bone Basics What Is Bone? Publication available in: PDF (57 KB) Related Resources ... Men, and Osteoporosis Osteoporosis Prevention For Your Information Bone Remodeling Throughout life, bone is constantly renewed through ...

  16. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  17. Facts about Broken Bones

    Science.gov (United States)

    ... White House Lunch Recipes The Facts About Broken Bones KidsHealth > For Kids > The Facts About Broken Bones ... through the skin . continue What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  18. Bone biopsy (image)

    Science.gov (United States)

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  19. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... is sent to a lab for examination. Bone biopsy may also be done under general anesthesia to ... remove the bone can be done if the biopsy exam shows that there is an abnormal growth ...

  20. Osteoclasts prefer aged bone

    DEFF Research Database (Denmark)

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I;

    2007-01-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of...... aged bones....

  1. Spontaneous morphogenetic juvenilization observed in laboratory populations of vector species of Chagas disease (Triatominae

    Directory of Open Access Journals (Sweden)

    Alina Perlowagora-Szumlewicz

    1973-08-01

    Full Text Available Reported are observations on spontaneous occurring morphogenetic juvenilization in laboratory populations of vector species of Chagas disease. Two general effects have been observed: arrested development and uncoordinated development. These are manifested by supernumerary nymphs (6th stage, intermediate nymphal-adult stages, badly deformed adults developed from 5th instar nymphs, uncoordinated development manifested by grotesque forms of adults, supernumerary adults unable to complete metamorphosis and complete supernumerary adults produced by 6th stage nymphs. The reoccurrence of insects with identical grades of juvenilization in the population is an indication that this is a genetic trait that might be inherited. The factors responsible for morphogenetic juvenilization cannot be transmitted through the juvenilized insects because they are sterile, than they were transmitted through normal insects probably as a recessive or a group recessive factors. The spontaneous morphogenetic juvenilization observed in laboratory populations has a striking similarity to juvenilizing effects induced by application of juvenile hormone analogues, described in the literature and also obtained in our laboratory in a study to be published. Thus it is suggested that both; the altered phenotypes occurring in wild populations and their "phenocopies" induced by the application of juvenile hormone analogues are products of gene controlled identical reactions.São relatadas observações sobre a ocorrência espontâea de juvenilização morfogenética em populações de espécies transmissoras da doença de Chagas, mantidas no laboratório. Dois efeitos gerais foram observados: a interrupção e a descoordenação do desenvolvimento. Tais efeitos são manifestados: 1 por ninfas supernumerárias (6º estádio, 2 por estágios intermediários (ninfa-adulto, 3 por adultos sensivelmente deformados, provenientes de ninfas do 5º estágio, 4 pelo desenvolvimento d

  2. Effects of Aluminum Exposure on the Bone Stimulatory Growth Factors in Rats.

    Science.gov (United States)

    Li, Peng; Luo, Weiwei; Zhang, Hui; Zheng, Xue; Liu, Chao; Ouyang, Hongsheng

    2016-07-01

    Aluminum (Al) is considered to be a potentially toxic metal and inhibits bone formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) play an important role in regulating the bone formation. Therefore, this study aimed to investigate the effects of Al on the TGF-β1 and BMP-2 in rats. In this study, Wistar rats were randomly divided into Al-treated group and control group. The Al-treated rats were provided with drinking water containing 100 mg/L AlCl3, and the control rats were given distilled water for 30, 60, and 90 days, respectively. Ten rats were sacrificed in each group every 30 days. The Al-treated rats showed lower body weight and higher serum and bone levels of Al compared with the control rats. The expression levels of TGF-β1 and BMP-2 were also significantly decreased in the Al-treated rats. Serum levels of bone gamma-carboxyglutamic acid protein (BGP), carboxy-terminal propeptide of type I procollagen (PICP), and bone alkaline phosphatase (B-ALP) were markedly lower in the Al-treated groups than in the control group. These results indicate that Al inhibits the expression of TGF-β1 and BMP-2 in bone, which inhibits the activity of osteoblasts and reduces the synthesis of BGP, B-ALP, and type I collagen, thereby inhibiting bone formation. PMID:26594034

  3. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. PMID:27022863

  4. Towards a morphogenetic classification of eskers: Implications for modelling ice sheet hydrology

    Science.gov (United States)

    Perkins, Andrew J.; Brennand, Tracy A.; Burke, Matthew J.

    2016-02-01

    Validations of paleo-ice sheet hydrological models have used esker spacing as a proxy for ice tunnel density. Changes in crest type (cross-sectional shape) along esker ridges have typically been attributed to the effect of changing subglacial topography on hydro- and ice-dynamics and hence subglacial ice-tunnel shape. These claims assume that all eskers formed in subglacial ice tunnels and that all major subglacial ice tunnels produced a remnant esker. We identify differences in geomorphic context, sinuosity, cross-sectional shape, and sedimentary architecture by analysing eskers formed at or near the margins of the last Cordilleran Ice Sheet on British Columbia's southern Fraser Plateau, and propose a morphogenetic esker classification. Three morphogenetic types and 2 subtypes of eskers are classified based on differences in geomorphic context, ridge length, sinuosity, cross-sectional shape and sedimentary architecture using geophysical techniques and sedimentary exposures; they largely record seasonal meltwater flows and glacial lake outburst floods (GLOFs) through sub-, en- and supraglacial meltwater channels and ice-walled canyons. General principles extracted from these interpretations are: 1) esker ridge crest type and sinuosity strongly reflect meltwater channel type. Eskers formed in subglacial conduits are likely to be round-crested with low sinuosity (except where controlled by ice structure or modified by surging) and contain faults associated with flank collapse. Eskers formed near or at the ice surface are more likely to be sharp-crested, highly sinuous, and contain numerous faults both under ridge crest-lines and in areas of flank collapse. 2) Esker ridges containing numerous flat-crested reaches formed directly on the land-surface in ice-walled canyons (unroofed ice tunnels) or in ice tunnels at atmospheric pressure, and therefore likely record thin or dead ice. 3) Eskers containing macroforms exhibiting headward and downflow growth likely record

  5. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2

    Science.gov (United States)

    Chen, Biao; Li, Bin; Qi, Yong-Jian; Ni, Qu-Bo; Pan, Zheng-Qi; Wang, Hui; Chen, Liao-Bin

    2016-01-01

    Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy. PMID:27173013

  6. Circulating monocyte chemoattractant protein-1 in women with gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Mariusz Kuzmicki

    2008-04-01

    Full Text Available Monocyte chemoattractant protein 1 (MCP-1 has been implicated as a key factor in the recruitment and activation of peripheral blood leukocytes in atherosclerotic lesions and adipose tissue. Elevated levels of circulating MCP-1 have been found in patients with type 1 and type 2 diabetes, as well as with coronary artery disease. In this study we compared serum MCP-1 concentrations between pregnant women with normal glucose tolerance (NGT, gestational diabetes mellitus (GDM and non-pregnant healthy women. The group studied consisted of 62 patients with GDM (mean age 30.1 +/- 5.0 years at 29.0 +/- 3.5 week of gestation, 64 pregnant women with NGT (mean age 30.0 +/- 4.7 years at 29.2 +/- 2.9 week of gestation and 34 non-pregnant healthy women (mean age 29.8 +/- 4.7 years. Serum MCP-1 concentration was measured using an enzyme - linked immunosorbent assay. Median MCP-1 concentrations did not differ significantly between women with GDM (median 342.3 [interquartile range 267.9-424.4] pg/ml and NGT (338.0 [274.7-408.2] pg/ml, but were markedly lower than those found in non-pregnant women (485.2 [409.6-642.4] pg/ml, p<0.0001. After adjusting for glucose, the difference between pregnant and non-pregnant women remained highly significant (p<0.0001. In GDM patients MCP-1 levels correlated significantly with fasting glucose (r=0.2665, p=0.0363, insulin (r=0.4330, p=0.0004, HOMA-IR (r=0.4402, p=0.0003, ISQUICKI (r=-0.4402, p=0.0003, HbA1c (r=0.2724, p=0.0322, as well as with prepregnancy and current BMI (r=0.3501, p=0.0057 and r=0.3250, p=0.0106, respectively. Multiple regression analysis revealed that MCP1 concentrations were significantly predicted only by plasma glucose ( beta=0.3489, p=0.00004. Our results suggest that MCP1 levels are decreased in pregnant women, irrespective of their glucose tolerance status.

  7. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels

    Directory of Open Access Journals (Sweden)

    J van der Stok

    2015-03-01

    Full Text Available Regeneration of load-bearing segmental bone defects is a major challenge in trauma and orthopaedic surgery. The ideal bone graft substitute is a biomaterial that provides immediate mechanical stability, while stimulating bone regeneration to completely bridge defects over a short period. Therefore, selective laser melted porous titanium, designed and fine-tuned to tolerate full load-bearing, was filled with a physiologically concentrated fibrin gel loaded with bone morphogenetic protein-2 (BMP-2. This biomaterial was used to graft critical-sized segmental femoral bone defects in rats. As a control, porous titanium implants were either left empty or filled with a fibrin gels without BMP-2. We evaluated bone regeneration, bone quality and mechanical strength of grafted femora using in vivo and ex vivo µCT scanning, histology, and torsion testing. This biomaterial completely regenerated and bridged the critical-sized bone defects within eight weeks. After twelve weeks, femora were anatomically re-shaped and revealed open medullary cavities. More importantly, new bone was formed throughout the entire porous titanium implants and grafted femora regained more than their innate mechanical stability: torsional strength exceeded twice their original strength. In conclusion, combining porous titanium implants with a physiologically concentrated fibrin gels loaded with BMP-2 improved bone regeneration in load-bearing segmental defects. This material combination now awaits its evaluation in larger animal models to show its suitability for grafting load-bearing defects in trauma and orthopaedic surgery.

  8. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    Science.gov (United States)

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  9. Expression, purification and mass spectrometric analysis of LIM mineralization protein-1 in human lung epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Sreedhara Sangadala; Louisa Titus; Scott D. Boden

    2008-01-01

    LIM mineralization protein-1 (LMP-1) is a novel osteoin ductive protein that has been cloned and shown to induce bone formation both in vitro and in vivo. Detection and evaluation of the possible presence of carbohydrate structures in LMP-1 is an important regulatory consideration for the therapeutic use of recombinantly expressed protein. The sequence of LMP-1 contains a highly conserved N-terminal PDZ domain and three C-terminal LIM domains. The sequence analysis of LMP-I predicts two potential N-glycosylation sites and several O-glycosylation sites. Here, we report the cloning and overexpression of LMP.1 in human lung carcinoma(A549) cells. Even though our group already reported the sequence of LMP-1 cDNA, we undertook this work to clarify whether or not the overexpressed protein undergoes any glycosylation in vivo. The expressed full-length recombinant protein was purified and subjected to chemical analysis and internal sequencing. The absence of any hexosamines (Nacetyl glucosamine or N-acetyl galactosamine) in chemical composition analysis of LMP.I protein revealed that there is little or no post-translational glycosylation of the LMP-1 polypeptide in lung carcinoma cells (A549). We performed in-gel trypsin digestion on purified LMP-I, and the resulting peptide digests were analyzed further using matrix.assisted laser desorption and ionization mass spectrometry for peptide mass finger printing, which produced several exact matches with the corresponding LMP-1 peptides. Separation by high performance liquid chromatography and purification of the desired peptides followed by N-terminal sequencing resulted in many exact LMP-1 matches for several purified peptides, thus establishing the identity of the purified protein as LMP-1.

  10. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration

    Science.gov (United States)

    Chen, Xiaofeng; Liu, Yu; Miao, Leiying; Wang, Yangyang; Ren, Shuangshuang; Yang, Xuebin; Hu, Yong; Sun, Weibin

    2016-01-01

    Periodontitis is a major cause for tooth loss, which affects about 15% of the adult population. Cementum regeneration has been the crux of constructing the periodontal complex. Cementum protein 1 (CEMP1) is a cementum-specific protein that can induce cementogenic differentiation. In this study, poly(ethylene glycol) (PEG)-stabilized amorphous calcium phosphate (ACP) nanoparticles were prepared by wet-chemical method and then loaded with recombinant human CEMP1 (rhCEMP1) for controlled release. An electrospun multiphasic scaffold constituted of poly(ε-caprolactone) (PCL), type I collagen (COL), and rhCEMP1/ACP was fabricated. The effects of rhCEMP1/ACP/PCL/COL scaffold on the attachment proliferation, osteogenic, and cementogenic differentiations of human periodontal ligament cells, (PDLCs) were systematically investigated. A critical size defect rat model was introduced to evaluate the effect of tissue regeneration of the scaffolds in vivo. The results showed that PEG-stabilized ACP nanoparticles formed a core-shell structure with sustained release of rhCEMP1 for up to 4 weeks. rhCEMP1/ACP/PCL/COL scaffold could suppress PDLCs proliferation behavior and upregulate the expression of cementoblastic markers including CEMP1 and cementum attachment protein while downregulating osteoblastic markers including osteocalcin and osteopontin when it was cocultured with PDLCs in vitro for 7 days. Histology analysis of cementum after being implanted with the scaffold in rats for 8 weeks showed that there was cementum-like tissue formation but little bone formation. These results indicated the potential of using electrospun multiphasic scaffolds for controlled release of rhCEMP1 for promoting cementum regeneration in reconstruction of the periodontal complex. PMID:27471382

  11. Morphogenetic and structural characteristics of guinea grass tillers at different ages under intermittent stocking

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Barbosa

    2012-07-01

    Full Text Available The objective of this research was to assess morphogenetic and structural characteristics of tillers of guinea grass cv. Tanzania at different ages. The pastures of guinea grass were managed in six pasture conditions related to the combination of three frequencies (90, 95, and 99% light interception and two post-grazing heights (25 and 50 cm. In these six pastures conditions, three tiller ages were evaluated (young, mature, and old. The design was of completely randomized block with three replications. Young tillers exhibited higher leaf appearance rate and leaf elongation rate and, consequently, higher final leaf length and number of live leaves than mature and old tillers, regardless of the pasture condition. On pastures managed with 90 or 95% light interception associated with a post-grazing height of 25 cm, old tillers presented longer leaf lifespan than young and mature ones. There is a progressive reduction in the vigor of growth of pastures of guinea grass cv. Tanzania with advancing tiller age.

  12. Morphogenetic characteristics in Tanzania grass conhsorted with Stylosanthes Campo Grande or fertilized with nitrogen under grazing

    Directory of Open Access Journals (Sweden)

    Túlio Otávio Jardim D'Almeida Lins

    2015-08-01

    Full Text Available This study aimed to study morphogenic and structural characteristics of Tanzania grass (Panicum maximum cv. Tanzania intercropped with Estilosantes Campo Grande (Stylosanthes capitata and Stylosanthes macrocephala or fertilized with nitrogen. The pasture was managed under continuous stocking and variable stocking rate. Were used a randomized complete blocks with split plots and three replications. The treatments were: Tanzania grass + Stylosanthes; Tanzania grass + 75 Kg N.ha. year-1; Tanzania grass + 150Kg N.ha.year-1; Tanzania grass + 225 Kg N.ha.year-1. Were used urea and ammonium nitrate as nitrogen source. The morphogenetic evaluations were conducted in the spring and summer. Were evaluated 15 tillers per paddock, twice a week for four weeks per season in study. The morphogenic characteristics were not affected by nitrogen fertilization or consortium, except the leaf elongation rate (LER. The highest values for this variable were observed in the spring in the fertilized pastures. Therefore, it is concluded that nitrogen fertilization influences the leaf elongation rate (LER of Tanzania grass, and this one when is intercropped with Stylosanthes Campo Grande show morphogenic characteristics similar when fertilized with nitrogen, except for rate leaf elongation.

  13. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  14. BMP-13 Emerges as a Potential Inhibitor of Bone Formation

    Directory of Open Access Journals (Sweden)

    Bojiang Shen, Divya Bhargav, Aiqun Wei, Lisa A Williams, Helen Tao, David D F Ma, Ashish D Diwan

    2009-01-01

    Full Text Available Bone morphogenetic protein-13 (BMP-13 plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP expression and activity, proteoglycan (PG synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.

  15. [Regulation of bone metabolism in osteoporosis : novel drugs for osteoporosis in development].

    Science.gov (United States)

    Jakob, F; Genest, F; Baron, G; Stumpf, U; Rudert, M; Seefried, L

    2015-11-01

    Bone is continuously regenerated and remodeled as an adaptation to mechanical load. Bone mass and fracture resistance are maintained by a balanced equilibrium between bone formation and bone resorption. Regeneration and response to mechanical load are, however, impaired in osteoporosis and during aging. Bone resorption is enhanced by chronic inflammation while bone formation is altered by rising levels of inhibitors in the aging organism. Core molecular principles of the regulation of bone metabolism in health and disease have been characterized and developed as therapeutic targets. The receptor activator of nuclear factor kappaB ligand (RANKL) and osteoclast-derived protease cathepsin K are important regulators and effectors of osteoclast differentiation and bone resorption. Bone formation is stimulated by bone morphogenetic proteins (BMP) and via the parathyroid hormone receptor and the Wnt signaling pathway. The principles of osteoclast inhibition using bisphosphonates have now been known for almost three decades. Based on more recent knowledge RANKL and cathepsin K have been developed as new therapeutic targets to inhibit bone resorption. While denosumab, a RANKL antibody, has already been introduced into routine treatment strategies, the cathepsin K antagonist odanacatib is currently in the licensing process. Bone formation can also be stimulated by local administration of BMPs, by systemic treatment with the parathyroid hormone fragment teriparatide and by using antibodies targeting the Wnt inhibitor sclerostin. The latter are presently being tested in phase III clinical studies. In the near future a panel of traditional and novel treatment strategies will be available that will enable us to meet the individual clinical needs during aging and for the treatment of osteoporosis. PMID:26471379

  16. Plasma Levels of Monocyte Chemotactic Protein-1 Are Associated with Clinical Features and Angiogenesis in Patients with Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Toni Valković

    2016-01-01

    Full Text Available The aim of this pilot study was to determine the plasma levels of monocyte chemotactic protein-1 (MCP-1 and possible associations with angiogenesis and the main clinical features of untreated patients with multiple myeloma (MM. ELISA was used to determine plasma MCP-1 levels in 45 newly diagnosed MM patients and 24 healthy controls. The blood vessels were highlighted by immunohistochemical staining, and computer-assisted image analysis was used for more objective and accurate determination of two parameters of angiogenesis: microvessel density (MVD and total vascular area (TVA. The plasma levels of MCP-1 were compared to these parameters and the presence of anemia, renal dysfunction, and bone lesions. A significant positive correlation was found between plasma MCP-1 concentrations and TVA (p=0.02. The MCP-1 levels were significantly higher in MM patients with evident bone lesions (p=0.01, renal dysfunction (p=0.02, or anemia (p=0.04. Therefore, our preliminary results found a positive association between plasma MCP-1 levels, angiogenesis (expressed as TVA, and clinical features in patients with MM. However, additional prospective studies with a respectable number of patients should be performed to authenticate these results and establish MCP-1 as a possible target of active treatment.

  17. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    Directory of Open Access Journals (Sweden)

    Dyondi D

    2012-12-01

    Full Text Available Deepti Dyondi,1 Thomas J Webster,2 Rinti Banerjee11Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; 2Nanomedicine Laboratories, Division of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF, and bone morphogenetic protein 7 (BMP7 were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.Keywords: bone tissue engineering, bone morphogenetic protein 7 (BMP7, basic fibroblast growth factor (bFGF, hydrogel, nanoparticles, osteoblasts

  18. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1 knock out mice.

    Directory of Open Access Journals (Sweden)

    Guoyong Yin

    Full Text Available G protein coupled receptor kinase 2 (GRK2 interacting protein-1 (GIT1, is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31 were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.

  19. Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects

    International Nuclear Information System (INIS)

    Craniofacial injuries can result from trauma, tumor ablation, or infection and may require multiple surgical revisions. To address the challenges associated with treating craniofacial bone defects, an ideal material should have the ability to fit complex defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the ability of injectable lysine-derived polyurethane (PUR)/allograft biocomposites to promote bone healing in critical-size rabbit calvarial defects. The biocomposites exhibited favorable injectability, characterized by a low yield stress to initiate flow of the material and a high initial viscosity to minimize the adverse phenomena of extravasation and filter pressing. After injection, the materials cured within 10–12 min to form a tough, elastomeric solid that maintained mechanical integrity during the healing process. When injected into a critical-size calvarial defect in rabbits, the biocomposites supported ingrowth of new bone. The addition of 80 µg mL−1 recombinant human bone morphogenetic protein-2 (rhBMP-2) enhanced new bone formation in the interior of the defect, as well as bridging of the defect with new bone. These observations suggest that injectable reactive PUR/allograft biocomposites are a promising approach for healing calvarial defects by providing both mechanical stability as well as local delivery of rhBMP-2. (paper)

  20. Three-Dimensional Printing of rhBMP-2-Loaded Scaffolds with Long-Term Delivery for Enhanced Bone Regeneration in a Rabbit Diaphyseal Defect

    OpenAIRE

    Shim, Jin-Hyung; Kim, Se Eun; Park, Ju Young; Kundu, Joydip; Kim, Sung Won; Kang, Seong Soo; Cho, Dong-Woo

    2014-01-01

    In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) delivery system with slow mode was successfully developed in three-dimensional (3D) printing-based polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA) scaffolds for bone formation of critical-sized rabbit segmental diaphyseal defect. To control the delivery of the rhBMP-2, collagen (for long-term delivery up to 28 days) and gelatin (for shor-term delivery within a week) solutions encapsulating rhBMP-2 were dispens...

  1. Effects of Time of Initial Exposure to MSV Sarcoma on Bone Induction by Dentine Matrix Implants and on Orthotopic Femora

    Directory of Open Access Journals (Sweden)

    Aniela Brodzikowska

    2010-09-01

    Full Text Available HCl-demineralized murine lower incisors were implanted intramuscularly into syngeneic BALB/c mice to induce heterotopic osteogenesis. Implants were exposed at the early, preosteogenic stage (4, or at the later, osteogenic stage (12 to the Moloney sarcoma virus (MSV, which within 3–4 days results in a sarcoma. The yield of bone induction was determined by weight of dry bone mass following NaOH hydrolysis of soft tissues. To verify the effect of this sarcoma on orthotopic local femoral bone, the dry mass of the tumor-exposed femora was measured and compared with the weight of MSV-unexposed contralateral controls. MSV-sarcoma or cells involved with their spontaneous rejection have a stimulatory effect on the periosteal membrane of the tumor-adjacent femoral bones, increasing their dry mass on average by 18%. No stimulatory effect on heterotopic bone induction was observed when the MSV sarcoma grew during the early, preosteogenic stage (4 onward, but when the tooth matrix had been exposed to such tumor at the already bone-forming stage, (12 onward, the yield of bone induction was enhanced. Thus, it is postulated that lesions induced by MSV during the early, preosteogenic stage inhibit recruitment of osteoprogenitor cells or degrade Bone Morphogenetic Proteins (BMPs released by matrix resorbing inflammatory cells, whereas when acting on already existing bone they have a stimulatory effect.

  2. Morphogenetic Implications of Peristalsis-Driven Fluid Flow in the Embryonic Lung.

    Directory of Open Access Journals (Sweden)

    Kishore K Bokka

    Full Text Available Epithelial organs are almost universally secretory. The lung secretes mucus of extremely variable consistency. In the early prenatal period, the secretions are of largely unknown composition, consistency, and flow rates. In addition to net outflow from secretion, the embryonic lung exhibits transient reversing flows from peristalsis. Airway peristalsis (AP begins as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can transport fluid far from the immediately adjacent tissues. The sensation of internal fluid flows has been shown to have potent morphogenetic effects, as has the transport of morphogens. We hypothesize that these effects play an important role in lung morphogenesis. To test these hypotheses in a quantitative framework, we analyzed the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We found that if the airway is closed, fluid transport is minimal; by contrast, if the trachea is open, shear rates can be very high, particularly at the stenosis. We performed a parametric analysis of flow characteristics' dependence on tissue stiffnesses, smooth muscle force, geometry, and fluid viscosity, and found that most of these relationships are governed by simple ratios. We measured the viscosity of prenatal lung fluid with passive bead microrheology. This paper reports the first measurements of the viscosity of embryonic lung lumen fluid. In the range tested, lumen fluid can be considered Newtonian, with a viscosity of 0.016 ± 0.008 Pa-s. We analyzed the interaction between the internal flows and diffusion and conclude that AP has a strong effect on flow sensing away from the tip and on transport of morphogens. These effects may be the intermediate mechanisms for the enhancement of branching seen in occluded embryonic lungs.

  3. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation

    International Nuclear Information System (INIS)

    Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space. (paper)

  4. Bone marrow biopsy

    Science.gov (United States)

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  5. Bone marrow aspiration

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  6. Anorexia Nervosa and Bone

    OpenAIRE

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors...

  7. Effects of strontium ranelate on bone formation in the mid-palatal suture after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Zhao SY

    2015-05-01

    Full Text Available Shuya Zhao,1,* Xuxia Wang,2,* Na Li,3 Yun Chen,1 Yuran Su,1 Jun Zhang1 1Department of Orthodontics, 2Department of Oral and Maxillofacial Surgery, Faculty of Stomatology, Shandong University; 3Department of Orthodontics, Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China *These authors contributed equally to this work Background: The aim of this experimental study was to investigate the effects of strontium ranelate on bone regeneration in the mid-palatal suture in response to rapid maxillary expansion (RME.Methods: Thirty-six male 6-week-old Wistar rats were randomly divided into three groups, ie, an expansion only (EO group, an expansion plus strontium ranelate (SE group, and a control group. An orthodontic appliance was set between the right and left upper molars of rats with an initial expansive force of 0.98 N. Rats in the SE group were administered strontium ranelate (600 mg/kg body weight and then euthanized in batches on days 4, 7, and 10. Morphological changes in the mid-palatal suture were investigated using micro-computed tomography and hematoxylin and eosin staining after RME. Bone morphogenetic protein-2 expression in the suture was also examined to evaluate bone formation in the mid-palatal suture. Image-Pro Plus software was then used to determine the mean optical density of the immunohistochemical images. Analysis of variance was used for statistical evaluation at the P<0.05 level.Results: With expansive force, the mid-palatal suture was expanded, but there was no statistically significant difference (P>0.05 between the SE and EO groups. The bone volume of the suture decreased after RME, but was higher in the SE group than in the EO group on days 7 and 10. Further, expression of bone morphogenetic protein-2 in the SE group was higher than in the other two groups (P<0.05.Conclusion: Strontium ranelate may hasten new bone formation in the expanded mid-palatal suture, which may be therapeutically

  8. Bone strength: more than just bone density.

    Science.gov (United States)

    Ott, Susan M

    2016-01-01

    The following bone density measurements have limited utility in determining bone strength because they do not include bone quality: microarchitecture, mineralization, ability to repair damage, collagen structure, crystal size, or marrow composition. Patients with kidney disease have poor bone quality. Newman et al. now describe beneficial effects with raloxifene in an animal model of progressive kidney disease. These biomechanical measurements will be important in the development of medications to decrease fractures in patients. PMID:26759040

  9. Isolation of osteocytes from human trabecular bone.

    Science.gov (United States)

    Prideaux, Matthew; Schutz, Christine; Wijenayaka, Asiri R; Findlay, David M; Campbell, David G; Solomon, Lucian B; Atkins, Gerald J

    2016-07-01

    Osteocytes are essential regulators of bone homeostasis. However, they are difficult to study due to their location within the bone mineralised matrix. Although several techniques have been published for the isolation of osteocytes from mouse bone, no such technique has been described for human osteocytes. We have therefore developed a protocol for the isolation of osteocytes from human trabecular bone samples acquired during surgery. The cells were digested from the bone matrix by sequential collagenase and ethylenediaminetetraacetic acid (EDTA) digestions and the cells from later digests displayed characteristic dendritic osteocyte morphology when cultured ex vivo. Furthermore, the cells expressed characteristic osteocyte marker genes, such as E11, dentin matrix protein 1 (DMP1), SOST, matrix extracellular phosphoglycoprotein (MEPE) and phosphate regulating endopeptidase homologue, X-linked (PHEX). In addition, genes associated with osteocyte perilacunar remodelling, including matrix metallopeptidase-13 (MMP13), cathepsin K (CTSK) and carbonic anhydrase 2 (CAR2) were expressed. The cells also responded to parathyroid hormone (PTH) by downregulating SOST mRNA expression and to 1α,25-dihydroxyvitamin D3 (1,25D) by upregulating fibroblast growth factor 23 (FGF23) mRNA expression. Therefore, the cells behave in a similar manner to osteocytes in vivo. These cells represent an important tool in enhancing current knowledge in human osteocyte biology. PMID:27109824

  10. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.;

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram...... at 146 days of life and five left and right ribs (fourth to eighth) were removed for analysis. The influence of AKG on skeletal system development was evaluated in relation to both geometrical and mechanical properties, as well as quantitative computed tomography (QCT). No significant differences between...... has a long-term effect on skeletal development when given early in neonatal life, and that changes in rib properties serve to improve chest mechanics and functioning in young animals. Moreover, neonatal administration of AKG may be considered as an effective factor enhancing proper development...

  11. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  12. Exercise, lifestyle, and your bones

    Science.gov (United States)

    Osteoporosis - exercise; Low bone density - exercise ... Osteoporosis is a disease that causes bones to become brittle and more likely to fracture (break). With osteoporosis, the bones lose density. Bone density is the amount of bone ...

  13. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    OpenAIRE

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubul...

  14. Transgenic medaka fish as models to analyze bone homeostasis under micro-gravity conditions in vivo

    Science.gov (United States)

    Winkler, C.; Wagner, T.; Renn, J.; Goerlich, R.; Schartl, M.

    Long-term space flight and microgravity results in bone loss that can be explained by reduced activity of bone-forming osteoblast cells and/or an increase in activity of bone resorbing osteoclast cells. Osteoprotegerin (OPG), a secreted protein of 401 amino acids, has been shown to regulate the balance between osteoblast and osteoclast formation and thereby warrants constant bone mass under normal gravitational conditions. Consistent with this, earlier reports using transgenic mice have shown that increased activation of OPG leads to exc essive bone formation (osteopetrosis), while inactivation of OPG leads to bone loss (osteoporosis). Importantly, it has recently been reported that expression of murine OPG is regulated by vector averaged gravity (Kanematsu et al., 2002, Bone 30, p553). The small bony fish medaka (Oryzias latipes ) has attracted increasing attention as genetic model system to study developmental and pathological processes. To analyze the molecular mechanisms of bone formation in this small vertebrate, we have isolated two related genes, opr-1 and opr -2, from medaka. Our phylogenetic analysis revealed that both genes originated from a common ancestor by fish-specific gene duplication and represent the orthologs of the mammalian OPG gene. Both opr genes are differentially expressed during embryonic and larval development, in adult tissues and in cultured primary osteoblast cells. We have characterized their promoter regions and identified consensus binding sites for transcription factors of the bone-morphogenetic-protein (BMP) p thway and for core-binding-factor-1Aa (cbfa1). Cbfa1 has been shown to be the key regulator of OPG expression during several steps of osteoblast differentiation in mammals. This opens the possibility that the mechanisms controlling bone formation in teleost fish and higher vertebrates are regulated by related mechanisms. We are currently generating transgenic medakafish expressing a GFP reporter gene under control of the

  15. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization

    Directory of Open Access Journals (Sweden)

    M.A. Sá

    2016-01-01

    Full Text Available The aim of this study was to evaluate the effects of sodium hyaluronate (HY, single-walled carbon nanotubes (SWCNTs and HY-functionalized SWCNTs (HY-SWCNTs on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction. We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering.

  16. The Roles of Epithelial-to-Mesenchymal Transition (EMT and Mesenchymal-to-Epithelial Transition (MET in Breast Cancer Bone Metastasis: Potential Targets for Prevention and Treatment

    Directory of Open Access Journals (Sweden)

    Binnaz Demirkan

    2013-11-01

    Full Text Available Many studies have revealed molecular connections between breast and bone. Genes, important in the control of bone remodeling, such as receptor activator of nuclear kappa (RANK, receptor activator of nuclear kappa ligand (RANKL, vitamin D, bone sialoprotein (BSP, osteopontin (OPN, and calcitonin, are expressed in breast cancer and lactating breast. Epithelial-mesenchymal transition (EMT and mesenchymal-epithelial transition (MET effectors play critical roles during embryonic development, postnatal growth, and epithelial homeostasis, but also are involved in a number of pathological conditions, including wound repair, fibrosis, inflammation, as well as cancer progression and bone metastasis. Transforming growth factor β (TGFβ, insulin-like growth factor I & II (IGF I & II, platelet-derived growth factor (PDGF, parathyroid hormone-related protein (PTH(rP, vascular endothelial growth factor (VEGF, epithelial growth factors II/I (ErbB/EGF, interleukin 6 (IL-6, IL-8, IL-11, IL-1, integrin αvβ3, matrix metalloproteinases (MMPs, catepsin K, hypoxia, notch, Wnt, bone morphogenetic proteins (BMP, and hedgehog signaling pathways are important EMT and MET effectors identified in the bone microenviroment facilitating bone metastasis formation. Recently, Runx2, an essential transcription factor in the regulation of mesenchymal cell differentiation into the osteoblast lineage and proper bone development, is also well-recognized for its expression in breast cancer cells promoting osteolytic bone metastasis. Understanding the precise mechanisms of EMT and MET in the pathogenesis of breast cancer bone metastasis can inform the direction of therapeutic intervention and possibly prevention.

  17. Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone

    Science.gov (United States)

    Bixio, A.; Gambolati, G.; Paniconi, C.; Putti, M.; Shestopalov, V.; Bublias, V.; Bohuslavsky, A.; Kasteltseva, N.; Rudenko, Y.

    2002-06-01

    Morphogenetic depressions or "dishes" in the Chernobyl exclusion zone play an important role in the transport of water and solutes (in particular the radionuclides 137Cs and 90Sr), functioning as accumulation basins and facilitating their transfer between the surface and subsurface via return flow (under conditions of high soil water saturation) and infiltration. From a digital elevation model (DEM) of the 112-km2 study area, 583 dishes (covering about 10% of the area) are identified and classified into four geometric types, ranging in size from 2,500 to 22,500 m2, and a with a maximum depth of 2 m. The collective influence of these depressions on the hydrology of the study basin is investigated with a coupled model of three-dimensional saturated and unsaturated subsurface flow and one-dimensional (along the rill or channel direction s) hill-slope and stream overland flow. Special attention is given to the handling of dishes, applying a "lake boundary-following" procedure in the topographic analysis, a level pool routing algorithm to simulate the storage and retardation effects of these reservoirs, and a higher hydraulic conductivity in the topmost 3 m of soil relative to non-dish cells in accordance with field observations. Modeling the interactions between the surface and subsurface hydrologic regimes requires careful consideration of the distinction between potential and actual atmospheric fluxes and their conversion to ponding, overland flow, and infiltration, and this coupling is described in some detail. Further consideration is given to the treatment of snow accumulation, snowmelt, and soil freezing and thawing processes, handled via linear and step function variations over the winter months in atmospheric boundary conditions and in upper soil hydraulic conductivities. A 1-year simulation of the entire watershed is used to analyze the water table response and, at the surface, the ponding heads and the infiltration/exfiltration fluxes. Saturation patterns and

  18. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  19. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  20. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  1. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  2. Bone grafts in dentistry

    OpenAIRE

    Prasanna Kumar; Belliappa Vinitha; Ghousia Fathima

    2013-01-01

    Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  3. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  4. Tof-Sims Application for Evaluating the Atomic Structure of New Bone Substitute Material

    Science.gov (United States)

    Oteri, G.; Pisanom, M.; Cicciù, M.

    2016-05-01

    The aim of this experimental study is to evaluate, in vitro, the chemical composition and the micromorphological structure of a bone substitute material surface. This material is based on calcium triphosphate and hydroxyapatite microgranules. Some results of a preliminary surface study of the above mentioned bioceramic materials are reported. The study has been carried out by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS), complemented by X-ray photoelectron spectrometry (XPS) measurements. Whereas XPS data supplies the average surface composition of the system, TOF-SIMS supplies laterally and depth resolved information on the sample. This preliminary study confirms the properties of osteoconduction and scaffold features of the material. Moreover, a possible osteoinductive capability could be due to the presence of surface micropores, which could help in the attraction of bone morphogenetic protein (BMP), thus promoting the osteogenesis.

  5. Expression of monocyte chemoattractant protein-1 in the pancreas of mice

    Institute of Scientific and Technical Information of China (English)

    LI Dong; ZHU Su-wen; LIU Dong-juan; LIU Guo-liang; SHAN Zhong-yan

    2005-01-01

    Background Type 1 diabetes has been recognized as an organ specific autoimmune disease owing to the immune destruction of pancreatic islet β cells in genetically susceptible individuals.In both human and rodent models of type 1 diabetes, such as nonobese diabetic (NOD) mice, biobreeding rats, the disease has a distinct stage characterized by immune cells infiltrating in the pancreas (insulitis).The major populations of infiltrating cells are macrophages and T lymphocytes.Therefore, immune cell infiltration of pancreatic islets may be a crucial step in the pathogenesis of type 1 diabetes.Monocyte chemoattractant protein-1 can specifically attract monocytes in vivo.Interferon induced protein-10 has chemoattractant effects on the activated lymphocytes.In this study, we analysed the expression of monocyte chemoattractant protein-1 in the pancreas of mice and interferon inducible protein-10 mRNA in the pancreas of NOD mice, and discussed their possible role in the pathogenesis of type 1 diabetes.Methods The immunohistochemical method and immunoelectronmicroscopy were used to evaluate the expression of monocyte chemoattractant protein-1 in the pancreas of NOD mice and BALB/c mice.RT-PCR was used to evaluate the expression of monocyte chemoattractant protein-1 and interferon inducible protein mRNA in NOD mice.Results Monocyte chemoattractant protein-1 was positive in the pancreas of NOD mice, whereas negative in the pancreas of BALB/C mice.RT-PCR showed that monocyte chemoattractant protein-1 and interferon inducible protein-10 mRNA could be found in the pancreas of NOD mice.Immunoelectronmicroscopy demonstrated that monocyte chemoattractant protein-1 was produced by β cells and stored in the cytoplasm of the cells.Conclusions Pancreatic islet β cells produce monocyte chemoattractantprotein-1 in NOD mice.Monocyte chemoattractant protein-1 may play an important part in the pathogenesis of type 1 diabetes by attracting monocytes/macrophages to infiltrate pancreatic

  6. BONE IN OSTEOPETROSIS

    Directory of Open Access Journals (Sweden)

    Ramkumar

    2014-04-01

    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  7. Porphyromonas gingivalis induces receptor activator of NF-kappaB ligand expression in osteoblasts through the activator protein 1 pathway.

    Science.gov (United States)

    Okahashi, Nobuo; Inaba, Hiroaki; Nakagawa, Ichiro; Yamamura, Taihei; Kuboniwa, Masae; Nakayama, Koji; Hamada, Shigeyuki; Amano, Atsuo

    2004-03-01

    Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption, and several components of the organism such as lipopolysaccharides have been reported to stimulate production of cytokines that promote inflammatory bone destruction. We investigated the effect of infection with viable P. gingivalis on cytokine production by osteoblasts. Reverse transcription-PCR and real-time PCR analyses revealed that infection with P. gingivalis induced receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) mRNA expression in mouse primary osteoblasts. Production of interleukin-6 was also stimulated; however, osteoprotegerin was not. SB20350 (an inhibitor of p38 mitogen-activated protein kinase), PD98059 (an inhibitor of classic mitogen-activated protein kinase kinase, MEK1/2), wortmannin (an inhibitor of phosphatidylinositol 3 kinase), and carbobenzoxyl-leucinyl-leucinyl-leucinal (an inhibitor of NF-kappaB) did not prevent the RANKL expression induced by P. gingivalis. Degradation of inhibitor of NF-kappaB-alpha was not detectable; however, curcumin, an inhibitor of activator protein 1 (AP-1), prevented the RANKL production induced by P. gingivalis infection. Western blot analysis revealed that phosphorylation of c-Jun, a component of AP-1, occurred in the infected cells, and an analysis of c-Fos binding to an oligonucleotide containing an AP-1 consensus site also demonstrated AP-1 activation in infected osteoblasts. Infection with P. gingivalis KDP136, an isogenic deficient mutant of arginine- and lysine-specific cysteine proteinases, did not stimulate RANKL production. These results suggest that P. gingivalis infection induces RANKL expression in osteoblasts through AP-1 signaling pathways and cysteine proteases of the organism are involved in RANKL production. PMID:14977979

  8. VEGF stimulates intramembranous bone formation during craniofacial skeletal development.

    Science.gov (United States)

    Duan, Xuchen; Bradbury, Seth R; Olsen, Bjorn R; Berendsen, Agnes D

    2016-01-01

    Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme. PMID:26899202

  9. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Peng Xia; Su Pan; Jieping Cheng; Maoguang Yang; Zhiping Qi; Tingting Hou; Xiaoyu Yang

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu-bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid-and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi-tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro-tubule-associated protein 1B via a cross-signaling network, and affect the migratory efifciency of bone marrow mesenchymal stem cells towards injured spinal cord.

  10. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  11. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

    Science.gov (United States)

    Menéndez-Gutiérrez, María P.; Rőszer, Tamás; Fuentes, Lucía; Núñez, Vanessa; Escolano, Amelia; Redondo, Juan Miguel; De Clerck, Nora; Metzger, Daniel; Valledor, Annabel F.; Ricote, Mercedes

    2015-01-01

    Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis. PMID:25574839

  12. Gene expression patterns in bone following lipopolysaccharide stimulation.

    Science.gov (United States)

    Yang, Jing; Su, Nan; Du, Xiaolan; Chen, Lin

    2014-12-01

    Bone displays suppressed osteogenesis in inflammatory diseases such as sepsis and rheumatoid arthritis. However, the underlying mechanisms have not yet been clearly explained. To identify the gene expression patterns in the bone, we performed Affymetrix Mouse Genome 430 2.0 Array with RNA isolated from mouse femurs 4 h after lipopolysaccharide (LPS) administration. The gene expressions were confirmed with real-time PCR. The serum concentration of the N-terminal propeptide of type I collagen (PINP), a bone-formation marker, was determined using ELISA. A total of 1003 transcripts were upregulated and 159 transcripts were downregulated (more than twofold upregulation or downregulation). Increased expression levels of the inflammation-related genes interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were confirmed from in the period 4 h to 72 h after LPS administration using real-time PCR. Gene ontogene analysis found four bone-related categories involved in four biological processes: system development, osteoclast differentiation, ossification and bone development. These processes involved 25 upregulated genes. In the KEGG database, we further analyzed the transforming growth factor β (TGF-β) pathway, which is strongly related to osteogenesis. The upregulated bone morphogenetic protein 2 (BMP2) and downregulated inhibitor of DNA binding 4 (Id4) expressions were further confirmed by real-time PCR after LPS stimulation. The osteoblast function was determined through examination of the expression levels of core binding factor 1 (Cbfa1) and osteocalcin (OC) in bone tissues and serum PINP from 4 h to 72 h after LPS administration. The expressions of OC and Cbfa1 decreased 6 h after administration (p early stage (4 h or 6 h, p > 0.05) of LPS stimulation. The results of this study suggest that LPS induces elevated expressions of skeletal system development- and osteoclast differentiation-related genes and inflammation genes at an early

  13. Anorexia nervosa and bone.

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-06-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure, and reduced bone strength, all of which contribute to increased fracture risk. Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising additional concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, and hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiological estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age, given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  14. Anorexia Nervosa and Bone

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  15. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    Directory of Open Access Journals (Sweden)

    O Trubiani

    2010-07-01

    Full Text Available The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the ability to form focal adhesions on the substrate, using vinculin, a cytoskeletal protein, as a marker. Moreover, the expression of bone specific proteins and growth factors such as type I collagen, osteopontin, bone sialoprotein, bone morphogenetic protein-2 (BMP-2, BMP-7 and de novo synthesis of osteocalcin in normal human osteoblasts (NHOst seeded on xenogenic GBO were evaluated. Our observations suggest that after four weeks of culture in differentiation medium, the NHOst showed a high affinity for the three dimensional biomaterial; in fact, cellular proliferation, migration and colonization were clearly evident. The osteogenic differentiation process, as demonstrated by morphological, histochemical, energy dispersive X-ray microanalysis and biochemical analysis was mostly obvious in the NHOst grown on three-dimensional inorganic bovine bone biomaterial. Functional studies displayed a clear and significant response to calcitonin when the cells were differentiated. In addition, the presence of the biomaterial improved the response, suggesting that it could drive the differentiation of these cells towards a more differentiated osteogenic phenotype. These results encourage us to consider GBO an adequate biocompatible three-dimensional biomaterial, indicating its potential use for the development of tissue-engineering techniques.

  16. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones

    International Nuclear Information System (INIS)

    Reconstruction of critical size defects in the load-bearing area has long been a challenge in orthopaedics. In the past, we have demonstrated the feasibility of using a biodegradable load-sharing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself. For this reason, 13-93 bioactive glass scaffolds with local BMP-2 delivery were investigated in this study for inducing segmental defect repairs in a load-bearing region. Furthermore, a recent review on BMP-2 revealed greater risks in radiculitis, ectopic bone formation, osteolysis and poor global outcome in association with the use of BMP-2 for spinal fusion. We also evaluated the potential side effects of locally delivered BMP-2 on the structures of adjacent bones. Therefore, cylindrical 13-93 glass scaffolds were fabricated by indirect selective laser sintering with side holes on the cylinder filled with dicalcium phosphate dehydrate as a BMP-2 carrier. The scaffolds were implanted into critical size defects created in rat femurs with and without 10 μg of BMP-2. The x-ray and micro-CT results showed that a bridging callus was found as soon as three weeks and progressed gradually in the BMP group while minimal bone formation was observed in the control group. Degradation of the scaffolds was noted in both groups. Stiffness, peak load and energy to break of the BMP group were all higher than the control group. There was no statistical difference in bone mineral density, bone area and bone mineral content in the tibiae and contralateral femurs of the control and BMP groups. In conclusion, a 13-93 bioactive glass scaffold with local BMP-2 delivery has been demonstrated for its potential application in treating large bone defects. (paper)

  17. [Microdestruction of the bone].

    Science.gov (United States)

    Iankovskiĭ, V É

    2014-01-01

    The objective of the present study was the detection of microcracks in the compact bone tissue surrounding the fracture and in deformed bone undergoing subcritical loading. The portions of deformed bone tissue and terminal fragments of broken bones were obtained in the form of blocks longitudinally sawcut from the regions of primary and secondary bone rupture. A total of 300 such blocks were available for the examination. All portions of the deformed bone tissue and terminal fragments of broken bones showed up microcracks commensurate with the bone structures. They were actually hardened traces of deformation that preceded the fracture and reflected the volume of the destroyed bone tissue; moreover, in certain cases they allowed to identify the kind of the object that exerted the external action (either a blow or slow bending). PMID:25269164

  18. Wnt signaling control of bone cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Peter V N Bodine

    2008-01-01

    Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morphogenesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density , lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-1, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3p support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.

  19. CBX7 deficiency plays a positive role in dentin and alveolar bone development.

    Science.gov (United States)

    Zhou, Zhixuan; Yin, Ying; Jiang, Fei; Niu, Yuming; Wan, Shujian; Chen, Ning; Shen, Ming

    2016-08-01

    To clarify the role of CBX7 deficiency in dentin and alveolar bone development, the dental and mandibular phenotypes of homozygous CBX7-knockout (CBX7(-/-)) mice were compared with their wild-type (WT) counterparts at 3 weeks age. In contrast to WT littermates, dental volume and dentin sialoprotein-positive area were significantly increased, whereas the area ratio of predentin to dentin was decreased markedly in CBX7(-/-) mice. Mineral density, cortical thickness, alveolar bone volume, type I collagen and osterix-immunopositive area, osteoblast number and activity, protein expression and mRNA level of Runt-related transcription factor 2 (Runx2), alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2 (BMP2) were all remarkably increased, while osteoclast number and activity, and mRNA expression ratio of NF-κB ligand (RANKL) to osteoprotegerin (opg) were all decreased significantly in the alveolar bone of CBX7(-/-) mice compared with their WT counterparts. Moreover, proliferating cell nuclear antigen (PCNA)-positive cells were found more in Hertwig' s epithelial root sheath of CBX7(-/-) mice, and their protein level of cyclin E1, cyclin-dependent kinase 2 (CDK2) were correspondingly increased in contrast to WT mice. Taken together, these results of this study suggest that CBX7 deficiency plays a positive role in dentin and alveolar bone formation. PMID:27271093

  20. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats.

    Science.gov (United States)

    Lee, Donghun; Kim, Young-Sik; Song, Jungbin; Kim, Hyun Soo; Lee, Hyun Jung; Guo, Hailing; Kim, Hocheol

    2016-01-01

    This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway. PMID:27070559

  1. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  2. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    Science.gov (United States)

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology. PMID:18315815

  3. Evaluation of injectable constructs for bone repair with a subperiosteal cranial model in the rat.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available While testing regenerative medicine strategies, the use of animal models that match the research questions and that are related to clinical translation is crucial. During the initial stage of evaluating new strategies for bone repair, the main goal is to state whether the strategies efficiently induce the formation of new bone tissue at an orthotopic site. Here, we present a subperiosteal model in rat calvaria that allow the evaluation of a broad range of approaches including bone augmentation, replacement and regeneration. The model is a fast to perform, minimally invasive, and has clearly defined control groups. The procedure enables to evaluate the outcomes quantitatively using micro-computed tomography and qualitatively by histology and immunohistochemistry. We established this new model, using bone morphogenetic protein-2 as an osteoinductive factor and hyaluronic acid hydrogel as injectable biomaterial. We showed that this subperiosteal cranial model offers a minimally invasive and promising solution for a rapid initial evaluation of injectables for bone repair. We believe that this approach could be a powerful platform for orthopedic research and regenerative medicine.

  4. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  5. Morphogenetic traits and biomass accumulation of Brachiaria brizantha cv. Xaraés subjected to nitrogen doses

    Directory of Open Access Journals (Sweden)

    Welton Batista Cabral

    2012-08-01

    Full Text Available The objective of this experiment was to evaluate the morphogenetic traits and biomass accumulation of Brachiaria brizantha cv. Xaraés subjected to doses of N (0, 125, 250, 375 and 500 kg.ha-1 N. The treatments were arranged in a completely randomized design with four replications. Morphogenetic traits and biomass accumulation of dry matter (DM.ha-1 were evaluated. The results were subjected to statistical analysis by grouping the data in two periods, rainy season and throughout the year. Nitrogen doses influenced leaf appearance in the rainy season and throughout the year, with significant increase in leaf elongation during the rainy season, an increase of 56% compared with control. During this period, maximum dose of N (248.1 kg.ha-1 produced 214.49 kg.ha-1.day-1 DM of leaf blade, which was 133% higher than the control. However, the higher N dose in the rainy season resulted in an increase of 137% in the stalk accumulation compared with non-fertilized grass; estimating maximum accumulation of salk of 84.97 kg.ha-1.day-1 of DM for the application of 326.2 kg.ha-1 N. Doses of N also intensified leaf senescence during the rainy season and throughout the year. The control treatment presented 32% less senescence compared with maximum N dose (270.1 kg.ha-1 N in the rainy season. Forage loss was estimated at 26.08 kg ha-1.day-1 DM at the maximum dose of 295.0 kg.ha-1 N for this period. All variables studied responded positively to N supply in the rainy season. The accumulation of biomass of the plant reached the maximum point with fertilization close to 250 kg.ha-1 N in the rainy season and 375 kg.ha-1 N throughout the year.

  6. How Is Bone Cancer Diagnosed?

    Science.gov (United States)

    ... with bone cancer. Accurate diagnosis of a bone tumor often depends on combining information about its location (what bone is affected and even which part of the bone is involved), appearance on x-rays, and appearance under a microscope. ...

  7. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... lymphoma , and myeloma can be treated with a bone marrow transplant . This is now often called a stem cell ... are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. " ...

  8. Testosterone delivered with a scaffold is as effective as bone morphologic protein-2 in promoting the repair of critical-size segmental defect of femoral bone in mice.

    Directory of Open Access Journals (Sweden)

    Bi-Hua Cheng

    Full Text Available Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2, or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects.

  9. Bone Graft Alternatives

    Science.gov (United States)

    ... cadavers. The types of allograft bone used for spine surgery include fresh frozen and lyophilized (freeze dried). The ... the most common uses of bone grafts in spine surgery is during spinal fusion. The use of autogenous ...

  10. Bone Loss in IBD

    Science.gov (United States)

    ... DENSITY? Although bone seems as hard as a rock, it’s actually living tissue. Throughout your life, old ... available Bone Loss (.pdf) File: 290 KB 733 Third Avenue, Suite 510, New York, NY 10017 | 800- ...

  11. Bone mineral density test

    Science.gov (United States)

    ... Paula FJA, Black DM, Rosen CJ. Osteoporosis and bone biology.In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, ... Bone-density testing interval and transition to osteoporosis in ...

  12. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  13. Smoking and Bone Health

    Science.gov (United States)

    ... It has been called a childhood disease with old age consequences because building healthy bones in youth helps ... stronger. Weight-bearing exercise that forces you to work against gravity is the best exercise for bone. ...

  14. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  15. Bone regeneration in dentistry

    OpenAIRE

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological p...

  16. Eating disorders and bone.

    Science.gov (United States)

    Tomlinson, Dale; Morgan, Sarah L

    2013-01-01

    Low bone mineral density (BMD) is a frequent and often-overlooked consequence of eating disorders, in particular anorexia nervosa and eating disorders associated with the female athlete triad. The causes of low BMD are multifactorial and include low peak bone mass accrual, accelerated bone resorption, and changes in bone microarchitecture. Early diagnosis and interventions focused on nutritional rehabilitation and weight gain reduce the risk of further BMD deficits and fractures. PMID:24094471

  17. Bone densitometry and osteoporosis

    International Nuclear Information System (INIS)

    The purpose of this book is to provide a perspective on the current status of bone densitometry and its relevance to osteoporosis diagnosis and management. Therefore, this book will give the reader an introduction to the nature of osteoporosis, its pathophysiology and epidemiology, and the clinical consequences of performing bone densitometry. Aside from standard bone densitometry, newer technologies such as quantitative ultrasound techniques, magnetic resonance imaging and bone structure analysis are discussed in the context of diagnosing osteoporosis. (orig.)

  18. BONE MECHANOTRANSDUCTION: A REVIEW

    OpenAIRE

    Reis, Joana; Capela e Silva, Fernando; Queiroga, Cristina; Lucena, Sónia; Potes, José

    2011-01-01

    This review focus on the bone physiology and mechanotransduction elements and mechanisms. Bone biology and architecture is deeply related to the mechanical environment. Orthopaedic implants cause profound changes in the biomechanics and electrophysiology of the skeleton. In the context of biomedical engineering, a deep reflexion on bone physiology and electromechanics is needed. Strategic development of new biomaterials and devices that respect and promote continuity with bone str...

  19. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. PMID:25579825

  20. Menopause and Bone Loss

    Science.gov (United States)

    Fact Sheet & Menopause Bone Loss How are bone loss and menopause related? Throughout life your body keeps a balance between the loss ... The sooner you take steps to prevent bone loss, the lower your risk of osteoporosis later in life. If you are skipping menstrual periods, have had ...

  1. What's a Funny Bone?

    Science.gov (United States)

    ... Help White House Lunch Recipes What's a Funny Bone? KidsHealth > For Kids > What's a Funny Bone? Print A A A Text Size Have you ... prickly kind of dull pain? That's your funny bone! It doesn't really hurt as much as ...

  2. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Ayaka Iura

    Full Text Available Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs, in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties.

  3. In vitro study of manganese-doped bioactive glasses for bone regeneration

    International Nuclear Information System (INIS)

    A glass belonging to the system SiO2–P2O5–CaO–MgO–Na2O–K2O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm2 (μg of glass powders/cm2 of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures

  4. In vitro study of manganese-doped bioactive glasses for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Miola, Marta, E-mail: marta.miola@polito.it [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Brovarone, Chiara Vitale [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Maina, Giovanni [Department of Clinical and Biological Sciences, University of Turin, Via Zuretti 29, 10126 Turin (Italy); Rossi, Federica [Department of Public Health and Pediatric Sciences, Piazza Polonia, 94, 10126 Torino (Italy); Bergandi, Loredana; Ghigo, Dario [Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin (Italy); Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana [Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin (Italy); Vernè, Enrica [Applied Science and Technology Department, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2014-05-01

    A glass belonging to the system SiO{sub 2}–P{sub 2}O{sub 5}–CaO–MgO–Na{sub 2}O–K{sub 2}O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm{sup 2} (μg of glass powders/cm{sup 2} of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures.

  5. Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration.

    Science.gov (United States)

    Bouyer, Michael; Guillot, Raphael; Lavaud, Jonathan; Plettinx, Cedric; Olivier, Cécile; Curry, Véronique; Boutonnat, Jean; Coll, Jean-Luc; Peyrin, Françoise; Josserand, Véronique; Bettega, Georges; Picart, Catherine

    2016-10-01

    The rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use. This work presents a novel means for repairing a critical size volumetric bone femoral defect in the rat by combining a osteoinductive surface coating (2D) to a polymeric scaffold (3D hollow tube) made of commercially-available PLGA. Using a polyelectrolyte film as BMP-2 carrier, we tune the amount of BMP-2 loaded in and released from the polyelectrolyte film coating over a large extent by controlling the film crosslinking level and initial concentration of BMP-2 in solution. Using microcomputed tomography and quantitative analysis of the regenerated bone growth kinetics, we show that the amount of newly formed bone and kinetics can be modulated: an effective and fast repair was obtained in 1-2 weeks in the best conditions, including complete defect bridging, formation of vascularized and mineralized bone tissue. Histological staining and high-resolution computed tomography revealed the presence of bone regeneration inside and around the tube with spatially distinct organization for trabecular-like and cortical bones. The amount of cortical bone and its thickness increased with the BMP-2 dose. In view of the recent developments in additive manufacturing techniques, this surface-coating technology may be applied in combination with various types of polymeric or metallic scaffolds to offer new perspectives of bone regeneration in personalized medicine. PMID:27454063

  6. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Directory of Open Access Journals (Sweden)

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  7. Class I PI-3-Kinase Signaling Is Critical for Bone Formation Through Regulation of SMAD1 Activity in Osteoblasts.

    Science.gov (United States)

    Gámez, Beatriz; Rodríguez-Carballo, Edgardo; Graupera, Mariona; Rosa, José Luis; Ventura, Francesc

    2016-08-01

    Bone formation and homeostasis is carried out by osteoblasts, whose differentiation and activity are regulated by osteogenic signaling networks. A central mediator of these inputs is the lipid kinase phosphatidylinositol 3-kinase (PI3K). However, at present, there are no data on the specific role of distinct class IA PI3K isoforms in bone biology. Here, we performed osteoblast-specific deletion in mice to show that both p110α and p110β isoforms are required for survival and differentiation and function of osteoblasts and thereby control bone formation and postnatal homeostasis. Impaired osteogenesis arises from increased GSK3 activity and a depletion of SMAD1 protein levels in PI3K-deficient osteoblasts. Accordingly, pharmacological inhibition of GSK3 activity or ectopic expression of SMAD1 or SMAD5 normalizes bone morphogenetic protein (BMP) transduction and osteoblast differentiation. Together, these results identify the PI3K-GSK3-SMAD1 axis as a central node integrating multiple signaling networks that govern bone formation and homeostasis. © 2016 American Society for Bone and Mineral Research. PMID:26896753

  8. Three-Dimensional Bone Regeneration of Alveolar Ridge Defects Using Corticocancellous Allogeneic Block Grafts: Histologic and Immunohistochemical Analysis.

    Science.gov (United States)

    Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In this study, the effectiveness of a corticocancellous block allograft for restoring alveolar ridge defects in preparation for the placement of dental implants was assessed. Significant ridge defects in four partially edentulous patients were reconstructed using an irradiated corticocancellous allogeneic block soaked in platelet-rich plasma, which was also covered with a resorbable collagen membrane. After 5 or 6 months, the sites were reentered and a trephine bone core specimen was obtained from each augmented site for histologic, histomorphometric, and immunohistochemical assessment. In all four cases, histologic evaluation of the augmented site showed areas of new vital bone formation around the graft material (mean newly formed bone fraction, 23.7%; mean total mineralized tissue fraction, 40.1%), in which osteocytes were frequently observed within the lacunae. Immunohistochemical analysis showed the presence of biomarkers commonly related to active bone formation (alkaline phosphatase, osteocalcin, and bone morphogenetic protein-2), confirming that the biochemical environment was conducive to new bone formation. The findings of this study demonstrate that the use of allogeneic block grafts for restoring alveolar ridge defects prior to the placement of dental implants may be an effective and advantageous alternative to autograft procedures. PMID:26697555

  9. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wenyue Li

    Full Text Available Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7 that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1 onto the surface of poly-lactic-co-glycolic acid (PLGA substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs, being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP, osteocalcin (OC, and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  10. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;

    2015-01-01

    afterwards macerated by one of the two methods. DNA extraction was performed to see the effect of the macerations on DNA preservation. Furthermore, the bone pieces were examined in a stereomicroscope to assess for any bone damage. The results demonstrated that both methods removed all flesh/soft tissue from...... the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours...

  11. Tin in Human Bones

    OpenAIRE

    Jambor, Jaroslav; Smreka, Vâclav

    1993-01-01

    TIN IN HUMAN BONES. The tin content in the bones of 149 skeletons from the 1st - 5th centuries A.D., and of 11 individuals of the recent population was determined. The bone samples were carbonized and analyzed through emission spectroscopy with a.c. excitation. The tin content in bones of recent populations not exposed to extra tin supply is about one order of magnitude higher than is the case with the bones od some populations that lived at the beginning of our era. The distribut...

  12. Alterations in expression levels of deafness dystonia protein 1 affect mitochondrial morphology

    DEFF Research Database (Denmark)

    Engl, Gertraud; Florian, Stefan; Tranebjærg, Lisbeth;

    2012-01-01

    Deafness-Dystonia-Optic Neuropathy (DDON) Syndrome is a rare X-linked progressive neurodegenerative disorder resulting from mutations in the TIMM8A gene encoding for the deafness dystonia protein 1 (DDP1). Despite important progress in identifying and characterizing novel mutations in this gene...

  13. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C;

    2005-01-01

    -encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration in...

  14. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine;

    2013-01-01

    Plasmodium falciparum is responsible for most cases of severe malaria and causes >1 million deaths every year. The particular virulence of this Plasmodium species is highly associated with the expression of certain members of the Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) family...

  15. Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer

    DEFF Research Database (Denmark)

    Rask, Thomas Salhøj; Hansen, Daniel Aaen; Theander, Thor G.;

    2010-01-01

    The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development...

  16. *611540 SH3-DOMAIN GRB2-LIKE (ENDOPHILIN)-INTERACTING PROTEIN 1; SGIP1 [OMIM

    Lifescience Database Archive (English)

    Full Text Available FIELD NO 611540 FIELD TI 611540 SH3-DOMAIN GRB2-LIKE (ENDOPHILIN)-INTERACTING PROTEIN 1; SGIP1 F ... differential-display PCR of hypothalamic RNA from lean ... and obese Psammomys obesus (Israeli sand rats), a ... nhibition of Sgip1 hypothalamic expression in both lean ... P. obesus and Sprague-Dawley rats caused a signifi ...

  17. Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation.

    Science.gov (United States)

    Wang, Zhenming; Dong, Li; Han, Lu; Wang, Kefeng; Lu, Xiong; Fang, Liming; Qu, Shuxin; Chan, Chun Wai

    2016-01-01

    Producing biomimetic extracellular matrix (ECM) is an effective approach to improve biocompatibility of medical devices. In this study, biomimetic ECM nanostructures are constructed through layer-by-layer self-assembling positively charged chitosan (Chi), negatively charged oxidized sodium alginate (OAlg), and positively charged bovine serum albumin (BSA)-based nanoparticles. The BSA-based nanoparticles in the self-assembled films not only result in porous nanostructures similar to natural ECM, but also preserve the activity and realize the sustained release of Bone morphogenetic protein-2 (BMP-2). The results of bone marrow stem cells (BMSCs) culture demonstrate that the penta-peptide glycine-arginine-glycine-aspartate-serine (GRGDS) grafted Chi/OAlg films favor cell adhesion and proliferation. GRGDS and BMP-2 in biomimetic ECM nanostructures synergistically promote BMSC functions and new bone formation. The RGD and BMP incorporated biomimetic ECM coatings could be applied on a variety of biomedical devices to improve the bioactivity and biocompatibility. PMID:27121121

  18. Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation

    Science.gov (United States)

    Wang, Zhenming; Dong, Li; Han, Lu; Wang, Kefeng; Lu, Xiong; Fang, Liming; Qu, Shuxin; Chan, Chun Wai

    2016-01-01

    Producing biomimetic extracellular matrix (ECM) is an effective approach to improve biocompatibility of medical devices. In this study, biomimetic ECM nanostructures are constructed through layer-by-layer self-assembling positively charged chitosan (Chi), negatively charged oxidized sodium alginate (OAlg), and positively charged bovine serum albumin (BSA)-based nanoparticles. The BSA-based nanoparticles in the self-assembled films not only result in porous nanostructures similar to natural ECM, but also preserve the activity and realize the sustained release of Bone morphogenetic protein-2 (BMP-2). The results of bone marrow stem cells (BMSCs) culture demonstrate that the penta-peptide glycine-arginine-glycine-aspartate-serine (GRGDS) grafted Chi/OAlg films favor cell adhesion and proliferation. GRGDS and BMP-2 in biomimetic ECM nanostructures synergistically promote BMSC functions and new bone formation. The RGD and BMP incorporated biomimetic ECM coatings could be applied on a variety of biomedical devices to improve the bioactivity and biocompatibility. PMID:27121121

  19. Bone stress injuries

    International Nuclear Information System (INIS)

    Bone stress injuries are due to cyclical overuse of the bone. They are relatively common in athletes and military recruits but also among otherwise healthy people who have recently started new or intensive physical activity. Diagnosis of bone stress injuries is based on the patient's history of increased physical activity and on imaging findings. The general symptom of a bone stress injury is stress-related pain. Bone stress injuries are difficult to diagnose based only on a clinical examination because the clinical symptoms may vary depending on the phase of the pathophysiological spectrum in the bone stress injury. Imaging studies are needed to ensure an early and exact diagnosis, because if the diagnosis is not delayed most bone stress injuries heal well without complications

  20. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Mukherjee, Jayanta [Institute of Animal Health and Veterinary Biologicals, Kolkata (India); Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-04-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations.

  1. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    International Nuclear Information System (INIS)

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations

  2. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material.

    Science.gov (United States)

    Walboomers, X Frank; Jansen, John A

    2005-08-01

    Scaffold materials for bone tissue engineering often are supplemented with bone morphogenetic proteins (BMPs). In the current study we aimed to investigate COLLOSS, a bovine extracellular matrix product containing native BMPs. Hollow cylindrical implants were made, with a length of 10 mm, a 3 mm inner diameter, and a 5 mm outer diameter, from titanium fibre mesh. The central space of the tube was filled with 20 mg COLLOSS. Subsequently, these implants, as well as non-loaded controls, were implanted subcutaneously into the back of Wistar rats, with n=6 for all study groups. After implantation periods of 2, 8, and 12 weeks, tissue-covered implants were retrieved, and sections were made, perpendicular to the long axis of the tube. Histology showed, that all implants were surrounded by a thin fibrous tissue capsule. After 2 weeks of implantation, the COLLOSS material was reduced in size inside the loaded implants, but no bone-like tissue formation was evident. After 8 weeks, in two out of six loaded specimens, new-formed bone- and bone marrow-like tissues could be observed. After 12 weeks, this had increased to five out of six COLLOSS-loaded samples. The amount of bone-like tissue did not differ between 8 and 12 weeks, and on average occupied 15% of the central space of the tube. In the non-loaded control samples, only connective tissue ingrowth was observed. In conclusion, we can say that COLLOSS material loaded in a titanium fibre mesh tube, showed bone-inducing properties. The final efficacy of these osteo-inductive properties has to be confirmed in future large animal studies. PMID:15763257

  3. Fibrin Hydrogel Based Bone Substitute Tethered with BMP-2 and BMP-2/7 Heterodimers

    Directory of Open Access Journals (Sweden)

    Lindsay S. Karfeld-Sulzer

    2015-03-01

    Full Text Available Current clinically used delivery methods for bone morphogenetic proteins (BMPs are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin based system include employing more potent BMP heterodimers and engineering growth factors that can be covalently tethered to and slowly released from a fibrin matrix. Here we present an engineered BMP-2/BMP-7 heterodimer where an N-terminal transglutaminase substrate domain in the BMP-2 portion provides covalent attachment to fibrin together with a central plasmin substrate domain, a cleavage site for local release of the attached BMP-2/BMP-7 heterodimer under the influence of cell-activated plasmin. In vitro and in vivo results revealed that the engineered BMP-2/BMP-7 heterodimer induces significantly more alkaline phosphatase activity in pluripotent cells and bone formation in a rat calvarial model than the engineered BMP-2 homodimer. Therefore, the engineered BMP-2/BMP-7 heterodimer could be used to reduce the amount of BMP needed for clinical effect.

  4. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J C; Berner, A [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane (Australia); Heymer, A; Eulert, J; Noeth, U, E-mail: johannes.reichert@qut.edu.a [Orthopaedic Institute, Division of Tissue Engineering, Koenig-Ludwig-Haus, Julius-Maximilians-University, Wuerzburg (Germany)

    2009-12-15

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 10{sup 5} MSCs ml{sup -1} were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and beta-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade epsilon-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  5. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    International Nuclear Information System (INIS)

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 105 MSCs ml-1 were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and β-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade ε-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  6. A myostatin and activin decoy receptor enhances bone formation in mice.

    Science.gov (United States)

    Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J

    2014-03-01

    Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. PMID:24333131

  7. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    International Nuclear Information System (INIS)

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1

  8. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.

    Science.gov (United States)

    Yilgor, P; Yilmaz, G; Onal, M B; Solmaz, I; Gundogdu, S; Keskil, S; Sousa, R A; Reis, R L; Hasirci, N; Hasirci, V

    2013-09-01

    The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with free nanocapsules were implanted using a rat iliac crest defect model. Six weeks post-implantation, the defects were evaluated by CT scan and histology. Analysi