WorldWideScience

Sample records for bone mineral augmentation

  1. A positive dose-response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: A double-blinded randomized placebo-controlled 1-year intervention

    DEFF Research Database (Denmark)

    Viljakainen, H.T.; Natri, A.M.; Karkkainen, M.

    2006-01-01

    The effect of vitamin D supplementation on bone mineral augmentation in 212 adolescent girls with adequate calcium intake was studied in a randomized placebo-controlled setting. Bone mineral augmentation determined by DXA increased with supplementation both in the femur and the lumbar vertebrae i...

  2. The combined use of rhBMP-2/ACS, autogenous bone graft, a bovine bone mineral biomaterial, platelet-rich plasma, and guided bone regeneration at nonsubmerged implant placement for supracrestal bone augmentation. A case report.

    Science.gov (United States)

    Sclar, Anthony G; Best, Steven P

    2013-01-01

    This case report presents the clinical application and outcomes of the use of a combined approach to treat a patient with a severe alveolar defect. Recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge carrier, along with autogenous bone graft, bovine bone mineral, platelet-rich plasma, and guided bone regeneration, were used simultaneous with nonsubmerged implant placement. At 1 year postsurgery, healthy peri-implant soft tissues and radiographically stable peri-implant crestal bone levels were observed along with locally increased radiographic bone density. In addition, a cone beam computed tomography (CBCT) scan demonstrated apparent supracrestal peri-implant bone augmentation with the appearance of normal alveolar ridge contours, including the facial bone wall.

  3. Microarchitecture of the Augmented Bone Following Sinus Elevation with an Albumin Impregnated Demineralized Freeze-Dried Bone Allograft (BoneAlbumin versus Anorganic Bovine Bone Mineral: A Randomized Prospective Clinical, Histomorphometric, and Micro-Computed Tomography Study

    Directory of Open Access Journals (Sweden)

    Kivovics Márton

    2018-01-01

    Full Text Available Serum albumin has been identified as an endogenous protein that is integral to early bone regeneration. We hypothesized that albumin addition to allografts may result in better bone remodeling than what can be achieved with anorganic xenografts. Sinus elevations were performed at 32 sites of 18 patients with the lateral window technique. Sites either received filling with an anorganic bovine bone mineral (ABBM, BioOss, Geistlich, CH or albumin impregnated allograft (BoneAlbumin, OrthoSera, AT. After 6-months patients received dental implants and 16 bone core biopsy samples were obtained from the ABBM filled, and 16 from the BoneAlbumin augmented sites. The biopsies were examined by histomorphometry and µCT. Percentage of the residual graft in the BoneAlbumin group was 0–12.7%, median 5.4% vs. ABBM 6.3–35.9%, median 16.9%, p < 0.05. Results of the µCT analysis showed that the microarchitecture of the augmented bone in the BoneAlbumin group resembles that of the native maxilla in morphometric parameters Trabecular Pattern Factor and Connectivity. Our data show that while ABBM successfully integrates into the newly formed bone tissue as persisting particles, BoneAlbumin is underway towards complete remodeling with new bone closely resembling that of the intact maxilla.

  4. Human histologic evaluation of anorganic bovine bone mineral combined with recombinant human platelet-derived growth factor BB in maxillary sinus augmentation: case series study.

    Science.gov (United States)

    Nevins, Myron; Garber, David; Hanratty, James J; McAllister, Bradley S; Nevins, Marc L; Salama, Maurice; Schupbach, Peter; Wallace, Steven; Bernstein, Simon M; Kim, David M

    2009-12-01

    The objective of this proof-of-principle study was to examine the potential for improved bone regenerative outcomes in maxillary sinus augmentation procedures when recombinant human platelet-derived growth factor BB (0.3 mg/mL) is combined with particulate anorganic bovine bone mineral. The surgical outcomes in all treated sites were uneventful at 6 to 8 months, with sufficient regenerated bone present to allow successful placement of maxillary posterior implants. Large areas of dense, well-formed lamellar bone were seen throughout the intact core specimens in more than half of the grafted sites. Abundant numbers of osteoblasts were noted in concert with significant osteoid in all sites, indicating ongoing osteogenesis. A number of cores demonstrated efficient replacement of the normally slowly resorbing anorganic bovine bone mineral matrix particles with newly formed bone when the matrix was saturated with recombinant human platelet-derived growth factor BB.

  5. Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization?

    DEFF Research Database (Denmark)

    Molgaard, C.; Larnkjaer, A.; Cashman, K.D.

    2010-01-01

    Introduction: A high peak bone mass may be essential for reducing the risk of osteoporosis later in life and a sufficient vitamin D level during puberty may be necessary for optimal bone accretion and obtaining a high peak bone mass. Dietary intake and synthesis during winter of vitamin D might...... be limited but the effect of vitamin D supplementation in adolescence on bone mass is not well established. Objective: To investigate the effect of supplementation with 5 and 10 mu g/day vitamin D-3 for 12 months in 11- to 12-year-old girls on bone mass and bone turnover as well as the possible influence....../l) vitamin D-3 for 12 months compared to placebo (-3.1 +/- 9.8 nmol/l, baseline 43.4 +/- 17.1 nmol/l). There was no effect of vitamin D-supplementation on biomarkers for bone turnover or on whole body or spine bone mineral augmentation. However, vitamin D supplementation increased whole body bone mineral...

  6. Reimplantation of cultivated human bone cells from the posterior maxilla for sinus floor augmentation. Histological results from a randomized controlled clinical trial

    DEFF Research Database (Denmark)

    Hermund, N.U.; Stavropoulos, Andreas; Donatsky, O

    2012-01-01

    OBJECTIVES: The aim of the present randomized clinical study was to evaluate histologically whether the addition of cultivated, autogenous bone cells to a composite graft of deproteinized bovine bone mineral (DBBM) and autogenous bone (AB) for sinus floor augmentation (SFA) enhance bone formation...... bone cells, which were cultivated from a bone biopsy harvested earlier from the tuberosity area. Four months after SFA, two cylindrical biopsies were taken from the augmented sinuses concomitantly with the implant site preparation by means of a trephine bur. An additional biopsy was taken from...... the tuberosity area. Bone density at the augmented sinus and the tuberosity area and the height of augmentation were estimated on non-decalcified histological sections prepared from the biopsies. A relative bone density index (RBD) was also calculated by dividing bone density at the augmented sinus with bone...

  7. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  8. Histological evaluation of healing after transalveolar maxillary sinus augmentation with bioglass and autogenous bone

    DEFF Research Database (Denmark)

    Stavropoulos, Andreas; Sima, Catalin; Sima, Andrea

    2012-01-01

    the transalveolar osteotomy by means of a trephine bur and non-decalcified sections through the long axis of the cylinder were produced. After a strict selection process, taking into account the presurgical residual bone height and biopsy length, 8 and 15 biopsies representing the new tissues formed inside......OBJECTIVES: The aim was to evaluate histologically the outcome of a bioglass and autogenous bone (at 1 : 1 ratio) composite implantation for transalveolar sinus augmentation. METHODS: In 31 patients, during implant installation ca. 4 months after sinus augmentation, biopsies were harvested through...... the sinus and the transalveolar osteotomy, respectively, qualified for analysis. The tissue fractions occupied by newly formed bone (mineralized tissue+bone marrow), soft connective tissue, residual biomaterial+empty spaces, and debris inside the sinus cavity or the transalveolar osteotomy were estimated...

  9. Clinical applications of cell-based approaches in alveolar bone augmentation: a systematic review.

    Science.gov (United States)

    Shanbhag, Siddharth; Shanbhag, Vivek

    2015-01-01

    Cell-based approaches, utilizing adult mesenchymal stem cells (MSCs), are reported to overcome the limitations of conventional bone augmentation procedures. The study aims to systematically review the available evidence on the characteristics and clinical effectiveness of cell-based ridge augmentation, socket preservation, and sinus-floor augmentation, compared to current evidence-based methods in human adult patients. MEDLINE, EMBASE, and CENTRAL databases were searched for related literature. Both observational and experimental studies reporting outcomes of "tissue engineered" or "cell-based" augmentation in ≥5 adult patients alone, or in comparison with non-cell-based (conventional) augmentation methods, were eligible for inclusion. Primary outcome was histomorphometric analysis of new bone formation. Effectiveness of cell-based augmentation was evaluated based on outcomes of controlled studies. Twenty-seven eligible studies were identified. Of these, 15 included a control group (8 randomized controlled trials [RCTs]), and were judged to be at a moderate-to-high risk of bias. Most studies reported the combined use of cultured autologous MSCs with an osteoconductive bone substitute (BS) scaffold. Iliac bone marrow and mandibular periosteum were frequently reported sources of MSCs. In vitro culture of MSCs took between 12 days and 1.5 months. A range of autogenous, allogeneic, xenogeneic, and alloplastic scaffolds was identified. Bovine bone mineral scaffold was frequently reported with favorable outcomes, while polylactic-polyglycolic acid copolymer (PLGA) scaffold resulted in graft failure in three studies. The combination of MSCs and BS resulted in outcomes similar to autogenous bone (AB) and BS. Three RCTs and one controlled trial reported significantly greater bone formation in cell-based than conventionally grafted sites after 3 to 8 months. Based on limited controlled evidence at a moderate-to-high risk of bias, cell-based approaches are comparable, if

  10. Influence of Healing Period Upon Bone Turn Over on Maxillary Sinus Floor Augmentation Grafted Solely with Deproteinized Bovine Bone Mineral: A Prospective Human Histological and Clinical Trial.

    Science.gov (United States)

    Wang, Feng; Zhou, Wenjie; Monje, Alberto; Huang, Wei; Wang, Yueping; Wu, Yiqun

    2017-04-01

    To investigate the influence of maturation timing upon histological, histomorphometric and clinical outcomes when deproteinized bovine bone mineral (DBBM) was used as a sole biomaterial for staged maxillary sinus floor augmentation (MSFA). Patients with a posterior edentulous maxillary situation and a vertical bone height ≤ 4 mm were included in this study. A staged MSFA was carried out. After MSFA with DBBM as a sole grafting material, biopsy cores were harvested with simultaneous implant placement followed by a healing period of 5, 8, and 11 months, respectively. Micro-CT, histologic and histomorphometric analyses were performed. Forty-one patients were enrolled and 38 bone core biopsies were harvested. Significantly greater BV/TV was observed between 5- and 8-month healing from micro-CT analysis. Histomorphometric analyses showed the ratio of mineralized newly formed bone increased slightly from 5 to 11 months; however, no statistically significant difference was reached (p = .409). Residual bone substitute decreased from 37.3 ± 5.04% to 20.6 ± 7.45%, achieving a statistical significant difference from of 5 up to 11 months (p < .01). Moreover, no implant failure, biological or technical complication occurred after 12-month follow-up of functional loading. DBBM utilized as sole grafting material in staged MSFA demonstrated to be clinically effective regardless of the healing period. Histomorphometrical and micro-CT assessments revealed that at later stages of healing (8 and 11 months) there is a higher proportion of newly-bone formation compared to earlier stages (5 months). Moreover, the longer the maturation period, the substantially lesser remaining biomaterial could be expected. Even though, these facts did not seem to negatively impact on the implant prognosis 1-year after loading. © 2016 Wiley Periodicals, Inc.

  11. Subsequent Vertebral Fractures Post Cement Augmentation of the Thoracolumbar Spine: Does it Correlate With Level-specific Bone Mineral Density Scores?

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee

    2015-12-01

    A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They

  12. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  13. Bone mineral content measurement by bone mineral analyzer

    International Nuclear Information System (INIS)

    Yamamoto, Itsuo; Dokoh, Shigeharu; Fukunaga, Masao; Torizuka, Kanji; Kosaka, Tadako.

    1976-01-01

    With a bone mineral analyzer (Studsvik Bone Scanner 7102), bone mineral content (BMC) was validated using various concentrations of standard CaCO 3 . Seventy-five normal subjects, nineteen patients with rheumathoid arthritis (RA) and twenty-two patients with abnormal thyroid function were investigated by this method. Some inherent problems concerning the present measurements were also discussed. Reproducibility of BMC in sixteen normal subjects during a four months interval was +-4% on the mid-shaft of the radius and +-5% on the distal head of the radius, respectively. Although correlation of the single energy method and the dual energy method with the bone scanner was high (r=0.970), the single energy method was probably underestimated due to the fat layer. BMC in normal subjects was highest in 30th and 40th decades for both males and females, and gradually decreased with aging. Males had higher BMC and BMC/bone width than did females. All of the stage 1 group of RA patients, according to roentgenographic staging, revealed normal BMC, but most of stage 2 and 3 groups had abnormally low BMC, suggesting that progression of the disease may be an important factor in BMC values. The BMC of hyperthyroid patients was low, whereas that of euthyroid patients was normal. Serial measurements of BMC in a hyperparathyroid patient and a hyperthyroid patient revealed distinct recurrence of BMC after treatment. (Evans, J.)

  14. Bone augmentation for cancellous bone- development of a new animal model

    Science.gov (United States)

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  15. Augmented reality in bone tumour resection

    Science.gov (United States)

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  16. [Bone Cell Biology Assessed by Microscopic Approach. Bone mineralization by ultrastructural imaging].

    Science.gov (United States)

    Hasegawa, Tomoka

    2015-10-01

    Bone mineralization can be divided into two phases ; one is primary mineralization associated with osteoblastic bone formation, and the other is secondary mineralization which gradually increases mineral density of bone matrix after the primary mineralization. Primary mineralization is initiated by matrix vesicles synthesized by mature osteoblasts. Crystalline calcium phosphates are nucleated inside these matrix vesicles, and then, get out of them forming spherical mineralized nodule, which can grow more by being supplied with Ca2+ and PO4(3-) (matrix vesicle mineralization). Thereafter, the mineralized nodules make contacts with surrounding collagen fibrils, extending mineralization along with their longitudinal axis from the contact points (collagen mineralization). In this review, the ultrastructural findings on bone mineralization, specially, primary mineralization will be provided.

  17. Long-term effects of vertical bone augmentation: a systematic review

    Directory of Open Access Journals (Sweden)

    Johan Anton Jochum Keestra

    2016-02-01

    Full Text Available ABSTRACT Extraction, periodontitis, or trauma can cause a reduction on the alveolar ridge. This could result in an insufficient alveolar bone width and height. Different techniques of vertical bone augmentation are described in literature. However, nowadays there is not enough evidence against lateral augmentation procedures to verify if these techniques are stable over a long period of time. Objective This review analyses the different techniques that are used to vertically augment the bone and evaluate if these techniques are stable over a long period of time. Material and Methods The MEDLINE-PubMed database was searched from its earliest records until December 22, 2014. The following search term was used: Alveolar Ridge augmentation [MESH]. Several journals were hand searched and some authors were contacted for additional information. The primary outcome measure that was analyzed was marginal bone level change around dental implants in the augmented sites, and the secondary outcomes were survival and success rates of dental implants placed in the augmented sites. Results The search yielded 203 abstracts. Ultimately, 90 articles were selected, describing 51 studies meeting the eligibility criteria. The marginal bone level change for the inlay technique and vertical guided bone regeneration are in agreement with the success criteria. Alveolar distraction showed more marginal bone level change after the first year of loading, and for the inlay technique very few studies were available. Conclusions Based on the available data in the current existing studies with a follow-up period of at least 4 to 5 years, one can summarize that there seems to be a trend that the onlay technique, alveolar distraction, and vertical guided bone regeneration are stable for at least 4 to 5 years.

  18. Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.

    Science.gov (United States)

    Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela

    2014-01-01

    To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.

  19. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  20. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  1. Bone mineralization in childhood and adolescence.

    Science.gov (United States)

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  2. Effects of Fish Bone Meal Flour and Mineral Water «Abalakhskaya» on Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    A.M. Palshina

    2018-03-01

    Full Text Available We present the results of the complex application of fish bone meal flour (FBMF and mineral water «Abalakhskaya» (AMW for correction of calcium-phosphorus metabolism disorders in patients with abnormal bone mineral density and biliary tract pathology.

  3. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  4. Hake fish bone as a calcium source for efficient bone mineralization.

    Science.gov (United States)

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  5. [Augmentation technique on the proximal humerus].

    Science.gov (United States)

    Scola, A; Gebhard, F; Röderer, G

    2015-09-01

    The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.

  6. Nostril Base Augmentation Effect of Alveolar Bone Graft

    Directory of Open Access Journals (Sweden)

    Woojin Lee

    2013-09-01

    Full Text Available Background The aims of alveolar bone grafting are closure of the fistula, stabilization ofthe maxillary arch, support for the roots of the teeth adjacent to the cleft on each side.We observed nostril base augmentation in patients with alveolar clefts after alveolar bonegrafting. The purpose of this study was to evaluate the nostril base augmentation effect ofsecondary alveolar bone grafting in patients with unilateral alveolar cleft.Methods Records of 15 children with alveolar clefts who underwent secondary alveolar bonegrafting with autogenous iliac cancellous bone between March of 2011 and May of 2012 werereviewed. Preoperative and postoperative worm’s-eye view photographs and reconstructedthree-dimensional computed tomography (CT scans were used for photogrammetry. Thedepression of the nostril base and thickness of the philtrum on the cleft side were measuredin comparison to the normal side. The depression of the cleft side pyriform aperture wasmeasured in comparison to the normal side on reconstructed three-dimensional CT.Results Significant changes were seen in the nostril base (P=0.005, the philtrum length(P=0.013, and the angle (P=0.006. The CT measurements showed significant changes in thepyriform aperture (P<0.001 and the angle (P<0.001.Conclusions An alveolar bone graft not only fills the gap in the alveolar process but alsoaugments the nostril base after surgery. In this study, only an alveolar bone graft was performedto prevent bias from other procedures. Nostril base augmentation can be achieved byperforming alveolar bone grafts in children, in whom invasive methods are not advised.

  7. The Primary Stability of a Bioabsorbable Poly-L-Lactic Acid Suture Anchor for Rotator Cuff Repair Is Not Improved with Polymethylmethacrylate or Bioabsorbable Bone Cement Augmentation.

    Science.gov (United States)

    Güleçyüz, Mehmet F; Kraus-Petersen, Michael; Schröder, Christian; Ficklscherer, Andreas; Wagenhäuser, Markus U; Braun, Christian; Müller, Peter E; Pietschmann, Matthias F

    2018-02-01

    The incidence of osteoporosis and rotator cuff tears increases with age. Cement augmentation of bones is an established method in orthopedic and trauma surgery. This study analyses if polymethylmethacrylate or bioabsorbable cement can improve the primary stability of a bioabsorbable suture anchor in vitro in comparison to a non-augmented suture anchor in osteoporotic human humeri. The trabecular bone mineral density was measured to ensure osteopenic human specimens. Then the poly-l-lactic acid Bio-Corkscrew® FT was implanted in the greater tuberosity footprint with polymethylmethacrylate Refobacin® cement augmentation ( n  = 8), with Cerament™ Bone Void Filler augmentation ( n  = 8) and without augmentation ( n  = 8). Using a cyclic testing protocol, the failure loads, system displacement, and failure modes were recorded. The Cerament™ augmented Bio-Corkscrew® FT yielded the highest failure loads (206.7 N), followed by polymethylmethacrylate Refobacin® augmentation (206.1 N) and without augmentation (160.0 N). The system displacement was lowest for Cerament™ augmentation (0.72 mm), followed by polymethylmethacrylate (0.82 mm) and without augmentation (1.50 mm). Statistical analysis showed no significant differences regarding the maximum failure loads ( p  = 0.1644) or system displacement ( p  = 0.4199). The main mode of failure for all three groups was suture slippage. The primary stability of the Bio-Corkscrew® FT is not influenced by bone cement augmentation with polymethylmethacrylate Refobacin® or with bioabsorbable Cerament™ in comparison to the non-cemented anchors. The cement augmentation of rotator cuff suture anchors in osteoporotic bones remains questionable since biomechanical tests show no significant advantage.

  8. Piezosurgery in Bone Augmentation Procedures Previous to Dental Implant Surgery: A Review of the Literature

    Science.gov (United States)

    Magrin, Gabriel Leonardo; Sigua-Rodriguez, Eder Alberto; Goulart, Douglas Rangel; Asprino, Luciana

    2015-01-01

    The piezosurgery has been used with increasing frequency and applicability by health professionals, especially those who deal with dental implants. The concept of piezoelectricity has emerged in the nineteenth century, but it was applied in oral surgery from 1988 by Tomaso Vercellotti. It consists of an ultrasonic device able to cut mineralized bone tissue, without injuring the adjacent soft tissue. It also has several advantages when compared to conventional techniques with drills and saws, such as the production of a precise, clean and low bleed bone cut that shows positive biological results. In dental implants surgery, it has been used for maxillary sinus lifting, removal of bone blocks, distraction osteogenesis, lateralization of the inferior alveolar nerve, split crest of alveolar ridge and even for dental implants placement. The purpose of this paper is to discuss the use of piezosurgery in bone augmentation procedures used previously to dental implants placement. PMID:26966469

  9. Regenerate augmentation with bone marrow concentrate after traumatic bone loss

    Directory of Open Access Journals (Sweden)

    Jan Gessmann

    2012-03-01

    Full Text Available Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64 with an average posttraumatic bone defect of 82.4 mm and concomitant risk factors (nicotine abuse, soft-tissue defects, obesity and/or circulatory disorders were treated with a modified Ilizarov external frame using an intramedullary cable transportation system. At the end of the distraction phase, each patient was treated with a percutaneously injection of autologous BMAC into the centre of the regenerate. The concentration factor was analysed using flow cytometry. The mean follow up after frame removal was 10 (4-15 months. With a mean healing index (HI of 36.9 d/cm, bony consolidation of the regenerate was achieved in all eight cases. The mean concentration factor of the bone marrow aspirate was 4.6 (SD 1.23. No further operations concerning the regenerate were needed and no adverse effects were observed with the BMAC procedure. This procedure can be used for augmentation of the regenerate in cases of segmental bone transport. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regenerate healing.

  10. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation.

    Science.gov (United States)

    Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P

    2017-07-01

    Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Parathyroid Hormone (1-34 Might Not Improve Early Bone Healing after Sinus Augmentation in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Jisun Huh

    2017-01-01

    Full Text Available Purpose. This study evaluated the effect of administering intermittent parathyroid hormone [PTH (1-34, henceforth PTH] on the early-stage bone healing of maxillary sinus augmentation in healthy rabbits. Materials and Methods. Bovine bone mineral was grafted on the sinuses of 20 female New Zealand white rabbits. The animals were randomly divided into two groups, PTH (n=10 or saline (n=10, in which either PTH or saline was injected subcutaneously 5 days a week for 2 weeks. Half of the animals in each group were killed at 2 weeks postoperatively and the other half were killed at 4 weeks postoperatively. The dosage of PTH was 10 μg/kg/day. Radiographic and histomorphometric analyses were performed. Result. The new bone area (NBA did not differ significantly between the PTH and saline groups. The NBA in the PTH group in the total augmented area and in the demarcated window, center, and Schneiderian membrane regions increased significantly from 2 to 4 weeks. The number of osteoclasts decreased significantly from 2 to 4 weeks in both groups, with no difference between the two groups. Conclusion. Intermittent PTH might not stimulate new bone formation in healthy rabbits during the first 4 weeks of healing.

  12. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    Science.gov (United States)

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  13. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting.

    Science.gov (United States)

    Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner

    2014-01-01

    Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of

  14. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality.

    Science.gov (United States)

    Martín-Fernández, M; López-Herradón, A; Piñera, A R; Tomé-Bermejo, F; Duart, J M; Vlad, M D; Rodríguez-Arguisjuela, M G; Alvarez-Galovich, L

    2017-08-01

    demonstrate the efficacy and safety of cement-augmented screws for the treatment of patients with low bone mineral density. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix.

    Science.gov (United States)

    Vidyadharan, Arun Kumar; Ravindran, Anjana

    2014-01-01

    Patient wanted to restore her lost teeth with implants in the lower left first molar and second premolar region. Cone beam computerized tomography (CBCT) revealed inadequate bone width and height around future implant sites. The extraction socket of second premolar area revealed inadequate socket healing with sparse bone fill after 4 months of extraction. To evaluate the clinical feasibility of using a collagen physical resorbable barrier made of human pericardium (HP) to augment localized alveolar ridge defects for the subsequent placement of dental implants. Ridge augmentation was done in the compromised area using Puros® demineralized bone matrix (DBM) Putty with chips and an HP allograft membrane. Horizontal (width) and vertical hard tissue measurements with CBCT were recorded on the day of ridge augmentation surgery, 4 month and 7 months follow-up. Intra oral periapical taken 1 year after implant installation showed minimal crestal bone loss. Bone volume achieved through guided bone regeneration was a gain of 4.8 mm horizontally (width) and 6.8 mm vertically in the deficient ridge within a period of 7 months following the procedure. The results suggested that HP Allograft membrane may be a suitable component for augmentation of localized alveolar ridge defects in conjunction with DBM with bone chips.

  16. Thyroid disorders and bone mineral metabolism

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Dhanwal

    2011-01-01

    Full Text Available Thyroid diseases have widespread systemic manifestations including their effect on bone metabolism. On one hand, the effects of thyrotoxicosis including subclinical disease have received wide attention from researchers over the last century as it an important cause of secondary osteoporosis. On the other hand, hypothyroidism has received lesser attention as its effect on bone mineral metabolism is minimal. Therefore, this review will primarily focus on thyrotoxicosis and its impact on bone mineral metabolism.

  17. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    Directory of Open Access Journals (Sweden)

    Kolsoom Parvaneh

    2014-01-01

    Full Text Available A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1 increasing mineral solubility due to production of short chain fatty acids; (2 producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3 reducing intestinal inflammation followed by increasing bone mass density; (4 hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  18. Preservation of bone structure and function by Lithothamnion sp. derived minerals.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M; Graf, Kristin H; Naik, Madhav; Goldstein, Steven A; Varani, James

    2013-12-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5-10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy.

  19. Bisphophonates in CKD Patients with Low Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Wen-Chih Liu

    2013-01-01

    Full Text Available Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients.

  20. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    Science.gov (United States)

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  1. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    Science.gov (United States)

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  2. Long-term stability of contour augmentation in the esthetic zone

    DEFF Research Database (Denmark)

    Jensen, Simon S; Bosshardt, Dieter D; Gruber, Reinhard

    2014-01-01

    , recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. METHODS: Over an 8-year period, 12 biopsies were harvested 14 to 80 months......BACKGROUND: Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition...... after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. RESULTS: The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered...

  3. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    Science.gov (United States)

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  5. Bone formation in sinus augmentation procedures using autologous bone, porcine bone, and a 50 : 50 mixture: a human clinical and histological evaluation at 2 months.

    Science.gov (United States)

    Cassetta, Michele; Perrotti, Vittoria; Calasso, Sabrina; Piattelli, Adriano; Sinjari, Bruna; Iezzi, Giovanna

    2015-10-01

    The aim of this study was to perform a 2 months clinical and histological comparison of autologous bone, porcine bone, and a 50 : 50 mixture in maxillary sinus augmentation procedures. A total of 10 consecutive patients, undergoing two-stage sinus augmentation procedures using 100% autologous bone (Group A), 100% porcine bone (Group B), and a 50 : 50 mixture of autologous and porcine bone (Group C) were included in this study. After a 2-month healing period, at the time of implant insertion, clinical evaluation was performed and bone core biopsies were harvested and processed for histological analysis. The postoperative healing was uneventful regardless of the materials used for the sinus augmentation procedures. The histomorphometrical analysis revealed comparable percentages of newly formed bone, marrow spaces, and residual grafted material in the three groups. The clinical and histological results of this study indicated that porcine bone alone or in combination with autologous bone are biocompatible and osteoconductive materials and can be successfully used in sinus augmentation procedures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Radiographic Comparison of Bovine Bone Substitute Alone versus Bovine Bone Substitute and Simvastatin for Human Maxillary Sinus Augmentation

    Directory of Open Access Journals (Sweden)

    Amir Ali Reza Rasouli Ghahroudi

    2018-01-01

    Full Text Available Objectives: The aim of this study was to compare the efficacy of bovine bone substitute (Compact Bone B. ® alone versus bovine bone substitute and simvastatin for human maxillary sinus augmentation.Materials and Methods: This study was conducted on 16 sinuses in eight patients. Radiographic assessments were done preoperatively (T0, immediately (T1 and at nine months after sinus grafting (T2. Alveolar bone height and density were assessed on cone beam computed tomography (CBCT scans using Planmeca Romexis™ Imaging Software 2.2.Results: The change in alveolar bone height and density between T0, T1 and T2 was significant in both groups. Alveolar bone height (h0, h1, h2 and vertical height of the grafted bone (g1, g2 in three lines (anterior, middle and posterior were not significantly different between groups. The grafted bone height shrinkage (% in the anterior, middle and posterior limits of the augmented area were not significantly different between groups. The existing alveolar and grafted bone density increased significantly in both groups between T1 and T2, except for the existing alveolar bone density in the control group. There were no statistically significant differences between the alveolar bone density values obtained in TI and T2 between groups, except for the existing alveolar bone density at T1.Conclusions: This study did not show any significant positive effect for simvastatin in maxillary sinus augmentation based on radiographic examination.

  7. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish

    International Nuclear Information System (INIS)

    Yang, L; Zhang, Y; Cui, F Z

    2007-01-01

    Two types of mineral-related matrix vesicle, multivesicular body (MVB) and monovesicle, were detected in the skeletal bone of zebrafish. Transmission electron microscopy and energy dispersive spectroscopy (EDS) analyses of the vesicular inclusions reveal that both types of vesicles contain calcium and phosphorus, suggesting that these vesicles may be involved in mineral ion delivery for the bone mineralization of zebrafish. However, their size and substructure are quite different. Monovesicles, whose diameter ranges from 100 nm to 550 nm, are similar to the previously reported normal matrix vesicles, while MVBs have a larger size of 700-1000 nm in nominal diameter and possess a substructure that is composed of smaller vesicles with their average size around 100 nm. The presence of mineral-related MVBs, which is first identified in zebrafish bone, indicates that the mineralization-associated transportation process of mineral ions is more complicated than is ordinarily imagined

  8. Augmented reality in bone tumour resection: An experimental study.

    Science.gov (United States)

    Cho, H S; Park, Y K; Gupta, S; Yoon, C; Han, I; Kim, H-S; Choi, H; Hong, J

    2017-03-01

    We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137-143. © 2017 Cho et al.

  9. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  10. Bone Formation Following Sinus Augmentation with an Equine-Derived Bone Graft: A Retrospective Histologic and Histomorphometric Study with 36-Month Follow-up.

    Science.gov (United States)

    Di Stefano, Danilo Alessio; Gastaldi, Giorgio; Vinci, Raffaele; Polizzi, Elisabetta Maria; Cinci, Lorenzo; Pieri, Laura; Gherlone, Enrico

    2016-01-01

    The aim of this study was to investigate bone formation over time following maxillary sinus augmentation with an enzyme-deantigenic, bone collagen-preserving equine bone graft by retrospective assessment of histomorphometric data. Records of patients with atrophic ridges who underwent maxillary sinus augmentation with the enzyme-deantigenic equine bone graft and two-step implant placement between 3 and 12 months after the sinus-augmentation surgery were assessed retrospectively. The histomorphometric data were clustered in three classes according to time of collection from the augmentation surgery and analyzed to assess newly formed bone deposition and residual biomaterial degradation rates. Data concerning the 36-month clinical follow-up were also assessed. Records of 77 patients and 115 biopsy specimens were retrieved, and histomorphometric data were clustered (3 to 5 months, n = 33; 6 to 8 months, n = 57; 9 to 12 months, n = 25). Mean minimum atrophic ridge thickness was 4.9 ± 0.5 mm (range, 4.0 to 7.1 mm). The amount of newly formed bone and residual biomaterial did not significantly differ among the three clusters. Qualitative analysis showed a denser trabecular structure in late (> 8 months) samples. At the 36-month clinical follow-up, no differences were found among the implant success rates in the three groups, according to the Albrektsson and Zarb criteria for success. The overall implant success rate was 98.3%. Based upon this retrospective human study of 77 patients with 4 to 7 mm of residual bone, when enzyme-deantigenic equine bone is used for sinus augmentation, new bone formation occurs at an early time (augmentation surgery.

  11. Bone mineral changes in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Richardson, M.L.; Harborview Medical Center, Seattle, WA; Pozzi-Mucelli, R.S.; Trieste Univ.; Kanter, A.S.; Genant, H.K.; Kolb, F.O.; Ettinger, B.

    1986-01-01

    We studied 34 patients with primary hyperparathyroidism in order to assess their bone mineral status, to determine its relationship to biochemical parameters (serum calcium and parathyroid hormone) and surgical status, and to determine the relationship between peripheral cortical bone and spinal trabecular bone in this disease. These patients were studied with radiogrammetry of the metacarpals, Norland-Cameron photon absorptiometry of the radius, quantitative computed tomography (QCT) of the spine, industrial radiography of the hands, and conventional radiography of the thoracolumbar spine. We also calculated a spinal fracture index from thoracolumbar spine films. We found that the appendicular measurements correlated well together, but less well with spinal QCT. The spinal fracture index correlated best with QCT (r = 0.55), although significant dispersion was noted. We found that, in general, these hyperparathyroid patients had statistically significant decrements in bone mineral content in both the appendicular and the axial portions of the skeleton. However, the decrement in the appendicular skeleton did not correlate well with that in the axial skeleton. Therefore we conclude that it is necessary to measure both peripheral and central bone mineral content in order to reliably assess the skeletal demineralizing effects of primary hyperparathyroidism in an individual patient. (orig.)

  12. Preservation of bone structure and function by Lithothamnion sp. – derived minerals

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M.; Graf, Kristin H.; Naik, Madhav; Goldstein, Steven A.; Varani, James

    2013-01-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5-, 12- and 18-months. At each time-point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5-months). Cortical bone increased through month-5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density (BMD) was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5–10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis - prevention strategy. PMID:24096551

  13. Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Oscar A. Decco

    2015-07-01

    Full Text Available Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.

  14. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  15. Influence of bone marrow fat on the determination of bone mineral content by QCT

    International Nuclear Information System (INIS)

    Ikeda, Toshiaki; Sakurai, Kiyoko

    1994-01-01

    Single-energy quantitative CT (SEQCT) is thought to be suitable for long-term observation of changes in bone mineral content in individual patients. However, in patients with osteoporosis, an increase in bone marrow fat cannot be ignored. The relationship between bone marrow fat and bone mineral density (BMD) at different tube voltages of 80 kV and 120 kV was investigated using a set of solution phantoms that we devised, and was also studied in healthy volunteers. On the basis of the results obtained using the solution phantoms, the influence of bone marrow fat accounted for a decrease of 8.9 mg/cm 3 in BMD value at 80 kV and of 10.8 mg/cm 3 at 120 kV in the presence of 10 vol% fat. These findings suggested that the influence of fat was less at a lower tube voltage. The formulas used to estimate the true bone mineral and fat contents from the BMD values at low and high tube voltages were derived by eliminating the influence of beam hardening. Using these formulas, we studied healthy volunteers, and found that the difference between the true BMD value and the BMD value calibrated for beam hardening averaged 17.8 mg/cm 3 at 80 kV and 22.6 mg/cm 3 at 120 kV. Moreover, the estimated concentration of bone marrow fat in the volunteers averaged 25.0 vol%. In conclusion, because SEQCT performed at a low tube voltage is less influenced by bone marrow fat, it should be selected for assessment of the clinical response to therapy and for studying sequential changes. However, in patients with a low bone mineral content indicated by SEQCT, it would be worthwhile trying to estimate both true mineral and fat contents in bone using the formulas obtained in this study in order to differentiate decrease in bone mineral from interference by bone marrow fat. (author)

  16. Biology and augmentation of tendon-bone insertion repair

    Directory of Open Access Journals (Sweden)

    Lui PPY

    2010-08-01

    Full Text Available Abstract Surgical reattachment of tendon and bone such as in rotator cuff repair, patellar-patella tendon repair and anterior cruciate ligament (ACL reconstruction often fails due to the failure of regeneration of the specialized tissue ("enthesis" which connects tendon to bone. Tendon-to-bone healing taking place between inhomogenous tissues is a slow process compared to healing within homogenous tissue, such as tendon to tendon or bone to bone healing. Therefore special attention must be paid to augment tendon to bone insertion (TBI healing. Apart from surgical fixation, biological and biophysical interventions have been studied aiming at regeneration of TBI healing complex, especially the regeneration of interpositioned fibrocartilage and new bone at the healing junction. This paper described the biology and the factors influencing TBI healing using patella-patellar tendon (PPT healing and tendon graft to bone tunnel healing in ACL reconstruction as examples. Recent development in the improvement of TBI healing and directions for future studies were also reviewed and discussed.

  17. The correlation between metacarpal bone mineral content and bone mineral density of the jawbone in implant patients

    International Nuclear Information System (INIS)

    Kuroda, Toshinobu; Takamori, Hitoshi; Yosue, Takashi

    2006-01-01

    This study estimated the relationship between metacarpal bone mineral content and jawbone density. The subjects were 141 patients who desired implant treatment and had undergone a thorough pre-operative CT examination. In the maxilla, bone mineral density (BMD) was measured at the cancellous bone between the nasal cavity and the maxillary sinus. In the mandible, BMD was measured at the cancellous bone beneath the mental foramen. The CT numbers were corrected by the quantitative computer tomography (QCT) method. Furthermore, the cortical indices of the mandible, i.e. C-PMI (Central-Panoramic Mandibular Index), and MCW (Mandibular Cortical Width) were measured and calculated from panoramic radiographs. The bone mineral content of the total body was obtained by ΣGS/D and MCI through Microdensitometry. The following results were obtained. Between the maxillary BMD and ΣGS/D and between the mandibular BMD and ΣGS/D, there was a correlation in females but no correlation in males. Between the maxillary BMD and MCI, there was a correlation in females but no correlation in males. However, in the mandibular BMD and MCI there was no correlation in females and males. Between C-PMI and ΣGS/D there was a correlation in both females and males. Between C-PMI and MCI there was a correlation in both females and males. Between MCW and ΣGS/D there was a correlation in both females and males. Between MCW and MCI there was a correlation in females, but no correlation in males. From the above results, it was concluded that the maxillary BMD and the cortical index of the mandible reflected changes in the metacarpal bone mineral content, while mandibular BMD did not. (author)

  18. Bone mineral as an electrical energy reservoir.

    Science.gov (United States)

    Nakamura, Miho; Hiratai, Rumi; Yamashita, Kimihiro

    2012-05-01

    Mechanical stress in bone induces an electrical potential generated by piezoelectricity arising from displacement of collagen fibrils. Where and for how long the potential is stored in bone; however, are still poorly understood. We investigated the electrical properties of collagen fibrils and apatite minerals and found that bone, when polarized electrically by applying an external voltage, depolarizes by two mechanisms. Plots of thermally stimulated depolarization current show two significant peaks: one at 100°C, attributed to collagen fibrils because decalcified bone exhibits depolarization peak at 100°C, and the other at 500°C, attributed to apatite minerals because calcined bone exhibits depolarization peak at 500°C and has activation energy similar to that for synthesized apatite. The crystallographic c-axis orientation of calcined bone depends on the direction in which the bone is cut, either transverse or longitudinal, and strongly affects the polarization efficacy. Copyright © 2012 Wiley Periodicals, Inc.

  19. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  20. Bone mineral density in reflex sympathetic dystrophy

    International Nuclear Information System (INIS)

    Saghaphi, M.; Azarian, A.

    2002-01-01

    Objectives: Reflex Sympathetic Dystrophy (RSD) is a complex of symptoms that produce pain burning sensation, swelling, tenderness, autonomic and physical dysfunction in joint areas, particularly distal of a limb. Osteopenia or osteoporosis is an important finding that is produced gradually in involved limb. Three phase bone can scan help to diagnosis of RSD. The disease may be bilateral but is mostly unilateral. As it is believed that bone densitometry will show osteopenia more accurate than plain comparative radiographs of the involved limbs, we investigated in patients with RSD. Methods: During last three years, 8 patients with RSD were admitted. Bone mineral density was measured for 5 patients by DEXA method. The patients were 3 males and 2 females with age range of 20 to 48 years (mean 32 years). The involved areas were ankle and foot in 4, and wrist and hand in one patient. Results: Mean Bone Mineral Content (BMC) of 4 involved lower limbs were 475 +-73 grams comparing with 516+-72 grams of uninvolved limbs (p t h patient was not significant. conclusion: comparative bone mineral density in patients with RSD of the lower limbs contributes to more accurate diagnosis than plain radiographs

  1. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review.

    Science.gov (United States)

    Chavda, Suraj; Levin, Liran

    2018-02-01

    Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.

  2. Measurement of bone mineral content by dual photon absorptiometry in patients with metabolic bone diseases

    International Nuclear Information System (INIS)

    Ohtani, Masami; Hino, Megumu; Ikekubo, Katsuji

    1991-01-01

    Dual photon absorptiometry was used to measure bone mineral content in 225 patients with metabolic bone diseases (84 males and 102 females) and 186 healthy subjects (25 males and 200 females). Mineral content of the lumbar vertebrae tended to rapidly decrease after the age of 40 in healthy female subjects. For males, gradual decrease in mineral content was associated with aging. Bone mineral content showed a correlation with the severity of osteoporosis as shown on X-ray films. Mineral content tended to be decreased in the lumbar vertebrae in patients with vertebral compression fracture, and in the femur in patients with vertebral or femoral fracture. For hyperthyroidism, mineral content of the lumbar vertebrae was decreased in some females, but was within normal limit in males. Hyperparathyroidism and hypoparathyroidism tended to be associated with decrease and increase in mineral content, respectively. Two each patients with osteomalacia or Cushing syndrome had a decreased mineral content. In these patients, it was increased after the treatment. (N.K.)

  3. Measurement of bone mineral content by dual photon absorptiometry in patients with metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Masami; Hino, Megumu; Ikekubo, Katsuji (Kobe City General Hospital (Japan)) (and others)

    1991-12-01

    Dual photon absorptiometry was used to measure bone mineral content in 225 patients with metabolic bone diseases (84 males and 102 females) and 186 healthy subjects (25 males and 200 females). Mineral content of the lumbar vertebrae tended to rapidly decrease after the age of 40 in healthy female subjects. For males, gradual decrease in mineral content was associated with aging. Bone mineral content showed a correlation with the severity of osteoporosis as shown on X-ray films. Mineral content tended to be decreased in the lumbar vertebrae in patients with vertebral compression fracture, and in the femur in patients with vertebral or femoral fracture. For hyperthyroidism, mineral content of the lumbar vertebrae was decreased in some females, but was within normal limit in males. Hyperparathyroidism and hypoparathyroidism tended to be associated with decrease and increase in mineral content, respectively. Two each patients with osteomalacia or Cushing syndrome had a decreased mineral content. In these patients, it was increased after the treatment. (N.K.).

  4. [Mineral and bone disorders in renal transplantation].

    Science.gov (United States)

    Bacchetta, Justine; Lafage-Proust, Marie-Hélène; Chapurlat, Roland

    2013-12-01

    The deregulation of bone and mineral metabolism during chronic kidney disease (CKD) is a daily challenge for physicians, its management aiming at decreasing the risk of both fractures and vascular calcifications. Renal transplantation in the context of CKD, with pre-existing renal osteodystrophy as well as nutritional impairment, chronic inflammation, hypogonadism and corticosteroids exposure, represents a major risk factor for bone impairment in the post-transplant period. The aim of this review is therefore to provide an update on the pathophysiology of mineral and bone disorders after renal transplantation. Copyright © 2013 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  5. [Metabolic status and bone mineral density in patients with pseudarthrosis of long bones in hyperhomocysteinemia].

    Science.gov (United States)

    Bezsmertnyĭ, Iu O

    2013-06-01

    In article described research of the metabolic status and bone mineral density in 153 patients with with pseudarthrosis of long bones, in individuals with consolidated fractures and healthy people. The violations of reparative osteogenesis at hyperhomocysteinemia are accompanied by disturbances of the functional state of bone tissue, inhibition of biosynthetic and increased destruction processes, reduced bone mineral density in the formation of osteopenia and osteoporosis. The degree and direction of change of bone depends on the type of violation of reparative osteogenesis.

  6. Long-term stability of contour augmentation in the esthetic zone: histologic and histomorphometric evaluation of 12 human biopsies 14 to 80 months after augmentation.

    Science.gov (United States)

    Jensen, Simon S; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel

    2014-11-01

    Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.

  7. Calcium phosphate barrier for augmentation of bone in noncontained periodontal osseous defects: a novel approach.

    Science.gov (United States)

    Chopra, Aditi; Sivaraman, Karthik; Awataramaney, Tarun K

    2014-11-01

    The aim of this technique is to augment bone in non-contained osseous deformities using a unique self-sustaining calcium phosphate barrier. Bone has the inherent ability to regenerate completely if it is provided with a fracture space or an undisturbed enclosed scaffold. A secluded environment is essential as it provides a secured, sterile and stable wound system that regenerates lost bone by a process of osteopromotion. Reconstructive techniques using bone grafts and barrier membranes utilize this principle for augmentation of deficient bony sites by providing a closed environment that promotes clot stability, graft retention, and facilitates correct cell repopulation. However, in noncontained bone defects like one walled infrabony periodontal defect or sites with horizontal bone loss, regeneration of bone still remains an unrealistic situation since osseous topography at such sites does not favor membrane stability or bone grafts retention. This case report presents a promising technique to augment bone in areas with horizontal loss. Augmentation of bone in the interdental area with horizontal bone loss was accomplished by building a contained defect using a unique self sustaining calcium phosphate cement formulation. The calcium phosphate barrier stimulates the lost cortical plates and promotes graft retention and clot stability. At 6 months, there was a significant bone fill and trabecular formation in the interdental area and reduction in tooth mobility. This promising technique could prove to be a good alternative to the conventional approaches for treating osseous deformities. Calcium phosphate is a promising barrier graft for repair of noncontained periodontal osseous defect. This technique cues both the clinicians and manufacturers to develop moldable tissue engineered constructs for osseous repair.

  8. Single x-ray transmission system for bone mineral density determination

    International Nuclear Information System (INIS)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-01-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm 2 )], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  9. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  10. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. Bone atrophy after tooth loss may leave insufficient bone for implant placement. We compared volumetric changes after autogenous ramus block bone grafting (RBG or guided bone regeneration (GBR in horizontally deficient maxilla before implant placement. Materials and Methods. In this retrospective study, volumetric changes at RBG or GBR graft sites were evaluated using cone-beam computed tomography. The primary outcome variable was the volumetric resorption rate. Secondary outcomes were bone gain, graft success, and implant insertion torque. Results. Twenty-four patients (28 grafted sites were included (GBR, 15; RBG, 13. One patient (RBG suffered mucosal dehiscence at the recipient site 6 weeks after surgery, which healed spontaneously. Mean volume reduction in the GBR and RBG groups was 12.48 ± 2.67% and 7.20 ± 1.40%, respectively. GBR resulted in significantly more bone resorption than RBG (P0.05. Conclusions. Both RBG and GBR hard-tissue augmentation techniques provide adequate bone graft volume and stability for implant insertion. However, GBR causes greater resorption at maxillary augmented sites than RBG, which clinicians should consider during treatment planning.

  11. Advances in bone augmentation to enable dental implant placement: Consensus Report of the Sixth European Workshop on Periodontology.

    Science.gov (United States)

    Tonetti, Maurizio S; Hämmerle, Christoph H F

    2008-09-01

    Bone augmentation procedures to enable dental implant placement are frequently performed in practice. In this session the European Workshop on Periodontology discussed the evidence in support of the procedures and examined both adverse events and implant performance in the augmented bone. While the available evidence improved both in quantity and quality since previous workshops the conclusions that could be drawn were limited by elements of design and/or reporting that are amenable to improvement. With regards to lateral bone augmentation, a sizable body of evidence supports its use to enable dental implant placement. The group recognized the potential for vertical ridge augmentation procedures to allow implant placement in clinical practice but questioned the applicability of these data to a wider array of operators and clinical settings. With regards to sinus floor augmentation, perforation of the sinus membrane, graft infection and graft loss resulting in inability of implant placement were the major reported adverse events. In cases with dental implants placed in pristine sites. The consensus emphasized the research need to answer questions on: (i) long-term performance of dental implants placed in augmented bone; (ii) the clinical performance of dental implants placed in augmented or pristine sites; and (iii) the clinical benefits of bone augmentation with respect to alternative treatments.

  12. Management of mineral and bone disorder after kidney transplantation.

    Science.gov (United States)

    Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Kovesdy, Csaba P; Mucsi, Istvan; Bunnapradist, Suphamai

    2012-07-01

    Mineral and bone disorders (MBDs), inherent complications of moderate and advanced chronic kidney disease, occur frequently in kidney transplant recipients. However, much confusion exists about the clinical application of diagnostic tools and preventive or treatment strategies to correct bone loss or mineral disarrays in transplanted patients. We have reviewed the recent evidence about prevalence and consequences of MBD in kidney transplant recipients and examined diagnostic, preventive and therapeutic options to this end. Low turnover bone disease occurs more frequently after kidney transplantation according to bone biopsy studies. The risk of fracture is high, especially in the first several months after kidney transplantation. Alterations in minerals (calcium, phosphorus and magnesium) and biomarkers of bone metabolism (parathyroid hormone, alkaline phosphatase, vitamin D and FGF-23) are observed with varying impact on posttransplant outcomes. Calcineurin inhibitors are linked to osteoporosis, whereas steroid therapy may lead to both osteoporosis and varying degrees of osteonecrosis. Sirolimus and everolimus might have a bearing on osteoblast proliferation and differentiation or decreasing osteoclast-mediated bone resorption. Selected pharmacologic interventions for the treatment of MBD in transplant patients include steroid withdrawal, and the use of bisphosphonates, vitamin D derivatives, calcimimetics, teriparatide, calcitonin and denosumab. MBD following kidney transplantation is common and characterized by loss of bone volume and mineralization abnormalities, often leading to low turnover bone disease. Although there are no well established therapeutic approaches for management of MBD in renal transplant recipients, clinicians should continue individualizing therapy as needed.

  13. Management of Minerals and Bone Disorders after Kidney Transplantation

    Science.gov (United States)

    Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Kovesdy, Csaba P.; Mucsi, Istvan; Bunnapradist, Suphamai

    2012-01-01

    Purpose of review Mineral and bone disorders (MBD), inherent complications of moderate and advanced chronic kidney disease (CKD), occur frequently in kidney transplant recipients. However, much confusion exists about clinical application of diagnostic tools and preventive or treatment strategies to correct bone loss or mineral disarrays in transplanted patients. We have reviewed the recent evidence about prevalence and consequences of MBD in kidney transplant recipients and examined diagnostic, preventive and therapeutic options to this end. Recent findings Low turnover bone disease occurs more frequently after kidney transplantation according to bone biopsy studies. The risk of fracture is high, especially in the first several months after kidney transplantation. Alterations in minerals (calcium, phosphorus and magnesium) and biomarkers of bone metabolism (PTH, alkaline phosphatase, vitamin D and FGF-23) are observed with varying impact on post-transplant outcomes. Calcineurin inhibitors are linked to osteoporosis, whereas steroid therapy may lead to both osteoporosis and varying degrees of osteonecrosis. Sirolimus and everolimus might have a bearing on osteoblasts proliferation and differentiation or decreasing osteoclast mediated bone resorption. Selected pharmacologic interventions for treatment of MBD in transplant patients include steroid withdrawal, the use of bisphosphonates, vitamin D derivatives, calcimimetics, teriparatide, calcitonin and denosumab. Summary MBD following kidney transplantation is common and characterized by loss of bone volume and mineralization abnormalities often leading to low turnover bone disease. Although there are no well-established therapeutic approaches for management of MBD in renal transplant recipients, clinicians should continue individualizing therapy as needed. PMID:22614626

  14. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  15. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU ...

  16. Highly porous hydroxyapatite with and without local harvested bone in sinus floor augmentation: a histometric study in pigs.

    Science.gov (United States)

    Möller, Björn; Acil, Yahya; Birkenfeld, Falk; Behrens, Eleonore; Terheyden, Hendrik; Wiltfang, Jörg

    2014-07-01

    Sinus floor augmentation with autologous bone is an accepted treatment option in dental implantology. In this study, an entirely synthetic, nano-structured, hydroxyapatite-based bone substitute material (SBSM, NanoBone(®); Artoss, Rostock, Germany) was supplemented with a mixture of locally harvested bone to enhance osteogenesis. Bilateral sinus augmentation procedures were performed in eight domestic pigs using the lateral window technique. On the right side (control), 2.6 ml of SBSM was used, and on the left side (test), 2.6 ml of SBSM with additional 15% (390 μl) autologous bone was used. At the time of augmentation, a titanium implant (ITI(®)) was inserted from a laterocaudal direction. After 3 months, the sites of augmentation were removed and examined in non-decalcified sections by microradiography and fluorescence microscopy of sequentially labelled specimens and histometry. On both sides, a significant amount of newly formed bone was observed. However, a statistically significant difference in the bone-implant contact was observed in the control group (median, 28.9%) compared with the test side with the additional autologous bone (median, 40.6%) (P = 0.01). Different bone density was achieved from the coronal to apical surfaces (medians, 54.6%, 9.6%, and 27.5%) compared with the test side (medians, 55.2%, 40.6%, and 44.2%). The median of augmentation height was 8.6 mm on the control side and 11.5 mm on the test side (P = 0.01). Bone apposition was observed in both groups after 15 days. The SBSM shows acceptable results in sinus floor augmentation. The additional use of locally harvested autologous bone enhances bone density and osseointegration of the implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  17. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  18. Bone mineral density scans in veterans

    Directory of Open Access Journals (Sweden)

    Elizabeth Bass

    2007-07-01

    Full Text Available Elizabeth Bass1,2, Etienne Pracht1,3, Philip Foulis4,51VISN 8 Patient Safety Center of Inquiry, Tampa, FL; 2School of Aging Studies, University of South Florida, Tampa, FL, USA; 3College of Public Health, University of South Florida, Tampa, FL, USA; 4James A Haley VA Hospital, Tampa, FL, USA; 5Pathology and Laboratory Medicine, College of Medicine, University of South Florida, Tampa, FL, USAGoals: Recent findings suggest the prevalence of osteoporosis among men is under-recognized. The patient population of the Veterans Health Administration (VA is predominantly male and many elderly veterans may be at risk of osteoporosis. Given the lack of data on male osteoporosis, we provide initial insight into diagnostic procedures for patients at one VA medical center. Procedures: A review and descriptive analysis of patients undergoing radiological evaluation for osteoporosis at one VA medical center.Results: We identified 4,919 patients who had bone mineral density scans from 2001–2004. VA patients receiving bone mineral density scans were commonly white, male, over age 70 and taking medications with potential bone-loss side effects.Conclusions: While further research is needed, preliminary evidence suggests that the VA screens the most vulnerable age groups in both genders. Heightened awareness among primary care providers of elderly male patients at risk of osteoporosis can lead to early intervention and improved management of this age-related condition.Keywords: bone mineral density scans, osteoporosis, veterans

  19. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  20. Percutaneous Vertebral Augmentation with Polyethylene Mesh and Allograft Bone for Traumatic Thoracolumbar Fractures

    Directory of Open Access Journals (Sweden)

    C. Schulz

    2015-01-01

    Full Text Available Purpose. In cases of traumatic thoracolumbar fractures, percutaneous vertebral augmentation can be used in addition to posterior stabilisation. The use of an augmentation technique with a bone-filled polyethylene mesh as a stand-alone treatment for traumatic vertebral fractures has not yet been investigated. Methods. In this retrospective study, 17 patients with acute type A3.1 fractures of the thoracic or lumbar spine underwent stand-alone augmentation with mesh and allograft bone and were followed up for one year using pain scales and sagittal endplate angles. Results. From before surgery to 12 months after surgery, pain and physical function improved significantly, as indicated by an improvement in the median VAS score and in the median pain and work scale scores. From before to immediately after surgery, all patients showed a significant improvement in mean mono- and bisegmental kyphoses. During the one-year period, there was a significant loss of correction. Conclusions. Based on this data a stand-alone approach with vertebral augmentation with polyethylene mesh and allograft bone is not a suitable therapy option for incomplete burst fractures for a young patient collective.

  1. Assessing screening criteria for the radiocarbon dating of bone mineral

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ricardo, E-mail: ldv1452@gmail.com [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Huels, Matthias [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Nadeau, Marie-Josee; Grootes, Pieter M. [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Garbe-Schoenberg, C.-Dieter [Institute of Geosciences, Marine Climate Research and ICPMS Lab, Kiel University, Ludewig-Meyn-Str. 10, D-24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Hollund, Hege I. [Institute for Geo- and Bioarchaeology, The VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Lotnyk, Andriy [Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure, Kiel University, Kaiserstr. 2, D-24143 Kiel (Germany); Leibniz Institute of Surface Modification (IOM), Permoserstr. 15, D-04318 Leipzig (Germany); Kienle, Lorenz [Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure, Kiel University, Kaiserstr. 2, D-24143 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany)

    2013-01-15

    Radiocarbon dating of bone mineral (carbonate in the apatite lattice) has been the target of sporadic research for the last 40 years. Results obtained by different decontamination protocols have, however, failed to provide a consistent agreement with reference ages. In particular, quality criteria to assess bone mineral radiocarbon dating reliability are still lacking. Systematic research was undertaken to identify optimal preservation criteria for bone mineral in archeological bones. Six human long bones, originating from a single site, were radiocarbon-dated both for collagen and apatite, with the level of agreement between the dates providing an indication of exogenous carbon contamination. Several techniques (Histology, FTIR, TEM, LA-ICP-MS) were employed to determine the preservation status of each sample. Research results highlight the importance of a micro-scale approach in establishing bone preservation, in particular the use of trace element concentration profiles demonstrated its potential use as a viable sample selection criterion for bone carbonate radiocarbon dating.

  2. Low bone mineral density in noncholestatic liver cirrhosis: prevalence, severity and prediction

    Directory of Open Access Journals (Sweden)

    Figueiredo Fátima Aparecida Ferreira

    2003-01-01

    Full Text Available BACKGROUND: Metabolic bone disease has long been associated with cholestatic disorders. However, data in noncholestatic cirrhosis are relatively scant. AIMS: To determine prevalence and severity of low bone mineral density in noncholestatic cirrhosis and to investigate whether age, gender, etiology, severity of underlying liver disease, and/or laboratory tests are predictive of the diagnosis. PATIENTS/METHODS: Between March and September/1998, 89 patients with noncholestatic cirrhosis and 20 healthy controls were enrolled in a cross-sectional study. All subjects underwent standard laboratory tests and bone densitometry at lumbar spine and femoral neck by dual X-ray absorptiometry. RESULTS: Bone mass was significantly reduced at both sites in patients compared to controls. The prevalence of low bone mineral density in noncholestatic cirrhosis, defined by the World Health Organization criteria, was 78% at lumbar spine and 71% at femoral neck. Bone density significantly decreased with age at both sites, especially in patients older than 50 years. Bone density was significantly lower in post-menopausal women patients compared to pre-menopausal and men at both sites. There was no significant difference in bone mineral density among noncholestatic etiologies. Lumbar spine bone density significantly decreased with the progression of liver dysfunction. No biochemical variable was significantly associated with low bone mineral density. CONCLUSIONS: Low bone mineral density is highly prevalent in patients with noncholestatic cirrhosis. Older patients, post-menopausal women and patients with severe hepatic dysfunction experienced more advanced bone disease. The laboratory tests routinely determined in patients with liver disease did not reliably predict low bone mineral density.

  3. Bone mineral density in subjects using central nervous system-active medications.

    Science.gov (United States)

    Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H

    2005-12-01

    Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.

  4. Large Bone Vertical Augmentation Using a Three-Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible

    OpenAIRE

    Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane

    2016-01-01

    Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology

  5. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  6. Comparison of instruments for dual-energy X-ray bone mineral densitometry

    International Nuclear Information System (INIS)

    Vainio, P.; Koski, E.; Ahonen, E.; Leinonen, K.; Sievaenen, H.

    1992-01-01

    While bone mineral densitometry has become a common laboratory test, it is important to pay attention to the compatability of the results from different instruments. In this study results from three commercially available bone densitometers are compared using both patient and phantom studies. Overall correlation between instruments was good but there were systematic discrepancies in the results. The three instruments provided bone mineral density (BMD) values that differed by as much as 13.5% due to differences as large as 6% in bone mineral content and as large as 7% in bone area. Thus, the BMD values obtained from different manufacturers' instruments are not directly comparable. (author)

  7. Safety of recombinant human platelet-derived growth factor-BB in Augment® Bone Graft

    Directory of Open Access Journals (Sweden)

    Luis A Solchaga

    2012-12-01

    Full Text Available This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment® Bone Graft (Augment. Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

  8. A Rapid Clinical Perspective on Bone-Mineral Density

    African Journals Online (AJOL)

    Although bone remodeling occurs throughout life, different turnover .... Further, most elderly patients ... health akin to that before suffering from a hip fracture.34 Other fractures ..... calcium absorption, indirectly promoting bone mineralization.

  9. Low bone mineral density in ambulatory persons with cerebral palsy? A systematic review.

    Science.gov (United States)

    Mus-Peters, Cindy T R; Huisstede, Bionka M A; Noten, Suzie; Hitters, Minou W M G C; van der Slot, Wilma M A; van den Berg-Emons, Rita J G

    2018-05-22

    Non-ambulatory persons with cerebral palsy are prone to low bone mineral density. In ambulatory persons with cerebral palsy, bone mineral density deficits are expected to be small or absent, but a consensus conclusion is lacking. In this systematic review bone mineral density in ambulatory persons with cerebral palsy (Gross Motor Function Classification Scales I-III) was studied. Medline, Embase, and Web of Science were searched. According to international guidelines, low bone mineral density was defined as Z-score ≤ -2.0. In addition, we focused on Z-score ≤ -1.0 because this may indicate a tendency towards low bone mineral density. We included 16 studies, comprising 465 patients aged 1-65 years. Moderate and conflicting evidence for low bone mineral density (Z-score ≤ -2.0) was found for several body parts (total proximal femur, total body, distal femur, lumbar spine) in children with Gross Motor Function Classification Scales II and III. We found no evidence for low bone mineral density in children with Gross Motor Function Classification Scale I or adults, although there was a tendency towards low bone mineral density (Z-score ≤ -1.0) for several body parts. Although more high-quality research is needed, results indicate that deficits in bone mineral density are not restricted to non-ambulatory people with cerebral palsy. Implications for Rehabilitation Although more high-quality research is needed, including adults and fracture risk assessment, the current study indicates that deficits in bone mineral density are not restricted to non-ambulatory people with CP. Health care professionals should be aware that optimal nutrition, supplements on indication, and an active lifestyle, preferably with weight-bearing activities, are important in ambulatory people with CP, also from a bone quality point-of-view. If indicated, medication and fall prevention training should be prescribed.

  10. Body composition and bone mineral mass in normal and obese female population using dual X-ray absorptiometry

    International Nuclear Information System (INIS)

    Massardo, T.; Gonzalez, P.; Coll, C.; Rodriguez, J.L.; Solis, I.; Oviedo, S.

    2002-01-01

    It has been observed that a greater percentage of body fat is associated with augmented bone mineral mass. Objective: The goal of this work was to assess the relationship between bone mineral density (BMD in g/cm 2 ) and content (BMC in g) and soft tissue components, fat and lean mass (in g) in whole body of adult female population in Chile. Method: We studied 185 volunteers, asymptomatic, excluding those using estrogens, regular medication, tobacco (>10 cigarettes/day), excessive alcohol intake or with prior oophorectomy. They were separated in 111 pre and 74 post menopausal and according to body mass index (BMI) they were 37 women > 30 kg/m 2 and 148 2 . A Lunar Dual X-Ray absorptiometer was used to determine whole BMD and BMC. Results: Post menopausal women were older and smaller [p:0.0001], with higher body mass index [p:0.0007] and with lower BMD and BMC and higher fat mass than the pre menopausal group; In the whole group, women with BMI ≥ 30 (obese) were compared with normal weight observing no difference in BMD. The fat mass incremented significantly with age. Obese women > 50 years presented greater BMC than the non-obese. The percentage of fat corresponded to 48% in the obese group and to 39% in the non-obese [p<0.0001]. Conclusion: Fat mass somehow protect bone mineral loss in older normal population, probably associated to multifactorial causes including extra ovaric estrogen production. Postmenopausal women presented lower mineral content than premenopausal, as it was expected

  11. Measurement of bone mineral using multiple-energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Our laboratory has previously reported a method of determining the amount of bone mineral using triple-energy absorptiometry with a continuous x-ray spectrum. In the present study, the experimental properties of the technique were examined. The accuracy, the influence of fat content and body thickness and the in vitro and in vivo precision were analysed. The results found in this investigation showed that despite the complexity of the technique, the amount of bone mineral can be accurately determined. The in vivo precision was determined to be 3.4%, expressed as the coefficient of variation (CV), for different skeletal parts. The in vitro precision was found to be 2.1% (CV). Neither the fat content nor the body thickness had any effect on the measured bone mineral values. Excellent linearity and a close correlation were found between the true and the measured bone mineral values. (author)

  12. Bone microarchitecture and bone mineral density in multiple sclerosis

    DEFF Research Database (Denmark)

    Olsson, A; Oturai, A B; Søndergaard, H B

    2018-01-01

    BACKGROUND: Multiple sclerosis (MS) patients are at increased risk of reduced bone mineral density (BMD) and fractures. The aetiology of bone loss in MS is unclear. Trabecular bone score (TBS) is a novel analytical tool that provides a measurement of the bone microarchitecture. Decreased TBS...... included. TBS was calculated using TBS iNsight software (MediMaps® ). Multivariable regression analyses were performed with information on smoking, alcohol, glucocorticoid (GC) treatment, sun exposure, physical activity, vitamin D and BMI. RESULTS: Trabecular bone score was not significantly different from...... an age-matched reference population. Low TBS was associated with high age (P = .014) and smoking (P = .03). Smoking and physical inactivity were associated with low BMD in spine (P = .034, P = .032). GC treatment was not associated with TBS. CONCLUSION: We could not find altered TBS values among MS...

  13. Crestal Sinus Augmentation with Recombinant Human Bone Morphogenetic Protein 2: Clinical and Radiographic Outcomes of 2-Year Pilot Trial.

    Science.gov (United States)

    Kuchler, Ulrike; Rudelstorfer, Claudia M; Barth, Barbara; Tepper, Gabor; Lidinsky, Dominika; Heimel, Patrick; Watzek, Georg; Gruber, Reinhard

    Recombinant human bone morphogenetic protein 2 (rhBMP-2) together with an absorbable collagen carrier (ACS) was approved for augmentation of the maxillary sinus prior to implant placement. The original registration trial was based on a lateral window approach. Clinical outcomes of crestal sinus augmentation with rhBMP-2 have not been reported so far. An uncontrolled pilot trial in which seven patients with a residual maxillary height below 5 mm were enrolled to receive crestal sinus augmentation with rhBMP-2/ACS was conducted. Elevation of the sinus mucosa was performed by gel pressure. Primary endpoints were the gain in augmentation height and volume measured by computed tomography after 6 months. Evaluation of bone quality at the time of implant placement was based on histology. Secondary endpoints were the clinical and radiologic evaluation of the implants and patient satisfaction by visual analog scale (VAS) at the 2-year follow-up. Median gain in augmentation height was 7.2 mm (range 0.0 to 17.5 mm). Five patients gained at least 5 mm of bone height. Two patients with a perforation of the sinus mucosa failed to respond to rhBMP-2/ACS and underwent lateral window augmentation. The median gain in augmentation volume of the five patients was 781.3 mm³ (range 426.9 to 1,242.8 mm³). Biopsy specimens showed a cancellous network consisting of primary plexiform bone with little secondary lamellar bone. After 2 years, implants were in function with no signs of inflammation or peri-implant bone loss. Patients were satisfied with the esthetic outcomes and chewing function. This pilot clinical trial supports the original concept that rhBMP-2/ACS supports bone formation, also in crestal sinus augmentation, and emphasizes the relevance of the integrity of the sinus mucosa to predict the bone gain.

  14. The effect of nutritional rickets on bone mineral density.

    Science.gov (United States)

    Thacher, Tom D; Fischer, Philip R; Pettifor, John M

    2014-11-01

    Nutritional rickets is caused by impaired mineralization of growing bone. The effect of nutritional rickets on areal bone mineral density (aBMD) has not been established. Our objective was to determine if aBMD is lower in children with active rickets than in healthy control children. We expected that the reduction in aBMD would vary between the radial and ulnar metaphyses near the growth plates and the proximal diaphyses. Case-control study. Primary care outpatient department of a teaching hospital in Jos, Nigeria. Nigerian children with radiographically-confirmed rickets were compared with a reference group of control children without rickets from the same community. Forearm bone density measurements were performed in all children with pDXA. Age, sex, and height-adjusted bone density parameters were compared between children with rickets and control subjects. A total of 264 children with active rickets (ages 13-120 months) and 660 control children (ages 11-123 months) were included. In multivariate analyses controlling for height, age, and gender, rickets was associated with a 4% greater bone area and 7% lower aBMD of the radial and ulnar metaphyses compared with controls (P rickets on the diaphyses of the radius and ulna were more pronounced with an 11% greater bone area, 21% lower aBMD, and 24% lower bone mineral apparent density than controls (P rickets, aBMD values were unrelated to dairy product intake or serum calcium, phosphorus, alkaline phosphatase, or 25-hydroxyvitamin D. Metaphyseal aBMD was positively associated with radiographic severity score, attributed to bone edge detection artifact by densitometry in active rickets. Rickets results in increased bone area and reduced aBMD, which are more pronounced in the diaphyseal than in the metaphyseal regions of the radius and ulna, consistent with secondary hyperparathyroidism, generalized osteoid expansion and impaired mineralization.

  15. Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?

    Science.gov (United States)

    Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram

    2015-07-01

    We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.

  16. Pullout strength of cement-augmented and wide-suture transosseous fixation in the greater tuberosity.

    Science.gov (United States)

    Shi, Brendan Y; Diaz, Miguel; Belkoff, Stephen M; Srikumaran, Uma

    2017-12-01

    Obtaining strong fixation in low-density bone is increasingly critical in surgical repair of rotator cuff tears because of the aging population. To evaluate two new methods of improving pullout strength of transosseous rotator cuff repair in low-density bone, we analyzed the effects of 1) using 2-mm suture tape instead of no. 2 suture and 2) augmenting the lateral tunnel with cement. Eleven pairs of osteopenic or osteoporotic cadaveric humeri were identified by dual-energy x-ray absorptiometry. One bone tunnel and one suture were placed in the heads of 22 specimens. Five randomly selected pairs were repaired with no. 2 suture; the other six pairs were repaired with 2-mm suture tape. One side of each pair received lateral tunnel cement augmentation. Specimens were tested to suture pullout. Data were fitted to multivariate models that accounted for bone mineral density and other specimen characteristics. Two specimens were excluded because of knot-slipping during testing. Use of suture tape versus no. 2 suture conferred a 75-N increase (95% CI: 37, 113) in pullout strength (PCement augmentation conferred a 42-N improvement (95% CI: 10, 75; P=0.011). Other significant predictors of pullout strength were age, sex, and bone mineral density. We show two methods of improving the fixation strength of transosseous rotator cuff repairs in low-density bone: using 2-mm suture tape instead of no. 2 suture and augmenting the lateral tunnel with cement. These methods may improve the feasibility of transosseous repairs in an aging patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Determination of bone mineral density in the third lumbar vertebral body using photon absorptiometry techniques

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Dual-photon absorptiometry and triple-energy X-ray absorptiometry were used to investigate the total bone mineral content and density as well as the trabecular bone mineral density in the third lumbar vertebral body. Both anteroposterior (AP) and lateral (LAT) measurements were performed. By combining the two projections it was found that the mean trabecular bone mineral density for all 202 subjects included in the study was 52% (SD±20%) of the total bone mineral density in the third lumbar vertebral body. The mean trabecular bone mineral density as a fraction of the total vertebral body bone mineral density decreased as a function of age. The relative annual change in this fraction differed between males and females. It was also found that neither trabecular nor total bone mineral density differed significantly between male and female subjects aged 25-35 years, and bone mineral density (BMD), expressed in g/cm 3 , showed no correlation to subject height, body weight or body mass index (BMI). Male and female individuals showed different rates of change of trabecular bone mineral density with age

  18. Maternal serum retinol and β-carotene concentrations and neonatal bone mineralization

    DEFF Research Database (Denmark)

    Händel, Mina N; Moon, Rebecca J.; Titcombe, Philip

    2016-01-01

    were assessed prepregnancy and at 11 and 34 wk of gestation. In late pregnancy, maternal serum retinol and β-carotene concentrations were measured. Offspring total body bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were measured within 2 wk after birth. RESULTS: In total......BACKGROUND: Studies in older adults and animals have suggested contrasting relations between bone health and different vitamin A compounds. To our knowledge, the associations between maternal vitamin A status and offspring bone development have not previously been elucidated. OBJECTIVE: We examined...... the associations between maternal serum retinol and β-carotene concentrations during late pregnancy and offspring bone mineralization assessed at birth with the use of dual-energy X-ray absorptiometry. DESIGN: In the Southampton Women's Survey mother-offspring birth cohort, maternal health, lifestyle, and diet...

  19. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model.

    Science.gov (United States)

    Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat

    2018-02-01

    Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.

  20. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    Energy Technology Data Exchange (ETDEWEB)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania, E-mail: oocristina@yahoo.com; Mitoseriu, Liliana, E-mail: lmtsr@uaic.ro

    2013-11-20

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring.

  1. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    International Nuclear Information System (INIS)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania; Mitoseriu, Liliana

    2013-01-01

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring

  2. Evidence-based screening for low bone mineral density in HIV-infected men.

    Science.gov (United States)

    Albright, Patsi; Du, Ping; Haas, Richard E; Pugh, Linda C

    2014-01-01

    Low bone mineral density, which leads to osteoporosis and fracture risk, is an emerging clinical problem in HIV-infected patients. Our evidence-based practice project screened a convenience sample of 225 HIV-infected men for low bone mineral density using the Osteoporosis Self-Assessment Tool, and of those men, 173 were also screened by quantitative ultrasound of the calcaneus. One hundred twelve men had low bone mineral density by either or both screening methods. Seventy-one of these 112 men were tested by dual-energy x-ray absorptiometry and 73% had low bone mineral density. The positive protective value of the Osteoporosis Self-Assessment Tool was 73% and for quantitative ultrasound was 88%. These results suggest that routine low bone mineral density screening should be included as standard practice for all HIV-infected patients. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  3. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  4. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs: part 1. Augmentation using bone graft substitutes and autogenous bone.

    Science.gov (United States)

    Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen

    2012-01-01

    To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.

  5. Normative Bone Mineral Density values in Isfahani women

    Directory of Open Access Journals (Sweden)

    Z Sayed Bonakdar

    2005-05-01

    Full Text Available Background: The correct interpretation of bone mineral density (BMDmeasurement by dual energy x ray absorptiometry(DEXA requires a population specific reference range. We collected data on age 20-35 years to obtain reference values of BMD for Isfahani women in order to make a population specific diagnosis of osteoporosis. Methods: In 660 healthy Isfahani women Volunteers (20-35 years without illness, use of drugs or predisposing conditions to osteoporosis, the BMD (gr/cm² of lumbar spine and non-dominant femur was measured by lunar DPX –IQ machine. Results: The mean BMD and its standard deviations at each site were calculated and compared with normative data from Caucasian US/North European women. No significant differences were detected between them. Conclusions: Bone mineral density measurements of these 660 healthy Isfahani women can serve as a reference guide for the diagnosis of osteoporosis in Isfahani women. Key words: Bone Mineral Density, Osteoporosis, Normative data, DEXA

  6. Computed-tomographic determination of mineral content of bones

    International Nuclear Information System (INIS)

    Delov, I.; Tabakov, S.

    1988-01-01

    The problem of precise computed-tomographic densitometry of the mineral content of bones is pointed out. A method is proposed including the use of standard density and observance of definite radiation, scanning and image estimation parameters. A good correlation of the results obtained for the mineral content of the lumbar vertebrae with literature data are reported. A method is also described for determining the mineral content of tubular bones based on densiprofile check-up of the computed-tomographic density. The procedure takes 10-15 minutes and includes 1 or 2 scans. It might therefore gain wide acceptance for the diagnosis and tracing of osteoporosis and other osteopathies associated with distrorted calcium metabolism

  7. The effect of retained intramedullary nails on tibial bone mineral density.

    Science.gov (United States)

    Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A

    2008-07-01

    Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.

  8. A Comparative Study of Quantitative Assessment of Bone Mineral Density of Mandible

    International Nuclear Information System (INIS)

    Park, Won Kyl; Choi, Eui Hwan; Kim, Jae Duk

    1999-01-01

    This study was performed to compare the bone mineral densities measured at mandibular premolar area by copper-equivalent image and hydroxyapatite phantom with those measured at radius by dual energy absorptiometry and to evaluate the clinical usefulness of Digital system with slide scanner, copper-equivalent image, and hydroxyapatite phantom. For experiment, intraoral radiograms of 15 normal subjects ranged from 20 years old to 67 old were taken with copper-step wedge at mandibular premolar area and bone mineral densities calculated by conversion equation to bone mineral density of hydroxyapatite were compared with those measured at radius distal 1/3 area by Hologic QDR-1000. Obtained results as follows: 1) The conversion equation was Y=5.97X-0.25 and its determination coefficient was 0.9967. The coefficient of variation in the measurement of copper-equivalent value ranged from 4% to 8% and showed high reproducibility. 2) The coefficient of variation in the measurement of bone mineral density by the equation ranged from 7% to 8% and showed high reproducibility. 3) The bone mineral densities ranged from 0.35 to 0.79 g/cm 2 at mandibular premolar area. 4) The correlation coefficient between bone mineral densities at mandibular premolar area and those at radius distal 1/3 area was 0.8965. As summary, digital image analyzing system using copper-equivalent image and hydroxyapatite phantom appeared to be clinically useful to measure the bone mineral density at dental area.

  9. Protocol for Bone Augmentation with Simultaneous Early Implant Placement: A Retrospective Multicenter Clinical Study

    Directory of Open Access Journals (Sweden)

    Peter Fairbairn

    2015-01-01

    Full Text Available Purpose. To present a novel protocol for alveolar bone regeneration in parallel to early implant placement. Methods. 497 patients in need of extraction and early implant placement with simultaneous bone augmentation were treated in a period of 10 years. In all patients the same specific method was followed and grafting was performed utilizing in situ hardening fully resorbable alloplastic grafting materials consisting of β-tricalcium phosphate and calcium sulfate. The protocol involved atraumatic extraction, implant placement after 4 weeks with simultaneous bone augmentation, and loading of the implant 12 weeks after placement and grafting. Follow-up periods ranged from 6 months to 10 years (mean of 4 years. Results. A total of 601 postextraction sites were rehabilitated in 497 patients utilizing the novel protocol. Three implants failed before loading and three implants failed one year after loading, leaving an overall survival rate of 99.0%. Conclusions. This standardized protocol allows successful long-term functional results regarding alveolar bone regeneration and implant rehabilitation. The concept of placing the implant 4 weeks after extraction, augmenting the bone around the implant utilizing fully resorbable, biomechanically stable, alloplastic materials, and loading the implant at 12 weeks seems to offer advantages when compared with traditional treatment modalities.

  10. EFFECTS OF RUN TRAINING ON BONE DEVELOPMENT AND BONE MINERALIZATION IN GROWING MICE

    Directory of Open Access Journals (Sweden)

    B Gönül

    2011-06-01

    Full Text Available We planned to study the body weights, bone sizes and bone mineral (Ca, Mg, Zn contents of growing mice subjected to treadmill training. Twelve 4-week-old male Swiss Albino mice were divided into sedentary and exercise groups. The mice were trained by running exercise on a flat bed treadmill with 15 m/min, 30 min/day motion, throughout 5 days per week, for 12 weeks. The body weight of animals, and length, fat-free dry weight and Ca, Mg, and Zn contents of bones were measured in both groups. Body weights of animals, and lengths and wet and dry weights of the femur and the tibia were significantly higher in the exercised group. Also, the Zn, Mg and Ca mineral contents of bones in the group that underwent exercise were higher than in the other group. Running exercise with a flat bed treadmill performed by the growing mice is an effective exercise mode, especially for bone morphology.

  11. Clinical study on bone mineral density and bone metabolism biochemical marker in hyperthyroidism

    International Nuclear Information System (INIS)

    Xu Ying; Xu Xiaohui

    2004-01-01

    To investigate the mechanism and relationship between hyperthyroidism and osteoporosis, bone mineral density was observed using dual-energy X-ray absorptiometry in 149 cases of hyperthyroidism, while serum FT 3 , FT 4 , TSH, alkaline phosphatase (ALP), BGP, and D-pyd levels were measured in 81 cases of hyperthyroidism. The osteopenia rate is 30.2% and the osteoporosis rate is 24.1% in hyperthyroidism patients. Compare with control group, bone metabolic biochemical markers in all cases of hyperthyroidism showed a significant increase, which displays high turnover osteoporosis. In order to find out the case of osteoporosis as soon as possible, bone mineral density of all patients with hyperthyroidism should be measured in the period of treatment. (authors)

  12. The Effect of Combined Exercise on Bone Mineral Density of Premenopausal Females

    Directory of Open Access Journals (Sweden)

    Safoura Ghasemi

    2016-06-01

    Full Text Available Background and Objectives: The best way to prevent osteoporosis, at old age is to prevent bone loss and at young age is trying to keep bones healthy, therefore the aim of this study was to determine the effect of combined exercise on bone mineral density of premenopausal females. Materials and Methods: This semi-experimental study was conducted among 20 premenopausal females between 40 and 45 years old, which were randomly assigned to two groups (experimental and control groups in Hamadan city, during year 2016. The experimental group completed a 12-week combined exercise-training program (6 weeks in water and 6 weeks on land, three times a week and 70 minutes per session. Before and after the 12 weeks, femoral bone mineral density in all samples was measured by DEXA bone mineral densitometry. Data were analyzed with the SPSS 21 software using descriptive and inferential statistics, such as independent and paired t-test, and Analysis of Covariance (ANCOVA. Results: Bone mineral density of femoral neck and total hip of the experimental group, had significant differences with corresponding areas of the control group (P <0.05. In other words, the results revealed that 12 weeks of combined exercise increases femoral bone mineral density in the experimental group with a significant decrease in the control group. Conclusions: According to the results, to prevent a decrease in bone mineral density during the menopausal period, combined exercises are recommended for females at this age.

  13. Giemsa as a fluorescent dye for mineralizing bone-like nodules in vitro

    International Nuclear Information System (INIS)

    Querido, W; Farina, M; Balduino, A

    2012-01-01

    Giemsa was first used as a fluorescent dye for mineralized bone and cartilage in tissue sections. The aim of this study was to establish the use of Giemsa as a fluorescent dye for mineralizing bone-like nodules produced in cell cultures. Osteoblasts were grown under mineralizing conditions for 14 days, producing typical bone-like nodules. Upon staining with Giemsa stock solution for 1 min, the mineralizing nodules could be selectively visualized emitting intense green and red fluorescence when observed under blue and green illumination, respectively. The textural details of the nodules were clearly observed under fluorescence microscopy, allowing to identify regions with different degrees of mineralization. The mineralized nature of the nodules was confirmed using von Kossa's method, Alizarin Red S staining and x-ray mapping for Ca and P in a scanning electron microscope, showing a strong correlation between the mineralizing and the fluorescent nodules. The selective fluorescence was related to the mineral phase, being absent in decalcified samples. The use of Giemsa as a fluorescent dye for mineralizing bone-like nodules presents a simple alternative method to quickly analyze biomineralization assays in vitro under fluorescence microscopy, particularly in the biological evaluation of biomaterials. (communication)

  14. High bone mineral apparent density in children with X-linked hypophosphatemia

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Brixen, K; Gram, J

    2013-01-01

    of the spine compared to femoral neck. INTRODUCTION: BMAD obtained by dual-energy X-ray absorptiometry scans in children with XLH was evaluated, as they are unlikely to have the extra-skeletal ossifications contributing to the elevated bone mineral density of the spine in adult patients. METHODS: A total of 15......Bone mineral apparent density (BMAD) in children with X-linked hypophosphatemia (XLH) was evaluated, as they are unlikely to have extra-skeletal ossifications contributing to the elevated bone mineral density of the spine in adult patients. Children with XLH also had significantly higher BMAD...

  15. Vertical ridge augmentation using xenogenous bone blocks: a comparison between the flap and tunneling procedures.

    Science.gov (United States)

    Xuan, Feng; Lee, Chun-Ui; Son, Jeong-Seog; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho

    2014-09-01

    Previous studies have shown that the subperiosteal tunneling procedure in vertical ridge augmentation accelerates healing after grafting and prevents graft exposure, with minor postoperative complications. It is conceivable that new bone formation would be greater with the tunneling procedure than with the flap procedure, because the former is minimally invasive. This hypothesis was tested in this study by comparing new bone formation between the flap and tunneling procedures after vertical ridge augmentation using xenogenous bone blocks in a canine mandible model. Two Bio-Oss blocks were placed on the edentulous ridge in each side of the mandibles of 6 mongrel dogs. The blocks in each side were randomly assigned to grafting with a flap procedure (flap group) or grafting with a tunneling procedure (tunneling group). The mean percentage of newly formed bone within the block was 15.3 ± 6.6% in the flap group and 46.6 ± 23.4% in the tunneling group. Based on data presented in this study, when a tunneling procedure is used to place xenogenous bone blocks for vertical ridge augmentation, bone formation in the graft sites is significantly greater than when a flap procedure is used. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  17. Practice of martial arts and bone mineral density in adolescents of both sexes

    Science.gov (United States)

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  18. Bone and mineral metabolism in adult celiac disease

    International Nuclear Information System (INIS)

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-01-01

    Bone mineral density ( 125 I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups

  19. Bone and mineral metabolism in adult celiac disease

    Energy Technology Data Exchange (ETDEWEB)

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.

  20. Accuracy of dual photon absorptiometry for assessment of bone mineral and body composition

    International Nuclear Information System (INIS)

    Aoki, Manabu; Iwamura, Akira; Goto, Eisuke; Mori, Yutaka; Kawakami, Kenji; Soshi, Shigeru

    1991-01-01

    Accuracy of bone mineral measurement by the dual photon absorptiometry (DPA) was studied in comparison to ashed bone mineral (ash) on the lumbar spine of 23 cada vars. There was a high correlation (r=0.896) between the value of DPA and ash weight. Bone mineral content in the radius by the single photon absorptiometry (SPA) did not correlate to bone mineral density (BMD) by DPA in the patients with hemodialysis. SPA may be less useful to assess BMD of the whole body. Fat mass and lean mass measured by DPA were well correlated to the value obtained by the electrical impedance method. Precision in measurement of fat mass and lean mass was also confirmed by the electrical impedance method. These results suggest that DPA has a high precision for measurements of the bone mineral and the body composition. (author)

  1. Bone mineral measurements and the pathogenesis of osteoporosis

    International Nuclear Information System (INIS)

    Aloia, J.F.; Vaswani, A.N.; Ellis, K.J.; Cohn, S.H.

    1986-01-01

    Low bone mass (osteopenia) is a major factor in the development of osteoporotic fractures in women after the menopause. The pathogenesis of postmenopausal osteoporosis has been pursued by dual lines of investigation: (1) development of a model to describe involutional bone loss, (2) identification of those factors which result in some healthy women having a greater risk for osteoporosis than others. Bone mineral measurements have been made using in vivo neutron activation analysis and whole body counting for the measurement of total body calcium (TBCa), single photon absorptiometry for the measurement of bone mineral content of the distal radius and dual photon absorptiometry for measurement of the bone density of the spine. TBCa is higher in men than women and is lost at a slow linear rate in men. Blacks have a skeletal mass about 8-9% higher than Caucasians. Women have a similar loss of TBCa to men prior to menopause, but then have an accelerated rate of loss after menopause. The change in bone density of the radius and spine with increasing age is also best described by a 2 phase regression in women, with appreciable loss after age 50

  2. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    Science.gov (United States)

    Buehler, Markus J.

    2007-07-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril).

  3. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    International Nuclear Information System (INIS)

    Buehler, Markus J

    2007-01-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril)

  4. Effect of parity on bone mineral density: A systematic review and meta-analysis.

    Science.gov (United States)

    Song, Seung Yeon; Kim, Yejee; Park, Hyunmin; Kim, Yun Joo; Kang, Wonku; Kim, Eun Young

    2017-08-01

    Parity has been suggested as a possible factor affecting bone health in women. However, study results on its association with bone mineral density are conflicting. PubMed, EMBASE, the Cochrane Library, and Korean online databases were searched using the terms "parity" and "bone mineral density", in May 2016. Two independent reviewers extracted the mean and standard deviation of bone mineral density measurements of the femoral neck, spine, and total hip in nulliparous and parous healthy women. Among the initial 10,146 studies, 10 articles comprising 24,771 women met the inclusion criteria. The overall effect of parity on bone mineral density was positive (mean difference=5.97mg/cm 2 ; 95% CI 2.37 to 9.57; P=0.001). The effect appears site-specific as parity was not significantly associated with the bone mineral density of the femoral neck (P=0.09) and lumbar spine (P=0.17), but parous women had significantly higher bone mineral density of the total hip compared to nulliparous women (mean difference=5.98mg/cm 2 ; 95% CI 1.72 to 10.24; P=0.006). No obvious heterogeneity existed among the included studies (femoral neck I 2 =0%; spine I 2 =31%; total hip I 2 =0%). Parity has a positive effect on bone in healthy, community-dwelling women and its effect appears site-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bone mineral density and menstrual function in adolescent female ...

    African Journals Online (AJOL)

    Bone mineral density and menstrual function in adolescent female long-distance runners - A prospective comparative study of bone structure and menstrual function in adolescent female endurance athletes from five secondary schools in Pretoria.

  6. [Practice of martial arts and bone mineral density in adolescents of both sexes].

    Science.gov (United States)

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa Junior, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-06-01

    The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    Science.gov (United States)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  8. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  9. Assessment of gene-by-sex interaction effect on bone mineral density

    DEFF Research Database (Denmark)

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M

    2012-01-01

    Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and ......Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome...

  10. [Levels of bone mineral matrix organization and the mechanisms determining parameters of its formation].

    Science.gov (United States)

    Avrunin, A S; Tikhilov, R M; Abolin, A B; Shcherbak, I G

    2005-01-01

    Authors suggest to regard bone mineral matrix as the four-level structure. The first level is represented by an internal structure of a mineral, the second--by mineral morphological structure, the third--by coplanar association of minerals, and the fourth--by macroassociation of minerals in a single complex inside each bone. The most probable mechanisms determining stability of reproduction of mineral matrix parameters on each of these levels are shown. As a result of their functioning, the variants of bone mineral matrix structures are formed that are the programmed reflection of specificity of the given site of organic structures.

  11. Experimental Evaluation of the Effectiveness of Demineralized Bone Matrix and Collagenated Heterologous Bone Grafts Used Alone or in Combination with Platelet-Rich Fibrin on Bone Healing in Sinus Floor Augmentation.

    Science.gov (United States)

    Peker, Elif; Karaca, Inci Rana; Yildirim, Benay

    2016-01-01

    The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation

  12. [Dietary patterns in college freshmen and its relation to bone mineral density].

    Science.gov (United States)

    Wang, Sufang; Mu, Min; Zhao, Yan; Wang, Xiaoqin; Shu, Long; Li, Qingyan; Li, Yingchun

    2012-07-01

    In order to investigate the bone density of freshmen, and to analyze the association between dietary pattern and bone mineral density (BMD). A questionnaire survey on the situation of dietary pattern was conducted in 1414 freshmen. Effective dietary survey questionnaires and bone mineral density measurements were completed for 1319 participants. Bone mass was assessed by using an Ultrasound Bone Densitometer on the right calcaneus (CM-200, Furuno Electric Corporation, Japan), and the speed of sound (SOS, m/s) was used as an indicator for bone density. Factor analysis with varimax rotation was used to identify the dietary patterns. After adjusting for confounders, covariance with Bonferroni's was used to further examine the associations between dietary patterns and bone mineral density (BMD). (1) Four major dietary patterns were noticed. Western food pattern (high consumption in hamburger, fried food, nuts, biscuit, chocolate, cola, coffee, sugars). Animal protein pattern (high consumption in pork, mutton, beef, poultry meat, animal liver). Calcium pattern (high consumption in fresh fruits, eggs, fish and shrimps, kelp laver and sea fish, milk and dairy products, beans and bean products). Traditional Chinese pattern (high consumption in rice and grain, fresh fruits, fresh vegetables, pork). (2) No association was observed between the western food pattern and bone mineral density. High animal protein pattern showed lower SOS value compared with low animal protein pattern. High calcium pattern showed higher SOS value compared with low calcium pattern. High traditional Chinese pattern showed higher SOS value compared with the low traditional Chinese pattern. Dietary patterns are closely related with bone mineral density (BMD) of freshmen.

  13. Alveolar bone loss and mineralization in the pig with experimental periodontal disease

    Directory of Open Access Journals (Sweden)

    Mandee Yang

    2018-03-01

    Full Text Available Objective: To address how experimental periodontal disease affects alveolar bone mass and mineral apposition in a young pig model. Materials and methods: Seven three-month-old pigs were periodically inoculated with 4 types of periodontal bacteria, along with a ligature around the last maxillary deciduous molar for 8 weeks to induce periodontal disease (PG. Eight same-aged pigs served as the control (CG. Segmentations of 3D cone-beam CT images were performed to quantify volumes of the total alveolar bone, alveolar ridge, and all roots of the target molar. Calcein and alizarin were administered for labeling mineral apposition before euthanasia. The harvested molar blocks were sectioned and examined under epifluorescence. The inter-label distance between the two vital markers at regional bone surfaces were measured and mineral apposition rate (MAR was calculated. Results: A significant reduction of total alveolar bone volume was seen in PG with the major loss at the alveolar ridge. MAR was significantly higher at the root furcation region than those at both buccal and palatal ridges in CG. Compared with CG, PG animals showed more interrupted labeled bands with significantly lower MAR at the furcation region. MARs were positively associated with both the volumes of total alveolar bone and ridge in CG, but only with the total alveolar bone in PG. Conclusions: In young growing pigs, mineral apposition is region specific. The experimental periodontal disease not only leads to alveolar bone loss, but also perturbs mineral apposition for new bone formation, thus impairing the homeostasis of alveolar bone remodeling. Keyword: Dentistry

  14. [Polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis].

    Science.gov (United States)

    Sun, H L; Li, C D; Yang, Z C; Yi, X D; Liu, H; Lu, H L; Li, H; Wang, Y

    2016-12-18

    To describe the application of polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis. Observation group included 14 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws from November 2014 to July 2015, control group included 12 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation with traditional pedicle screws.The operation time, blood loss, number of pedicle screws and number of augmented pedicle screws in the two groups were compared. The bone cement leakage and pulmonary bone cement embolism in the two groups were also compared. The fusion rate and pedicle screws loosening by lumbar X ray and dynamic X ray were evaluated. The clinical results were assessed by visual analog scale (VAS) of pain on lumbar and lower limbers, lumbar Japanese Orthopaedic Association scores (JOA), Prolo functional scores and Oswestry disability (ODI) scores. Differences of operation time and blood loss in the two groups were not statistically significant. The average number of pedicle screws was 9.9±4.7 and the average number of augmented pedicle screws was 5.9±2.6 in observation group while the average number of pedicle screws was 7.1±2.8 and the average number of augmented pedicle screws was 3.0±1.9 in control group. The ratio of augmented pedicle screws was higher in observation group than in control group (0.69±0.30 vs.0.47±0.30,Pdegenerative lumbar diseases with osteoporosis was effective, with simple working processes and lower risk of bone cement leakage. The short-term clinical result was good.

  15. International Longitudinal Paediatric Reference Standards for Bone Mineral Content

    Science.gov (United States)

    Baxter-Jones, Adam DG; McKay, Heather; Burrows, Melonie; Bachrach, Laura K; Lloyd, Tom; Petit, Moira; Macdonald, Heather; Mirwald, Robert L; Bailey, Don

    2014-01-01

    To render a diagnosis pediatricians rely upon reference standards for bone mineral density or bone mineral content, which are based on cross-sectional data from a relatively small sample of children. These standards are unable to adequately represent growth in a diverse pediatric population. Thus, the goal of this study was to develop sex and site specific standards for BMC using longitudinal data collected from four international sites in Canada and the United States. Data from four studies were combined; Saskatchewan Paediatric Bone Mineral Accrual Study (n=251), UBC Healthy Bones Study (n=382); Penn State Young Women’s Health Study (n=112) and Stanford’s Bone Mineral Accretion study (n=423). Males and females (8 to 25 years) were measured for whole body (WB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) BMC (g). Data were analyzed using random effects models. Bland-Altman was used to investigate agreement in predicted and actual data. Age, height, weight and ethnicity independently predicted BMC accrual across sites (P accrual; Hispanic 75.4 (28.2) g less BMC accrual; Blacks 82.8 (26.3) g more BMC accrual with confounders of age, height and weight controlled. Similar findings were found for PF and FN. Female models for all sites were similar with age, height and weight all independent significant predictors of BMC accrual (P accounting for age, size, sex and ethnicity. In conclusion, when interpreting BMC in paediatrics we recommend standards that are sex, age, size and ethnic specific. PMID:19854308

  16. International longitudinal pediatric reference standards for bone mineral content.

    Science.gov (United States)

    Baxter-Jones, Adam D G; Burrows, Melonie; Bachrach, Laura K; Lloyd, Tom; Petit, Moira; Macdonald, Heather; Mirwald, Robert L; Bailey, Don; McKay, Heather

    2010-01-01

    To render a diagnosis pediatricians rely upon reference standards for bone mineral density or bone mineral content, which are based on cross-sectional data from a relatively small sample of children. These standards are unable to adequately represent growth in a diverse pediatric population. Thus, the goal of this study was to develop sex and site-specific standards for BMC using longitudinal data collected from four international sites in Canada and the United States. Data from four studies were combined; Saskatchewan Paediatric Bone Mineral Accrual Study (n=251), UBC Healthy Bones Study (n=382); Penn State Young Women's Health Study (n=112) and Stanford's Bone Mineral Accretion study (n=423). Males and females (8 to 25 years) were measured for whole body (WB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) BMC (g). Data were analyzed using random effects models. Bland-Altman was used to investigate agreement between predicted and actual data. Age, height, weight and ethnicity independently predicted BMC accrual across sites (Paccrual; Hispanic 75.4 (28.2) g less BMC accrual; Blacks 82.8 (26.3) g more BMC accrual with confounders of age, height and weight controlled. We report similar findings for the PF and FN. Models for females for all sites were similar with age, height and weight as independent significant predictors of BMC accrual (Paccounting for age, size, sex and ethnicity. In conclusion, when interpreting BMC in pediatrics we recommend standards that are sex, age, size and ethnic specific. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  17. Influence of bone mineral density measurement on fracture risk assessment tool® scores in postmenopausal Indian women.

    Science.gov (United States)

    Daswani, Bhavna; Desai, Meena; Mitra, Sumegha; Gavali, Shubhangi; Patil, Anushree; Kukreja, Subhash; Khatkhatay, M Ikram

    2016-03-01

    Fracture risk assessment tool® calculations can be performed with or without addition of bone mineral density; however, the impact of this addition on fracture risk assessment tool® scores has not been studied in Indian women. Given the limited availability and high cost of bone mineral density testing in India, it is important to know the influence of bone mineral density on fracture risk assessment tool® scores in Indian women. Therefore, our aim was to assess the contribution of bone mineral density in fracture risk assessment tool® outcome in Indian women. Apparently healthy postmenopausal Indian women (n = 506), aged 40-72 years, without clinical risk factors for bone disease, were retrospectively selected, and their fracture risk assessment tool® scores calculated with and without bone mineral density were compared. Based on WHO criteria, 30% women were osteoporotic, 42.9% were osteopenic and 27.1% had normal bone mineral density. Fracture risk assessment tool® scores for risk of both major osteoporotic fracture and hip fracture significantly increased on including bone mineral density (P women eligible without bone mineral density was 0 and with bone mineral density was 1, P > 0.05, whereas, for hip fracture risk number of women eligible without bone mineral density was 2 and with bone mineral density was 17, P Indian women. © The Author(s) 2016.

  18. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  19. Bone mineral density in elite adolescent female figure skaters

    Directory of Open Access Journals (Sweden)

    Prelack Kathy

    2012-12-01

    Full Text Available Abstract Elite adolescent figure skaters must accommodate both the physical demands of competitive training and the accelerated rate of bone growth that is associated with adolescence, in this sport that emphasizes leanness. Although, these athletes apparently have sufficient osteogenic stimuli to mitigate the effects of possible low energy availability on bone health, the extent or magnitude of bone accrual also varies with training effects, which differ among skater disciplines. Purpose We studied differences in total and regional bone mineral density in 36 nationally ranked skaters among 3 skater disciplines: single, pairs, and dancers. Methods Bone mineral density (BMD of the total body and its regions was measured by dual energy x-ray absorptiometry (DXA. Values for total body, spine, pelvis and leg were entered into a statistical mixed regression model to identify the effect of skater discipline on bone mineralization while controlling for energy, vitamin D, and calcium intake. Results The skaters had a mean body mass index of 19.8 ± 2.1 and % fat mass of 19.2 ± 5.8. After controlling for dietary intakes of energy, calcium, and vitamin D, there was a significant relationship between skater discipline and BMD (p = 0.002, with single skaters having greater BMD in the total body, legs, and pelvis than ice dancers (p  Conclusions Single and pair skaters have greater BMD than ice dancers. The osteogenic effect of physical training is most apparent in single skaters, particularly in the bone loading sites of the leg and pelvis.

  20. Investigation of the collagen-mineral-relation in bone with special respect to bone diseases with collagen defects by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Schreiber, S. A.

    1996-06-01

    Small-angle X-ray scattering (SAXS) was used to study the structure of the collagen/mineral composite of bone in the nanometer range. The most important results were: - In horse radius, the angular distribution of mineral crystals as measured by SAXS agreed well with previous measurements of collagen orientation using circularly polarized light microscopy. This shows that the crystals are parallel to the collagen fibrils. - The effect of sodium fluoride, which stimulates bone formation, and bisphosphonates, which reduce bone resorption, were analyzed. A slight increase in the average thickness of the mineral crystals as well as changes in the structure of the mineral/collagen composite were found in the case of fluoride treated animals. No differences were found between alendronate treated animals and controls. The changes with NaF correlate with bone weakening found in an earlier study with the same animals. - In cortical bone from 9 patients with Osteogenesis Imperfecta (brittle bone disease) the mean thickness of the mineral crystals was found approximately constant around 2.4 nm, while in control bones it constantly increased with age up to about 3.5 nm. In addition, the parallel alignment of the mineral crystals was less in OI-bone than in normal controls. Hence, despite the great variability of this genetic collagen defect, smaller and less well aligned mineral crystals seem to characterize the collagen/mineral composite in OI-bone. (author)

  1. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  2. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures.

    Science.gov (United States)

    Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina

    2013-10-01

    Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality

  3. Strontium incorporates at sites critical for bone mineralization in rats with renal failure

    International Nuclear Information System (INIS)

    Oste, Line; Verberckmoes, Steven C.; Behets, Geert J.; Dams, Geert; Bervoets, An R.; De Broe, Marc E.; D'Haese, Patrick C.; Van Hoof, Viviane O.; Bohic, Sylvain; Drakopoulos, Michael

    2007-01-01

    We previously demonstrated the development of a mineralization defect during strontium administration and its reversibility after withdrawal in rats with chronic renal failure. Recently, strontium ranelate has been introduced as a therapeutic agent for osteoporosis. However, caution has to be taken, as this bone disorder mainly develops in elderly people who may present a moderately decreased renal function. In order to assess the ultra-structural localization of strontium in bone and thereby to get a better insight into the element's systemic effects on bone, synchrotron-based x-ray micro-fluorescence was applied, which showed that after 2 weeks of strontium loading (2 g l -1 in drinking water) in rats with renal failure, concomitant with the development of impaired mineralization, the element was localized mainly at the outer edge of the mineralized bone, while after longer loading periods, a more homogeneous distribution was found. After washout, strontium was found at sites deeper within the trabeculae, while newly deposited low-strontium-containing mineral was found at the outer edges. Synchrotron x-ray micro-diffraction analysis showed that strontium is incorporated in the apatite crystal lattice through exchange with calcium. The results show that strontium is initially incorporated in bone at sites of active bone mineralization, close to the osteoid/mineralization front.Most likely, strontium binds to matrix proteins serving as crystal nucleation points and by hetero-ionic substitution with calcium within the hydroxyapatite crystals, thereby impairing further hydroxyapatite formation. After withdrawal, strontium is released from these sites, by which mineralization is restored and the previously formed strontium-containing hydroxyapatite is buried under a new layer of mineralized bone. (authors)

  4. Age dependent mineral density in the bones of inhabitants of Karelia

    Directory of Open Access Journals (Sweden)

    I. G. Pashkova

    2013-01-01

    Full Text Available Analysis of the age changes of mineral density in the lumbar vertebrae was carried out in 929 people (740 women and 189 men at the age of 20 to 87 years, living in Karelia. Bone mineral density was evaluated by dual xray absorptiometry. In the women and in the men the spine bone mineralization peak was seen at the age of 22. The peak mineral density values were 5 % lower in the men and 1.6 % in the women in comparison with the data of the densitometer base. Considerable decrease of the bone mineral density in the vertebrae in the women began at the age of 41–45 years, and in the men – at the age of 51–55 years. Demineralization of the vertebrae in 75 year old women was 20 %, in the men it was 11.1 %, and in 81–87 year old women – 25.2 %.

  5. Bone mineral density trends in Indian patients with hyperthyroidism--effect of antithyroid therapy.

    Science.gov (United States)

    Dhanwal, Dinesh Kumar; Gupta, Nandita

    2011-09-01

    Hyperthyroidism is associated with bone loss, which is reversible after treatment. The extent of reversibility of loss of bone mass density (BMD) in hyperthyroid patients after treatment especially at forearm is not clear. Therefore, the present study was conducted to assess degree of reversibility in bone mineral density following one-year medical treatment in Indian patients with hyperthyroidism. A total of 30 consecutive patients with hyperthyroidism were included in this one year study at All India Institute of Medical Sciences, New Delhi, India. All the patients were assessed for parameters of bone mineral homeostasis such as calcium, phosphorous, alkaline phosphatase, 25-hydroxy vitamin D [25 (OH) D], parathyroid hormone (PTH) at the time of diagnosis and after one year medical treatment. Bone mineral density was measured using Hologic DXA scan at hip, spine and forearm. All the patients received medical therapy with carbimazole. The parameters of bone homeostasis and bone mineral density at base line and after one year medical treatment was compared. All patients attained euthyroid status after eight weeks of carbimazole therapy. Parameters of bone homeostasis such as calcium, phosphorous, 25 (OH) D and PTH did not show any significant change from base line. Bone mineral density expressed as bone mineral content in gm/cm2 at left hip neck, trochanteric and intertrochanteric region was significantly higher after carbimazole therapy (745.2 +/- 127.6 gm/cm2 vs. 688.2 +/- 123.5 gm/cm2; p = 0.02, 573.4 +/- 109.9 gm/cm2 vs. 641.0 +/- 138.0 gm/cm2, p = 0.005 and 1008.6 +/- 185.5 gm/cm2 vs. 938.0 +/- 145.3 gm/cm2 p = 0.0131 respectively). Bone mineral density at lumbar spine expressed as either T and Z score was significantly higher after treatment (10 months of euthyroid state) (-0.6 +/- 1.3 vs. -1.7 +/- 1.2, p = 0.013 and -0.4 +/- 1.2 vs. -1.4 +/- 1.2, p = 0.012 respectively). However Bone mineral measures as T and Z score at left forearm decreased significantly

  6. Relationship of changing social atmosphere, lifestyle and bone mineral density in college students

    International Nuclear Information System (INIS)

    Lee, In Ja; Ko, Yo Han; Kim, Chung Kyung; Kim, Hee Sol; Park, Da Jeong; Yoon, Hyeo Min; Jeong, Yu Jin

    2013-01-01

    The decrease of bone mineral density gives rise to the outbreak of osteopenia and makes the possibility of a bone fracture. It makes health problems in society. It's very important to prevent osteopenia in advance. Also it's critical to prevent and take care of it in adolescent because it's the most developing period comparing to middle ages because that bone mineral density decreases. There are genetic, physical and environmental factors that affect bone mineral density. Recently, a lifestyle and eating habits are also changing as the society atmosphere is gradually doing. This study have shown that 134 women and 75 men was chosen and responded to the survey of measuring bone mineral density and investigating a lifestyle. The measure of bone mineral density is to use Dual energy X-ray absorptiometry(DEXA) and check femoral neck and lumbar spine. Also questionaries was required to pre-made survey about their lifestyles. Analysis of data was done with SPSS program. Multiple regression analysis was used for the relation of bone mineral density, the heigths and BMI. The sample of Groups are checked for drinking, smoking or excercising about differences by t-test. The results of the experiments were; first, there is statistically significant differences in the comparisons between BMD and BMD. But there isn't any special correlation between drinking, smoking and BMD. Secondly, bone mineral density becomes low related to an intake of caffeine. Particularly, this is statically significant on women. Also there is statically significant correlation between femoral neck and quantity of motion for both men and women. Third, there is significant relation between eating habits and bone mineral density on women's lumbar spine. However, there is no significant relation between men's lumbar spine and women's one. Therefore, to prevent osteopenia, it's good to abstain from intaking caffeine within an hour after a meal. In addition, it

  7. Relationship of changing social atmosphere, lifestyle and bone mineral density in college students

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ja; Ko, Yo Han; Kim, Chung Kyung; Kim, Hee Sol; Park, Da Jeong; Yoon, Hyeo Min; Jeong, Yu Jin [Dept. of Radiological Technology, Dongnam Health college, Suwon (Korea, Republic of)

    2013-12-15

    The decrease of bone mineral density gives rise to the outbreak of osteopenia and makes the possibility of a bone fracture. It makes health problems in society. It's very important to prevent osteopenia in advance. Also it's critical to prevent and take care of it in adolescent because it's the most developing period comparing to middle ages because that bone mineral density decreases. There are genetic, physical and environmental factors that affect bone mineral density. Recently, a lifestyle and eating habits are also changing as the society atmosphere is gradually doing. This study have shown that 134 women and 75 men was chosen and responded to the survey of measuring bone mineral density and investigating a lifestyle. The measure of bone mineral density is to use Dual energy X-ray absorptiometry(DEXA) and check femoral neck and lumbar spine. Also questionaries was required to pre-made survey about their lifestyles. Analysis of data was done with SPSS program. Multiple regression analysis was used for the relation of bone mineral density, the heigths and BMI. The sample of Groups are checked for drinking, smoking or excercising about differences by t-test. The results of the experiments were; first, there is statistically significant differences in the comparisons between BMD and BMD. But there isn't any special correlation between drinking, smoking and BMD. Secondly, bone mineral density becomes low related to an intake of caffeine. Particularly, this is statically significant on women. Also there is statically significant correlation between femoral neck and quantity of motion for both men and women. Third, there is significant relation between eating habits and bone mineral density on women's lumbar spine. However, there is no significant relation between men's lumbar spine and women's one. Therefore, to prevent osteopenia, it's good to abstain from intaking caffeine within an hour after a meal. In addition, it

  8. Bone mineral density and metabolic indices in hyperthyroidism.

    Science.gov (United States)

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  9. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    International Nuclear Information System (INIS)

    Delmas, P.D.; Duboeuf, F.; Braillon, P.; Meunier, P.J.

    1988-01-01

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments [fr

  10. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, P.D.; Duboeuf, F.; Braillon, P.; Meunier, P.J.

    1988-06-02

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments.

  11. Effects of lactation on bone mineral content in healthy postpartum women

    International Nuclear Information System (INIS)

    Hayslip, C.C.; Klein, T.A.; Wray, H.L.; Duncan, W.E.

    1989-01-01

    Bone mineral contents were estimated by dual photon absorptiometry of the lumbar spine (L2-L4) and single photon absorptiometry of the mid- and distal radius in 19 healthy women on their second postpartum day and at 6 months postpartum. All bone mineral measurements were performed by one technician, and the single and dual photon absorptiometry results were read by one observer. Daily oral calcium intakes were estimated from dietary histories obtained by a dietitian. Twelve women who breast-fed exclusively throughout the first 6 months postpartum were compared with seven formula-feeding women who did not breast-feed or who breast-fed for less than 3 months postpartum. No differences were found in age, parity, height, weight, or daily calcium intake between the breast- and formula-feeding women. Breast-feeding women had a significant decrease (averaging 6.5%) in bone mineral of the lumbar spine at 6 months postpartum as compared with 2 days postpartum (1.14 +/- 0.03 versus 1.22 +/- 0.03 g/cm2, mean +/- SEM; P less than .001), whereas no significant change occurred in the formula-feeding women at 6 months (1.24 +/- 0.03 versus 1.26 +/- 0.04 g/cm2). At 6 months postpartum, the breast-feeding women had a significantly lower mean bone mineral content of the lumbar spine than did formula-feeding women (P less than .05). No significant changes were noted in bone mineral content of the mid- or distal radius in either group of women during the period of evaluation. We conclude that during the first 6 months postpartum, breast-feeding is associated with bone mineral loss from the lumbar spine, but not from the mid- or distal radius

  12. Low bone mineral density among patients with newly diagnosed rheumatoid arthritis

    International Nuclear Information System (INIS)

    Arain, S.R.; Riaz, A.; Nazir, L.; Umer, T.P.; Rasool, T.

    2016-01-01

    Background: Osteoporosis is an early and common feature in rheumatoid arthritis. Apart from other manifestations, Osteoporosis is an extra-articular manifestation of rheumatoid arthritis which may result in increased risk of fractures, morbidity, mortality, and associated healthcare costs. This study evaluates bone mineral density changes in patients with rheumatoid arthritis of recent-onset. Methods: This descriptive case series was conducted in the Rheumatology Department of a tertiary care hospital in Karachi. Data was prospectively collected from 76 patients presenting with seropositive or seronegative rheumatoid arthritis. Bone mineral density of these patients measured at lumbar spine and hip by using dual energy x-ray absorptiometry scan. Variables like age, gender, BMI, menstrual status, disease duration, erythrocyte sedimentation rate, vitamin D level, clinical disease activity index and seropositivity for rheumatoid arthritis were measured along with outcome variables. Results: A total of 104 patients fulfilling inclusion criteria were registered with 28 excluded from study. Among the remaining 76 patients, 68 (89.50 percentage) were female, with mean age of patients (with low bone mineral density) as 50.95±7.87 years. Nineteen (25 percentage) patients had low bone mineral density, 68.52 percentage had low BMD at spine while 10.52 percentage at hip and 21.05 percentage at spine and hip both. Low bone mineral density was found higher in patients with seronegative 7 (50 percentage) as compared to seropositive patients 12 (19.4 percentage) (p-value 0.017), whereas low bone mineral density was found higher 12 (70.6 percentage) among post-menopausal women. Conclusion: Low BMD was found in 25 percentage of patients at earlier stage of the rheumatoid arthritis with seropositivity, age and menopausal status as significant risk factors. (author)

  13. Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency

    DEFF Research Database (Denmark)

    Haaber, Anne Birgitte; Rosenfalck, A M; Hansen, B

    2000-01-01

    Calcium and vitamin D homeostasis seem to be abnormal in patients with exocrine pancreatic dysfunction resulting from cystic fibrosis. Only a few studies have evaluated and described bone mineral metabolism in patients with chronic pancreatitis and pancreatic insufficiency....

  14. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    Science.gov (United States)

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  15. Forearm bone mineralization in recently diagnosed female adolescents with a premenarchal onset of anorexia nervosa.

    Science.gov (United States)

    Roggen, Inge; Vanbesien, Jesse; Gies, Inge; Van den Eede, Ursula; Lampo, Annik; Louis, Olivia; De Schepper, Jean

    2016-08-01

    Data available on bone mineralization by peripheral quantitative computed tomography (pQCT) in adolescents with an early onset anorexia nervosa (AN) is limited. We investigated whether a disturbed bone mineralization can be observed at the distal radius in recently diagnosed female adolescents with AN and a premenarchal onset of this disease. Twenty-four premenarchal patients with AN and 22 healthy females which were age and height matched, were selected from our reference database; both groups underwent a pQCT bone assessment at the distal radius of the nondominant arm. The patients age ranged between 13.3 and 18.4 years. Their percent weight loss ranged between 5 and 36% (median 23%) and occurred within the preceding 3 to 44 months. Trabecular volumetric bone mineral density of the patient group was significantly lower than the comparison group (185.6 ± 30.2 vs.209.3 ± 34.0 mm(2) ; p = 0.02). Bone cross-sectional area, bone mineral content, total volumetric bone mineral density and periosteal circumference were also lower, albeit not significantly. The bone parameters were unrelated to the under nutrition severity and duration. In premenarchal patients with AN the trabecular bone mineralization of the forearm is significantly reduced, this might be an early indicator of altered bone mineral accrual. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:809-812). © 2016 Wiley Periodicals, Inc.

  16. Primary implant stability in augmented sinuslift-sites after completed bone regeneration: a randomized controlled clinical study comparing four subantrally inserted biomaterials.

    Science.gov (United States)

    Troedhan, Angelo; Schlichting, Izabela; Kurrek, Andreas; Wainwright, Marcel

    2014-07-30

    Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation volume. Four different biomaterials were inserted randomly (easy-graft CRYSTAL n = 38, easy-graft CLASSIC n = 41, NanoBone n = 42, BioOss n = 34), 2 ccm in each case. After a mean healing period of 8,92 months uniform tapered screw Q2-implants were inserted and Drill-Torque-Values (DTV) and ITV were recorded and compared to a group of 36 subantral sites without need of sinuslifting. DTV/ITV were processed for statistics by ANOVA-tests. Mean DTV/ITV obtained in Ncm were: Control Group 10,2/22,2, Bio-Oss 12,7/26,2, NanoBone 17,5/33,3, easy-graft CLASSIC 20,3/45,9, easy-graft CRYSTAL 23,8/56,6 Ncm, significance-level of differences throughout p < 0,05. Within the limits of this study the results suggest self-hardening solid-block-like bone-graft-materials to achieve significantly better DTV/ITV than loose granulate biomaterials for its suspected improvement of vascularization and mineralization of the subantral scaffold by full immobilization of the augmentation site towards pressure changes in the human sinus at normal breathing.

  17. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    Science.gov (United States)

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  18. Effect of weightlessness on mineral saturation of bone tissue

    Science.gov (United States)

    Krasnykh, I. G.

    1975-01-01

    X-ray photometry of bone density established dynamic changes in mineral saturation of bone tissues for Soyuz spacecraft and Salyut orbital station crews. Calcaneus optical bone densities in all crew members fell below initial values; an increase in spacecrew exposure time to weightlessness conditions also increased the degree of decalcification. Demineralization under weightlessness conditions took place at a higher rate than under hypodynamia.

  19. Bone mineral density in diabetes mellitus patients with and without a Charcot foot

    DEFF Research Database (Denmark)

    Christensen, Tomas M; Bülow, Jens; Simonsen, Lene

    2010-01-01

    To measure bone mineral density in patients with diabetes mellitus and the complication Charcot osteoarthropathy (CA).......To measure bone mineral density in patients with diabetes mellitus and the complication Charcot osteoarthropathy (CA)....

  20. Computed tomographic assessment of vertebral bone mineral in childhood

    International Nuclear Information System (INIS)

    Fredericks, B.J.; De Campo, J.F.; McCredie, D.A.

    1990-01-01

    Quantitative computed tomography (QCT) was used to assess trabecular bone mineral concentration in the vertebrae of 132 children, 45 with suspected disorder of bone mineralisation, 54 with thalassaemia and 37 controls. The range for bone mineral concentration in controls, expressed as equivalent K 2 HPO 4 concentrations, was 90-190 mg cm -3 . Abnormally low values were seen in all untreated children with idiopathic juvenile osteoporosis, 3/9 steroid recipients, and three patients with osteogenesis imperfecta. Abnormally high values were seen in 10/14 chronic renal failure patients. Comparison of the single and dual-energy methods showed that the single energy method, which has a lower radiation dose and is less prone to error from movement artifact, is satisfactory in most paediatric applications. (orig.)

  1. Factors affecting the precision of bone mineral measurements

    International Nuclear Information System (INIS)

    Cormack, J.; Evil, C.A.

    1990-01-01

    This paper discusses some statistical aspects of absorptiometric bone mineral measurements. In particular, the contribution of photon counting statistics to overall precision is estimated, and methods available for carrying out statistical comparisons of bone loss and determining their precision are reviewed. The use of replicate measurements as a means of improving measurement precision is also discussed. 11 refs

  2. Quantitative image of bone mineral content

    International Nuclear Information System (INIS)

    Katoh, Tsuguhisa

    1990-01-01

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiographing system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within ±4% and that the propagation of the film noise was within ±11 mg/cm 2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of ±10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease. (author)

  3. The relationship between bone mineral density and adipose tissue of postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hwa [Dept. of Radiology, HwaMyeong Iisin christian Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological Science, Catholic University of Pusan, Busan (Korea, Republic of); Im, In Chul [Dept. of Radiological Science, Dong Eui University, Busan (Korea, Republic of)

    2017-06-15

    Postmenopausal women are at increased risk for osteoporosis and obesity due to changes in hormones. The relationship between osteoporosis and body weight is known, and its relation with body fat mass is discussed. The purpose of this study was to evaluate the bone mineral density(BMD) changes of epicardial adipose tissue(EAT) and abdominal subcutaneous fat. The subjects of this study were 160 postmenopausal women who underwent BMD and echocardiography. The thickness of the epicardial adipose tissue was measured in three sections and the BMD were meassured according to the diagnostic criteria. The results of this study that age increase the risk of osteoporosis increases, and as the weight and BMI decrease, the risk of osteoporosis increases(p<0.05). The relationship between changes in bone mineral density and adipose tissue in postmenopausal women, increased epicardial adipose tissue was negatively correlated with the bone mineral density(p<0.05). conversely, increased abdominal subcutaneous fat thickness was positively correlated with bone mineral density(p<0.05). In other words, the effect of bone mineral density on the location of adipose tissue was different. If Echocardiography is used to periodically examine changes in the thickness of the epicardial adipose tissue, it may be prevented before proceeding to osteoporosis.

  4. Measurement of hand bone mineral content using single-photon absorptiometry

    International Nuclear Information System (INIS)

    Nicoll, J.J.; Smith, M.A.; Law, E.; Tothill, P.; Reid, D.; Brown, N.; Nuki, G.

    1987-01-01

    A single photon absorption imaging technique has been developed to assess the bone mass of the hand, especially in patients with rheumatoid arthritis or bronchial asthma. A modified rectilinear scanner images the hand by transmission scanning in a water bath with a 7.4 GBq 125 I source. A microcomputer is used to calculate the bone mineral distribution, and the total bone mineral content (BMC) of the hand is determined from that distribution. The precision (coefficient of variation) of the measurement is 1.9%. A control population of 20 men and 58 women has been studied to determine normal variations in hand bone mineral content with age, sex, body size, hand volume and years since menopause. The normal men are found to have an average hand BMC of 25.1 g with a coefficient of variation (CV) of 22%, which is reduced to 12% by normalising for body size using span. The normal women had an average hand BMC of 18.0 g +- 15%. The CV is reduced to 13% by normalising for span and years post-menopause. (author)

  5. Weight loss and bone mineral density.

    Science.gov (United States)

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  6. A clinical study evaluating bone mineral mass in the radius during skeletal growth

    International Nuclear Information System (INIS)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome. (author)

  7. Bone mineral density and body composition in adolescents with failure to thrive

    Directory of Open Access Journals (Sweden)

    Thiago Sacchetto de Andrade

    2010-06-01

    Full Text Available Objective: To evaluate bone mineral mass in adolescents with failure to thrive in relation to body composition. Methods: A case-control study involving 126 adolescents (15 to 19 years, in final puberty maturation being 76 eutrophic and 50 with failure to thrive (genetic or constitutional delay of growth, of matching ages, gender and pubertal maturation. The weight, height and calculated Z score for height/age and body mass index; bone mineral content, bone mineral density and adjusted bone mineral density were established for total body, lower back and femur; total fat-free mass and height-adjusted fat-free mass index, total fat mass and height-adjusted. The statistical analyses were performed using the Student’s t-test (weight, height and body composition; Mann-Whitney test (bone mass and multiple linear regression (bone mass determinants. Results: weight, height and height/age Z-score were significantly higher among eutrophic subjects. Both groups did not show statistically significant differences for fat mass, percentage of fat mass, total fat mass height adjusted and fat-free mass index height sadjusted. However, total free fat maass was smaller for the failure to thrive group. Conclusions: There was no statistically significant difference for bone mass measurements among adolescents with failure to thrive; however, the factors that determine bone mass formation should be better studied due to the positive correlation with free fat mass detected in these individuals.

  8. The changes of bone mineralization after parathyroidectomy in primary hyperparathyroidism. Case report

    International Nuclear Information System (INIS)

    Przedlacki, J.; Nawrot, I.; Chudzinski, W.

    1995-01-01

    The aim of the study was to evaluate the changes of bone demineralization in the patient after parathyroidectomy in primary hyperparathyroidism. Bone mineralization was evaluated by Lunar DPX-L equipment in lumbar spine, femoral neck, radius and total skeleton area in 3 months intervals during 18 months period. Because of transient after surgical hypocalcemia she has received active metabolite of vitamin D - Alfacalcidolum during one year. After removal of parathyroid adenoma there was disappearance of clinical and biochemical signs of primary hyperparathyroidism. At the same time there was total normalization of bone mineral density in lumbar spine, femoral neck, ultradistal site of radius and total area. There was partial normalization of bone mineralization in radius shaft. The surgery of adenoma in primary hyperparathyroidism with transient treatment with active metabolite of vitamin D is successful therapy of bone demineralization in this disease. (author). 5 refs, 2 figs

  9. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    International Nuclear Information System (INIS)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-01-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bones most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references

  10. Scintigraphic findings of bone and bone-marrow and determination of bone mineral density using photon absorptiometry in osteopetrosis

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Morita, Koichi

    1988-01-01

    On a 15-year-old girl with osteopetrosis, bone and bonemarrow scintigraphy were performed. Also, bone mineral density (BMD) with quantitative CT (QCT), single photon absorptiometry (SPA) and dual photon absorptiometry (DPA) were measured. On bone scintigraphy the diffusely increased skeletal uptake and relatively diminished renal uptake were noted. On the other hand, on bone marrow scintigraphy poor accumulation in central marrow and peripheral expansion were shown. BMD value by QCT and DPA (mainly trabecular bone) was markedly high, while BMD by SPA (mainly cortical bone) was within normal range. Thus, it was shown that bone and bone-marrow scintigraphy combined with BMD measurement by photon absorptiometry were useful and essential in evaluating the pathophysiology of osteosclerosis. (author)

  11. Bone mineral content of the forearm in healthy Dutch women

    NARCIS (Netherlands)

    Barentsen, R.; Raymakers, J.A.; Landman, J.O.; Duursma, S.A.

    1988-01-01

    Single energy photon absorptiometry is a reliable technique for assessing the bone mineral content (BMC) of cortical bone in the forearm. It can also be used for BMC measurement in the ultradistal part of the forearm, where there is a considerable proportion of trabecular bone. The results of a BMC

  12. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs with full

  13. Bone mineral analysis through dual energy X-ray absorptiometry in laboratory animals

    International Nuclear Information System (INIS)

    Tsujio, Masashi; Mizorogi, Toshihiro; Kitamura, Itsuko

    2009-01-01

    To determine how to eliminate species difference in animal bone experiment, bone mineral content (BMC) was measured using dual energy X-ray absorptiometry (DXA) on the femurs of laboratory mice (Mus musculus) and rats (Rattus norvegicus), and common marmosets (Callithrix jacchus). Measures were taken on femurs in situ, detached from the body, skinned and defleshed, or dried completely. When the BMC of the bone measured in the intact limb attached to the trunk was set at 100%, the actual BMC of the dry bone was 58.7±11.5% in mice and 103.2±3.2% in rats. Similarly, the bone area (Area) and bone mineral density (BMD) of the dried femur was significantly lower in the mouse femurs than intact limb. Thus, soft limb tissue such as skin and muscle modified the BMC, Area, and BMD only in mouse but not in those from rats or marmosets. The bone mineral ratio (BMR; BMC divided by dry bone weight) was nearest to the human bone value in the rat femurs, whereas the mouse femur BMR was the most different. The BMR was proved to be a practical index in evaluating bone characteristics in laboratory animals, but the mouse femur might not be suitable as an animal model for research into the aging of human bone. (author)

  14. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  15. International conference on bone mineral measurement, October 12--13, 1973, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-12-31

    From international conference on bone mineral measurement; Chicago, Illinois, USA (12 Oct 1973). Abstracts of papers presented at the international conference on bone mineral measurement are presented. The papers were grouped into two sessions: a physical session including papers on measuring techniques, errors, interpretation and correlations, dual photon techniques, and data handling and exchange; a biomedical session including papers on bone disease, osteoporosis, normative data, non-disease influences, renal, and activity and inactivity. (ERB)

  16. Complications Associated With the Use of Recombinant Human Bone Morphogenic Protein-2 in Ridge Augmentation: A Case Report.

    Science.gov (United States)

    Dragonas, Panagiotis; Palin, Charles; Khan, Saba; Gajendrareddy, Praveen K; Weiner, Whitney D

    2017-10-01

    This case report aims to describe in detail a complication associated with resorption of regenerated bone following implant placement and ridge augmentation using recombinant human bone morphogenic protein-2 (rhBMP-2) in combination with allograft and xenograft. Bilateral maxillary sinus and ridge augmentation procedures were completed using rhBMP-2 combined with allograft and xenograft. Five months later, significant bone augmentation was achieved, which allowed for the placement of 4 implants. Upon stage 2 surgery, significant dehiscence was noted in all implants. Treatment steps to address this complication included implant removal, guided bone regeneration with xenograft only, and placement of new implants followed by soft-tissue grafting. At the time of publication, this patient is status 1½ years post case completion with maintenance of therapy outcomes. Off-label use of rhBMP-2 has gained significant acceptance in implant dentistry. However, there is limited evidence regarding the bone maturation process when rhBMP-2 is combined with other biomaterials. More research may be needed regarding the timing and process of bone healing in the presence of rhBMP-2, in an effort to avoid surgical complications.

  17. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects

    DEFF Research Database (Denmark)

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled...... with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA......-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2...

  18. [Bone mineral density in overweight and obese adolescents].

    Science.gov (United States)

    Cobayashi, Fernanda; Lopes, Luiz A; Taddei, José Augusto de A C

    2005-01-01

    To study bone density as a concomitant factor for obesity in post-pubertal adolescents, controlling for other variables that may interfere in such a relation. Study comprising 83 overweight and obese adolescents (BMI > or = P85) and 89 non obese ones (P5 obesity followed by multivariate analysis (logistic regression) according to a hierarchical conceptual model. The prevalence of bone density above the median was twice more frequent among cases (69.3%) than among controls (32.1%). In the bivariate analysis such prevalence resulted in an odds ratio (OR) of 4.78. The logistic regression model showed that the association between obesity and mineral density is yet more intense with an OR of 6.65 after the control of variables related to sedentary lifestyle and intake of milk and dairy products. Obese and overweight adolescents in the final stages of sexual maturity presented higher bone mineral density in relation to their normal-weight counterparts; however, cohort studies will be necessary to evaluate the influence of such characteristic on bone resistance in adulthood and, consequently, on the incidence of osteopenia and osteoporosis at older ages.

  19. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. A double-blind randomised controlled trial.

    Science.gov (United States)

    Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Pagliaro, Umberto; Raffaelli, Eugenia; Nieri, Michele

    2015-01-01

    The objective of this parallel randomised controlled trial is to compare two bone substitutes and collagen membranes in a one-stage procedure for horizontal bone augmentation: anorganic bovine bone (Bio-Oss) and collagen porcine membranes (Bio-Gide) (BB group) versus a synthetic resorbable bone graft substitute made of pure β-tricalcium phosphate (Ceros TCP) and porcine pericardium collagen membranes (Jason) (CJ group). Patients in need of implant treatment having at least one site with horizontal osseous defects at a private clinic in Rimini (Italy) were included in this study. Patients were randomised to receive either the BB or CJ treatment. Randomisation was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes. Patients and the outcome assessor were blinded to group assignment. The main outcome measures were implant failure, complications, clinical bone gain at augmented sites, and complete filling of the bone defect. Secondary outcome measures were chair-time, postoperative pain and peri-implant marginal bone level changes. Twenty-five patients with 32 implants were allocated to the BB group and 25 patients with 29 implants to the CJ group. All 50 randomised patients received the treatment as allocated and there were no dropouts up to 6-months post-loading (12 months post-surgery). There were no failures and there were three complications in the BB group and three complications in the CJ group (relative risk: 1.00, 95% CI from 0.22 to 4.49, P = 1.00). The estimated difference between treatments in the vertical defect bone gain was -0.15 mm (95% CI from -0.65 to 0.35, P = 0.5504) favouring the BB group, and the estimated difference between treatments in the horizontal defect bone gain was -0.27 mm (95%CI from -0.73 to 0.19, P = 0.3851) favouring the BB group. There was no difference in the complete filling of the defect (relative risk: 0.88, 95%CI from 0.58 to 1.34, P = 0.7688). No significant differences were

  20. Functional grading of mineral and collagen in the attachment of tendon to bone.

    Science.gov (United States)

    Genin, Guy M; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D; Marquez, Pablo J; Thomopoulos, Stavros

    2009-08-19

    Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

  1. Physical activity and bone mineral density in Italian middle-aged women

    International Nuclear Information System (INIS)

    Bidoli, Ettore; Schinella, Domenico; Franceschi, Silvia

    1998-01-01

    Osteoporosis is a major health issue in postmenopausal women on account of the association between low bone mineral density and fractures. A role of physical activity in the prevention and treatment of low bone mineral density is possible but still unclear. The relationship between low spine bone mineral density measured by means of dual photon absorptiometry at lumbar spines, and levels of past and recent physical activity has been assessed by means of a population-based screening study carried out on 1373 women (age 40-64 years) in the North-East of Italy. Physical activity at work and in leisure time was investigated for three specific periods of life: at age 12, between 15 and 19 years (during bone formative years), and in the recent years prior to the interview (30-39 or 50-59 years). Data were analysed comparing low versus high bone mineral density tertile (i.e., 458 and 461 women, respectively), after controlling for other known contributory factors in the development of osteoporosis. A positive association emerged with leisure time physical activity, with significant trends at age 15-19 (odds ratio (OR) for low versus high tertile of leisure time activity: 1.4, 95% confidence interval (CI): 0.8-2.4) and at most recent age (OR: 1.7, 95% CI: 1.1-2.6). Risk trends with occupational physical activity were less clear and non-statistically significant. The present Southern European cross-sectional study lends further support to the possibility that past and recent physical activity helps increasing bone mineral density in middle-aged women. Although the most beneficial type and intensity level of exercise has yet to be determined, the present results provide further evidence that participation in even moderate exercise programs should be encouraged

  2. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    Science.gov (United States)

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  3. Body composition and bone mineral density measurements by using a multi-energy method

    International Nuclear Information System (INIS)

    Herve, L.

    2003-01-01

    Dual-energy X-ray absorptiometry is a major technique to evaluate bone mineral density, thus allowing diagnosis of bone decalcification ( osteoporosis). Recently, this method has proved useful to quantify body composition (fat ratio). However, these measurements suffer from artefacts which can lead to diagnosis errors in a number of cases. This work has aimed to improve both the reproducibility and the accuracy of bone mineral density and body composition measurements. To this avail, the acquisition conditions were optimised in order to ameliorate the results reproducibility and we have proposed a new method to correct inaccuracies in the determination of bone mineral density. Experimental validations yield encouraging results on both synthetic phantoms and biological samples. (author)

  4. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.

    Science.gov (United States)

    Landete-Castillejos, T; Currey, J D; Ceacero, F; García, A J; Gallego, L; Gomez, S

    2012-01-01

    It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Thyroid Stimulating Hormone and Bone Mineral Density

    DEFF Research Database (Denmark)

    van Vliet, Nicolien A; Noordam, Raymond; van Klinken, Jan B

    2018-01-01

    With population aging, prevalence of low bone mineral density (BMD) and associated fracture risk are increased. To determine whether low circulating thyroid stimulating hormone (TSH) levels within the normal range are causally related to BMD, we conducted a two-sample Mendelian randomization (MR...

  6. A facile in vitro model to study rapid mineralization in bone tissues.

    Science.gov (United States)

    Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying

    2014-09-16

    Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate

  7. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B.; Romanek, Christopher S.; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure

  8. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Lloret, Pedro, E-mail: pedroalvarez@geol.uniovi.es [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Departament of Geology, University of Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo (Spain); Rodríguez-Navarro, Alejandro B. [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Romanek, Christopher S. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY (United States); Ferrandis, Pablo [Department of Plant Production and Agricultural Technology, E.T.S. Ingenieros Agrónomos, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Martínez-Haro, Mónica [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); IMAR-Instituto do Mar, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra (Portugal); Mateo, Rafael [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure.

  9. Estimation of mineral concentration in bone samples by backscattering of beta-rays

    International Nuclear Information System (INIS)

    Meissner, J.; Marten, R.F.

    1978-01-01

    The method of using backscattered β-rays for the determination of density is used for the first time to measure the mineral concentration in specimens of bone and its usefulness as an aid in the diagnosis of osteopathies is investigated. The reliability of the technique is studied on the basis of methodical examinations employing model substances that are similar in composition to bone. For the geometry chosen for the measureing set-up, a calibration is carried out both for the determination of the effective atomic number and for the mineral concentration of measuring samples. The axial-symmetrical arrangement chose, permits the determination of the concentration to an accuracy of max. +-1% standard deviation. In agreement with computed deviations experiments confirm that with this set-up there is no dependence of the backscatter on sample density. After appropriate calibration, both mineral concentration and density can be measured in two suitable fixed positions of the beta source, sample and detector. The figure for mineral concentration calculated from the backscattering rates are compared with corresponding figure obtained with analytical chemical determinations. It can be seen that two methods have a high degree of agreement. The backscatter method seems to have the advantage of simplicity of the set-up that provides accurate results in thin specimens having a diameter of only 10 mm. With repect to measurements in bone, however, the method is limited to biopsy specimens obtained from compact bone. In such samples, however, both the absolute figure for mineral concentration can be determined and also its local variation in large parts of the skeleton examined. From the mineral concentration and density, the mineral content of the bone substance is computed; this provides differential diagnostic information on osteopathic conditions. (orig.) [de

  10. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model.

    Science.gov (United States)

    Trbakovic, Amela; Hedenqvist, Patricia; Mellgren, Torbjörn; Ley, Cecilia; Hilborn, Jöns; Ossipov, Dmitri; Ekman, Stina; Johansson, Carina B; Jensen-Waern, Marianne; Thor, Andreas

    2018-03-01

    The aim of this study was to investigate if a synthetic granular calcium phosphate compound (CPC) and a composite bisphosphonate-linked hyaluronic acid-calcium phosphate hydrogel (HABP·CaP) induced similar or more amount of bone as bovine mineral in a modified sinus lift rabbit model. Eighteen adult male New Zeeland White rabbits, received randomly one of the two test materials on a random side of the face, and bovine mineral as control on the contralateral side. In a sinus lift, the sinus mucosa was elevated and a titanium mini-implant was placed in the alveolar bone. Augmentation material (CPC, HABP·CaP or bovine bone) was applied in the space around the implant. The rabbits were euthanized three months after surgery and qualitative and histomorphometric evaluation were conducted. Histomorphometric evaluation included three different regions of interest (ROIs) and the bone to implant contact on each installed implant. Qualitative assessment (p = <.05), histomorphometric evaluations (p = < .01), and implant incorporation (p = <.05) showed that CPC and bovine mineral induced similar amount of bone and more than the HABP·CaP hydrogel. CPC induced similar amount of bone as bovine mineral and both materials induced more bone than HABP·CaP hydrogel. The CPC is suggested as a synthetic alternative for augmentations in the maxillofacial area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Progress in photon absorptiometric determination of bone mineral and body composition

    International Nuclear Information System (INIS)

    Mazess, R.B.; Witt, R.M.; Peppler, W.W.; Hanson, J.A.

    1976-01-01

    Single-photon absorptiometry, with low energy radionuclides, has become widely accepted for measurement of bone mineral content in vivo. Dual-photon absorptiometry is a newer approach which overcomes previous limitations and allows measurement of total body and spinal bone mineral with high accuracy and precision (2 percent error). Dual-photon absorptiometry also permits measurement of the lean-fat composition of soft-tissue and the monitoring of shifts in body composition and/or fluid balance

  12. Comparison between femoral bone mineral parameters assessed by QCT and dual X-ray densitometry

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Stroemsoee, K.; Alho, A.

    1995-01-01

    The aim of this study was to assess the agreement between different femoral bone mineral measures and their agreement with some biomechanical parameters. By means of quantitative CT (QCT) and dual X-ray absorptiometry (DXA), measurements were made in different locations of 33 pairs of human femur specimens. There was a principal distinction between bone density as measured by QCT and bone mass as measured by QCT and DXA. Bone mass measured by QCT and the bone mineral content (BMC) measured by DXA are true mass parameters. However, bone mineral density (BMD) as measured by DXA agreed substantially better with the mass measures than with the densities. The mass measures, including the BMD, had good agreements with each other, with a common reference parameter and with the biomechanical parameters. The QCT densities had, on the average, poor agreements with each other, with the other bone mineral measures (including the MBDs), and with the mechanical parameters. The gender differences were less for the QCT densities than for the mass parameters, whereas in this regard the BMDs were intermediate. All measures had approximately similar reproducibilities. (orig.)

  13. Evaluation of the treatment modalities for neurosensory disturbances of the inferior alveolar nerve following retromolar bone harvesting for bone augmentation.

    Science.gov (United States)

    Nogami, Shinnosuke; Yamauchi, Kensuke; Shiiba, Shunji; Kataoka, Yoshihiro; Hirayama, Bunichi; Takahashi, Tetsu

    2015-03-01

    The purpose of this study was to evaluate the treatment modalities for neurosensory disturbances (NSDs) of the inferior alveolar nerve occurring after retromolar bone harvesting for bone augmentation procedures before implant placement. One hundred four patients, of which 49 and 55 exhibited vertical or horizontal alveolar ridge defects in the mandible and maxilla, respectively, were enrolled. Nineteen patients underwent block bone grafting, 38 underwent guided bone generation or autogenous bone grafting combined with titanium mesh reconstruction, and 47 underwent sinus floor augmentation. Using a visual analog scale, we examined subjective symptoms and discomfort related to sensory alteration within the area of the NSDs in these patients. NSDs were clinically investigated using a two-point discrimination test with blunt-tipped calipers. In addition, neurometry was used for evaluation of trigeminal nerve injury. We tested three treatment modalities for NSDs: follow-up observation (no treatment), medication, and stellate ganglion block (SGB). A week after surgery, 26 patients (25.0%) experienced NSDs. Five patients received no treatment, 10 patients received medication, and 11 patients received SGB. Three months after surgery, patients in the medication and SGB group achieved complete recovery. Current perception threshold values recovered to near-baseline values at 3 months: recovery was much earlier in this group than in the other two groups. SGB can accelerate recovery from NSDs. Our results justify SGB as a reasonable treatment modality for NSDs occurring after the harvesting of retromolar bone grafts. Wiley Periodicals, Inc.

  14. The Evolving World of Chronic Kidney Disease Mineral Bone Disorder

    Directory of Open Access Journals (Sweden)

    Antonio Bellasi

    2013-07-01

    Full Text Available Chronic kidney disease – mineral and bone disorder (CKD-MBD is associated with a significant morbidity and mortality. In vitro and animal models suggest that phosphorous, calcium, parathyroid hormone, and vitamin D abnormalities, mediate the cardiovascular and bone diseases that characterise CKD-MBD and increase the risk of death. Currently, mineral abnormalities are corrected through phosphorous restriction, phosphate binders, calcimimetics and vitamin D administration. Nonetheless, data in humans that support the use of these compounds are still scarce, mainly based on observational studies. Thus, a considerable number of doubts and questions still challenge clinicians dealing with CKD patients and mineral metabolism imbalances. We herein critically review clinical evidence that support the use of different drugs in CKD-MBD.

  15. Platelet-Rich Fibrin with β-Tricalcium Phosphate—A Noval Approach for Bone Augmentation in Chronic Periapical Lesion: A Case Report

    Directory of Open Access Journals (Sweden)

    K. B. Jayalakshmi

    2012-01-01

    Full Text Available Introduction. This paper describes a case of bone augmentation with combination of Platelet-Rich Fibrin (PRF and β-TCP for treatment of chronic periapical cyst. The case was followed for 12 months. Methods. Patient presented with chronic periapical lesion in maxillary anterior teeth with history of trauma 8 years back. Radiographically, a periapical cyst was seen in relation to maxillary left central and lateral incisors. Conventional endodontic treatment was started. Since it was not successful, apical surgery was performed. Bone augmentation was done using PRF in combination with β-TCP bone graft to achieve faster healing of the periapical region. Regular followups at 3, 6, 9, and 12 months were done. Results. Healing was uneventful. Follow-up examinations revealed progressive, significant, and predictable clinical and radiographic bone regeneration/healing without any clinical symptoms. Conclusions. Combined use of PRF and β-TCP for bone augmentation in treatment of periapical defects is a potential treatment alternative for faster healing than using these biomaterials alone.

  16. The correlation between R2' and bone mineral measurements in human vertebrae: an in vitro study

    International Nuclear Information System (INIS)

    Brismar, T.B.; Karlsson, M.; Li, T.Q.; Ringertz, H.

    1999-01-01

    The aim of this study was to investigate whether MR imaging of trabecular bone structure using magnetic inhomogeneity measurements is related to the amount of bone mineral in human vertebrae. Weight, bone mineral content (BMC DXA ), bone mineral per area (BMA DXA ) and bone mineral density (BMD CT ) were determined in 12 defatted human lumbar vertebrae (L2-L4) by weighing, dual X-ray absorptiometry (DXA) and CT. Inhomogeneity caused by susceptibility differences between trabecular bone and surrounding water was studied with MR imaging at 1.5 T using the GESFIDE sequence. The pulse sequence determines the transverse relaxation rate R2 * and its two components, the non-reversible transverse relaxation rate (R2) and the reversible transverse relaxation rate (R2'; i. e. relaxation rate due to magnetic susceptibility) in a single scan. Voxel size was 0.9 x 1.9 x 5.0 mm. Positive significant correlations between R2' and weight, BMC DXA , BMA DXA and BMD CT were observed (r > 0.61 and p DXA and BMD CT (r > 0.66 and p DXA . Thus, R2' measurements are related to the amount of bone mineral, but they also provide information which is not obtainable from bone mineral measurements. (orig.) (orig.)

  17. Leptin and bone mineral density

    DEFF Research Database (Denmark)

    Morberg, Cathrine M.; Tetens, Inge; Black, Eva

    2003-01-01

    Leptin has been suggested to decrease bone mineral density (BMD). This observational analysis explored the relationship between serum leptin and BMD in 327 nonobese men (controls) (body mass index 26.1 +/- 3.7 kg/m(2), age 49.9 +/- 6.0 yr) and 285 juvenile obese men (body mass index 35.9 +/- 5.9 kg...... males, but it also stresses the fact that the strong covariation between the examined variables is a shortcoming of the cross-sectional design....

  18. Effect of strontium ranelate on bone mineral: Analysis of nanoscale compositional changes.

    Science.gov (United States)

    Rossi, André L; Moldovan, Simona; Querido, William; Rossi, Alexandre; Werckmann, Jacques; Ersen, Ovidiu; Farina, Marcos

    2014-01-01

    Strontium ranelate has been used to prevent bone loss and stimulate bone regeneration. Although strontium may integrate into the bone crystal lattice, the chemical and structural modifications of the bone when strontium interacts with the mineral phase are not completely understood. The objective of this study was to evaluate apatite from the mandibles of rats treated with strontium ranelate in the drinking water and compare its characteristics with those from untreated rats and synthetic apatites with and without strontium. Electron energy loss near edge structures from phosphorus, carbon, calcium and strontium were obtained by electron energy loss spectroscopy in a transmission electron microscope. The strontium signal was detected in the biological and synthetic samples containing strontium. The relative quantification of carbon by analyzing the CK edge at an energy loss of ΔE = 284 eV showed an increase in the number of carbonate groups in the bone mineral of treated rats. A synthetic strontium-containing sample used as control did not exhibit a carbon signal. This study showed physicochemical modifications in the bone mineral at the nanoscale caused by the systemic administration of strontium ranelate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cortical bone mineral content in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Mautalen, C.; Reyes, H.R.; Ghiringhelli, G.; Fromm, G.

    1986-01-01

    The bone mineral content (BMC) of 35 patients with primary hyperparathyroidism (PHPT) was measured at the mid radius (95% cortical bone) by photon absorptiometry of a 241 Am source. The majority of the patients had an overt disease of moderate to severe degree. Average serum calcium of the group was 12.3 mg/100 ml (range 10.6 to 18.0 mg/100 ml). The percentage of normality of the BMC was (Av +- 1 SD) 75.1 +- 13.0% for the whole group. The average increment of BMC in 14 patients 9 to 26 months after parathyroidectomy was 9.9%, with a wide dispersion. However, a highly significant negative correlation (r: 0.83; P < 0.01) was found between the initial bone mass and the percentage increment per month after surgery. No furhter gain was observed 2 years after parathyroidectomy except in one patient with an extremely severe bone loss. In spite of the gain obtained after surgery the bone mass remained markedly diminished in most patients showing that the cortical bone loss caused by PHPT is mainly irreversible. (author)

  20. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  1. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  2. Optimal management of bone mineral disorders in chronic kidney disease and end stage renal disease.

    Science.gov (United States)

    Lundquist, Andrew L; Nigwekar, Sagar U

    2016-03-01

    The review summarizes recent studies on chronic kidney disease-mineral bone disorders, with a focus on new developments in disease management. The term chronic kidney disease-mineral bone disorder has come to describe an increasingly complex network of alterations in minerals and skeletal disorders that contribute to the significant cardiovascular morbidity and mortality seen in patients with chronic kidney disease and end stage renal disease. Clinical studies continue to suggest associations with clinical outcomes, yet current clinical trials have failed to support causality. Variability in practice exists as current guidelines for management of mineral bone disorders are often based on weak evidence. Recent studies implicate novel pathways for therapeutic intervention in clinical trials. Mineral bone disorders in chronic kidney disease arise from alterations in a number of molecules in an increasingly complex physiological network interconnecting bone and the cardiovascular system. Despite extensive associations with improved outcomes in a number of molecules, clinical trials have yet to prove causality and there is an absence of new therapies available to improve patient outcomes. Additional clinical trials that can incorporate the complexity of mineral bone disorders, and with the ability to intervene on more than one pathway, are needed to advance patient care.

  3. Healing of extraction sockets and augmented alveolar defects following 1-year treatment with bisphosphonate.

    Science.gov (United States)

    Khojasteh, Arash; Behnia, Hossein; Morad, Golnaz; Dashti, Seyedeh Ghazaleh; Dehghan, Mohammad Mehdi; Shahab, Shahriyar; Abbas, Fatemeh Mashhadi

    2013-01-01

    To assess the effect of bisphosphonates on healing of extraction sockets and augmented alveolar defects, 12 adult female mongrel dogs were assigned to 2 experimental groups and a control group. The experimental groups received oral alendronate (ALN, 3.5 mg/kg/wk) or IV pamidronate (PAM, 1 mg/kg/wk) for 12 months. Animals were randomly tested for serum C-terminal telopeptide of collagen I (CTx). The right first and second premolars were extracted. After 8 weeks, extraction sites were evaluated for healing. Subsequently, 3-wall defects were created in ridges and filled with human mineralized cortical particulate bone. Two months post-augmentation, animals were sacrificed and mandibles were collected for cone-beam computed tomography (CBCT) and histomorphometric appraisal. The obtained data were compared using 1-way ANOVA test. CTx test results in both experimental groups were comparable (alveolar bone in the PAM group and the upper rim of the alveoli in the ALN group. Histologically, bone sequestra from the PAM group demonstrated empty osteocyte lacunae, while in the ALN group areas of necrotic bone along with evidence of active bone remodeling was distinguished. Eight weeks post-augmentation, the experimental groups showed no evidence of bone formation in the augmented area, while bone formation ratio was measured to be 18.32% in the control group. The mean amount of pixel intensity calculated from the CBCT images of the ALN, PAM, and control group was 113.69 ± 11.04, 124.94 ± 4.72, and 113.69 ± 6.63, respectively. Pixel intensity in PAM-treated group was significantly higher than both other groups. This study demonstrated that 1-year treatment with ALN/PAM was associated with impairment of post-extraction and post-augmentation bone healing in dogs.

  4. Calcium Regulation and Bone Mineral Metabolism in Elderly Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Vickram Tejwani

    2013-05-01

    Full Text Available The elderly chronic kidney disease (CKD population is growing. Both aging and CKD can disrupt calcium (Ca2+ homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD. CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD.

  5. The Relationship Between Osteoporotic Risk Factors and Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Şule Şahin Onat

    2013-12-01

    Full Text Available Objective: Since osteoporosis is a preventable disease to some extent, risk factor determination and if possible modification is very important. The aim of this study is to identify the relationship between ostoporotic risk factors and bone mineral density results and emphasize the importance of risk factors. Materials and Methods: The study comprised 103 postmenopausal osteoporotic women. Demographic characteristics, osteoporortic risk factors, lumbar vertebrae and femur neck T scores were recorded. Relationships between lumbar vertebra and femur neck T scores and risk factors were statistically studied. Results: Advanced age, low physical activity status, inadequte dietary calcium intake and vertebral compression fractures were found to be associated with low bone mineral density results in postmenopausal osteoporotic women whereas marital status, occupation, education level and familial fracture history were not. Furthermore early menopause was found to be associated with low femoral T scores and smoking with low lumbar T scores. Tendency to fall and number of chronic diseases were irrelevant to bone mineral density. Conclusions: Risk factor assesment is still important for osteoporosis prevention. (Turkish Journal of Osteoporosis 2013;19:74-80

  6. Phalangeal bone mineral density predicts incident fractures

    DEFF Research Database (Denmark)

    Friis-Holmberg, Teresa; Brixen, Kim; Rubin, Katrine Hass

    2012-01-01

    This prospective study investigates the use of phalangeal bone mineral density (BMD) in predicting fractures in a cohort (15,542) who underwent a BMD scan. In both women and men, a decrease in BMD was associated with an increased risk of fracture when adjusted for age and prevalent fractures...

  7. The use of bone block allografts in sinus augmentation, followed by delayed implant placement: A case series

    Directory of Open Access Journals (Sweden)

    Eurico D Aloja

    2013-01-01

    Full Text Available Purpose: This article reports the clinical outcomes observed in a large number of patients receiving block bone allograft used for sinus augmentation and delayed implant placement. Patients and Methods: In total, 28 patients (13 males with a mean age of 49.8 ± 10.1 years (range: 33-67 years were included in this case series. All selected patients suffered from severe alveolar ridge atrophy in the posterior maxilla and required bone augmentation procedures, followed by implant placement after 6 months. All patients were followed for 18 months after the grafting, with scheduled monthly visits and/or more frequent visits if required. The survival rates for both the bone blocks and placed implants were then evaluated. Results: A total of 42 blocks and 90 implants were placed. Only one bone graft and 5 implants failed; the survival rate was 97.2% and 95.5% for the bone grafts and implants, respectively. The graft failed due to the onset of post-surgical infectious sinusitis, while in some patients′ implants showed absence of osteointegration at the end of the healing phase. Of note, all failed implants were observed in heavy smokers; in all other patients, blocks and implants were successful. Conclusions: This preliminary case series suggests that the grafting of bone allograft followed by delayed implant placement may be a promising strategy for sinus augmentation. More extended and larger follow-up studies are needed to confirm this preliminary data.

  8. Multi-generational drinking of bottled low mineral water impairs bone quality in female rats.

    Directory of Open Access Journals (Sweden)

    Zhiqun Qiu

    Full Text Available Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse.To elucidate the skeletal effects of multi-generational bottled water drinking in female rats.Rats continuously drank tap water (TW, bottled natural water (bNW, bottled mineralized water (bMW, or bottled purified water (bPW for three generations.The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group.Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model.

  9. Esthetic evaluation of single-tooth implants in the anterior maxilla following autologous bone augmentation.

    Science.gov (United States)

    Hof, M; Pommer, B; Strbac, G D; Sütö, D; Watzek, G; Zechner, W

    2013-08-01

    Autologous bone augmentation to rebuild compromised alveolar ridge contour prior to implant placement allows for favorable three-dimensional implant positioning to achieve optimum implant esthetics. The aim of the present study was to evaluate peri-implant soft tissue conditions around single-tooth implants following bone grafts in the esthetic zone of the maxilla. Sixty patients underwent autologous bone augmentation of deficient maxillary sites prior to placement of 85 implants in the esthetic zone. In case of multiple implants per patient, one implant was randomly selected. Objective evaluation of 60 single-tooth implants was performed using the Pink-Esthetic-Score (PES) and Papilla Index (PI) and supplemented by subjective patient evaluation, as well as clinical and radiologic examination. Objective ratings of implant esthetics were satisfactory (median PES: 11, median PI: 2) and significantly correlated with high patient satisfaction (mean VAS score: 80%). Both esthetic indices demonstrated respectable levels of inter- as well as intra-observer agreement. Poor implant esthetics (low PES and PI ratings) were significantly associated with increased anatomic crown height, while no influence of horizontal implant-tooth distance could be found. The present investigation indicates that favorable esthetic results may be achieved in the augmented anterior maxilla. However, bony reconstruction of compromised alveolar ridges does not guarantee optimum implant esthetics. © 2011 John Wiley & Sons A/S.

  10. Three-Dimensional Volumetric Changes in Severely Resorbed Alveolar Sockets After Ridge Augmentation with Bovine-Derived Xenograft and Resorbable Barrier: A Preliminary Study on CBCT Imaging.

    Science.gov (United States)

    Manavella, Valeria; Romano, Federica; Corano, Lisa; Bignardi, Cristina; Aimetti, Mario

    The primary aim of the study was to describe a novel technique to evaluate volumetric hard tissue dimensional changes after ridge augmentation procedures. The secondary aim was to apply this newly developed measuring method to compromised alveolar sockets grafted with a slowly resorbing biomaterial covered with a collagen membrane. Eleven patients (6 men and 5 women, mean age 52.7 ± 8.3 years) requiring extraction of one hopeless tooth for severe periodontitis in the maxillary anterior area were consecutively treated with a ridge augmentation procedure. All experimental sockets showed advanced buccal bone plate deficiency and were grafted with deproteinized bovine bone mineral with 10% collagen covered with a collagen membrane. Sockets healed by secondary intention. Three-dimensional volumetric alveolar bone changes were calculated by superimposing cone beam computed tomography scans obtained before and 12 months after the augmentation procedure. After 12 months, the alveolar mineralized tissue filled 91.20% ± 7.96% of the maximum volume for regeneration. The augmentation procedure appeared not only to compensate for bone remodeling in most alveolar regions but also to repair a significant portion of the buccal wall. The most significant ridge width changes occurred 1 mm apical to the bone crest (2.33 ± 1.46 mm, P socket volume. A ridge preservation technique performed with collagenated bovine bone and a collagen membrane was able to improve ridge shape and dimensions in compromised alveolar sockets.

  11. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    Treadmill walking exercise modulates bone mineral status and inflammatory cytokines in obese asthmatic patients with long term intake of corticosteroids. Shehab M. Abd El-Kader, Osama H. Al-Jiffri, Eman M. Ashmawy, Riziq Allah M. Gaowgzeh ...

  12. The clinical value of membranes in bone augmentation procedures in oral implantology: 
A systematic review of randomised controlled trials

    NARCIS (Netherlands)

    Jonker, Brend P.; Roeloffs, Maarten W. K.; Wolvius, Eppo B.; Pijpe, Justin

    2016-01-01

    To determine the clinical value of membranes in bone augmentation procedures such as ridge augmentation with simultaneous (one-stage) and delayed (two-stage) implant placement, sinus augmentation surgery, ridge preservation and immediate implant placement. In April 2016, Embase, Medline (Ovid-SP),

  13. The use of Na-22 as a tracer for long-term bone mineral turnover studies

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Palmer, R.F.; Gillis, M.F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease

  14. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism.

    Science.gov (United States)

    Gutiérrez, Orlando M; Luzuriaga-McPherson, Alexandra; Lin, Yiming; Gilbert, Linda C; Ha, Shin-Woo; Beck, George R

    2015-11-01

    Phosphorus-based food additives can substantially increase total phosphorus intake per day, but the effect of these additives on endocrine factors regulating bone and mineral metabolism is unclear. This study aimed to examine the effect of phosphorus additives on markers of bone and mineral metabolism. Design and Setting, and Participants: This was a feeding study of 10 healthy individuals fed a diet providing ∼1000 mg of phosphorus/d using foods known to be free of phosphorus additives for 1 week (low-additive diet), immediately followed by a diet containing identical food items; however, the foods contained phosphorus additives (additive-enhanced diet). Parallel studies were conducted in animals fed low- (0.2%) and high- (1.8%) phosphorus diets for 5 or 15 weeks. The changes in markers of mineral metabolism after each diet period were measured. Participants were 32 ± 8 years old, 30% male, and 70% black. The measured phosphorus content of the additive-enhanced diet was 606 ± 125 mg higher than the low-additive diet (P additive diet, consuming the additive-enhanced diet for 1 week significantly increased circulating fibroblast growth factor 23 (FGF23), osteopontin, and osteocalcin concentrations by 23, 10, and 11%, respectively, and decreased mean sclerostin concentrations (P foods can disturb bone and mineral metabolism in humans. The results of the animal studies suggest that this may compromise bone health.

  15. Bone mineral content (bmc and bone mineral density (bmd in postmenopausal women formerly practising kayaking and fencing

    Directory of Open Access Journals (Sweden)

    B Raczyńska

    2003-06-01

    Full Text Available The investigation was aimed at answering the following questions: 1 Can a prolonged career in sports associated with considerable training loads, in conjunction with other osteoporosis risk factors (both past and present, affect the bone mineral content (BMC and bone mineral density (BMD of the former female athletes in their postmenopausal period of life?, and 2 How does the present lifestyle of the tested women, including physical activity and diet (calcium intake, influence the preservation of the optimal bone mass in these subjects? The postmenopausal subjects recruited to the present study included 15 former athletes (ten kayakers and five fencers and 11 women who never actively engaged in sports (control group. BMC (g and BMD (g/cm2 were densitometrically determined in the lumbar segment (L2-L4 of the spine, and the bone stiffness coefficient was ultrasonically determined in calcaneus. The effects of the osteoporosis risk factors (both past and present were estimated from individual replies to the questionnaire inquiries about the past career in sports, present physical activity, gonadal dysfunctions (dysmenorrhoea during the career and the present need for hormonal supplementary treatment, and the current dietary patterns. The results indicate that mean BMC and BMD values detected in the former athletes did not differ significant from those obtained in the non-athlete, control women: the BMC values equalled to 54.5±10.5, 52.6±14.6, and 46.5±3.2 g in the kayakers, the fencers, and the control women, respectively, while the respective BMD values were 1.05±0.45, 0.96±0.66, and 1.08±0.58 g/cm2. The questionnaire-based studies showed that neither the former female athletes nor the non-athlete controls exhibited in the past longer (i.e., lasting more than three months periods of hormonal disorders (amenorrhoea. As assessed from the dietary intake, only in the former fencers the diet covered the demand for calcium in 100%. In conclusion

  16. Bone mineral density deficits in childhood cancer survivors: Pathophysiology, prevalence, screening, and management

    Directory of Open Access Journals (Sweden)

    Min Jae Kang

    2013-02-01

    Full Text Available As chemotherapy and other sophisticated treatment strategies evolve and the number of survivors of long-term childhood cancer grows, the long-term complications of treatment and the cancer itself are becoming ever more important. One of the most important but often neglected complications is osteoporosis and increased risk of fracture during and after cancer treatment. Acquisition of optimal peak bone mass and strength during childhood and adolescence is critical to preventing osteoporosis later in life. However, most childhood cancer patients have multiple risk factors for bone mineral loss. Cancer itself, malnutrition, decreased physical activity during treatment, chemotherapeutic agents such as steroids, and radiotherapy cause bone mineral deficit. Furthermore, complications such as growth hormone deficiency and musculoskeletal deformity have negative effects on bone metabolism. Low bone mineral density is associated with fractures, skeletal deformity, pain, and substantial financial burden not only for childhood cancer survivors but also for public health care systems. Thus, it is important to monitor bone health in these patients and minimize their risk of developing osteoporosis and fragility fractures later in life.

  17. Prevalence of low bone mineral density in children and adolescents with celiac disease under treatment

    Directory of Open Access Journals (Sweden)

    Maria Eugênia Farias Almeida Motta

    Full Text Available CONTEXT AND OBJECTIVE: Low bone mineral density may be a finding among children and adolescents with celiac disease, including those undergoing treatment with a gluten-free diet, but the data are contradictory. The aim of this study was to determine the frequency of bone mineral density abnormalities in patients on a gluten-free diet, considering age at diagnosis and duration of dietary treatment. DESIGN AND SETTING: Cross-sectional prevalence study at the Pediatric Gastroenterology Outpatient Clinic of Instituto Materno Infantil Professor Fernando Figueira. METHODS: Thirty-one patients over five years of age with celiac disease and on a gluten-free diet were enrolled. Bone mineral density (in g/cm² was measured in the lumbar spine and whole body using bone densitometry and categorized using the criteria of the International Society for Clinical Densitometry, i.e. low bone mineral density for chronological age < -2.0 Z-scores. Age at diagnosis and duration of dietary treatment were confirmed according to the date of starting the gluten-free diet. RESULTS: Low bone density for chronological age was present in 3/31 patients in the lumbar spine and 1/31 in the whole body (also with lumbar spine abnormality. At diagnosis, three patients with low bone mineral density for the chronological age were more than 7.6 years old. These patients had been on a gluten-free diet for six and seven months and 3.4 years. CONCLUSION: Pediatric patients with celiac disease on long-term treatment are at risk of low bone mineral density. Early diagnosis and long periods of gluten-free diet are directly implicated in bone density normalization.

  18. Cervical vertebral bone mineral density changes in adolescents during orthodontic treatment.

    Science.gov (United States)

    Crawford, Bethany; Kim, Do-Gyoon; Moon, Eun-Sang; Johnson, Elizabeth; Fields, Henry W; Palomo, J Martin; Johnston, William M

    2014-08-01

    The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status. In this study, we examined whether cone-beam computed tomography images can be used to detect changes of CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment. Eighty-two cone-beam computed tomography images were obtained from 41 patients before (14.47 ± 1.42 years) and after (16.15 ± 1.38 years) orthodontic treatment. Two cervical vertebral bodies (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after converting the cone-beam computed tomography images. Significant changes for the examined variables were detected during the observation period (P ≤0.018) except for C3 vertebral body volume (P = 0.210). The changes of CVM stage had significant positive correlations with those of vertebral body volume (P ≤0.021). The change of the standard deviation of bone mineral density (variability) showed significant correlations with those of vertebral body volume and mandibular length for C2 (P ≤0.029). The means and variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because of active bone remodeling during maturation. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  20. Increased vertebral bone mineral in response to reduced exercise in amenorrheic runners.

    Science.gov (United States)

    Lindberg, J S; Powell, M R; Hunt, M M; Ducey, D E; Wade, C E

    1987-01-01

    Seven female runners found to have exercise-induced amenorrhea and decreased bone mineral were reevaluated after 15 months. During the 15-month period, four runners took supplemental calcium and reduced their weekly running distance by 43%, resulting in an average 5% increase in body weight, increased estradiol levels and eumenorrhea. Bone mineral content increased from 1.003+/-0.097 to 1.070+/-0.089 grams per cm.(2) Three runners continued to have amenorrhea, with no change in running distance or body weight. Estradiol levels remained abnormally low and there was no significant change in the bone mineral content, although all three took supplemental calcium. We found that early osteopenia associated with exercise-induced menstrual dysfunction improved when runners reduced their running distance, gained weight and became eumenorrheic.

  1. Bone Mineral Status in Children and Adolescents with Klinefelter Syndrome

    Directory of Open Access Journals (Sweden)

    Stefano Stagi

    2016-01-01

    Full Text Available Objective. Klinefelter syndrome (KS has long-term consequences on bone health. However, studies regarding bone status and metabolism during childhood and adolescence are very rare. Patients. This cross-sectional study involved 40 (mean age: 13.7±3.8 years KS children and adolescents and 80 age-matched healthy subjects. For both patient and control groups, we evaluated serum levels of ionised and total calcium, phosphate, total testosterone, luteinising hormone, follicle stimulating hormone, parathyroid hormone (PTH, 25-hydroxyvitamin D (25(OHD, 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline concentrations. We also calculated the z-scores of the phalangeal amplitude-dependent speed of sound (AD-SoS and the bone transmission time (BTT. Results. KS children and adolescents showed significantly reduced AD-SoS (p<0.005 and BTT (p<0.0005 z-scores compared to the controls. However, KS patients presented significantly higher PTH (p<0.0001 and significantly lower 25(OHD (p<0.0001, osteocalcin (p<0.05, and bone alkaline phosphatase levels (p<0.005. Interestingly, these metabolic bone disorders were already present in the prepubertal subjects. Conclusions. KS children and adolescents exhibited impaired bone mineral status and metabolism with higher PTH levels and a significant reduction of 25-OH-D and bone formation markers. Interestingly, this impairment was already evident in prepubertal KS patients. Follow-ups should be scheduled with KS patients to investigate and ameliorate bone mineral status and metabolism until the prepubertal ages.

  2. Interlaboratory variation in a commercial bone mineral analyzer

    International Nuclear Information System (INIS)

    Mazess, R.B.; Witt, R.

    1983-01-01

    Measurements of bone mineral content (BMC) were made in 14 different laboratories in the US and four in Europe using commercially produced instrumentation (Norland Bone Mineral Analyzer) for 125 I absorptiometry. A three-chambered standard (dipotassium hydrogen phosphate) was measured in each laboratory following their own calibration. The values of BMC in the middle range (0.6 g/cm) all were adequate (within +-2%), but the BMC values were underestimated by 5% or more in five laboratories for the largest chamber and in three laboratories for the smallest chamber. Width values were accurate (+-3%) over 0.7 to 1.6 cm. The effect of underestimating large values in clinical studies is to reduce the difference between normals and abnormals. Calibration error also may be responsible for the variable normal values found in the US and Europe by osme users of this instrument

  3. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    International Nuclear Information System (INIS)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il

    2012-01-01

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  4. Maxillary Sinus Floor Augmentation With Synthetic Bone Substitutes Compared With Other Grafting Materials

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Mordenfeld, Arne; Becktor, Jonas Peter

    2018-01-01

    OBJECTIVE: To test the hypotheses of no differences in implant treatment outcome after maxillary sinus floor augmentation (MSFA) with synthetic bone substitutes (SBS) compared with other grafting materials applying the lateral window technique. MATERIALS AND METHODS: A MEDLINE/PubMed, Embase and ...

  5. Abnormalities in biomarkers of mineral and bone metabolism in kidney donors.

    Science.gov (United States)

    Kasiske, Bertram L; Kumar, Rajiv; Kimmel, Paul L; Pesavento, Todd E; Kalil, Roberto S; Kraus, Edward S; Rabb, Hamid; Posselt, Andrew M; Anderson-Haag, Teresa L; Steffes, Michael W; Israni, Ajay K; Snyder, Jon J; Singh, Ravinder J; Weir, Matthew R

    2016-10-01

    Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long-term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (-7.0% and -5.0%) and serum phosphate concentrations (-6.4% and -2.3%). Serum 1,25-dihydroxyvitamin D3 concentrations were significantly lower (-17.1% and -12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%) and procollagen type I N-terminal propeptide (24.3% and 8.9%), were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long-term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers.

    Science.gov (United States)

    Yair, R; Shahar, R; Uni, Z

    2015-11-01

    The objective of this study was to examine the effect of in ovo feeding (IOF) with inorganic minerals or organic minerals and vitamin D3 on bone properties and mineral consumption. Eggs were incubated and divided into 4 groups: IOF with organic minerals, phosphate, and vitamin D3 (IOF-OMD); IOF with inorganic minerals and phosphate (IOF-IM); sham; and non-treated controls (NTC). IOF was performed on embryonic day (E) 17; tibiae and yolk samples were taken on E19 and E21. Post-hatch, only chicks from the IOF-OMD, sham, and NTC were raised, and tibiae were taken on d 10 and 38. Yolk mineral content was examined by inductively coupled plasma spectroscopy. Tibiae were tested for their whole-bone mechanical properties, and mid-diaphysis bone sections were indented in a micro-indenter to determine bone material stiffness (Young's modulus). Micro-computed tomography (μCT) was used to examine cortical and trabecular bone structure. Ash content analysis was used to examine bone mineralization. A latency-to-lie (LTL) test was used to measure standing ability of the d 38 broilers. The results showed that embryos from both IOF-OMD and IOF-IM treatments had elevated Cu, Mn, and Zn amounts in the yolk on E19 and E21 and consumed more of these minerals (between E19 and E21) in comparison to the sham and NTC. On E21, these hatchlings had higher whole-bone stiffness in comparison to the NTC. On d 38, the IOF-OMD had higher ash content, elevated whole-bone stiffness, and elevated Young's modulus (in males) in comparison to the sham and NTC; however, no differences in standing ability were found. Very few structural differences were seen during the whole experiment. This study demonstrates that mineral supplementation by in ovo feeding is sufficient to induce higher mineral consumption from the yolk, regardless of its chemical form or the presence of vitamin D3. Additionally, IOF with organic minerals and vitamin D3 can increase bone ash content, as well as stiffness of the whole

  7. Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth.

    Science.gov (United States)

    Sloofman, Laura G; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M; Farach-Carson, Mary C; Boskey, Adele L; Kirn-Safran, Catherine B

    2010-07-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. 2010 Elsevier Inc. All rights reserved.

  8. Is bone mineral composition disrupted by organochlorines in east Greenland polar bears (Ursus maritimus)?

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, Rune; Born, Erik W

    2004-01-01

    We analyzed bone mineral density (BMD) in skulls of polar bears (Ursus maritimus) (n = 139) from East Greenland sampled during 1892-2002. Our primary goal was to detect possible changes in bone mineral content (osteopenia) due to elevated exposure to organochlorine [polychlorinated biphenyls (PCBs...

  9. Clinical study evaluating bone mineral mass in the radius during skeletal growth. Single photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome.

  10. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  11. Acceleration of biomimetic mineralization to apply in bone regeneration

    International Nuclear Information System (INIS)

    Jayasuriya, A Champa; Shah, Chiragkumar; Ebraheim, Nabil A; Jayatissa, Ahalapitiya H

    2008-01-01

    The delivery of growth factors and therapeutic drugs into bone defects is a major clinical challenge. Biomimetically prepared bone-like mineral (BLM) containing a carbonated apatite layer can be used to deliver growth factors and drugs in a controlled manner. In the conventional biomimetic process, BLM can be deposited on the biodegradable polymer surfaces by soaking them in simulated body fluid (SBF) for 16 days or more. The aim of this study was to accelerate the biomimetic process of depositing BML in the polymer surfaces. We accelerated the deposition of mineral on 3D poly(lactic-co-glycolic acid) (PLGA) porous scaffolds to 36-48 h by modifying the biomimetic process parameters and applying surface treatments to PLGA scaffolds. The BLM was coated on scaffolds after surface treatments followed by incubation at 37 0 C in 15 ml of 5x SBF. We characterized the BLM created using the accelerated biomineralization process with wide angle x-ray diffraction (XRD), Fourier transform infrared (FTIR) microscopy, and scanning electron microscopy (SEM). The FTIR and XRD analyses of mineralized scaffolds show similarities between biomimetically prepared BLM, and bone bioapatite and carbonated apatite. We also found that the BLM layer on the surface of scaffolds was stable even after 21 days immersed in Tris buffered saline and cell culture media. This study suggests that BLM was stable for at least 3 weeks in both media, and therefore, BLM has a potential for use as a carrier for biological molecules for localized release applications as well as bone tissue engineering applications

  12. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis

    NARCIS (Netherlands)

    Cox, L.G.E.; Donkelaar, van C.C.; Rietbergen, van B.; Emans, P.J.; Ito, K.

    2012-01-01

    For many years, pharmaceutical therapies for osteoarthritis (OA) were focused on cartilage. However, it has been theorized that bone changes such as increased bone volume fraction and decreased bone matrix mineralization may play an important role in the initiation and pathogenesis of OA as well.

  13. Relationship between tissue stiffness and degree of mineralization of developing trabecular bone

    NARCIS (Netherlands)

    Mulder, L.; Koolstra, J.H.; den Toonder, J.M.J.; van Eijden, T.M.G.J.

    2008-01-01

    It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and

  14. Reduced quantitative ultrasound bone mineral density in HIV-infected patients on antiretroviral therapy in Senegal.

    Directory of Open Access Journals (Sweden)

    Amandine Cournil

    Full Text Available BACKGROUND: Bone status in HIV-infected patients on antiretroviral treatment (ART is poorly documented in resource-limited settings. We compared bone mineral density between HIV-infected patients and control subjects from Dakar, Senegal. METHODS: A total of 207 (134 women and 73 men HIV-infected patients from an observational cohort in Dakar (ANRS 1215 and 207 age- and sex-matched controls from the general population were enrolled. Bone mineral density was assessed by quantitative ultrasound (QUS at the calcaneus, an alternative to the reference method (i.e. dual X-absorptiometry, often not available in resource-limited countries. RESULTS: Mean age was 47.0 (±8.5 years. Patients had received ART for a median duration of 8.8 years; 45% received a protease inhibitor and 27% tenofovir; 84% had undetectable viral load. Patients had lower body mass index (BMI than controls (23 versus 26 kg/m(2, P<0.001. In unadjusted analysis, QUS bone mineral density was lower in HIV-infected patients than in controls (difference: -0.36 standard deviation, 95% confidence interval (CI: -0.59;-0.12, P = 0.003. Adjusting for BMI, physical activity, smoking and calcium intake attenuated the difference (-0.27, CI: -0.53;-0.002, P = 0.05. Differences in BMI between patients and controls explained a third of the difference in QUS bone mineral density. Among patients, BMI was independently associated with QUS bone mineral density (P<0.001. An association between undetectable viral load and QUS bone density was also suggested (β = 0.48, CI: 0.02;0.93; P = 0.04. No association between protease inhibitor or tenofovir use and QUS bone mineral density was found. CONCLUSION: Senegalese HIV-infected patients had reduced QUS bone mineral density in comparison with control subjects, in part related to their lower BMI. Further investigation is needed to clarify the clinical significance of these observations.

  15. Prior ankle fractures in postmenopausal women are associated with low areal bone mineral density and bone microstructure alterations.

    Science.gov (United States)

    Biver, E; Durosier, C; Chevalley, T; Herrmann, F R; Ferrari, S; Rizzoli, R

    2015-08-01

    In a cross-sectional analysis in postmenopausal women, prior ankle fractures were associated with lower areal bone mineral density (BMD) and trabecular bone alterations compared to no fracture history. Compared to women with forearm fractures, microstructure alterations were of lower magnitude. These data suggest that ankle fractures are another manifestation of bone fragility. Whether ankle fractures represent fragility fractures associated with low areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) and/or bone microstructure alterations remains unclear, in contrast to the well-recognised association between forearm fractures and osteoporosis. The objective of this study was to investigate aBMD, vBMD and bone microstructure in postmenopausal women with prior ankle fracture in adulthood, compared with women without prior fracture or with women with prior forearm fractures, considered as typically of osteoporotic origin. In a cross-sectional analysis in the Geneva Retirees Cohort study, 63 women with ankle fracture and 59 with forearm fracture were compared to 433 women without fracture (mean age, 65 ± 1 years). aBMD was measured by dual-energy X-ray absorptiometry; distal radius and tibia vBMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography. Compared with women without fracture, those with ankle fractures had lower aBMD, radius vBMD (-7.9%), trabecular density (-10.7%), number (-7.3%) and thickness (-4.6%) and higher trabecular spacing (+14.5%) (P ankle fractures were 2.2 and 1.6, respectively, vs 2.2 and 2.7 for forearm fracture, respectively (P ≤ 0.001 for all). Compared to women with forearm fractures, those with ankle fractures had similar spine and hip aBMD, but microstructure alterations of lower magnitude. Women with ankle fractures have lower aBMD and vBMD and trabecular bone alterations, suggesting that ankle fractures are another manifestation of bone fragility.

  16. Bone mineral density in patients with growth hormone deficiency: does a gender difference exist?

    DEFF Research Database (Denmark)

    Hitz, Mette Friberg; Jensen, Jens-Erik Beck; Eskildsen, Peter C

    2006-01-01

    OBJECTIVE: The aim of the study was to clarify whether a gender difference exists with respect to bone mineral density (BMD) and bone mineral content (BMC) in adult patients with growth hormone deficiency (GHD). DESIGN: A case-control design. METHODS: Blood sampling for measurements of calcium...

  17. Comparative analysis of bone mineral density and incidence of osteoporosis in vegetarians and omnivores

    International Nuclear Information System (INIS)

    Chen Qingfu; Yang Shuyu; Yan Bing; Liu Changqin; Shi Xiulin; Zhang Hujie; Yu Yaxin; Wang Liying; Li Xuejun

    2010-01-01

    Objective: To study the changes of bone mineral density and incidence of osteoporosis in vegetarians. Methods: Dual energy X-ray absorptiometry was used to measure the bone mineral densities of spine, neck of femur and greater trochanter in 62 vegetarians (vegetarian group) and 60 normal age-matched men(control group). Results: Compared with control group, the bone mineral densities(tms · cm -2 ) of spine, neck of femur and greater trochanter in vegetarians were evidently decreased (0.752 ± 0.075 vs 1.014 ± 0.096, 0.697 ± 0.071 vs 1.003 ± 0.111, 0.713 ± 0.083 vs 1.011 ± 0.097, P<0.001) and the incidences of osteoporosis and osteopenia were increased (40.3% υs 13.3%, 19.3% υs 5.0%, P<0.001). Conclusion: Vegetarians have lower bone mineral density and higher incidences of osteoporosis and osteopenia than omnivores. (authors)

  18. Hyponatremia, bone mineral density and falls in the elderly; Results from AHAP study

    Directory of Open Access Journals (Sweden)

    Hosseini Seyed Reza

    2018-03-01

    Full Text Available Background. Hyponatremia (HN can be associated with osteoporosis, falls and bone fractures in the elderly. Recent researches demonstrated different results about the correlation of HN with bone mineral density and bone fractures.

  19. Changes in spinal and femoral bone mineral density due to pelvic irradiation following oophorectomy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jui-Tung; Hirai, Yasuo; Seimiya, Yumiko; Hasumi, Katsuhiko; Masubuchi, Kazumasa (Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital); Shiraki, Masataka

    1991-10-01

    Since radiation therapy has been known to be a cause of bone atrophy (radiation osteopathy), it could be important whether postoperative radiotherapy in patients who have undergone oophorectomy further promotes bone mineral loss or not. Nineteen patients with stage Ib to IIb cervical cancer were studied. Eleven of the 19 patients received only surgical treatment and 8 received postoperative radiotherapy (50 Gy to the pelvis and 40 Gy to the lumber spine), because of the presence of advanced lesions or positive lymphnodes. A significant increase in FSH and decrease in E{sub 2} (p<0.01) compared to before treatment were observed in both groups. A significant increase in serum alkaline phosphatase activities (p<0.01), urine-calcium/creatinine ratio (p<0.05) and urine-hydroxyproline/creatinine ratio (p<0.01), which indicated high bone turnover, compared to before treatment in both groups also appeared. Although these chemical parameters in both groups changed coincidentally, the decline in spinal bone mineral density in the irradiated group was delayed at 12 months after the treatment. On the other hand, there was no difference in the changes in femoral bone mineral density in the two groups. These results suggest that radiotherapy might inhibit the bone mineral loss at the irradiated bone site even when there was an estrogen lack. (author).

  20. Changes in spinal and femoral bone mineral density due to pelvic irradiation following oophorectomy

    International Nuclear Information System (INIS)

    Chen, Jui-Tung; Hirai, Yasuo; Seimiya, Yumiko; Hasumi, Katsuhiko; Masubuchi, Kazumasa; Shiraki, Masataka.

    1991-01-01

    Since radiation therapy has been known to be a cause of bone atrophy (radiation osteopathy), it could be important whether postoperative radiotherapy in patients who have undergone oophorectomy further promotes bone mineral loss or not. Nineteen patients with stage Ib to IIb cervical cancer were studied. Eleven of the 19 patients received only surgical treatment and 8 received postoperative radiotherapy (50 Gy to the pelvis and 40 Gy to the lumber spine), because of the presence of advanced lesions or positive lymphnodes. A significant increase in FSH and decrease in E 2 (p<0.01) compared to before treatment were observed in both groups. A significant increase in serum alkaline phosphatase activities (p<0.01), urine-calcium/creatinine ratio (p<0.05) and urine-hydroxyproline/creatinine ratio (p<0.01), which indicated high bone turnover, compared to before treatment in both groups also appeared. Although these chemical parameters in both groups changed coincidentally, the decline in spinal bone mineral density in the irradiated group was delayed at 12 months after the treatment. On the other hand, there was no difference in the changes in femoral bone mineral density in the two groups. These results suggest that radiotherapy might inhibit the bone mineral loss at the irradiated bone site even when there was an estrogen lack. (author)

  1. Systematic Review and Meta-Analysis of Recombinant Human Bone Morphogenetic Protein-2 in Localized Alveolar Ridge and Maxillary Sinus Augmentation.

    Science.gov (United States)

    Kelly, Mick P; Vaughn, Olushola L Akinshemoyin; Anderson, Paul A

    2016-05-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is approved by the Food and Drug Administration as a viable alternative to bone graft in spinal fusion and maxillary sinus lift. The research questions for meta-analysis were: Is rhBMP-2 an effective bone graft substitute in localized alveolar ridge augmentation and maxillary sinus floor augmentation? What are the potential adverse events? A search of MEDLINE from January 1980 to January 2014 using PubMed, the Cochrane Database of Systematic Reviews and Controlled Trials, CINAHL, and EMBASE was performed. Searches were performed from Medical Subject Headings. The quality of each study included was graded by Review Manager software. The primary outcome variable was bone formation measured as change in bone height on computed tomogram. A systematic review of adverse events also was performed. A random-effects model was chosen. Continuous variables were calculated using the standardized mean difference and 95% confidence intervals (CIs) comparing improvement from baseline of the experimental group with that of the control group. Change in bone height was calculated using logarithmic odds ratio. Test of significance used the Z statistic with a P value of .05. Ten studies met the criteria for systematic review; 8 studies were included in the meta-analysis. Five studies assessed localized alveolar ridge augmentation and resulted in an overall standardized mean difference of 0.56 (CI, 0.20-0.92) in favor of BMP; this result was statistically important. Three studies assessed maxillary sinus floor augmentation and resulted in an overall standardized mean difference of -0.50 (CI, -0.93 to -0.09), which was meaningfully different in favor of the control group. Adverse events were inconsistently reported, ranging from no complications to widespread adverse events. For localized alveolar ridge augmentation, this meta-analysis showed that rhBMP-2 substantially increases bone height. However, rhBMP-2 does not perform as

  2. Bone mineral density of the femoral neck in resurfacing hip arthroplasty

    DEFF Research Database (Denmark)

    Penny, Jeannette Østergaard; Ovesen, Ole; Brixen, Kim

    2010-01-01

    Resurfacing total hip arthroplasty (RTHA) may preserve the femoral neck bone stock postoperatively. Bone mineral density (BMD) may be affected by the hip position, which might bias longitudinal studies. We investigated the dependency of BMD precision on type of ROI and hip position....

  3. Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone

    NARCIS (Netherlands)

    Mulder, L.; Koolstra, J.H.; Toonder, den J.M.J.; Eijden, van T.M.G.J.

    2007-01-01

    The purpose of this study was to investigate the relation between bone tissue stiffness and degree of mineralization distribution and to examine possible changes during prenatal development. Understanding this may provide insight into adaptation processes and into deformation mechanisms of the bone

  4. Bone Regeneration Using N-Methyl-2-pyrrolidone as an Enhancer for Recombinant Human Bone Morphogenetic Protein-2 in a Rabbit Sinus Augmentation Model.

    Science.gov (United States)

    Lim, Hyun-Chang; Thoma, Daniel S; Yoon, So-Ra; Cha, Jae-Kook; Lee, Jung-Seok; Jung, Ui-Won

    2017-01-01

    The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NB TA ) was greatest in BMP/NMP (1.94 ± 0.69 mm 2 ), followed by BMP (1.50 ± 0.72 mm 2 ) and BCP (1.28 ± 0.52 mm 2 ) ( P > 0.05). In the center of the augmentation (NB ROI_C ) and the area close to the sinus membrane (NB ROI_M ), BMP/NMP produced the largest area of NB (NB ROI_C : 0.10 ± 0.11 mm 2 ; NB ROI_M : 0.17 ± 0.08 mm 2 ); the corresponding NB values for BCP were 0.05 ± 0.05 mm 2 and 0.08 ± 0.09 mm 2 , respectively ( P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls.

  5. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    Science.gov (United States)

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  6. Quantitation of bone mineral by dual photon absorptiometry (DPA): Evaluation of instrument performance

    International Nuclear Information System (INIS)

    Dunn, W.L.; O'Duffy, A.; Wahner, H.W.

    1984-01-01

    Quantitation of bone mineral is used with increasing frequency for clinical studies. This paper details the principle of DPA and present an evaluation of the technique. DPA measurements were performed with a scanning dual photon system constructed at this institution and modeled after the device developed at the University of Wisconsin. The components are a rectilinear scanner frame, 1.5 Ci Gd-153 source, NaI(TL) detector and a PDP 11/03 computer. Dual discriminator windows are set on the 44 and 100 keV photon energies of Gd-153. Instrument linearity, accuracy and reproducibility were evaluated with ashed bone standards and simulated tissue covering. In these experiments computed and actual bone mineral have a correlation coefficient of 1.0 and a SEE of approximately 1.0% (Linear regression analysis). Precision and accuracy of a standard were studied over a period of two years. Mean error between actual and measured bone mineral was 0.28%. In vivo precision in six subjects averaged 2.3% (CV) for lumbar spine measurements. The effect of soft tissue compositional change was studied with ashed bone standards and human cadaver spine specimens. Intraosseous fat changes of 50% produced an average bone mineral measurement error of 1.4%. A 20% change in fat thickness produced a 2.5% error. In situ and in vitro scans of 9 cadaver spines were performed to study the effect of extraosseous fat. The mean percent difference between the two measurements was 0.7% (SEE=3.2%)

  7. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  8. Phantom studies of triple photon absorptiometry and bone mineral measurement at a hip prosthesis

    International Nuclear Information System (INIS)

    Farrell, T.J.; Webber, C.E.

    1992-01-01

    The feasibility of using triple photon absorptiometry (TPA) for the measurement of bone mineral mass about a hip prosthesis was examined. A theoretical expression describing the variance of TPA measurements was verified using a triple photon source and phantom materials which simulate the soft tissue-bone mineral-metal prosthesis system. The expression for the variance was used to determine an optimized set of photon energies. It was shown that a precision of 3% could be obtained for reasonable measurement times using this optimized set of energies and that TPA should be a feasible approach for measurement of bone mineral about a hip prosthesis. (orig.)

  9. Bone mineral density and trabecular bone tissue quality in obese men

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2017-02-01

    Full Text Available Obesity and osteoporosis are the two metabolic dise­ases with increased prevalence over last decades and a strong impact on the global morbidity and mortality have gained a status of major health threats worldwide. There is evidence that the higher body mass index (BMI values are associated with greater bone mineral density (BMD resulting in a site-specific protective effect for fragility fractures. On the other hand, higher BMI values increases incidence of falls and is associated with worse fractures consolidation. However, trabecular bone score (TBS indirectly explores bone quali­ty, independently of BMD. The aim of the study was to determine the connection between the BMD and TBS parameters in Ukrainian men suffering from obesity. Methods. We examined 396 men aged 40–89 years, by the BMI all the subjects were divided into 2 groups: Group A — with obesity and BMI ≥ 30 kg/m2 (n = 129 and Group B — without obesity and BMI < 30 kg/m2 (n = 267. The BMD of total body, lumbar spine at the site L1–L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA. The TBS of L1–L4 was assessed by means of TBS iNsight (Med-Imaps, Pessac, France. Results. In general, obese men had a significantly higher BMD of lumbar spine, femoral neck, total body and ultradistal forearm (p < 0.001 in comparison with men without obesity. The TBS of L1–L4 was significantly lower in obese men compared to non-obese men (p < 0.001. The significant positive correlation between the fat mass and the BMD at different sites was observed. The correlation between the fat mass and TBS of L1–L4 was also significant, but negative. Conclusions. Obesity negatively affects the quality of trabecular bone, while bone mineral density was significantly higher.

  10. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Science.gov (United States)

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  11. Evaluation of photon-absorptiometry for determination of bone mineral content in experimental animals

    International Nuclear Information System (INIS)

    Krasznai, I.; Szathmary, M.; Horvath, Cs.; Hollo, G.; Fabu, G.

    1994-01-01

    Instruments commonly used for determination of bone mineral content in human were evaluated for their use in small laboratory animals. By measuring bone phantoms and rat femurs in vitro, authors found 0.015 and 0.034 g/cm sensitivity for (SPA) and (DEXA) methods, respectively. High reproducibility was obtained, with values of relative standard deviations being <2 and approximately 4% for SPA and DEXA, respectively. Both techniques were found suitable for determination of bone mineral content of laboratory animals, but DEXA is suggested as the preferred method for evaluations under in vivo circumstances. (N.T.)

  12. Bone mineral content in hyperthyroid patients after combined medical and surgical treatment

    International Nuclear Information System (INIS)

    Nielsen, H.E.; Mosekilde, L.; Charles, P.

    1979-01-01

    Bone mineral content (BMC) and bone mineral concentration (BMC') of the forearm were determined by photon absorptiometry in 20 untreated hyperthyroid patients and in 33 patients previously treated for hyperthyroidism. In untreated hyperthyroidism a significant decrease was found in both BMC and BMC'. In treated hyperthyroidism BMC and BMC' were normalized. The findings suggest that a previous hyperthyroid state is not a risk factor for development of spontaneous fractures providing the hyperthyroid state is effectively treated. (Auth.)

  13. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor

    2015-06-01

    The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.

  14. The Effect of Obesity onBone Mineral Density in Primary Fibromyalgia Cases - Original Investigation

    Directory of Open Access Journals (Sweden)

    Bahadır Yesevi

    2005-12-01

    Full Text Available Fibromyalgia is a chronic musculoskeletal disease, characterized by tender points in various areas at body and widespread pain musculoskeletal system and unknown etiology, in which metabolic, immunologic and neuroendocrin abnormalities are seen. In this study, 45 female patients were enrolled according to 1990 ACR fibromyalgia criteria. They were divided to 3 groups, with 15 patients; normal, preobese and obese, depending to the body mass index. They were tested for bone mineral density of the lomber spine and femur, using dual energy x-ray absorptionmeter. The depression presence was investigated by Hamilton Depression Scale. The bone mineral density of L1-4 region of fibromyalgic normal body weight patients were normal range and there was no significant statistical difference between others groups. In contrast, femur bone mineral density vaules were found to be statistically significantly osteopenic, as compared with obese groups. There was a negative statistical correlation between depression and lomber area bone mineral density. Whereas in femur it was seen that bone mineral density was protected in preobese and obese fibromyalgia patients. The number of studies on this subject is not sufficient. Also the number of patients determined on current studies are low. Further studies, with langer patient numbers and more detailed protocols are needed. (Osteoporoz Dünyasından 2005; 4: 148-150

  15. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches.

    Science.gov (United States)

    Querido, William; Rossi, Andre L; Farina, Marcos

    2016-01-01

    The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate. Copyright © 2015. Published by Elsevier Ltd.

  17. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie

    2012-02-01

    Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia

  18. Bone morphometry and mineral contents of the distal part of the fractured third metacarpal bone in thoroughbred racehorses

    International Nuclear Information System (INIS)

    Yoshihara, T.; Oikawa, M.; Wada, R.; Hasegawa, M.; Kaneko, M.

    1990-01-01

    Most of the bone fractures in racehorses occur in the fore limb, especially in the metacarpal joint during the racing and training. The longitudinal fracture of the third metacarpal bone (Mc III) often occurs in the osteosclerotic and/or necrotic lesions in the distal part of the bone. To elucidate the endogenous factors of its fracture, soft radiograms of 4 fractured and 4 non-fractured control cases have been investigated morphometrically by a image analyzer. In addition, to analyze the quality of these bones, 20 elements of mineral contents in the crashed bones have been measured using a fluorescent X-ray analyzer. As the results, the osteosclerotic change was observed in both groups in the plantar side of the distal part of Mc III, however, no significant differences were found in the bone morphometry. No significant differences in the 19 elements of bone mineral were found except Fe. From these findings, the mechanism of the occurrence of the longitudinal fracture in the Mc III remains to be elucidated. In future, further work needs to be done with regard to the mechanical intensity and collagen disposition of the distal part of the Mc III

  19. Assessment of bone mineral density in young female handball players

    Directory of Open Access Journals (Sweden)

    Tathyane Krahenbühl

    2018-03-01

    Full Text Available Optimizing bone mass gain during childhood and adolescence may help prevent bone diseases in advanced ages. The aim of this study was to verify the bone mineral density (BMD and bone mineral content (BMC in female adolescent’s handball players. This is a cross-sectional study where 68 female adolescents (12–17 years were allocated into two groups: handball players (n = 29 (HG and control group (n = 39 (CG. BMC and BMD from total body (TB, total body less head (TBLH, lumbar spine (L1–L4, femoral neck (FN, Ward’s triangle (WT and respectively Z-scores were measured using dual-energy X-ray absorptiometry (DXA. Sexual maturity, menarche, PHV, time of sun exposure, physical activity level and Calcium and vitamin D intake were assessed. The HG showed significantly higher BMC, BMD as well Z-scores values (p≤0.05 of total body, TBLH, femoral neck, hip and lumbar spine than the CG. When the values were adjusted for lean soft tissue (LST the HG showed significantly higher BMC of femoral neck (p≤0.05, as well as BMD of TBLH and femoral neck (p≤0.05 and Z-score values all bone sites except hip, than the CG. We conclude that handball players have significantly higher bone mass values compared to group of girls of the same age.

  20. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  1. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  2. Bone mineral density among elderly patients with chronic ...

    African Journals Online (AJOL)

    Background: Osteoporosis is one of the major extra-pulmonary manifestations of chronic obstructive pulmonary disease (COPD), which limits the physical activity. The present study was undertaken to study the bone mineral density (BMD) and osteoporosis in the elderly COPD patients. Materials and Methods: This was a ...

  3. Bone mineral and body composition alterations in paediatric cystic fibrosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Reix, Philippe; Bellon, Gabriel [Hopital Femme Mere Enfant, Service de Pediatrie, Pneumologie, Allergologie, Mucoviscidose, Bron (France); Braillon, Pierre [Hospices Civils de Lyon, Service d' Imagerie Foetale et Pediatrique, Bron (France)

    2010-03-15

    With the increased life span of cystic fibrosis (CF) patients, CF-related bone diseases could have an increased prevalence and morbidity in this group. In children, previous retrospective and prospective studies have yielded conflicting results on bone mineralization. To monitor body composition and bone mineral status of children with CF. We reviewed the dual-energy X-ray absorptiometry (DXA) data of 161 children with CF (age 10 {+-} 4.8 years). Total body bone mineral content (BMCt), total lean tissue mass (LTMt) and total fat mass (FMt) were measured and compared to expected data calculated from ideal weight for height (Wi; e.g. BMCti, LTMti, FMti). The bt (BMCt/BMCti), lt (LTMt/LTMti) and ft (FMt/FMti) ratios were used as quantitative variables. Low bt ratio was found at all ages (mean bt ratio 0.94{+-}0.10; P<0.001), even in children <6 years of age. However, the children's BMCt was satisfactorily adapted to their weight. lt and ft ratios were not constant across age groups. Children <10 years had 8% reduction of their lt ratio, maintaining normal levels thereafter. The opposite trend was found for ft ratio. Poor clinical, nutritional status and vitamin A levels were correlated with bt and lt ratios. Our results indicate that children with CF could have early alterations in their bone status and that lt and ft ratios did not have constant values across ages. Interpreting DXA data using this approach is suitable in children with CF. (orig.)

  4. Bone mineral and body composition alterations in paediatric cystic fibrosis patients

    International Nuclear Information System (INIS)

    Reix, Philippe; Bellon, Gabriel; Braillon, Pierre

    2010-01-01

    With the increased life span of cystic fibrosis (CF) patients, CF-related bone diseases could have an increased prevalence and morbidity in this group. In children, previous retrospective and prospective studies have yielded conflicting results on bone mineralization. To monitor body composition and bone mineral status of children with CF. We reviewed the dual-energy X-ray absorptiometry (DXA) data of 161 children with CF (age 10 ± 4.8 years). Total body bone mineral content (BMCt), total lean tissue mass (LTMt) and total fat mass (FMt) were measured and compared to expected data calculated from ideal weight for height (Wi; e.g. BMCti, LTMti, FMti). The bt (BMCt/BMCti), lt (LTMt/LTMti) and ft (FMt/FMti) ratios were used as quantitative variables. Low bt ratio was found at all ages (mean bt ratio 0.94±0.10; P<0.001), even in children <6 years of age. However, the children's BMCt was satisfactorily adapted to their weight. lt and ft ratios were not constant across age groups. Children <10 years had 8% reduction of their lt ratio, maintaining normal levels thereafter. The opposite trend was found for ft ratio. Poor clinical, nutritional status and vitamin A levels were correlated with bt and lt ratios. Our results indicate that children with CF could have early alterations in their bone status and that lt and ft ratios did not have constant values across ages. Interpreting DXA data using this approach is suitable in children with CF. (orig.)

  5. Mechanism by Sambucus nigra Extract Improves Bone Mineral Density in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Laurentiu Badescu

    2012-01-01

    Full Text Available The effects of polyphenols extracted from Sambucus nigra fruit were studied in streptozotocin- (STZ- induced hyperglycemic rats to evaluate its possible antioxidant, anti-inflammatory, antiglycosylation activity, and antiosteoporosis effects in diabetes. DEXA bone mineral density tests were performed in order to determine bone mineral density (BMD, bone mineral content (BMC, and fat (%Fat in control and diabetic animals, before and after polyphenol delivery. As compared to the normoglycemic group, the rats treated with STZ (60 mg/kg body weight revealed a significant malondialdehyde (MDA increase, as an index of the lipid peroxidation level, by 69%, while the total antioxidant activity (TAS dropped by 36%, with a consistently significant decrease (<0.05 in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX. Also, the treatment of rats with STZ revealed a significant increase of IL-6, glycosylated haemoglobin (HbA1c, and osteopenia detected by DEXA bone mineral density tests. The recorded results highlight a significant improvement (<0.001 in the antioxidative capacity of the serum in diabetic rats treated with natural polyphenols, bringing back to normal the concentration of reduced glutathione (GSH, as well as an important decrease in the serum concentration of MDA, with improved osteoporosis status. Knowing the effects of polyphenols could lead to the use of the polyphenolic extract of Sambucus nigra as a dietary supplement in diabetic osteoporosis.

  6. The significance of HIV to bone mineral density

    DEFF Research Database (Denmark)

    Wessman, Maria; Weis, Nina; Katzenstein, Terese L

    2017-01-01

    The life expectancy in well-treated HIV-infected persons approaches that of the general population, but HIV-infected persons have a greater incidence of fractures and osteoporosis. A decrease in bone mineral density is observed primarily during the first 1-2 years of antiretroviral therapy. Dual X......-ray absorptiometry scan should be considered in HIV-infected men ≥ 50 years and postmenopausal women. In case of osteoporosis, bisphosphonate treatment should follow guidelines for the general population. Future research should focus on pathogenesis and prevention of bone density loss in HIV....

  7. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  8. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Increased Vertebral Bone Mineral in Response to Reduced Exercise in Amenorrheic Runners

    OpenAIRE

    Lindberg, Jill S.; Hunt, Marjorie M.; Wade, Charles E.; Powell, Malcolm R.; Ducey, Diane E.

    1987-01-01

    Seven female runners found to have exercise-induced amenorrhea and decreased bone mineral were reevaluated after 15 months. During the 15-month period, four runners took supplemental calcium and reduced their weekly running distance by 43%, resulting in an average 5% increase in body weight, increased estradiol levels and eumenorrhea. Bone mineral content increased from 1.003±0.097 to 1.070±0.089 grams per cm.2 Three runners continued to have amenorrhea, with no change in running distance or ...

  10. Changes of thyroid function, autoantibodies, bone mineral density and bone metabolism indexes in patients with hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-07-01

    Full Text Available Objective: To investigate the changes of thyroid function, autoantibodies, bone mineral density and bone metabolism in patients with hyperthyroidism. Methods: A total of 216 cases of hyperthyroidism in our hospital from December 2015 to January 2015 were selected as the case group, 216 cases of healthy people selected the same period in our hospital physical examination center as the control group, detected thyroid function, autoantibodies, bone mineral density and bone metabolism indexes of all the studied subjects and compared with each other. Results: In this study, it was found that diastolic blood pressure, BMI, triglyceride, total cholesterol, HDL-C, VLDL-C, TSH were all significantly lower than the control group (P<0.05, systolic blood pressure, LDL-C, GLU, T3, T4, FT3, FT4, HTG, TG-Ab, TPO-Ab in case group were significantly higher than the control group (P<0.05. Right calcaneal speed of sound (SOS in case group was significantly lower than the control group (P<0.05, BGP, PTH in case group were significantly higher than the control group (P<0.05. Conclusions: Hyperthyroidism can cause thyroid hormone levels abnormal, abnormal increase autoantibodies, decrease bone density, bone metabolism actively, easy to form osteoporosis, clinical treatment of hyperthyroidism in the same time, should actively prevent the occurrence of osteoporosis

  11. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship.

    Science.gov (United States)

    Shen, W; Chen, J; Gantz, M; Punyanitya, M; Heymsfield, S B; Gallagher, D; Albu, J; Engelson, E; Kotler, D; Pi-Sunyer, X; Shapses, S

    2012-09-01

    The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18-88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r = -0.533, -0.576, respectively; P BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premenopausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations.

  12. Bone composition and bone mineral density of long bones of free-living raptors

    Directory of Open Access Journals (Sweden)

    Britta Schuhmann

    2014-10-01

    Full Text Available Bone composition and bone mineral density (BMD of long bones of two raptor and one owl species were assessed. Right humerus and tibiotarsus of 40 common buzzards, 13 white-tailed sea eagles and 9 barn owls were analyzed. Statistical analysis was performed for influence of species, age, gender and nutritional status. The BMD ranged from 1.8 g/cm3 (common buzzards to 2.0 g/cm3 (white-tailed sea eagles. Dry matter was 87.0% (buzzards to 89.5% (sea eagles. Percentage of bone ash was lower in sea eagles than in buzzards and owls. Content of crude fat was lower than 2% of the dry matter in all bones. In humeri lower calcium values (220 g/kg fat free dry matter were detected in sea eagles than in barn owls (246 g/kg, in tibiotarsi no species differences were observed. Phosphorus levels were lowest in sea eagles (humeri 104 g/kg fat free dry matter, tibiotarsi 102 g/kg and highest in barn owls. Calcium-phosphorus ratio was about 2:1 in all species. Magnesium content was lower in sea eagles (humeri 2590 mg/kg fat free dry matter, tibiotarsi 2510 mg/kg than in buzzards and owls. Bones of barn owls contained more copper (humeri 8.7 mg/kg fat free dry matter, tibiotarsi 12.7 mg/kg than in the Accipitridae. Zinc content was highest in sea eagles (humeri 278 mg/kg fat free dry matter, tibiotarsi 273 mg/kg and lowest in barn owls (humeri 185 mg/kg, tibiotarsi 199 mg/kg. The present study shows that bone characteristics can be considered as species specific in raptors.

  13. Physical activity programs for promoting bone mineralization and growth in preterm infants.

    Science.gov (United States)

    Schulzke, Sven M; Kaempfen, Siree; Trachsel, Daniel; Patole, Sanjay K

    2014-04-22

    Lack of physical stimulation may contribute to metabolic bone disease of preterm infants, resulting in poor bone mineralization and growth. Physical activity programs combined with adequate nutrition might help to promote bone mineralization and growth. The primary objective was to assess whether physical activity programs in preterm infants improve bone mineralization and growth and reduce the risk of fracture.The secondary objectives included other potential benefits in terms of length of hospital stay, skeletal deformities and neurodevelopmental outcomes, and adverse events.Subgroup analysis:• Given that the smallest infants are most vulnerable for developing osteopenia (Bishop 1999), a subgroup analysis was planned for infants with birth weight affect an infant's ability to increase bone mineral content (Kuschel 2004). Therefore, an additional subgroup analysis was planned for infants receiving different amounts of calcium and phosphorus, along with full enteral feeds as follows. ∘ Below 100 mg/60 mg calcium/phosphorus or equal to/above 100 mg/60 mg calcium/phosphorus per 100 mL milk. ∘ Supplementation of calcium without phosphorus. ∘ Supplementation of phosphorus without calcium. The standard search strategy of the Cochrane Neonatal Review Group (CNRG) was used. The search included the Cochrane Central Register of Controlled Trials (CENTRAL) (2012, Issue 9), MEDLINE, EMBASE, CINAHL (1966 to March 2013), and cross-references, as well as handsearching of abstracts of the Society for Pediatric Research and the International Journal of Sports Medicine. Randomized and quasi-randomized controlled trials comparing physical activity programs (extension and flexion, range-of-motion exercises) versus no organized physical activity programs in preterm infants. Data collection, study selection, and data analysis were performed according to the methods of the CNRG. Eleven trials enrolling 324 preterm infants (gestational age 26 to 34 weeks) were included in this

  14. Osteoporosis, bone mineral density and CKD-MBD complex (I): Diagnostic considerations.

    Science.gov (United States)

    Bover, Jordi; Ureña-Torres, Pablo; Torregrosa, Josep-Vicent; Rodríguez-García, Minerva; Castro-Alonso, Cristina; Górriz, José Luis; Laiz Alonso, Ana María; Cigarrán, Secundino; Benito, Silvia; López-Báez, Víctor; Lloret Cora, María Jesús; daSilva, Iara; Cannata-Andía, Jorge

    2018-04-24

    Osteoporosis (OP) and chronic kidney disease (CKD) independently influence bone and cardiovascular health. A considerable number of patients with CKD, especially those with stages 3a to 5D, have a significantly reduced bone mineral density leading to a high risk of fracture and a significant increase in associated morbidity and mortality. Independently of classic OP related to age and/or gender, the mechanical properties of bone are also affected by inherent risk factors for CKD ("uraemic OP"). In the first part of this review, we will analyse the general concepts regarding bone mineral density, OP and fractures, which have been largely undervalued until now by nephrologists due to the lack of evidence and diagnostic difficulties in the context of CKD. It has now been proven that a reduced bone mineral density is highly predictive of fracture risk in CKD patients, although it does not allow a distinction to be made between the causes which generate it (hyperparathyroidism, adynamic bone disease and/or senile osteoporosis, etc.). Therefore, in the second part, we will analyse the therapeutic indications in different CKD stages. In any case, the individual assessment of factors which represent a higher or lower risk of fracture, the quantification of this risk (i.e. using tools such as FRAX ® ) and the potential indications for densitometry in patients with CKD could represent an important first step pending new clinical guidelines based on randomised studies which do not exclude CKD patients, all the while avoiding therapeutic nihilism in an area of growing importance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Periodontitis and bone mineral density among pre and post menopausal women: A comparative study

    Directory of Open Access Journals (Sweden)

    Suresh Snophia

    2010-01-01

    Full Text Available Aim: The aim of the study was to assess the relationship between bone mineral density and periodontitis in premenopausal and postmenopausal women. Materials and Methods: Twenty women between the age group of 45-55 years were selected for this study. Ten premenopausal women with healthy periodontium constituted the control group and 10 postmenopausal women with ≥2mm of clinical attachment loss in> 30% of sites constituted the study group. All patients were assessed for plaque index, probing depth and clinical attachment loss. Radiographs (six IOPA and two posterior bitewing were taken and assessed for interproximal alveolar bone loss. The patients were scanned to assess the bone mineral density of lumbar spine (L2 and femur using dual energy X-ray absorptiometry (DEXA. Results: The bone mineral densities of lumbar spine (L2 and femur were significantly lower in the study group than the control group. Osteopenia of the lumbar spine and femur was observed in 60% whereas osteoporosis of lumbar spine was observed in 30% of cases in study group. Conclusion: Increased proportion of osteopenia and osteoporosis cases of lumbar spine and femur in postmenopausal women with periodontitis suggests that there is association between bone mineral density and periodontitis.

  16. Osteoprotegerin autoantibodies do not predict low bone mineral density in middle-aged women.

    Science.gov (United States)

    Vaziri-Sani, Fariba; Brundin, Charlotte; Agardh, Daniel

    2017-12-01

    Autoantibodies against osteoprotegerin (OPG) have been associated with osteoporosis. The aim was to develop an immunoassay for OPG autoantibodies and test their diagnostic usefulness of identifying women general population with low bone mineral density. Included were 698 women at mean age 55.1 years (range 50.4-60.6) randomly selected from the general population. Measurement of wrist bone mineral density (g/cm 2 ) was performed of the non-dominant wrist by dual-energy X-ray absorptiometry (DXA). A T-score density. Measurements of OPG autoantibodies were carried by radiobinding assays. Cut-off levels for a positive value were determined from the deviation from normality in the distribution of 398 healthy blood donors representing the 99.7th percentile. Forty-five of the 698 (6.6%) women were IgG-OPG positive compared with 2 of 398 (0.5%) controls ( p  density between IgG-OPG positive (median 0.439 (range 0.315-0.547) g/cm 2 ) women and IgG-OPG negative (median 0.435 (range 0.176-0.652) g/cm 2 ) women ( p  = 0.3956). Furthermore, there was neither a correlation between IgG-OPG levels and bone mineral density (r s  = 0.1896; p  = 0.2068) nor T-score (r s  = 0.1889; p  = 0.2086). Diagnostic sensitivity and specificity of IgG-OPG for low bone mineral density were 5.7% and 92.9%, and positive and negative predictive values were 7.4% and 90.8%, respectively. Elevated OPG autoantibody levels do not predict low bone mineral density in middle-aged women selected from the general population.

  17. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    Science.gov (United States)

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    International Nuclear Information System (INIS)

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-01-01

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with 45 Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total 45 Ca content and 45 Ca/dry and 45 Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region (-36 to -46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss

  20. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    Energy Technology Data Exchange (ETDEWEB)

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  1. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    Science.gov (United States)

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  2. Recombinant human bone morphogenetic protein 2 outcomes for maxillary sinus floor augmentation: a systematic review and meta-analysis.

    Science.gov (United States)

    Lin, Guo-Hao; Lim, Glendale; Chan, Hsun-Liang; Giannobile, William V; Wang, Hom-Lay

    2016-11-01

    To study the effect of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on sinus volumetric and histometric changes after sinus floor augmentation compared to a conventional approach of non-biologic bone grafting materials. An electronic search of 4 databases (January 1990-February 2015), including PubMed/MEDLINE, EMBASE, Web of Science and Cochrane Central, and a hand search of peer-reviewed journals for relevant articles were performed. Human clinical trials with data on comparison of sinus volumetric and/or histometric outcomes with and without the use of rhBMP-2 in sinus grafting procedures, with ≥10 augmentation sites in each study group, and with a follow-up period of at least 6 months, were included. Random-effects meta-analyses were performed to analyze weighted mean difference (WMD) and confidence interval (CI) for the recorded variables according to PRISMA guidelines. Six randomized controlled trials (RCTs) were included. The results of the meta-analyses showed that the WMD of vertical bone height gain was -0.14 mm (95% CI = -1.91 to 1.62 mm, P = 0.87), the WMD of bone density was -142.42 mg/cm 3 (95% CI = -310.62-25.78 mg/cm 3 , P = 0.10), the WMD of the percentage of vital bone was -4.59% (95% CI = -11.73-2.56%, P = 0.21), and the WMD of the percentage of residual bone grafting materials was -9.90% (95% CI = -26.38-6.58%, P = 0.21). The comparison of implant survival rate presented an overall risk ratio of 1.00 (95% CI = 0.94-1.07). The two approaches (conventional bone grafting compared to BMPs) demonstrated comparable effectiveness for both clinical and histomorphometric measures. This systematic review revealed that the use of rhBMP-2 in maxillary sinus floor augmentation achieved similar clinical and histometric outcomes when compared to conventional sinus grafting procedures after a healing period of 6-9 months. However, previous studies showed the morbidity and other patient-reported outcomes were improved in

  3. Bone mineral density in adult coeliac disease: An updated review

    Directory of Open Access Journals (Sweden)

    Alfredo J. Lucendo

    2013-03-01

    Full Text Available Introduction and objectives: coeliac disease (CD affects around 1-2 % of the world population. Most patients are now diagnosed when adults, suffering the consequences of an impaired bone mineralization. This review aims to provide an updated discussion on the relationship between low bone mineral density (BMD, osteopenia and osteoporosis, and CD. Methods: a PubMed search restricted to the last 15 years was conducted. Sources cited in the results were also reviewed to identify potential sources of information. Results: low BMD affects up to 75 % of celiac patients, and can be found at any age, independently of positive serological markers and presence of digestive symptoms. The prevalence of CD among osteoporotic patients is also significantly increased. Two theories try to explain this origin of low BMD: Micronutrients malabsorption (including calcium and vitamin D determined by villous atrophy has been related to secondary hyperparathyroidism and incapacity to achieve the potential bone mass peak; chronic inflammation was also related with RANKL secretion, osteoclasts activation and increased bone resorption. As a consequence, celiac patients have a risk for bone fractures that exceed 40 % that of matched non-affected population. Treatment of low BMD in CD comprises gluten-free diet, calcium and vitamin D supplementation, and biphosphonates, although its effects on CD have not been specifically assessed. Conclusions: up to 75 % of celiac patients and 40 % of that diagnosed in adulthood present a low BMD and a variable increase in the risk of bone fractures. Epidemiological changes in CD make bone density scans more relevant for adult coeliacs.

  4. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  5. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Poedenphant, J.; Nilas, L.; Christiansen, C.

    1989-01-01

    We investigated the descriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMD spine ) also measured by DPA, and to the bone-mineral content of the forearms (BMC forearm ) measured by single photon absorptiometry (SPA). TBBD, BMD spine and BMC forearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMD spine or BMC forearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures. BMC forearm had an intermediate position, whereas BMD spine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMD spine or BMC forearm , whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements. (author)

  6. Vitamin K2 improves femoral bone strength without altering bone mineral density in gastrectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo

    2014-01-01

    Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.

  7. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    Science.gov (United States)

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    Science.gov (United States)

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.

  9. Bone Collagen: New Clues to its Mineralization Mechanism From Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Eyre, David R.; Ann Weis, Mary

    2013-01-01

    Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5–10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1 and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode respectively lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPIN H1, which encodes the collagen chaperone HSP47; SERPIN F1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include over-mineralization or under-mineralization defects as well as abnormal collagen post-translational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen post-translational modification, chaperoning of newly synthesized collagen chains into native molecules or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on post-translational features of bone collagen that have evolved to optimize it as a biomineral template. PMID:23508630

  10. Effect of Wearing Style on Vitamin D and Bone Mineral Density in Postmenopausal Osteoporotic Women

    Directory of Open Access Journals (Sweden)

    Yeşim Gökçe Kutsal

    2011-12-01

    Full Text Available Aim: Vitamin D deficiency is one of the most important public health problems as a result of osteomalacia, osteoporosis, muscle pain disease, muscle weakness and increased risk of falls and fracture. Outfitting style effects the synthesis and blood levels of vitamin D. The aim of our study is to investigate the effect of outfitting style on blood vitamin D and bone mineral density in postmenopausal osteoporotic women. Materials and Methods: Fifty-five female patients who were diagnosed with osteoporosis were included in our study. These women were divided into two groups according to their clothing habits as veiled and unveiled. Data of all patients about menopause, exposure to sun light, dual energy x-ray absorptiometry results, blood calcium, phosphate, parathyroid hormone, 25-hydroxyvitamin D levels and osteoporosis treatment were recorded. Results: We found 25-hydroxyvitamin D level was significantly low in women with veiled dressing style (17,0±7,9 ng/ml in veiled and 33.9±22.0 ng/ml in unveiled patients, p<0.001. There was statistically significant correlations between 25-hydroxyvitamin D level and femur neck Z-scores, femur total bone mineral density, femur total T-score L1-L4 bone mineral density, femur neck bone mineral density for different seasons (p<0.05. Conclusion: Postmenopausal osteoporotic veiled women are more prone to vitamin D deficiency than unveiled women. Low concentration of 25-hydroxyvitamin D is accompanying further decrease in bone mineral density. Despite low concentration of 25-hydroxyvitamin D in veiled postmenopausal osteoporotic women, there is not direct correlation between wearing style and bone mineral density. (Turkish Journal of Osteoporosis 2011;17:85-8

  11. Progranulin concentration in relation to bone mineral density among obese individuals.

    Science.gov (United States)

    Milajerdi, Alireza; Maghbooli, Zhila; Mohammadi, Farzad; Hosseini, Banafsheh; Mirzaei, Khadijeh

    2018-01-01

    Adipose tissue, particularly visceral adipose tissue, secretes a variety of cytokines, among which progranulin is a glycoprotein related to the immune system. Along with other secreted proteins, progranulin may be associated with bone mineral density. The aim of this study was to find out whether there are associations between the progranulin and bone mineral density among obese people. This cross-sectional study was conducted on 244 obese participants (aged 22-52). Serum progranulin, high sensitive C-reactive protein, oxidised-low dencity lipoprotein, tumor necrosis factor-α, parathormone, vitamin D, and interleukins of 1 β, 4, 6, 10, 13, and 17 concentrations were measured. Anthropometric measurements, body composition and bone mineral density were also assessed. Serum progranulin was directly associated with interleukin-6 and interleukin-1β, while it had a negative association with interleukin-17 and tumor necrosis factor-α. We also observed a statistically significant direct association between progranulin concentration and visceral fat, abdominal fat, waist, abdominal and hip circumferences, hip T-score, and Z-score and T-score for the lumbar region. A partial correlation test has also shown a significant positive correlation regarding serum progranulin and the hip Z-score. Moreover, progranulin level is inversely associated with ospteopenia (P = 0.04 and CI: 0.17,0.96). Our study revealed that central obesity may be related to increased progranulin concentration. In addition, progranulin concentration was directly related to bone formation parameters, which indicates the protective effects of progranulin on bone density. Further studies are needed to clarify the exact mechanisms underlying these associations.

  12. Is Bone Mineral Composition Disrupted by Organochlorines in East Greenland Polar Bears (Ursus maritimus)?

    DEFF Research Database (Denmark)

    Sonne, C.; Dietz, R.; Born, E. W.

    2004-01-01

    We analyzed bone mineral density (BMD) in skulls of polar bears (Ursus maritimus) (n = 139) from East Greenland sampled during 1892-2002. Our primary goal was to detect possible changes in bone mineral content (osteopenia) due to elevated exposure to organochlorine [polychlorinated biphenyls (PCBs.......04) and SigmaCHL (p polar...... bears may have been caused by organochlorine exposure. Udgivelsesdato: 2004-Dec...

  13. Determination of bone mineral density at distal radius measured by single photon absorptiometry

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Yanagimoto, Shinichi; Hitomi, Go; Murakami, Akihiko; Suemori, Shinji; Yokobayashi, Tsuneo; Ishii, Koshi; Hiji, Hiroo

    1988-01-01

    We have discussed the index of the bone mineral density (BMD) at the distal radius measured by single photon absorptiometry. Initially, the shape at the distal radius was evaluated using an X-ray photogram of the forearm and a calculation formula of the cross-sectional area at the distal radius was performed using an X-CT photogram of the forearm. A new index for the bone mineral density (modified BMD, mBMD), bone mineral content/cross-sectional area, at the distal radius was obtained for 154 young normal subjects (20 ∼ 44 yrs.). No significant differences in the mBMD values between young normal males and females, except for the group 20 ∼ 24 year-old group, were observed. Furthermore, a significantly decreased in the mBMD values with aging was observed in females between the ages of 20 ∼ 24 and 40 ∼ 44. However, no significant changes in the mBMD values were recognized in the men. Thus, it was shown that the new BMD index, mBMD, was useful for evaluating the changes of the bone mass. (author)

  14. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Directory of Open Access Journals (Sweden)

    Marita Westhrin

    Full Text Available Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST and dental matrix protein-1 (DMP1, markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  15. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    Background: Obesity and asthma are an important public health problem in Saudi Arabia. An increasing body of data supports the hypothesis that obesity is a risk factor for asthma. Asthma appears to be associated with low bone mineral density (BMD) due to long-term use of corticosteroids. Studies recently showed that ...

  16. Quantification of bone mineral density at 3rd lumbar vertebra by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Nagai, Kiyohisa; Muranaka, Akira; Furukawa, Takako; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Morita, Rikushi

    1987-01-01

    To know bone mineral content of both cortical and spongy bones with aging and pathologic changes, bone mineral density (BMD) in the 3rd lumbar vertebra (L3) and distal radius (DR) was measured using dual photon absorptiometry and single photon absorptiometry, respectively, in 151 normal subjects (N) and four patients with primary hyperparathyroidism (PHP). In the N group, BMD in both L3 and DR decreased with aging. This was more noted, and occurred earlier in L3, irrespective of sex, than DR. In three PHP patients manifested as bone type, BMD was high in L3, and low in DR. Such a tendency was not seen in the remaining one patient with stone type PHP. The findings suggest the need to measure BMD in both cortical (L3) and spongy (DR) bones for elucidating bone pathophysiology in metabolic bone disease. (Namekawa, K.)

  17. The effect of polyunsaturated fatty acids and vitamin D on growth and bone mineralization in children

    DEFF Research Database (Denmark)

    Pedersen, Louise

    2012-01-01

    Polyunsaturated fatty acids (PUFA) and vitamin D are important for fat and bone metabolism but the intake is declining in Western societies with a potential deleterious effect on growth and bone health. Dietary PUFA composition favors the intake of omega-6 (n-6 PUFA) compared to omega-3 (n-3 PUFA...... early in life is essential for preventive steps against development of overweight and obesity. Vitamin D promotes bone mineralization and growth through regulation of the calcium homeostasis, and via activation of vitamin D receptors on bone and cartilage forming cells. However vitamin D insufficiency...... development, and fat percentage; serum vitamin D status in cord blood and height development and bone mineralization; and serum vitamin D status at 4 years and bone mineralization. This is performed in the Copenhagen Prospective Study of Asthma in Childhood (COPSAC2000). In Study 1, breast-milk n-3 PUFA...

  18. Chronic Kidney Disease-Mineral Bone Disorder in the Elderly Peritoneal Dialysis Patient

    DEFF Research Database (Denmark)

    Heaf, James Goya

    2015-01-01

    PURPOSE: The purpose of this paper was to review the literature concerning the treatment of chronic kidney disease-mineral bone disorder (CKD-MBD) in the elderly peritoneal dialysis (PD) patient. ♦ RESULTS: Chronic kidney disease-mineral bone disorder is a major problem in the elderly PD patient......, with its associated increased fracture risk, vascular calcification, and accelerated mortality fracture risk. Peritoneal dialysis, however, bears a lower risk than hemodialysis (HD). The approach to CKD-MBD prophylaxis and treatment in the elderly PD patient is similar to other CKD patients, with some...

  19. Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates.

    Science.gov (United States)

    Nagata, Masashi; Kayanoma, Megumu; Takahashi, Takeshi; Kaneko, Tetsuo; Hara, Hiroshi

    2011-08-01

    Zinc (Zn) deficiency during pregnancy may result in a variety of defects in the offspring. We evaluated the influence of marginal Zn deficiency during pregnancy on neonatal bone status. Nine-week-old male Sprague-Dawley rats were divided into two groups and fed AIN-93G-based experimental diets containing 35 mg Zn/kg (Zn adequately supplied, N) or 7 mg Zn/kg (low level of Zn, L) from 14-day preconception to 20 days of gestation, that is, 1 day before normal delivery. Neonates were delivered by cesarean section. Litter size and neonate weight were not different between the two groups. However, in the L-diet-fed dam group, bone matrix formation in isolated neonatal calvaria culture was clearly impaired and was not recovered by the addition of Zn into the culture media. Additionally, serum concentration of osteocalcin, as a bone formation parameter, was lower in neonates from the L-diet-fed dam group. Impaired bone mineralization was observed with a significantly lower content of phosphorus in neonate femurs from L-diet-fed dams compared with those from N-diet-fed dams. Moreover, Zn content in the femur and calvaria of neonates from the L-diet group was lower than that of the N-diet-fed group. In the marginally Zn-deficient dams, femoral Zn content, serum concentrations of Zn, and osteocalcin were reduced when compared with control dams. We conclude that maternal Zn deficiency causes impairment of bone matrix formation and bone mineralization in neonates, implying the importance of Zn intake during pregnancy for proper bone development of offspring.

  20. A retrospective analysis of longitudinal changes in bone mineral content in cystic fibrosis.

    Science.gov (United States)

    Chirita-Emandi, Adela; Shepherd, Sheila; Kyriakou, Andreas; McNeilly, Jane D; Dryden, Carol; Corrigan, Donna; Devenny, Anne; Ahmed, Syed Faisal

    2017-08-28

    We aimed to describe the longitudinal changes in bone mineral content and influencing factors, in children with cystic fibrosis (CF). One hundred children (50 females) had dual X-ray absorptiometry (DXA) performed. Of these, 48 and 24 children had two to three scans, respectively over 10 years of follow-up. DXA data were expressed as lumbar spine bone mineral content standard deviation score (LSBMCSDS) adjusted for age, gender, ethnicity and bone area. Markers of disease, anthropometry and bone biochemistry were collected retrospectively. Baseline LSBMCSDS was >0.5 SDS in 13% children, between -0.5; 0.5 SDS, in 50% and ≤-0.5 in the remainder. Seventy-eight percent of the children who had baseline LSBMCSDS >-0.5, and 35% of the children with poor baseline (LSBMCSDS0.5), showed decreasing values in subsequent assessments. However, mean LS BMC SDS did not show a significant decline in subsequent assessments (-0.51; -0.64; -0.56; p=0.178). Lower forced expiratory volume in 1 s percent (FEV1%) low body mass index standard deviation scores (BMI SDS) and vitamin D were associated with reduction in BMC. Bone mineral content as assessed by DXA is sub-optimal and decreases with time in most children with CF and this study has highlighted parameters that can be addressed to improve bone health.

  1. A hospital based study of biochemical markers of bone turnovers & bone mineral density in north Indian women

    Science.gov (United States)

    Kumar, Ashok; Devi, Salam Gyaneshwori; Mittal, Soniya; Shukla, Deepak Kumar; Sharma, Shashi

    2013-01-01

    Background & objectives: The osteoporotic risk for women increases soon after menopause. Bone turnover markers are known to be associated with bone loss and fracture risk. This study was aimed to assess bone turnover using bone markers and their correlation with bone mineral density (BMD) in pre- and post-menopausal women. Methods: A total of 255 healthy women (160 pre- and 95 post-menopausal) were enrolled. Serum bone alkaline phosphatase (sBAP) and serum N-terminal telopeptide of type I collagen (NTX) were measured to evaluate the bone formation and resorption, respectively. Bone mineral density was determined at lumbar spine (L2-L4) anteroposteriorly, femoral neck and Ward's triangle using Prodigy dual-energy X-ray absorptiometry (DXA) system. The comparison of years since menopause with respect to BMD and bone markers was also evaluated. Results: NTX and sBAP showed significant negative correlation with BMD of femur neck and Ward's triangle in postmenopausal women. BMD of all three sides were significant variables for NTX and BMD of femur neck and Ward's triangle for sBAP in postmenopausal women. BMD lumbar spine was a significant variable for sBAP in premenopausal women. The mean values of NTX increased significantly with increase in the duration of years since menopause. The BMD of all three sides decreased significantly with increase in the duration of years since menopause. Interpretation & conclusions: Serum NTX and sBAP were inversely correlated to BMD of femur neck and Ward's triangle in post-menopausal women. Simultaneous measurements of NTX and BMD in the north Indian women, suggest that bone resorption in women with low BMD remains high after menopause. PMID:23481051

  2. Association of Lactase 13910 C/T polymorphism with bone mineral ...

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... polymorphism with bone mineral density (BMD) and fracture risk, but previous results have been inconclusive ... Although osteoporosis and fracture are influenced by many environmental factors such ... Materials and Methods.

  3. Efficacy of different bone volume expanders for augmenting lumbar fusions.

    Science.gov (United States)

    Epstein, Nancy E

    2008-01-01

    A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.

  4. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    Science.gov (United States)

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    Directory of Open Access Journals (Sweden)

    Anderud J

    2015-03-01

    Full Text Available Jonas Anderud,1,2 Peter Abrahamsson,2 Ryo Jimbo,1 Sten Isaksson,2 Erik Adolfsson,3 Johan Malmström,2 Yoshihito Naito,4 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden; 3Swedish Ceramic Institute, IVF, Mölndal, Sweden; 4Department of Oral and Maxillofacial Prosthodontics and Oral Implantology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Abstract: The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. Keywords: hydroxyapatite, zirconia, guided bone regeneration, GBR, histology, membrane

  6. Dual-photon absorptiometry: A new method of determining bone mineral content. Pt. 1

    International Nuclear Information System (INIS)

    Buttermann, G.; Eiber, J.; Hennig, J.; Pabst, H.W.

    1988-01-01

    Cortical (neck of femur) and trabecular (L 2-4) bone mass has been determined repeatedly with DPA using 153 Gd (NOVO Lab 22 a) in 545 females and 112 males with no evidence of bone diseases. Measured 'normal' (age- and sex-related average) values for bone mineral content (BMC) differed significantly (p [de

  7. Periodontal Therapy in Dogs Using Bone Augmentation Products Marketed for Veterinary Use.

    Science.gov (United States)

    Angel, Molly

    Periodontal disease is extremely common in companion animal practice. Patients presenting for a routine oral examination and prophylaxis may be found to have extensive periodontal disease and attachment loss. Vertical bone loss is a known sequela to periodontal disease and commonly involves the distal root of the mandibular first molar. This case report outlines two dogs presenting for oral examination and prophylaxis with general anesthesia. Both patients did not have any clinical symptoms of periodontal disease other than halitosis. Both patients were diagnosed with three-walled vertical bone loss defects of one or both mandibular first molars utilizing dental radiography as well as periodontal probing, measuring, and direct visual inspection. These defects were consistent with periodontal disease index stage 4 (>50% attachment loss). The lesions were treated with appropriate root planing and debridement. Bone augmentation products readily available and marketed for veterinary use were then utilized to fill the defects to promote both the re-establishment of normal alveolar bone height and periodontal ligament reattachment to the treated surface. Follow-up assessment and owner dedication is critical to treatment outcome. Both patients' 6 mo follow-up examinations radiographically indicated bone repair and replacement with visible periodontal ligament space.

  8. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles.

    Science.gov (United States)

    Campi, G; Cristofaro, F; Pani, G; Fratini, M; Pascucci, B; Corsetto, P A; Weinhausen, B; Cedola, A; Rizzo, A M; Visai, L; Rea, G

    2017-11-16

    The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At the molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using scanning micro X-ray diffraction and scanning micro X-ray fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit heterogeneous and self-organizing dynamics. At the same time the possibility of controlling the differentiation kinetics, through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine.

  9. Quantification of bone mineral density at 3rd lumbar vertebra by dual photon absorptiometry in healthy subjects

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato

    1987-01-01

    Bone mineral density (BMD), by dual photon absorptiometry (DPA), at the 3rd lumbar vertebra (L 3 ) was measured in healthy subjects (37 males and 49 females). BMD values on 1 slice of vertebral body (L 3 ), employed as a routine, showed good correlation to the mean BMD values, calculated from multiple slices of whole L 3 . BMD values, by DPA, at L 3 were better correlation to concentrations of bone mineral equivalent material, by quantitative computed tomography, at the trabecular bone of L 3 than to BMD values, by single photon absorptiometry, at distal radius (predominantly cortical bone). Furthermore, by this DPA technique, bone diminution at L 3 with aging was shown in both sexes. These data suggest that measurements of BMD by DPA is greatly useful for evaluating the spinal bone mineral content. (author)

  10. Bone Mineral Density in Patients with Growth Hormone Deficiency - Does a Gender Difference Exist?

    DEFF Research Database (Denmark)

    Hitz, Mette; Jensen, Jens-Erik Beck; Eskildsen, PC

    2006-01-01

    OBJECTIVE: The aim of the study was to clarify whether a gender difference exists with respect to bone mineral density (BMD) and bone mineral content (BMC) in adult patients with growth hormone deficiency (GHD). DESIGN: A case-control design. METHODS: Blood sampling for measurements of calcium......, phosphate, creatinine, PTH, vitamin D, IGF-1, markers of bone formation and bone resorption, and dual energy X-ray absorptiometry (DEXA), to determine BMD and BMC of the lumbar spine, hip, distal arm and total body, were performed in 34 patients with GHD (19 females) and 34 sex-, age- and weight...... identical BMD values at all regions. This gender difference was even more obvious when BMD values were expressed as Z-scores or as three-dimensional BMD of the total body. The bone formation and bone resorption markers, as well as calcium and vitamin D, were all at the same levels in GH...

  11. Bone mineral density in patients with growth hormone deficiency: does a gender difference exist?

    DEFF Research Database (Denmark)

    Hitz, Mette Friberg; Jensen, Jens-Erik Beck; Eskildsen, Peter C

    2006-01-01

    OBJECTIVE: The aim of the study was to clarify whether a gender difference exists with respect to bone mineral density (BMD) and bone mineral content (BMC) in adult patients with growth hormone deficiency (GHD). DESIGN: A case-control design. METHODS: Blood sampling for measurements of calcium......, phosphate, creatinine, PTH, vitamin D, IGF-1, markers of bone formation and bone resorption, and dual energy X-ray absorptiometry (DEXA), to determine BMD and BMC of the lumbar spine, hip, distal arm and total body, were performed in 34 patients with GHD (19 females) and 34 sex-, age- and weight...... identical BMD values at all regions. This gender difference was even more obvious when BMD values were expressed as Z-scores or as three-dimensional BMD of the total body. The bone formation and bone resorption markers, as well as calcium and vitamin D, were all at the same levels in GH...

  12. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    Science.gov (United States)

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  13. Bone mineral density among female sports participants.

    Science.gov (United States)

    Egan, Elizabeth; Reilly, Thomas; Giacomoni, Magali; Redmond, Louise; Turner, Clare

    2006-02-01

    Training for and participation in impact-loading sports are associated with alterations in bone strength which are specific to anatomical site and type of strain. The effect of exercise on bone mineral density (BMD) depends on the type of activity engaged in. Sports with high impact loading seem to have a positive effect in promoting bone mineralisation, whereas those with low impacts may have negative or no effects. The aims of the present study were to compare BMD and body composition measures among female participants in three distinctly different sports and investigate differences from sedentary control subjects. Participants were club and university level Rugby Union football players (n = 30, age: 21.4 +/- 1.9 years, height: 1.67 +/- 0.05 m, mass: 73.3 +/- 10.7 kg), netball players (n = 20, 20.7 +/- 1.3 years, 1.68 +/- 0.07 m, 64.3 +/- 7.2 kg), distance runners (n = 11, 21.5 +/- 2.6 years, 1.68 +/- 0.04 m, 57.1 +/- 6.1 kg), and sedentary controls (n = 25, 21.4 +/- 1.1 years; 1.64 +/- 0.07 m, 56.8 +/- 6.8 kg). With the exception of three distance runners, all participants were eumenorrhoeic. Bone mineral density scans were performed for whole-body, left proximal femur, and lumbar spine (L1-4) using dual-energy X-ray absorptiometry. Fat mass, percent body fat, and fat-free soft tissue mass were assessed from whole-body scans. Regional and segmental analysis was also carried out on whole-body BMD data using standard procedures. The runners had a lower fat mass and percent body fat compared to the other sports participants and the controls. All sports groups had higher BMD values than had the controls. Density of bone in the upper body was most pronounced in the rugby football players and least pronounced in the runners. Positive effects were evident at all sites for the rugby players. There were significant correlations between BMD and fat-free soft tissue mass, BMD and body mass, and BMD and training volume. It is concluded that sports participation has positive

  14. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    OpenAIRE

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic bla...

  15. BONE MINERAL DENSITY AFTER LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2010-01-01

    Full Text Available Bone mineral density (BMD was estimated twice in 18 recipents of ortotopic liver transplantation. There was decreased BMD in axial so as in peripheral skeleton in early time and in vertebral or hip Ward triangle in late time following transplantation being lower in primary biliary cirrosis then in cirrosis following chronic virus hepatitis despite tacrolimus immunosupression without prednisolon. Tacrolimus immunosupression with prednisolon in primary biliary cirrosis patients in late postoperative time was associated with hard BMD lowering which correlated with glucocorticoid therapy duration and prednisolon cumulative dosis. 

  16. The use of bone turnover markers in chronic kidney disease-mineral and bone disorders.

    Science.gov (United States)

    Chiang, Cherie

    2017-03-01

    Bone turnover markers assist in fracture risk prediction, management and monitoring of osteoporosis in patients without chronic kidney disease (CKD). The use in CKD-mineral bone disorder (MBD) has been limited as many of these markers and breakdown products are renally excreted, including the most commonly used and well standardized procollagen type I N propeptide and C-terminal cross-linking telopeptide of type I collagen. Of the markers unaffected by renal function, bone specific alkaline phosphatase is associated with mortality and fracture rate in CKD subjects and is now available on several automated analysers. When used in combination with PTH, bone specific alkaline phosphatase as a bone formation marker correlated well with bone biopsy histomorphometry in predicting adynamic bone disease. Tartrate-resistant acid phosphatase 5b is a resorption marker that is under development for automation. Both high and low bone turnover in CKD-MBD patients are associated with increased fracture and mortality risk. Bone biopsy as the gold standard to differentiate between adynamic bone disease and osteitis fibrosa is limited by availability and cost. Appropriate use of bone turnover markers is vital in the decision to commence anti-resorptive agents, and to monitor efficacy in order to avoid over suppression of bone turnover, which may lead to stress fractures. Further efforts are required to develop markers unaffected by renal function with standardized cut-off values and fracture as well as vascular calcification end-points. © 2017 Asian Pacific Society of Nephrology.

  17. Comparative analysis of bone mineral contents with dual-energy quantitative computed tomography

    International Nuclear Information System (INIS)

    Choi, T. J.; Yoon, S. M.; Kim, O. B.; Lee, S. M.; Suh, S. J.

    1997-01-01

    The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent K 2 HPO 4 standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC). The attenuation coefficient of tissues highly depends on the radiation energy, density and effective atomic number of composition. The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone, fat and soft tissue equivalent solution in two photon spectra. In this experiments, the BMC of DEQCT with 80 and 120kV p X rays was compared to ash weight of animal trabecular bone. We obtained the mass attenuation coefficient of 0.2409, 0.5608 and 0.2206 in 80kV p , and 0.2046, 0.3273 and 0.1971 cm 2 /g in 120kV p X-ray spectra for water, bone and fat equivalent materials, respectively. The BMC with DEQCT was accomplished with empirical constants K 1 =0.3232, K 2 =0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone. The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r=0.998 and r=0.996, respectively. The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone. (author)

  18. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    Science.gov (United States)

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  19. Effects of Growth Hormone Replacement Therapy on Bone Mineral Density in Growth Hormone Deficient Adults: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Peng Xue

    2013-01-01

    Full Text Available Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochrane Library were undertaken to identify studies in humans of the association between growth hormone treatment and bone mineral density in growth hormone deficient adults. Random effects model was used for this meta-analysis. Results. A total of 20 studies (including one outlier study with 936 subjects were included in our research. We detected significant overall association of growth hormone treatment with increased bone mineral density of spine, femoral neck, and total body, but some results of subgroup analyses were not consistent with the overall analyses. Conclusions. Our meta-analysis suggested that growth hormone replacement therapy could have beneficial influence on bone mineral density in growth hormone deficient adults, but, in some subject populations, the influence was not evident.

  20. Effects of Recombinant Human Bone Morphogenetic Protein-2 on Vertical Bone Augmentation in a Canine Model.

    Science.gov (United States)

    Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay

    2017-09-01

    Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P 0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.

  1. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT.

    NARCIS (Netherlands)

    Klijn, R.J.; Beucken, J.J.J.P van den; Bronkhorst, E.M.; Berge, S.J.; Meijer, G.J.; Jansen, J.B.M.J.

    2012-01-01

    INTRODUCTION: No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft

  2. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.

    Science.gov (United States)

    Dong, X Neil; Guda, Teja; Millwater, Harry R; Wang, Xiaodu

    2009-02-09

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.

  3. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  5. Usefulness of bone scintigraphic classification and quantitative evaluation of bone mineralization with X-CT and SPECT in renal osteodystrophy

    International Nuclear Information System (INIS)

    Okamura, Terue; Fukuda, Teruo; Inoue, Yuuichi; Koizumi, Yoshiko; Ikeda, Hozumi; Ochi, Hironobu

    1987-01-01

    1. Bone scintigraphy with Tc-99m-MDP was performed on 52 patients with chronic renal failure. These bone scintigrams were classified into 4 groups, each of which was correlated to laboratory data and quantitative data of bone mineralization. Group I (32 patients) showed high accumulation of Tc-99m-MDP in the bone. High level of Alk-Pase and c-PTH, low BMC/BW, low EMI number and high radionuclide activity ratio (RN ratio) were observed. Group II (9 patients) demonstrated nuclear bone images with high background activity. RN ratio was slightly higher than the normal. Group III (11 patients) showed extraosseous accumulation of Tc-99m-MDP in the lung, kidney or soft tissues. One patient belonged to Group I. High level of Ca x P product and slightly high RN ratio were observed. In both Group II and III, BMC/BW and EMI number were normal. Group IV (one patient) showed normal skeletal activity on bone scintigram. The mean duration of hemodialysis was the longest in Group I. Our scintigraphic classification is convenient and might contribute an understanding of patho-physiological bone changes in such patients. 2. Subtotal parathyroidectomy (S-PTX) was employed in 18 of 52 patients on chronic renal failure with secondary hyperparathyroidism. These patients were studied before and after S-PTX using 6 different procedures; conventional radiography, microdensitometry, bone mineral analysis, measurement of EMI number with X-CT (frontal bone), bone scintigraphy, and RN ratio (frontal bone/brain) with SPECT. On the bone scan, the diffuse increased activity in the calvarium became less prominent after S-PTX in all 18 patients. We devised a new method to quantify the bone changes revealed by the bone scan; the RN ratio with SPECT. The ratio decreased markedly after surgery. This method seems to be most useful for detecting dynamic bone changes sensitively and quantitatively. (author)

  6. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. EFFECTS OF TAEKWONDO TRAINING ON BONE MINERAL DENSITY OF HIGH SCHOOL GIRLS IN KOREA

    Directory of Open Access Journals (Sweden)

    S. Young Ho

    2011-09-01

    Full Text Available The incidence of bone fractures has increased in the current decade due to osteoporosis. Bone mineral density (BMD, or the amount of mineralized bone, is an important determinant of risk for bone fractures. Bone mineralization is strongly stimulated by weight-bearing exercise during growth and development. Taekwondo, a Korean martial art, is a well-known form of strenuous and weight-bearing physical activity. Therefore, the primary goal of this study was to determine the effects of taekwondo training on the bone health of female high school students in Korea. The secondary goal of this study was to clarify the relationships between body weight and BMD in this sample. Thirty taekwondo players (TKD and 30 sedentary high school girls (CON voluntarily participated in the present study and were split into three groups by weight: light weight (L under 51 kg; middle weight (M between 51 and under 57 kg; and heavy weight (H over 57 kg. BMD was determined from dual-emission X-ray absorptiometry (DEXA, and percent body fat was measured by the skin-fold method. Lumbar spine and femoral BMD were not significantly different between light, middle and heavy body weight groups. However, the average BMD in the TKD group was significantly greater than in the CON group for all lumbar spine regions (P<0.05. The results of this study suggest that taekwondo training during growth significantly improved bone health in all weight groups.

  8. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    Science.gov (United States)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  9. Normal values of bone mineral density of the accessory carpus bone in Brasileiro de Hipismo (BH) horse breed using optical densitometry in radiographic image

    International Nuclear Information System (INIS)

    Godoy, C.L.B. de; Vulcano, L.C.; Santos, F.A.M.; Soares, J.C.M.

    2005-01-01

    Physiologic values of the bone mineral density (BMD) of the accessory carpal bone in Brasileiro de Hipismo (BH) horse breed were determined by radiographic optic densitometry (ROD), expressed in milimiters of alumminun (mmAl). Lateromedial radiographs of the carpus were taken from 12 intact males and 12 females, from 20 and up to 30 months of age. No significant difference was found in the average mineral bone density of the accessory carpal bone between males (4.7 ± 0.1mmAl) and females (4.,6 ± 0,1mmAl) from 20 to 30 months of age [pt

  10. Quantitative determination of bone mineral content (QCT) - intercomparison of computer tomographs of the same construction

    International Nuclear Information System (INIS)

    Andresen, R.; Banzer, D.; Felsenberg, D.; Wolf, K.J.

    1994-01-01

    An intercomparison of 4 CT scanners of the same manufacturer was performed. The bone mineral content of 11 lumbar vertebral columns removed directly post mortem was determined in a specially constructed lucite-water phantom. Even devices of the same construction were shown to yield a variation in the quantitative evaluation markedly exceeding the annual physiological mineral loss. As long as scanner adjustment by physical calibration phantoms has not yet been established, a course assessment and therapy control of bone mineral content should always be carried out on the same QCT scanner. (orig.) [de

  11. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-01-01

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n = 12) to 1000 ppm lead acetate in drinking water for 90 days while control group (n = 8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ + Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.

  12. Bone mineral density abnormalities in HIV infected patients and HIV ...

    African Journals Online (AJOL)

    Bone mineral density abnormalities in HIV infected patients and HIV ... Comprehensive Care Clinic (CCC) and a HIV negative control group seen at the ... Older patients had lower levels of BMD (i.e. more negative BMD. p-value = 0.032).

  13. Bone mineral density and bone scintigraphy in children and adolescents with osteomalacia

    International Nuclear Information System (INIS)

    El-Desouki, M.; Al-Jurayyan, N.

    1997-01-01

    In order to demonstrate the role of bone mineral density (BMD) measurement and bone scans in the management of patients with osteomalacia, radioisotope bone scintigraphy using technetium-99m methylene diphosphonate (MDP) and BMD measurements of the lumbar spine and femur by means of dual X-ray absorptiometry (DXA) were performed at the time of diagnosis and 6 months after therapy in 26 Saudi patients (17 females and nine males). Their mean age was 13.5 years (range, 5-16). BMD measurements were compared with those of normal Saudi subjects matched for age and sex. Bone scan showed an increase in tracer uptake throughout the skeleton (''superscan'') in all children and demonstrated multiple stress fractures in eight. The mean BMD for the lumbar spine was 0.53 g/cm 2 (Z-score, -3.1) and for the femoral neck 0.55 g/cm 2 (Z-score, -2.8). Repeated bone scan and BMD after 6 months of therapy with oral vitamin D, calcium and proper sun exposure demonstrated a significant increase (P <0.001) in BMD and healing of pseudofractures. In conclusion, as a non-invasive method with minimal radiation exposure, measurements of BMD in children with osteomalacia are to be recommended in the initial assessment of the severity of osteopenia and in the follow-up to monitor the response to therapy. Bone scintigraphy is valuable in demonstrating the site and severity of stress fractures. (orig.). With 2 figs., 1 tab

  14. Bone mineral density and bone scintigraphy in children and adolescents with osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    El-Desouki, M. [College of Medicine and King Khalid University Hospital, King Saud University, Riyadh (Saudi Arabia); Al-Jurayyan, N. [College of Medicine and King Khalid University Hospital, King Saud University, Riyadh (Saudi Arabia)

    1997-02-01

    In order to demonstrate the role of bone mineral density (BMD) measurement and bone scans in the management of patients with osteomalacia, radioisotope bone scintigraphy using technetium-99m methylene diphosphonate (MDP) and BMD measurements of the lumbar spine and femur by means of dual X-ray absorptiometry (DXA) were performed at the time of diagnosis and 6 months after therapy in 26 Saudi patients (17 females and nine males). Their mean age was 13.5 years (range, 5-16). BMD measurements were compared with those of normal Saudi subjects matched for age and sex. Bone scan showed an increase in tracer uptake throughout the skeleton (``superscan``) in all children and demonstrated multiple stress fractures in eight. The mean BMD for the lumbar spine was 0.53 g/cm{sup 2}(Z-score, -3.1) and for the femoral neck 0.55 g/cm {sup 2}(Z-score, -2.8). Repeated bone scan and BMD after 6 months of therapy with oral vitamin D, calcium and proper sun exposure demonstrated a significant increase (P <0.001) in BMD and healing of pseudofractures. In conclusion, as a non-invasive method with minimal radiation exposure, measurements of BMD in children with osteomalacia are to be recommended in the initial assessment of the severity of osteopenia and in the follow-up to monitor the response to therapy. Bone scintigraphy is valuable in demonstrating the site and severity of stress fractures. (orig.). With 2 figs., 1 tab.

  15. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase.

    NARCIS (Netherlands)

    Douglas, T.E.L.; Messersmith, P.B.; Chasan, S.; Mikos, A.G.; Mulder, E.L.W. de; Dickson, G.; Schaubroeck, D.; Balcaen, L.; Vanhaecke, F.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2012-01-01

    Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups,

  16. Study of osteoporosis through the measurement of bone mineral density and trace elements

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Alkanl, S.; Korkusuz, F.; Ungan, M.; Kuscu, L.; Laleli, Y.; Eksioglu, F.; Sepici, B.; Gunel, U.

    2000-01-01

    The main purpose of this study was to establish a relation, if any, between bone mineral density, BMD, of the healthy Turkish population of the ages between 15 and 50 with social and demographic information, family history of fractures, personal and inherited characteristic, smoking and alcohol habit, history of fertility, level of physical activity, food consumption especially trace elements and other variables. Most of these relations were discussed in the last RCM in San Diego, CA, October 7-10,1996. Since then we have concentrated our work on more BMD and trace element measurements in bone. To this end, bone mineral density measurements, trace element studies, neutron activation analysis, fluoride analysis and atomic absorption analysis were undertaken and resulting data were analysed

  17. Abnormal bone and mineral metabolism in kidney transplant patients--a review

    DEFF Research Database (Denmark)

    Sprague, S.M.; Belozeroff, V.; Danese, M.D.

    2008-01-01

    BACKGROUND/AIMS: Abnormal bone and mineral metabolism is common in patients with kidney failure and often persists after successful kidney transplant. METHODS: To better understand the natural history of this disease in transplant patients, we reviewed the literature by searching MEDLINE...... within 2 months. Low levels of 1,25(OH)2 vitamin D typically did not reach normal values until almost 18 months after transplant. CONCLUSION: This review provides evidence demonstrating that abnormal bone and mineral metabolism exists in patients after kidney transplant and suggests the need...... for English language articles published between January 1990 and October 2006 that contained Medical Subject Headings and key words related to secondary or persistent hyperparathyroidism and kidney transplant. RESULTS: Parathyroid hormone levels decreased significantly during the first 3 months after...

  18. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    Science.gov (United States)

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Densidade mineral óssea de adolescentes com sobrepeso e obesidade Bone mineral density in overweight and obese adolescents

    Directory of Open Access Journals (Sweden)

    Fernanda Cobayashi

    2005-08-01

    Full Text Available OBJETIVO: Estudar a densidade óssea como fator concomitante da obesidade em adolescentes pós-púberes, controlando outras variáveis que possam interferir nessa relação. MÉTODOS: Estudo com 83 sobrepesos e obesos (IMC > P85 e 89 não obesos (P5 OBJECTIVE: to study bone density as a concomitant factor for obesity in post-pubertal adolescents, controlling for other variables that may interfere in such a relation. METHODS: Study comprising 83 overweight and obese adolescents (BMI > P85 and 89 non obese ones (P5 < BMI < P85. Cases and controls were selected out of 1,420 students (aged 14-19 from a public school in the city of São Paulo. The bone mineral density of the lumbar spine (L2-L4 in g/cm² was assessed by dual-energy x-ray absorptiometry (LUNAR™ DPX-L. The variable bone density was dichotomized using 1.194 g/cm² as cutoff point. Bivariate analyses were conducted considering the prevalence of overweight and obesity followed by multivariate analysis (logistic regression according to a hierarchical conceptual model. RESULTS: The prevalence of bone density above the median was twice more frequent among cases (69.3% than among controls (32.1%. In the bivariate analysis such prevalence resulted in an odds ratio (OR of 4.78. The logistic regression model showed that the association between obesity and mineral density is yet more intense with an OR of 6.65 after the control of variables related to sedentary lifestyle and intake of milk and dairy products. CONCLUSION: Obese and overweight adolescents in the final stages of sexual maturity presented higher bone mineral density in relation to their normal-weight counterparts; however, cohort studies will be necessary to evaluate the influence of such characteristic on bone resistance in adulthood and, consequently, on the incidence of osteopenia and osteoporosis at older ages.

  20. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry.

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Tanideh, Nader; Janghorban, Kamal; Sheibani, Nader

    2014-05-01

    Materials with new compositions were tested in order to develop dental materials with better properties. Calcium silicate-based cements, including white mineral trioxide aggregate (WMTA), may improve osteopromotion because of their composition. Nano-modified cements may help researchers produce ideal root-end filling materials. Serial dual-energy x-ray absorptiometry measurement was used to evaluate the effects of particle size and the addition of tricalcium aluminate (C3A) to a type of mineral trioxide aggregate-based cement on bone mineral density and the surrounding tissues in the mandible of rabbits. Forty mature male rabbits (N = 40) were anesthetized, and a bone defect measuring 7 × 1 × 1 mm was created on the semimandible. The rabbits were divided into 2 groups, which were subdivided into 5 subgroups with 4 animals each based on the defect filled by the following: Nano-WMTA (patent application #13/211.880), WMTA (as standard), WMTA without C3A, Nano-WMTA + 2% Nano-C3A (Fujindonjnan Industrial Co, Ltd, Fujindonjnan Xiamen, China), and a control group. Twenty and forty days postoperatively, the animals were sacrificed, and the semimandibles were removed for DXA measurement. The Kruskal-Wallis test followed by the Mann-Whitney U test showed significant differences between the groups at a significance level of P density at both intervals and P20 day = .004 and P40 day = .005 for bone mineral content. This study showed that bone regeneration was enhanced by reducing the particle size (nano-modified) and C3A mixture. This may relate to the existence of an external supply of minerals and a larger surface area of nano-modified material, which may lead to faster release rate of Ca(2+), inducing bone formation. Adding Nano-C3A to Nano-WMTA may improve bone regeneration properties. Copyright © 2014 American Association of Endodontists. All rights reserved.

  1. An objective algorithm for the determination of bone mineral content using dichromatic absorptiometry

    International Nuclear Information System (INIS)

    Appledorn, C.R.; Witt, R.M.; Wellman, H.N.; Johnston, C.C.

    1985-01-01

    The determination of vertebral column bone mineral content by dual photon absorptiometric methods is a problem of continued clinical interest. The more successful methods suffer from the frequent need of operator interaction in order to maintain good precision results. The authors have introduced a new objective algorithm that eliminates the subjectiveness of operator interaction without sacrificing reproducibility. The authors' system consists of a modified rectilinear scanner interfaced to a CAMAC acquisition device coupled to a PDP-11V03 minicomputer. The subject is scanned in the supine position with legs elevated to minimize lordosis. The source (Gd-153) and detector are collimated defining an area of 10mm x 10mm at the level of the spine. The transverse scan width is usually 120 mm. Scanning from the iliac crests toward the head, 50 transverses at 3mm y-increments are acquired at approximately 1mm increments. The data analysis begins with the calculation of R-value for each pixel in the scan. The calculations for bone mineral content are performed and various quantities are accumulated. In a reproducibility study of 116 patient studies, the authors achieved a bone mineral/bone area ratio precision (std dev/mean) of 1.37% without operator interaction nor vertebral body selection

  2. Clinical and Histomorphometric Assessment of Lateral Alveolar Ridge Augmentation Using a Corticocancellous Freeze-Dried Allograft Bone Block.

    Science.gov (United States)

    Ahmadi, Roya Shariatmadar; Sayar, Ferena; Rakhshan, Vahid; Iranpour, Babak; Jahanbani, Jahanfar; Toumaj, Ahmad; Akhoondi, Nasrin

    2017-06-01

    Horizontal ridge augmentation with allografts has attracted notable attention because of its proper success rate and the lack of disadvantages of autografts. Corticocancellous block allografts have not been adequately studied in humans. Therefore, this study clinically and histomorphometrically evaluated the increase in ridge width after horizontal ridge augmentation using corticocancellous block allografts as well as implant success after 12 to 18 months after implantation. In 10 patients receiving implants (3 women, 7 men; mean age = 45 years), defective maxillary alveolar ridges were horizontally augmented using freeze-dried bone allograft blocks. Ridge widths were measured before augmentation, immediately after augmentation, and ∼6 months later in the reentry surgery for implantation. This was done at points 2 mm (A) and 5 mm (B) apically to the crest. Biopsy cores were acquired from the implantation site. Implant success was assessed 15.1 ± 2.7 months after implantation (range = 12-18 months). Data were analyzed using Friedman and Dunn tests (α = 0.05). At point A, ridge widths were 2.77 ± 0.37, 8.02 ± 0.87, and 6.40 ± 0.66 mm, respectively, before surgery, immediately after surgery, and before implantation. At point B, ridge widths were 3.40 ± 0.39, 9.35 ± 1.16, and 7.40 ± 1.10 mm, respectively, before surgery, immediately after surgery, and before implantation. The Friedman test showed significant increases in ridge widths, both at point A and point B (both P = .0000). Postaugmentation resorption was about 1.5-2 mm and was statistically significant at points A and B (P < .05, Dunn). The percentage of newly formed bone, residual graft material, and soft tissue were 33.0% ± 11.35% (95% confidence interval [CI] = 24.88%-41.12%), 37.50% ± 19.04% (95% CI = 23.88%-51.12%), and 29.5%, respectively. The inflammation was limited to grades 1 or zero. Twelve to 18 months after implantation, no implants caused pain or showed exudates or pockets. Radiographic

  3. Diversity of activity participation determines bone mineral content in the lower limbs of pre-pubertal children with developmental coordination disorder.

    Science.gov (United States)

    Fong, S S M; Vackova, D; Choi, A W M; Cheng, Y T Y; Yam, T T T; Guo, X

    2018-04-01

    This study examined the relationships between activity participation and bone mineralization in children with developmental coordination disorder. Limited participation in physical, recreational, social, and skill-based and self-improvement activities contributed to lower bone mineral content. For improved bone health, these children should participate in a variety of activities, not only physical activities. Limited activity participation in children with developmental coordination disorder (DCD) may have a negative impact on bone mineral accrual. The objectives of this study were to compare bone mineralization and activity participation patterns of pre-pubertal children with DCD and those with typical development, and to determine the association between activity participation patterns and bone mineralization in children with DCD. Fifty-two children with DCD (mean age = 7.51 years) and 61 children with typical development (mean age = 7.22 years) participated in the study. Appendicular and total body (less head) bone mineral content (BMC) and bone mineral density (BMD) were evaluated by a whole-body dual-energy X-ray absorptiometry scan. Activity participation patterns were assessed using the Children's Assessment of Participation and Enjoyment (CAPE) questionnaire. Children with DCD had lower appendicular and total body BMCs and BMDs than children with typical development overall (p accounting for the effects of age, sex, height, lean mass, and fat mass, the total activity diversity score remained independently associated with leg BMC in children with DCD, explaining 5.1% of the variance (p = 0.030). However, the physical activity diversity score was no longer associated with leg BMC (p = 0.090). Diversity of activity participation and bone mineralization were lower in pre-pubertal children with DCD. Decreased total activity participation diversity was a contributing factor to lower BMC in the legs of children with DCD.

  4. Effect of resistance and aerobic exercises on bone mineral density ...

    African Journals Online (AJOL)

    Conclusion: Based on obtained data, it can be concluded that, resistance and aerobic exercise training program is effective in increasing BMD, muscle strength and functional ability in children with hemophilia. Keywords: Hemophilia; Resistance; Aerobic exercise; Bone mineral density; Strength; Functional ability ...

  5. Relationship of bone mineral density to progression of knee osteoarthritis

    Science.gov (United States)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  6. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    OpenAIRE

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). S...

  7. Bone mineral content reduction in youth with surgical form of Schistosomiasis mansoni: factors involved in the pathogenesis

    Directory of Open Access Journals (Sweden)

    Brandt Carlos Teixeira

    2001-01-01

    Full Text Available Thirty two children and adolescents from 14 to 20 years of age, suffering from hepatosplenic schistosomiasis mansoni and bleeding esophageal varicose veins, were evaluated for bone mineral density (BMD, before undergoing medical and surgical treatment. The surgical protocol was splenectomy, autoimplantation of spleen tissue into a pouch of the major omentum and ligature of the left gastric vein. Follow up of these patients? ranges from one to ten years with a mean of five years. The BMD was measured at the lumbar spine (L2 - L4 through the dual energy absorptionmetry X-ray (DEXA, using a LUNAR DPX-L densitometer. The degree of Symmers´ fibrosis was assessed by semiautomatic hystomorphometry. In eleven patients, the serum magnesium was measured before an intravenous overload of this ion and subsequently after eight and twenty four hours. Urine was collected 24 hours before and 24 hours after the magnesium overload. Deficiency of magnesium was considered when the uptake of this ion was greater than 40%. There was a significant trend of association between the status of bone mineral content and the Symmers´ fibrosis degree (c² = 6.606 R = 0.01017. There was also a moderate agreement between the greater fibrosis densities ( > the mean percentage and bone mineral deficits. Although the normal bone mineral content was more found among the patients with better hepatic functional reserve, the results did not reach statistical significance. There was a marked magnesium retention (>95% in one patient who had severe osteoporosis and a slight depletion (<5% in another patient, who presented no bone mineral deficit. It was concluded that the patients included in this series, showed an important BMD deficit, specially among the females which has had a significant improvement after medical and surgical treatment. Bone mineral deficit was associated with the degree of Symmers´ fibrosis. Magnesium depletion was present in two out of eleven patients. It is

  8. Early postmenopausal diminution of forearm and spinal bone mineral density

    DEFF Research Database (Denmark)

    Bjarnason, K; Hassager, C; Ravn, Pernille

    1995-01-01

    Diminution of bone mineral density (BMD) in the spine and forearm was studied cross-sectionally in 363 women who were 6 months to 10 years postmenopausal. BMD was determined by dual-energy X-ray absorptiometry (DXA) (Hologic QDR-2000) in the lumbar spine, in both the supine lateral (LAT) and ante......Diminution of bone mineral density (BMD) in the spine and forearm was studied cross-sectionally in 363 women who were 6 months to 10 years postmenopausal. BMD was determined by dual-energy X-ray absorptiometry (DXA) (Hologic QDR-2000) in the lumbar spine, in both the supine lateral (LAT......) and anteroposterior (AP) projections, and in the distal third of the forearm. The postmenopausal diminution of BMD was best described by an exponential fit. The initial rate of postmenopausal diminution of BMD was highest in the most trabecular sites (LAT > AP > forearm), but 10-year diminution was similar at all...

  9. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S

    1994-01-01

    Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...... the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4...

  10. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    Science.gov (United States)

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  11. BONE MINERAL DENSITY IN PHYSICALLY ACTIVE WOMEN ASSESSED BY ULTRASOUND DESINTOMETRY

    Directory of Open Access Journals (Sweden)

    Ana Marijanac

    2015-05-01

    Full Text Available Osteoporosis is a disease characterized by low bone mass and density. Physical activity has a positive effect on bone tissue, and it is recommended to prevent bone loss which comes with age. Methods: In purpose of determining bone mineral density in women who are physically active we examined 35 women divided into two groups – subjects who are premenopausal (n=20, 43.52 ± 7.56 years, and subjects who are postmenopausal (n=15, 55.89 ± 5.48. The subjects exercised Pilates method twice a week for one hour. Bone mineral density measurements were done by ultrasound densitometer „Sahara“ through the calcaneus. We get the data of the estimated bone density and T-score for right and left foot separate. Results: According to results premenopausal women have normal bone density, and postmenopausal values represent osteopenia, according to the WHO. There is no subjects who established osteoporosis. Discussion: Previous investigations have confirmed that physical activity is important for the preservation of the bone quality. Increasing steps, using simple everyday tasks, can prevent decrease in BMD in postmenopausal women (Muir et al., 2013, Ashe et al, 2008. There’s difference in the density of the calcaneus between physically active and those who are not, measured by ultrasound densitometry (Vainionpää et al, 2005. We use quantitative ultrasound densitometry to describe BMI of women who exercise Pilates and support the finding that physical activity is one of the ways that may prevent the BMD loss. These research was done as a part of long-term project entitled „Impact of physical activity of the working population“ which is co-financed by Provincial Secretariat for Science and Technological Development.

  12. Accuracy and precision in the in vivo determination of bone minerals content using the attenuation of a continuous x-ray spectrum

    International Nuclear Information System (INIS)

    Jonson, R.; Roos, B.; Hansson, T.; Mattsson, S.

    1986-01-01

    An x-ray technique using a highly stabilized generator and a germanium detector for the in vivo determination of bone mineral content in the lumbar vertebra has been described previously from the authors laboratory. This technique estimates the bone mineral content in presence of fat and lean soft tissue in the path of the x-ray beam. The present investigation was undertaken in vitro to determine the accuracy, precision and long term reproducibility of the technique. The ash density of 12 human bone specimens was determined on the basis of ash weight and total volume measurements of each specimen. The result was compared with the measured bone mineral content. The deviation between the result of the attenuation measurements and the weight/volume measurements was (4 +/- 0.9%). The precision of the method as measured in vitro has been determined to be between +/- 1.6% (high bone mineral content) and +/- 2.6% (low bone mineral content) by repeated measurements on a new type of bone mineral phantom. The results show that the technique described gives an accuracy and a precision which is of the same order of magnitude as the technique using dual photon energy absorptiometry

  13. Bone mineral density and bone scintigraphy in adult Saudi female patients with Osteomalacia

    International Nuclear Information System (INIS)

    El-Desouki, Mahmoud I.; Othman, Saleh M.; Fouda, Mona A.

    2004-01-01

    This prospective study was conducted to demonstrate the role of bone mineral density (BMD) and bone scan in the management of adult Saudi female patients with established diagnosis of osteomalacia. Bone scan using Tc99m methylene diphosphate (MDP) and BMD of the lumbar spine and femoral neck using dual x-ray absorptiometry (DXA) were performed at the time of diagnosis 6 months and one year after therapy in 96 Saudi female patients attending the metabolic bone disease clinic at King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, between January 1997 through to June 1999, aged between 20 and 73 years (mean 42 years). Alkaline phosphates, calcium and inorganic phosphorus were measured for all patients before and after treatment. 25 Hydroxy vitamin D was only measured with the first BMD measurements. A bone profile showed typical biochemical abnormalities of osteomalacia.The bone scan showed features of superscan in all patients and pseudofractures in 43 patients. BMD measures were compared with that of normal Saudi subjects matched for age and sex. The BMD was low at diagnosis and showed significant improvement after therapy. The improvement of bone density in response to therapy was more evident in lumbar spine than in femoral neck bone.Our results showed that BMD in adult Saudi female patients with osteomalacia was markedly affected probably due to specific constitutional and environmental factors ( inadeqate exercise, lack of sun exposure and lack of intake of milk and dairy products). In addition, lumbar BMD and serum calcium appeared to be better markers to monitor therapy.Bone scan helped in demonstrating disease activity, the presence of pseudofractures. (author)

  14. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    Science.gov (United States)

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  15. Lumbar spine degenerative disease : effect on bone mineral density measurements in the lumbar spine and femoral neck

    International Nuclear Information System (INIS)

    Juhng, Seon Kwan; Koplyay, Peter; Jeffrey Carr, J.; Lenchik, Leon

    2001-01-01

    To determine the effect of degenerative disease of the lumbar spine on bone mineral density in the lumbar spine and femoral neck. We reviewed radiographs and dual energy x-ray absorptiometry scans of the lumbar spine and hip in 305 Caucasian women with suspected osteoporosis. One hundred and eight-six patient remained after excluding women less than 40 years of age (n=18) and those with hip osteoarthritis, scoliosis, lumbar spine fractures, lumbar spinal instrumentation, hip arthroplasty, metabolic bone disease other than osteoporosis, or medications known to influence bone metabolism (n=101). On the basis of lumbar spine radiographs, those with absent/mild degenerative disease were assigned to the control group and those with moderate/severe degenerative disease to the degenerative group. Spine radiographs were evaluated for degenerative disease by two radiologists working independently; discrepant evaluations were resolved by consensus. Lumbar spine and femoral neck bone mineral density was compared between the two groups. Forty-five (24%) of 186 women were assigned to the degenerative group and 141 (76%) to the control group. IN the degenerative group, mean bone mineral density measured 1.075g/cm? in the spine and 0.788g/cm 2 in the femoral neck, while for controls the corresponding figures were 0.989g/cm 2 and 0.765g/cm 2 . Adjusted for age, weight and height by means of analysis of variance, degenerative disease of the lumbar spine was a significant predictor of increased bone mineral density in the spine (p=0.0001) and femoral neck (p=0.0287). Our results indicate a positive relationship between degenerative disease of the lumbar spine and bone mineral density in the lumbar spine and femoral neck, and suggest that degenerative disease in that region, which leads to an intrinsic increase in bone mineral density in the femoral neck, may be a good negative predictor of osteoporotic hip fractures

  16. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects

    Directory of Open Access Journals (Sweden)

    D.C.L. Carvalho

    2006-10-01

    Full Text Available Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11 and control (N = 10 groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

  17. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    Science.gov (United States)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ +Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Vertical augmentation of the posterior atrophic mandible by interpositional grafts in a split-mouth design: a human tomography evaluation pilot study.

    Science.gov (United States)

    Domingues, Eduardo Pinheiro; Ribeiro, Rafael Fernandes; Horta, Martinho Campolina Rebello; Manzi, Flávio Ricardo; Côsso, Maurício Greco; Zenóbio, Elton Gonçalves

    2017-10-01

    Using computed tomography, to compare vertical and volumetric bone augmentation after interposition grafting with bovine bone mineral matrix (GEISTLICH BIO-OSS ® ) or hydroxyapatite/tricalcium phosphate (STRAUMANN ® BONECERAMIC) for atrophic posterior mandible reconstruction through segmental osteotomy. Seven patients received interposition grafts in the posterior mandible for implant rehabilitation. The computed tomography cone beam images were analysed with OsiriX Imaging Software 6.5 (Pixmeo Geneva, Switzerland) in the pre-surgical period (T0), at 15 days post-surgery (T1) and at 180 days post-surgery (T2). The tomographic analysis was performed by a single trained and calibrated radiologist. Descriptive statistics and nonparametric methods were used to analyse the data. There was a significant difference in vertical and volume augmentation with both biomaterials using the technique (P  0.05) in volume change of the graft, bone volume augmentation, or augmentation of the maximum linear vertical distance between the two analysed biomaterials. The GEISTLICH BIO-OSS ® and STRAUMANN ® BONECERAMIC interposition grafts exhibited similar and sufficient dimensional stability and volume gain for short implants in the atrophic posterior mandible. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Relationship between tea drinking and bone mineral density in Bushehr population

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri

    2011-09-01

    Full Text Available Background: Tea consumption is common throughout the world, especially in Iran and it was known as the most common beverages. Several studies evaluated negative effect of coffee and relationship between its caffeine content with bone density. But relationship between tea drinking and bone mineral density is less observed. Considering high amount of tea consumption and prevalence of osteoporosis in Iran, it is important to investigate this relationship.Materials and Method: Population study includes 1125 subjects (aged 20- 72 years randomly selected by cluster sampling in Bushehr, who participated in general project of prevention and treatment of osteoporosis. The participants were categorized based on degree of tea consumption: high tea drinkers (more than 4 cups of tea per day and low tea drinkers (equal or less than 4 cups of tea per day.Results: In high tea drinkers, mean score for bone density was significantly higher in neck and total femur. But this difference in isolated groups (according to sex, age and both of them was not seen.Conclusion: The result of this study indicates on a direct relationship between tea drinking and increasing of bone mineral density. Moreover, it shows the prevalence of osteoporosis is lower in people who have a regular daily habit of tea consumption

  20. Bone mineral density, bone metabolism and body composition of children with chronic renal failure, with and without growth hormone treatment

    NARCIS (Netherlands)

    Boot, A. M.; Nauta, J.; de Jong, M. C.; Groothoff, J. W.; Lilien, M. R.; van Wijk, J. A.; Kist-van Holthe, J. E.; Hokken-Koelega, A. C.; Pols, H. A.; de Muinck Keizer-Schrama, S. M.

    1998-01-01

    OBJECTIVE: Osteopenia has been reported in adult patients with chronic renal failure (CRF). Only a few studies have been performed in children. The objective of this study was to evaluate bone mineral density (BMD), bone turnover, body composition in children with CRF and to study the effect of GH

  1. Dual energy X-ray absorptiometry for the measurement of bone mineral density in Shanghai residents

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Li Deyi; Ma Jixiao; Huang Qiren

    1996-01-01

    In recent years, the rapid development of bone mineral density determination technique provides a powerful research tool to diagnose osteoporosis and prevent fracture. Since the beginning of 1995, the research group incooperation with Shanghai 6th people's hospital is carrying on bone density measurements as a part of Co-ordinated Research Programme (CRP) organized by International Atomic Energy Agency (IAEA). The purpose of this study is to determine the age of peak bone mass in each study group of Shanghai residents and to quantify differences in bone density as functions of the age and sex of persons in the study groups. At the same time the authors should get the normal human BMD (Bone Mineral Density) reference database specially for Shanghai residents, China. The roles of various life styles, exercise, diet and so on are also investigated

  2. Normal values for bone mineral content measured by dual photon absorptiometry in children

    International Nuclear Information System (INIS)

    Tison, F.; Lecouffe, P.; Rousseau, J.; Marchandise, X.; Ythier, H.

    1990-01-01

    The results of dual photon absorptiometry measurements in 43 normal children are analyzed. Results were correlated with age, body weight, and stature. Reference stature-specific values for bone mineral content in children are proposed. Furthermore, the results show that mineralization continues beyond the end of statural growth [fr

  3. Facial skeletal augmentation using hydroxyapatite cement.

    Science.gov (United States)

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  4. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes.

    Science.gov (United States)

    Hunt, Heather B; Pearl, Jared C; Diaz, David R; King, Karen B; Donnelly, Eve

    2018-05-01

    Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  5. [Association between bone turnover markers, bone mineral density and vitamin D in Moroccan postmenopausal women].

    Science.gov (United States)

    Elmaataoui, A; Elmachtani Idrissi, S; Dami, A; Bouhsain, S; Chabraoui, L; Ouzzif, Z

    2014-02-01

    The aim of the study is to find the correlation between bone turnover markers and bone mineral density in a cohort of Moroccan postmenopausal women. A cross-sectional study, conducted over a period of 12 months from October 2008 to November 2009. Five hundred Moroccan postmenopausal women volunteers participated in this study and we included only 185. In this cohort of 185 women, average age 60 years, the percentage of osteoporotic women was 35.7%, they were older 62.09 (9.13) years and they had an average of the body mass index (BMI), the lowest 29.58 (4.45). The values of the bone mineral density (BMD) measured at the lumbar spine correlated positively and significantly with BMI (P<0.001), serum calcium (P=0.026), negatively with age (P<0.001) and osteocalcin (OC) (P=0.0033). As for the results of BMD measured at the femoral neck, they show a negative and highly significant correlation with age (P<0.001) and osteocalcin. Looking for an association between the biochemical markers of bone remodeling, a weak positive correlation was found between the calcium (Ca) and alkaline phosphatase (PAL) on the one hand and Ca and intact parathyroid hormone (PTHi) in the other hand. And a significant positive correlation was found between PTHi and PAL, and between PTHi and OC. Finally, a significant positive correlation was found between the cross-laps (β-CTX) and Ca and between PAL and OC. Our results are in agree to some international studies and disagree to others. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  7. Study of optimal X-ray exposure conditions in consideration of bone mineral density. Relation between bone mineral density and image contrast

    International Nuclear Information System (INIS)

    Kondo, Yuji

    2003-01-01

    Bone mineral density (BMD) increases through infancy and adolescence, reaching a maximum at 20-30 years of age. Thereafter, BMD gradually decreases with age in both sexes. The image contrast of radiographs of bones varies with the change in BMD owing to the changes in the X-ray absorption of bone. The image contrast of bone generally is higher in the young adult than in the older adult. To examine the relation between BMD and image visibility, we carried out the following experiments. We measured the image contrast of radiographs of a lumbar vertebra phantom in which BMD was equivalent to the average BMD for each developmental period. We examined image visibility at various levels of imaging contrast using the Howlett chart. The results indicated that differences in BMD affect the image contrast of radiographs, and, consequently, image visibility. It was also found that image visibility in the young adult was higher than that in the older adult. The findings showed that, in digital radiography of young adults with high BMD, X-ray exposure can be decreased according the ratio of improvement in image visibility. (author)

  8. Percutaneous Augmented Peripheral Osteoplasty in Long Bones of Oncologic Patients for Pain Reduction and Prevention of Impeding Pathologic Fracture: The Rebar Concept

    International Nuclear Information System (INIS)

    Kelekis, A.; Filippiadis, D.; Anselmetti, G.; Brountzos, E.; Mavrogenis, A.; Papagelopoulos, P.; Kelekis, N.; Martin, J.-B.

    2016-01-01

    PurposeTo evaluate clinical efficacy/safety of augmented peripheral osteoplasty in oncologic patients with long-term follow-up.Materials and MethodsPercutaneous augmented peripheral osteoplasty was performed in 12 patients suffering from symptomatic lesions of long bones. Under extensive local sterility measures, anesthesiology care, and fluoroscopic guidance, direct access to lesion was obtained and coaxially a metallic mesh consisting of 25–50 medical grade stainless steel micro-needles (22 G, 2–6 cm length) was inserted. PMMA for vertebroplasty was finally injected under fluoroscopic control. CT assessed implant position 24-h post-treatment.ResultsClinical evaluation included immediate and delayed follow-up studies of patient’s general condition, NVS pain score, and neurological status. Imaging assessed implant’s long-term stability. Mean follow-up was 16.17 ± 10.93 months (range 2–36 months). Comparing patients’ scores prior (8.33 ± 1.67 NVS units) and post (1.42 ± 1.62 NVS units) augmented peripheral osteoplasty, there was a mean decrease of 6.92 ± 1.51 NVS units. Overall mobility improved in 12/12 patients. No complication was observed.ConclusionPercutaneous augmented peripheral osteoplasty (rebar concept) for symptomatic malignant lesions in long bones seems to be a possible new technique for bone stabilization. This combination seems to provide necessary stability against shearing forces applied in long bones during weight bearing

  9. Percutaneous Augmented Peripheral Osteoplasty in Long Bones of Oncologic Patients for Pain Reduction and Prevention of Impeding Pathologic Fracture: The Rebar Concept

    Energy Technology Data Exchange (ETDEWEB)

    Kelekis, A., E-mail: akelekis@med.uoa.gr; Filippiadis, D., E-mail: dfilippiadis@yahoo.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece); Anselmetti, G., E-mail: gc.anselmetti@fastwebnet.it [GVM Care and Research Maria Pia Hospital (Italy); Brountzos, E., E-mail: ebrountz@med.uoa.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece); Mavrogenis, A., E-mail: afm@otenet.gr; Papagelopoulos, P., E-mail: pjp@hol.gr [University General Hospital “ATTIKON”, A Orthopedic Clinic (Greece); Kelekis, N., E-mail: kelnik@med.uoa.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece); Martin, J.-B., E-mail: jbmartin@cird.ch [Centre Imaginerie Rive Droite & Gauche (Switzerland)

    2016-01-15

    PurposeTo evaluate clinical efficacy/safety of augmented peripheral osteoplasty in oncologic patients with long-term follow-up.Materials and MethodsPercutaneous augmented peripheral osteoplasty was performed in 12 patients suffering from symptomatic lesions of long bones. Under extensive local sterility measures, anesthesiology care, and fluoroscopic guidance, direct access to lesion was obtained and coaxially a metallic mesh consisting of 25–50 medical grade stainless steel micro-needles (22 G, 2–6 cm length) was inserted. PMMA for vertebroplasty was finally injected under fluoroscopic control. CT assessed implant position 24-h post-treatment.ResultsClinical evaluation included immediate and delayed follow-up studies of patient’s general condition, NVS pain score, and neurological status. Imaging assessed implant’s long-term stability. Mean follow-up was 16.17 ± 10.93 months (range 2–36 months). Comparing patients’ scores prior (8.33 ± 1.67 NVS units) and post (1.42 ± 1.62 NVS units) augmented peripheral osteoplasty, there was a mean decrease of 6.92 ± 1.51 NVS units. Overall mobility improved in 12/12 patients. No complication was observed.ConclusionPercutaneous augmented peripheral osteoplasty (rebar concept) for symptomatic malignant lesions in long bones seems to be a possible new technique for bone stabilization. This combination seems to provide necessary stability against shearing forces applied in long bones during weight bearing.

  10. Rheumatoid arthritis, osteoporosis, possibilities for the correction of bone mineral density

    Directory of Open Access Journals (Sweden)

    Rimma Mikhailovna Balabanova

    2012-01-01

    Full Text Available The paper gives data on the causes of osteoporosis in rheumatoid arthritis (RA, including in autoimmune inflammation, during corticosteroid therapy. The role of bisphosphonates in correcting impaired bone mineral density in RA is shown.

  11. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    Science.gov (United States)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  12. A New Murine Model of Chronic Kidney Disease-Mineral and Bone Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Frauscher

    2017-01-01

    Full Text Available Chronic kidney disease (CKD is associated with mineral and bone disorder (MBD, which is the main cause of the extensively increased cardiovascular mortality in the CKD population. We now aimed to establish a new murine experimental CKD-MBD model. Dilute brown non-Agouti (DBA/2 mice were fed with high-phosphate diet for 4 (HPD4 or 7 (HPD7 days, then with standard chow diet (SCD and subsequently followed until day 84. They were compared to DBA/2 mice maintained on SCD during the whole study period. Both 4 and 7 days HPD-fed mice developed phosphate nephropathy with tubular atrophy, interstitial fibrosis, decreased glomerular filtration rate, and increased serum urea levels. The abdominal aorta of HPD-treated mice showed signs of media calcification. Histomorphometric analysis of HPD-treated mice showed decreased bone volume/tissue volume, low mineral apposition rate, and low bone formation rate as compared to SCD-fed mice, despite increased parathyroid hormone levels. Overall, the observed phenotype was more pronounced in the HPD7 group. In summary, we established a new, noninvasive, and therefore easy to perform reproducible CKD-MBD model, which showed media calcification, secondary hyperparathyroidism, and low-turnover bone disease.

  13. Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density.

    Science.gov (United States)

    Lage, Sergio; Bueno, María; Andrade, Fernando; Prieto, José Angel; Delgado, Carmen; Legarda, María; Sanjurjo, Pablo; Aldámiz-Echevarría, Luis Jose

    2010-12-01

    Patients with phenylketonuria (PKU) undergo a restrictive vegan-like diet, with almost total absence of n-3 fatty acids, which have been proposed as potential contributors to bone formation in the healthy population. The PKU diet might lead these patients to bone mass loss and, consequently, to the development of osteopenia/osteoporosis. Therefore, we proposed to analyze their plasma fatty acid profile status and its relationship with bone health. We recruited 47 PKU patients for this cross-sectional study and divided the cohort into three age groups (6-10 years, 11-18 years, 19-42 years). We measured their plasma fatty acid profile and bone mineral density (BMD) (both at the femoral neck and the lumbar spine). Seventy-seven healthy controls also participated as reference values of plasma fatty acids. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and total n-3 fatty acids were significantly diminished in PKU patients compared with healthy controls. DHA, EPA, and total n-3 fatty acids were also positively associated with bone mineral density (r = 0.83, p = 0.010; r = 0.57, p = 0.006; r = 0.73, p = 0.040, respectively). There was no association between phenylalanine (Phe), Index of Dietary Control (IDC), calcium, 25-hydroxivitamin D concentrations, daily calcium intake, and BMD. Our results suggest a possible influence of essential fatty acids over BMD in PKU patients. The lack of essential n-3 fatty acids intake in the PKU diet might affect bone mineralization. Further clinical trials are needed to confirm the effect of the n-3 essential fatty acids on bone accrual in a cohort of PKU patients.

  14. [Effects of nandrolone decanoate on bone mineral content and intestinal absorption of calcium].

    Science.gov (United States)

    Nuti, R; Righi, G A; Turchetti, V; Vattimo, A

    1984-01-28

    To evaluate the effects of a long-term treatment with nandrolone decanoate on metabolism of the skeleton, a double-blind randomized study was carried out in women with joint diseases without metabolic bone derangement. Ten patients were treated with 50 mg of nandrolone decanoate every three weeks for two years; in six subjects a treatment with placebo was performed. As it concerns plasma calcium and phosphate, serum alkaline phosphatase, urinary excretion of calcium, phosphate, hydroxyproline and cAMP, as parathyroid index, it was not observed significant differences in the two examined groups. While in placebo group at the end of the study the intestinal radiocalcium remained unchanged and bone mineral content showed a slight decrease, on the contrary nandrolone decanoate treatment promoted a significant improvement in intestinal calcium absorption and an increase in bone mineral content.

  15. Large Bone Vertical Augmentation Using a Three-Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible.

    Science.gov (United States)

    Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane

    2016-12-01

    Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Four three-dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three-dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. At 8 weeks, the three-dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio-distal direction and formed a new crest contour in harmony with the natural mandibular shape. After two months of healing, the three-dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model. © 2016 Wiley Periodicals, Inc.

  16. Effects of Growth Hormone Replacement Therapy on Bone Mineral Density in Growth Hormone Deficient Adults: A Meta-Analysis

    OpenAIRE

    Xue, Peng; Wang, Yan; Yang, Jie; Li, Yukun

    2013-01-01

    Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochr...

  17. Effect of alpha-calciferol on bone mineral density, bone histomorphometry and bone biomechanics in rats by radiative injury to kidney

    International Nuclear Information System (INIS)

    Zhu Feipeng; Wang Hongfu; Gao Linfeng; Jin Weifang

    2003-01-01

    The work is to study the effects of alpha-calciferol on bone mineral density, histomorphometry and biomechanics in rats with osteoporosis induced by irradiation of the rat kidney. 32 male SD rats of six months in age were randomly divided into 4 groups (8 rats per group), i.e. the model group, the sham group, the bone one group and the fosamax group. Osteoporosis was developed in the rats by irradiating the kidney. Then the rats were administrated orally as follows in a 90 days, 0.1 g·kg -1 BW.d of alpha-calciferol for the bone one group, 10 mg·kg -1 BW.d of alendronate sodium in 1 mL CMC for the fosamax group, and 1 mL CMC for both the model group and sham group. BMD of L1-4, bone histomorphometry and the bone biomechanical properties were measured. Compared with the model group, both the bone one group and the fosamax group were characterized with significantly higher BMD of L1-4 (p<0.01), significantly larger volume and width of bone trabecula, smaller space of bone trabecula (p<0.05, p<0.01), and significantly larger maximal stress of femur and lumbar vertebra (p<0.05, p<0.01). It is concluded that Alpha-calciferol can improve BMD, bone histomorphometry and bone biomechanical properties in rat osteoporosis induced by kidney irradiation

  18. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: a systematic review.

    Science.gov (United States)

    Aludden, H C; Mordenfeld, A; Hallman, M; Dahlin, C; Jensen, T

    2017-08-01

    The objective of this systematic review was to test the hypothesis of no difference in implant treatment outcomes when using Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone grafts for lateral ridge augmentation. A search of the MEDLINE, Cochrane Library, and Embase databases in combination with a hand-search of relevant journals was conducted. Human studies published in English from 1 January 1990 to 1 May 2016 were included. The search provided 337 titles and six studies fulfilled the inclusion criteria. Considerable variation prevented a meta-analysis from being performed. The two treatment modalities have never been compared within the same study. Non-comparative studies demonstrated a 3-year implant survival of 96% with 50% Bio-Oss mixed with 50% autogenous bone graft. Moreover, Bio-Oss alone or Bio-Oss mixed with autogenous bone graft seems to increase the amount of newly formed bone as well as the width of the alveolar process. Within the limitations of this systematic review, lateral ridge augmentation with Bio-Oss alone or in combination with autogenous bone graft seems to induce newly formed bone and increase the width of the alveolar process, with high short-term implant survival. However, long-term studies comparing the two treatment modalities are needed before final conclusions can be drawn. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. The associations of exposure to combined hormonal contraceptive use on bone mineral content and areal bone mineral density accrual from adolescence to young adulthood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Stefan A. Jackowski

    2016-12-01

    Full Text Available Background: The association of long term combined hormone based contraceptives (CHC use on bone mineral content (BMC and areal bone mineral density (aBMD development remains controversial, as it appears that the relationship may be age-dependent. The purpose of this study was to investigate the long-term associations of CHC exposure on the accrual of bone parameters from adolescence into young-adulthood. Methods: 110 women (67 exposed to CHC were drawn from the Pediatric Bone Mineral Accrual Study (PBMAS. Serial measures of total body (TB, lumbar spine (LS and femoral neck (FN BMC and aBMD were assessed by DXA (a total of 950 scans and aligned by biological age (BA, years from peak height velocity [PHV]. Multilevel random effects models were constructed to assess the time dependent associations between annual CHC exposure and the development of bone parameters. Results: After BA, height, lean tissue mass, fat mass, calcium and vitamin D intake, and physical activity were controlled, it was observed that those individuals exposed to CHC 6-years post PHV developed significantly less (−0.00986 ± 0.00422 g/cm2 TB aBMD than their non CHC exposed peers. Additionally, there were significant BA by CHC exposure interactions, where CHC exposure 6-years or more post PHV resulted in developing less TB BMC (−4.94 ± 2.41 g, LS BMC (−0.29 ± 0.11 g and LS aBMD (−0.00307 ± 0.00109 g/cm2. One year after the attainment of PHV, CHC users were predicted to have 1.2% more TB BMC, 3.8% more LS BMC and 1.7% more LS aBMD than non-users. At 9-years post PHV the predicted differences showed that CHC users had 0.9% less TB BMC and 2.7% less LS BMC and 1.6% less LS BMD than those not exposed to CHC. Conclusions: CHC may not hinder the development of BMC or aBMD during adolescence; however, exposure 6-years or more after PHV may be detrimental. Keywords: Oral contraceptives, Bone mass, Longitudinal, Multilevel models

  20. Bone mineral density after implantation of a femoral neck hip prosthesis--a prospective 5 year follow-up.

    Science.gov (United States)

    Steens, Wolfram; Boettner, Friedrich; Bader, Rainer; Skripitz, Ralf; Schneeberger, Alberto

    2015-08-12

    Bone resorption in the proximal femur due to stress shielding has been observed in a number of conventional cementless implants used in total hip arthroplasty. Short femoral-neck implants are claiming less interference with the biomechanics of the proximal femur. The goal of this study was to prospectively investigate the in vivo changes of bone-mineral density as a parameter of bone remodeling around a short, femoral neck prosthesis over the first 5 years following implantation. The secondary goal was to report on its clinical outcome. We are reporting on the changes of bone mineral density of the proximal femur and the clinical outcome up to five years after implantation of a short femoral neck prosthesis. Bone mineral density was determined using dual energy x-ray absorptiometry, performed 10 days, three, 12 and 60 months after surgery. 20 patients with a mean age of 47 years (range 17 to 65) were clinically assessed using the Harris Hip Score. The WOMAC was used as a patient-relevant outcome-measure. In contrast to conventional implants DEXA-scans overall revealed a slight increase of bone mineral density in the proximal femur in the 12 months following the implantation. The Harris Hip Score improved from an average preoperative score of 46 to a postoperative score at 12 months of 91 points and 95 points at 60 months, the global WOMAC index from 5.3 preoperatively to 0.8 at 12 months and 0.6 at 60 months postoperatively. At 60 months after implantation of a short femoral neck prosthesis, all regions except one (region of interest #5) showed no significant changes in BMD compared to baseline measurements at 10 days which is less to the changes in bone mineral density seen in conventional implants.

  1. Comparison of Singh index accuracy and dual energy X-ray absorptiometry bone mineral density measurement for evaluating osteoporosis

    International Nuclear Information System (INIS)

    Salamat, M. R.; Rostampour, N.; Zofaghari, Sh. J.; Hoseyni-Panah, H.; Javdan, M.

    2010-01-01

    The Singh index is an inexpensive simple method to evaluate bone density, commonly used to assess osteoporosis is based on the radiological appearance of the trabecular bone structure of the proximal femur on a plain antero-posterior radiograph. The purpose of this study was to compare between Singh index and bone mineral density measurement using dual energy X-ray absorptiometry. Materials and Methods: Three orthopedists evaluated radiographs of 72 patients suspected with osteoporosis. The inter-observer agreements of the Singh index were obtained by using kappa statistics. The bone mineral density of proximal femur was measured by dual energy X-ray absorptiometry in all patients, and then the bone mineral density results were compared with those of Singh index by using reference radiographic charts of the Singh index method. Dual-energy X-ray absorptiometry was used to measure bone mineral density. A Norland XR46 system was used for the investigations. Results: The inter-observer agreement kappa values were 0.01, 0.07 and 0.09 (mean value: 0.05) and the strength of the observer agreements was negligible. The obtained Osteoporosis prevalence among the studied patients was 38.9%. Conclusion: The inter-observer variation was large, there was no any correlation between the Singh index and bone densitometry. So, the index cannot be used; for evaluating and osteoporosis diagnosis, because of its low reliability.

  2. Rope skipping increases bone mineral density at calcanei of pubertal girls in Hong Kong: A quasi-experimental investigation.

    Directory of Open Access Journals (Sweden)

    Amy S Ha

    Full Text Available Bone mineral accrual during puberty is important, especially in girls, because it is related to reduced risks of osteoporosis in adulthood. Previous research has shown that jumping or plyometric exercises may be effective in increasing bone mineral density in adolescents. Rope skipping is a form of activity that involves jumping, thus regular skipping may also increase bone mineral density in pubertal girls. To this end, we conducted a quasi-experimental to examine the effects of rope skipping on girls' bone mineral density and cardiovascular fitness. 176 Hong Kong girls (age = 12.23 ± 1.80 years at baseline were recruited to take part in the study. Bone density at their forearms and calcanei were measured twice over two academic years (mean time between visits was 10.3 months. Using multilevel modeling analyses and adjusting for participants' height and physical activity, we found that girls who participated in weekly rope skipping activities, compared to those who did not, had higher levels of bone density at the calcanei (B = 0.023, p < .01. However, no differences were found for bone density at forearms or participants' cardiovascular fitness. The rates of change of these variables across time were also not significantly different. Results suggest that regular rope skipping may increase girls' bone density at the lower extremities, irrespective of the amount of self-report physical activity. However, further research is required to examine the potential dose-response relation between skipping behaviors and the measured outcomes.

  3. The influence of vegan diet on bone mineral density and biochemical bone turnover markers.

    Science.gov (United States)

    Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Gajewska, Joanna; Chełchowska, Magdalena; Franek, Edward; Laskowska-Klita, Teresa

    2010-01-01

    Vegetarian diets can be healthy when they are well balanced and if a variety of foods is consumed. However, elimination of animal products from the diet (vegan diets) decreases the intake of some essential nutrients and may influence the bone metabolism. This is especially important in childhood and adolescence, when growth and bone turnover are most intensive. The aim of the study was to assess the effect of vegan diet on bone density (BMD) density and serum concentrations of bone metabolism markers. We examined a family on vegan diet which consisted of parents and two children. Dietary constituents were analysed using a nutritional program. Total and regional BMD were measured by dual-energy X-ray absorptiometry. Concentrations of calcium and phosphate in serum obtained from fasting patients were determined by colorimetric methods, 25-hydroxyvitamin D by the chemiluminescence method and bone turnover markers by specific enzyme immunoassays. In studied vegans, the dietary intake of phosphate was adequate while calcium and vitamin D were below the recommended range. Concentrations of calcium, phosphate and bone turnover markers in the serum of all subjects were within the physiological range, but 25-hydroxyvitamin D level was low. Age-matched Z-score total BMD was between -0.6 and 0.3 in adults, however in children it was lower (-0.9 and -1.0). Z-score BMD lumbar spine (L2-L4) was between -0.9 to -1.9 in parents and -1.5 to -1.7 in children. Our results suggest that an inadequate dietary intake of calcium and vitamin D may impair the bone turnover rate and cause a decrease in bone mineral density in vegans. The parameters of bone density and bone metabolism should be monitored in vegans, especially children, in order to prevent bone abnormalities.

  4. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.

    Science.gov (United States)

    Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc

    2009-09-21

    There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.

  5. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    Science.gov (United States)

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, pBMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  6. Association of Protein Intake with Bone Mineral Density and Bone Mineral Content among Elderly Women: The OSTPRE Fracture Prevention Study.

    Science.gov (United States)

    Isanejad, M; Sirola, J; Mursu, J; Kröger, H; Tuppurainen, M; Erkkilä, A T

    2017-01-01

    It has been hypothesized that high protein intakes are associated with lower bone mineral content (BMC). Previous studies yield conflicting results and thus far no studies have undertaken the interaction of body mass index (BMI) and physical activity with protein intakes in relation to BMC and bone mineral density (BMD). To evaluate the associations of dietary total protein (TP), animal protein (AP) and plant protein (PP) intakes with BMC and BMD and their changes. We tested also the interactions of protein intake with, obesity (BMI ≤30 vs. >30 kg/m2) and physical activity level (passive vs. active). Design/ Setting: Prospective cohort study (Osteoporosis Risk-Factor and Fracture-Prevention Study). Participants/measures: At the baseline, 554 women aged 65-72 years filled out a 3-day food record and a questionnaire covering data on lifestyle, physical activity, diseases, and medications. Intervention group received calcium 1000 mg/d and cholecalciferol 800 IU for 3 years. Control group received neither supplementation nor placebo. Bone density was measured at baseline and year 3, using dual energy x-ray absorptiometry. Multivariable regression analyses were conducted to examine the associations between protein intake and BMD and BMC. In cross-sectional analyses energy-adjusted TP (P≤0·029) and AP (P≤0·045) but not PP (g/d) were negatively associated with femoral neck (FN) BMD and BMC. Women with TP≥1·2 g/kg/body weight (BW) (Ptrend≤0·009) had lower FN, lumbar spine (LS) and total BMD and BMC. In follow-up analysis, TP (g/kg/BW) was inversely associated with LS BMD and LS BMC. The detrimental associations were stronger in women with BMI30 kg/m2 and physical activity.

  7. Divergent Significance of Bone Mineral Density Changes in Aging Depending on Sites and Sex Revealed through Separate Analyses of Bone Mineral Content and Area

    Directory of Open Access Journals (Sweden)

    Yasumoto Matsui

    2012-01-01

    Full Text Available Bone mineral density (aBMD is equivalent to bone mineral content (BMC divided by area. We rechecked the significance of aBMD changes in aging by examining BMC and area separately. Subjects were 1167 community-dwelling Japanese men and women, aged 40–79 years. ABMDs of femoral neck and lumbar spine were assessed by DXA twice, at 6-year intervals. The change rates of BMC and area, as well as aBMD, were calculated and described separately by the age stratum and by sex. In the femoral neck region, aBMDs were significantly decreased in all age strata by an increase in area as well as BMC loss in the same pattern in both sexes. In the lumbar spine region, aBMDs decreased until the age of 60 in women, caused by the significant BMC decrease accompanying the small area change. Very differently in men, aBMDs increased after their 50s due to BMC increase, accompanied by an area increase. Separate analyses of BMC and area change revealed that the significance of aBMD changes in aging was very divergent among sites and between sexes. This may explain in part the dissociation of aBMD change and bone strength, suggesting that we should be more cautious when interpreting the meaning of aBMD change.

  8. Beneath the Minerals, a Layer of Round Lipid Particles Was Identified to Mediate Collagen Calcification in Compact Bone Formation

    OpenAIRE

    Xu, Shaohua; Yu, Jianqing J.

    2006-01-01

    Astronauts lose 1–2% of their bone minerals per month during space flights. A systematic search for a countermeasure relies on a good understanding of the mechanism of bone formation at the molecular level. How collagen fibers, the dominant matrix protein in bones, are mineralized remains mysterious. Atomic force microscopy was carried out, in combination with immunostaining and Western blotting, on bovine tibia to identify unrecognized building blocks involved in bone formation and for an el...

  9. Doença celíaca em tratamento: avaliação da densidade mineral óssea Celiac disease under treatment: evaluation of bone mineral density

    Directory of Open Access Journals (Sweden)

    Cecília Noronha de Miranda Carvalho

    2003-08-01

    Full Text Available OBJETIVO: comparar a densidade mineral óssea de crianças e adolescentes com doença celíaca em tratamento com controles sadios, e avaliar exames laboratoriais relacionados com o metabolismo do cálcio. MÉTODOS: foram estudados 30 pacientes com doença celíaca em dieta isenta de glúten, 17 crianças e 13 adolescentes, e 23 indivíduos saudáveis. Todos os pacientes e controles realizaram a densidade mineral óssea (DEXA, Lunar. Os pacientes realizaram dosagem sérica de cálcio total, cálcio ionizado, fósforo, magnésio, fosfatase alcalina e paratormônio. RESULTADOS: a média de peso, estatura e densidade mineral óssea dos adolescentes com doença celíaca foi menor do que dos controles (pOBJECTIVE: the present study was designed to compare the bone mineral density of children and adolescents with celiac disease to the bone mineral density of controls, and to evaluate laboratory analysis of calcium metabolism of celiac disease patients. METHODS: thirty celiac disease patients (17 children, 13 adolescents, on a gluten-free diet, and 23 healthy subjects were studied. Tests of bone mineral density of the lumbar spine (DEXA, Lunar were performed in all patients and controls. Laboratory analysis of calcium metabolism was performed in all patients. RESULTS: mean weight and height of adolescents with celiac disease were lower than mean weight and height of controls (p<0.05. Bone mineral density in adolescents with celiac disease was significantly reduced if compared to controls (p=0.015, whereas no significant difference was found among children with celiac disease and controls. The number of adolescents who had started a gluten-free diet after the age of 2 years was higher than in children (p=0.003. Serum levels of ionized calcium, total calcium and parathormone were normal. CONCLUSIONS: the one mineral density of adolescents with celiac disease was lower than controls; whereas, no difference was found between the bone mineral density of

  10. Relationship among panoramic radiography findings, biochemical markers of bone turnover and hip bone mineral density in the diagnosis of postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Johari Khatoonabad, M.; Aghamohammadzade, N.; Taghilu, H.; Esmaeili, F.; Jabbari Khamnei, H.

    2011-01-01

    Recent investigations have shown that panoramic radiography might be a useful tool in the early diagnosis of osteoporosis. In addition, bone turnover biochemical marker might be valuable in predicting osteoporosis and fracture risks in the elderly, especially in post-menopausal women. The aim of the present study was to evaluate the relationship among the radio morphometric indices of the mandible, biochemical markers of the bone turnover and hip bone mineral density in a group of post-menopausal women. Patients and Methods: Evaluations of mandibular cortical width, mandibular cortical index, panoramic index and alveolar crest resorption ration (M/M ration) were carried out on panoramic radiographs of 140 post-menopausal women with an age range of 44-82 years. Hip bone mineral density was measured by dual-energy X-ray absorptiometry method. Bone mineral density values were divided into three groups of normal (T score>-1.0), Osteopenic (T score, -2.5 to -1.0) and Osteoporotic (T score<-2.5). Serum alkaline phosphatase and 25(OH) D3 were measured. Results: A decrease in mandibular cortical width by 1 mm increases the likelihood of osteopenia or osteoporosis up to 40%, having taken into consideration the effect of menopause duration. A 1 mm decrease in mandibular cortical width increased the likelihood of moderate or severe erosion of the lower cortex of the mandible up to 28% by taking age into consideration. The results did not demonstrate a statistically significant relationship between bone turnover markers and mandibular radio morphometric indices. Conclusion: Panoramic radiography gives sufficient information to make an early diagnosis regarding osteoporosis in post-menopausal women. Panoramic radiographs may be valuable in the prevention of osteoporotic fractures in elderly women.

  11. Bone mineral density in partially recovered early onset anorexic patients - a follow-up investigation

    Directory of Open Access Journals (Sweden)

    Schneider Peter

    2010-07-01

    Full Text Available Abstract Background and aims There still is a lack of prospective studies on bone mineral development in patients with a history of early onset Anorexia nervosa (AN. Therefore we assessed associations between bone mass accrual and clinical outcomes in a former clinical sample. In addition to an expected influence of regular physical activity and hormone replacement therapy, we explored correlations with nutritionally dependent hormones. Methods 3-9 years (mean 5.2 ± 1.7 after hospital discharge, we re-investigated 52 female subjects with a history of early onset AN. By means of a standardized approach, we evaluated the general outcome of AN. Moreover, bone mineral content (BMC and bone mineral density (BMD as well as lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA. In a substudy, we measured the serum concentrations of leptin and insulin-like growth factor-I (IGF-I. Results The general outcome of anorexia nervosa was good in 50% of the subjects (BMI ≥ 17.5 kg/m2, resumption of menses. Clinical improvement was correlated with BMC and BMD accrual (χ2 = 5.62/χ2 = 6.65, p = 0.06 / p = 0.036. The duration of amenorrhea had a negative correlation with BMD (r = -.362; p th percentile. IGF-I serum concentrations corresponded to the general outcome of AN. By contrast, leptin serum concentrations showed great variability. They correlated with BMC and current body composition parameters. Conclusions Our results from the main study indicate a certain adaptability of bone mineral accrual which is dependent on a speedy and ongoing recovery. While leptin levels in the substudy tended to respond immediately to current nutritional status, IGF-I serum concentrations corresponded to the individual's age and general outcome of AN.

  12. Assessment of bone mineral density in adults with a history of juvenile chronic arthritis: a cross-sectional long-term followup study

    DEFF Research Database (Denmark)

    Zak, M; Hassager, C; Lovell, D J

    1999-01-01

    To assess bone mineral density (BMD) and bone turnover in adults with a history of juvenile chronic arthritis (JCA) or persistent JCA, and to identify predictors of reduced BMD.......To assess bone mineral density (BMD) and bone turnover in adults with a history of juvenile chronic arthritis (JCA) or persistent JCA, and to identify predictors of reduced BMD....

  13. Three-Dimensional Finite Element Analysis of Maxillary Sinus Floor Augmentation with Optimal Positioning of a Bone Graft Block

    Directory of Open Access Journals (Sweden)

    Peter Schuller-Götzburg

    2018-01-01

    Full Text Available Purpose: the aim of the computational 3D-finite element study is to evaluate the influence of an augmented sinus lift with additional inserted bone grafting. The bone graft block stabilizes the implant in conjunction with conventional bone augmentation. Two finite element models were applied: the real geometry based bone models and the simplified geometry models. The bone graft block was placed in three different positions. The implants were loaded first with an axial force and then with forces simulating laterotrusion and protrusion. This study examines whether the calculated stress behavior is symmetrical for both models. Having established a symmetry between the primary axis, the laterotrusion and protrusion behavior reduces calculation efforts, by simplifying the model. Material and Methods: a simplified U-shaped 3D finite element model of the molar region of the upper jaw and a more complex anatomical model of the left maxilla with less cortical bone were created. The bone graft block was placed in the maxillary sinus. Then the von Mises stress distribution was calculated and analyzed at three block positions: at contact with the sinus floor, in the middle of the implant helix and in the upper third of the implant. The two finite element models were then compared to simplify the modelling. Results: the position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for

  14. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women.

    Science.gov (United States)

    Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul

    2010-11-01

    The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p related to BMD of all sites (p related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.

  15. Nuclear medical methods for determination of bone mineral content

    International Nuclear Information System (INIS)

    Fischer, M.; Kempers, B.; Tschepke, H.D.; Spitz, J.

    1988-01-01

    Osteoporosis is becoming recognized as a major social and economical health problem. Bone mineral content (BMC) depends on many hormonal and metabolic factors. The pathophysiological mechanism of the loss of bone mass is still unclear. For preventive diagnosis and treatment of osteoporosis, quantitative technology is required that will measure BMC with high precision and reproducibility. Nuclear medical methods permit the BMC of the appendicular skeleton to be measured by single photon absorptiometry. Whole-body BMC, as well as spine and femur BMC, can be measured by dual photon absorptiometry. The results from both procedures are reasonably precise and correlate well with the ash weight of isolated bone. The radiation exposure level in both SPA and DPA is low. SPA and DPA may be used for cost-effective screening of high-risk patients to predict the likelihood of future fractures and control osteoporosis therapy. (orig.) [de

  16. Age-related changes in cortical and trabecular bone mineral status: A quantitative CT study in lumbar vertebrae

    International Nuclear Information System (INIS)

    Tanno, M.; Horiuchi, T.; Nakajima, I.; Maeda, S.; Igarashi, M.; Yamada, H.

    2000-01-01

    To investigate the age and sex dependence of the bone mineral status of human lumbar vertebrae with special regard to differences between cortical and trabecular bone. The study group comprised 125 normal Japanese healthy volunteers (54 males and 71 females), and was subdivided into adult male and female groups (subjects younger than 40 years), intermediate male and female groups (ages ranging between 41 and 64 years) and old male and female groups (subjects older than 65 years). The cortical bone mineral status was estimated using a single-energy quantitative CT (SE-QCT) technique, whereas trabecular bone mineral density (BMD) was estimated using a dual-energy (DE-QCT) technique. A considerable gender difference in the age-related cortical bone status was found. There was a significant reduction of the mean values of the cortical volume and BMD in the old female group compared with those obtained in the old male group. The results suggest that in men, cortical and trabecular bone volume decrease very little with age. In women, cortical volume and BMD and trabecular BMD decrease with age while trabecular bone volume does not. The study showed that all variables had higher values in men than in women and that the difference increased with age

  17. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    Science.gov (United States)

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bone mineral status and metabolism in patients with Williams-Beuren syndrome.

    Science.gov (United States)

    Stagi, Stefano; Manoni, Cristina; Scalini, Perla; Chiarelli, Francesco; Verrotti, Alberto; Cecchi, Cecilia; Lapi, Elisabetta; Giglio, Sabrina; Romano, Silvia; de Martino, Maurizio

    2016-07-01

    To evaluate bone mineral status and metabolism in a cohort of patients with Williams-Beuren syndrome (WBS). Thirty-one children (15 females, 16 males; mean age 9.6±2.74 years) and 10 young adults (6 females, 4 males; mean age 21.4±5.11 years) with WBS were cross-sectionally evaluated and compared with two age-, sex-, and body-size-matched paediatric (155 subjects, 75 females and 80 males; mean age 9.7±2.93 years) and adult (50 subjects, 30 females and 20 males; mean age 22.3±5.42 years) healthy controls. We evaluated ionised and total calcium, phosphate, parathyroid hormone (PTH), 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase levels, and urinary deoxypyridinoline concentrations. We also calculated the phalangeal amplitude-dependent speed of sound (AD-SoS) and the bone transmission time (BTT) z-scores. WBS patients showed a significantly reduced AD-SoS z-score (p <0.001) and BTT z-score (p <0.001) compared with the controls. This finding persisted when we divided the sample into paediatric and adult patients. WBS patients also had significantly higher ionised (p <0.001) and total calcium (p <0.001) levels as well as higher PTH levels (p <0.001) compared with the controls. Furthermore, WBS children and adolescents had significantly lower serum osteocalcin levels (p <0.001) and urinary deoxypyridinoline concentrations (p <0.001) than controls. WBS subjects exhibit a significant reduction in bone mineral status and impaired bone metabolism. These findings point to the need for close monitoring of WBS patients.

  19. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  20. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  1. Disorders of bone-mineral metabolism and their correction with women who have body weight deficiency at pregravid stage and during pregnancy

    Directory of Open Access Journals (Sweden)

    L. P. Shelestova

    2017-10-01

    Full Text Available The processes in bone-mineral metabolism provide normal course of pregnancy, labour and fetus development, women with body weight deficiency are at risk reduction of bone tissue mineral density, progressing of osteopenia and osteoporosis. This shows the necessity of medical and preventive measures that have the aim to correct calcium- phosphorus and bone metabolism with women who have body weight deficiency. Aim. To elaborate and to evaluate medical and preventive measures that have the aim to correct disorders in bone-mineral metabolism with women who have body weight deficiency at pregravid stage and during pregnancy. Materials and methods. The efficiency of adding combined medicine of calcium carbonate and cholecalciferol and dietary nourishment to traditional treatment that affected the state of bone-mineral metabolism with women who have body weight deficiency at pregravid stage and during pregnancy was studied. Results. With women who have body weight deficiency at pregravid stage and during pregnancy it is noted statistically considerable reduction in blood of total calcium and bone tissue markers that grows with the course of gestation. The changes in mineral density of bone tissue can be seen from the existence of osteopenic syndrome at pregravid stage that occurs with every third woman who has body weight deficiency and with every second before labour. The use of elaborated medical and preventive measures including combined medicine of calcium carbonate and cholecalciferol allows to normalize the indexes of bone-mineral metabolism with women who have body weight deficiency. Conclusions. Women with body weight deficiency already at pregravid stage have disorders in bone metabolism and coming of pregnancy lead to aggravation of bone metabolism disorders. The additional use of combined medicine of calcium carbonate and cholecalciferol and dietary nourishment made the indexes of calcium-phosphorus and bone metabolism better and osteopenic

  2. Results of cement augmentation and curettage in aneurysmal bone cyst of spine

    Directory of Open Access Journals (Sweden)

    Saumyajit Basu

    2016-01-01

    Full Text Available Aneurysmal bone cyst (ABC is a vascular tumor of the spine. Management of spinal ABC still remains controversial because of its location, vascular nature and incidence of recurrence. In this manuscript, we hereby describe two cases of ABC spine treated by curettage, vertebral cement augmentation for control of bleeding and internal stabilization with two years followup. To the best of our knowledge, this is the first case report in the literature describing the role of cement augmentation in spinal ABC in controlling vascular bleeding in curettage of ABC of spine. Case 1: A 22 year old male patient presented with chronic back pain. On radiological investigation, there were multiple, osteolytic septite lesions at L3 vertebral body without neural compression or instability. Percutaneous transpedicular biopsy of L3 from involved pedicle was done. This was followed by cement augmentation through the uninvolved pedicle. Next, transpedicular complete curettage was done through involved pedicle. Case 2: A 15-year-old female presented with nonradiating back pain and progressive myelopathy. On radiological investigation, there was an osteolytic lesion at D9. At surgery, decompression, pedicle screw-rod fixation and posterolateral fusion from D7 to D11 was done. At D9 level, through normal pedicle cement augmentation was added to provide anterior column support and to control the expected bleeding following curettage. Transpedicular complete curettage was done through the involved pedicle with controlled bleeding at the surgical field. Cement augmentation was providing controlled bleeding at surgical field during curettage, internal stabilization and control of pain. On 2 years followup, pain was relieved and there was a stable spinal segment with well filled cement without any sign of recurrence in computed tomography scan. In selected cases of spinal ABC with single vertebral, single pedicle involvement; cement augmentation of vertebra through normal

  3. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: An Xtreme computed tomographic study

    Directory of Open Access Journals (Sweden)

    Schmidlin A

    2008-01-01

    Full Text Available Abstract Background The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone. Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex. Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Results Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. Conclusion The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses.

  4. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: An Xtreme computed tomographic study

    Science.gov (United States)

    Fürst, A; Meier, D; Michel, S; Schmidlin, A; Held, L; Laib, A

    2008-01-01

    Background The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone. Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex. Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Results Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. Conclusion The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses. PMID:18221526

  5. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: an Xtreme computed tomographic study.

    Science.gov (United States)

    Fürst, A; Meier, D; Michel, S; Schmidlin, A; Held, L; Laib, A

    2008-01-25

    The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone.Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex.Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses.

  6. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.

    Science.gov (United States)

    Cavelier, S; Dastjerdi, A K; McKee, M D; Barthelat, F

    2018-05-01

    The most prominent structural components in bone are collagen and mineral. However, bone additionally contains a substantial amount of noncollagenous proteins (most notably of the SIBLING protein family), some of which may act as cohesive/adhesive "binders" for the composite hybrid collagen/mineral scaffolding, whether in the bulk phase of bone, or at its interfaces. One such noncollagenous protein - osteopontin (OPN) - appears to be critical to the deformability and fracture toughness of bone. In the present study, we used a reconstructed synthetic mineral-OPN-mineral interface, and a biogenic (natural tooth dentin) mineral/collagen-OPN-mineral/collagen interface, to measure the fracture toughness of OPN on mineralized substrates. We used this system to test the hypothesis that OPN crosslinking by the enzyme tissue transglutaminase 2 (TG2) that is found in bone enhances interfacial adhesion to increase the fracture toughness of bone. For this, we prepared double-cantilever beam substrates of synthetic pure hydroxyapatite mineral, and of narwhal dentin, and directly apposed them to one another under different intervening OPN/crosslinking conditions, and fracture toughness was tested using a miniaturized loading stage. The work-of-fracture of the OPN interface was measured for different OPN formulations (monomer vs. polymer), crosslinking states, and substrate composition. Noncrosslinked OPN provided negligible adhesion on pure hydroxyapatite, whereas OPN crosslinking (by the chemical crosslinker glutaraldehyde, and TG2 enzyme) provided strong interfacial adhesion for both hydroxyapatite and dentin using monomeric and polymeric OPN. Pre-coating of the substrate beams with monomeric OPN further improved the adhesive performance of the samples, likely by allowing effective binding of this nascent OPN form to mineral/matrix components, with this pre-attachment providing a protein layer for additional crosslinking between the substrates. Copyright © 2018 Elsevier Inc

  7. Intravenous contrast injection significantly affects bone mineral density measured on CT

    NARCIS (Netherlands)

    Pompe, Esther; Willemink, Martin J.; Dijkhuis, Gawein R.; Verhaar, Harald J. J.; Mohamed Hoesein, Firdaus A A; de Jong, Pim A.

    OBJECTIVE: The objective is to evaluate the effect of intravenous contrast media on bone mineral density (BMD) assessment by comparing unenhanced and contrast-enhanced computed tomography (CT) examinations performed for other indications. METHODS: One hundred and fifty-two patients (99 without and

  8. Mineralization and Characterization of Composite Lyophilized Gelatin Sponges Intended for Early Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Isaac Rodriguez

    2014-01-01

    Full Text Available The application of freeze-dried gelatin sponges as alternative bone grafting substitutes has many advantages, including the ability to swell, high porosity, tailorable degradation, and versatility to incorporate multiple components such as growth factors and nanofillers. The purpose of this study was to mineralize (M and further characterize 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers (PHCE. Sponges were characterized for their swelling and in vitro mineralization potential, surface characteristics, protein release, mechanical properties, and MG-63 cell attachment and infiltration. All sponges swelled up to 50% of their original volume upon hydration. Scanning electron microscopy showed sparse mineral deposition for gelatin-M scaffolds while PHCE-M scaffolds exhibited more uniform mineral nucleation. Over 21 days, PHCE-M scaffolds cumulatively released significantly more (30% of its initial protein content than all other scaffolds. PHCE-M scaffolds reported lower modulus values (1.3–1.6 MPa when compared to gelatin control scaffolds (1.6–3.2 MPa. Increased cell attachment and infiltration was noticed on PHCE and PHCE-M scaffolds. The results of the study demonstrate the enhanced performance of PHCE and PHCE-M scaffolds to serve as bone healing scaffolds. Their potential to release incorporated factors, comparable composition/mechanical properties to tissues developed in the early stages of bone healing, and enhanced initial cellular response make them suitable for further studies evaluating more complex cellular interactions.

  9. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  10. Unique biochemical and mineral composition of whale ear bones.

    Science.gov (United States)

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  11. Bone mineral density and bone turnover among young women in Chiang Mai, Thailand.

    Science.gov (United States)

    Iwasaki, Eriko; Morakote, Nuntana; Chaovistsaree, Somsak; Matsuo, Hiroya

    2014-03-12

    The present study was carried out to investigate the influence of lifestyle on bone mineral density (BMD) and bone turnover among young women in Chiang Mai, Thailand. A total of 177 young women affiliated with Chiang Mai University hospital were enrolled. Firstly, questionnaires about their lifestyle and the Osteoporosis Knowledge Test (OKT) were examined. The measurement of BMD was assessed by Quantitative Ultrasound (QUS). Secondly, based on the measurement of BMD, the subjects were divided into 2 groups, a Low BMD group (L group: less than YAM-1.0SD) and a Normal BMD group (N group: more than YAM-1.0SD). L group (n=23) and N group (n=23) were examined using Osteocalcine (OC), type 1 collagen cross-linked N-telopeptide (NTx) and undercarboxylated osteocalcin (ucOC) as bone turnover markers, and serum Ca, 1,25-(OH)2Vitamin D, Vitamin K1 and Vitamin K2 (MK-4) as bone turnover related factors. Based on the results, the percentage of Low BMD group was 23.2%. Concerning lifestyle and BMD, the BMD of the low cheese intake group was 99.7± 17.0 and the BMD of the high cheese intake one was 110.0± 23.3 (pChiang Mai, Thailand.

  12. Effect of Quercetin on Bone Mineral Status and Markers of Bone Turnover in Retinoic Acid-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Oršolić Nada

    2018-06-01

    Full Text Available Retinoic acid-induced osteoporosis (RBM is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM. After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg or alendronate (40 mg/kg. We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD, markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.

  13. The correlation between mineralization degree and bone tissue stiffness in the porcine mandibular condyle

    NARCIS (Netherlands)

    Willems, N.M.B.K.; Mulder, L.; Toonder, den J.M.J.; Zentner, A.; Langenbach, G.E.J.

    2014-01-01

    The aim of this study was to correlate the local tissue mineral density (TMD) with the bone tissue stiffness. It was hypothesized that these variables are positively correlated. Cancellous and cortical bone samples were derived from ten mandibular condyles taken from 5 young and 5 adult female pigs.

  14. Lack of Association between Body Weight, Bone Mineral Density and Vitamin D Receptor Gene Polymorphism in Normal and Osteoporotic Women

    Directory of Open Access Journals (Sweden)

    Massimo Poggi

    1999-01-01

    Full Text Available In an ethnically homogeneous population of women living in Tuscany, Italy, the relationships between age, body weight, bone mineral density and the vitamin D receptor (VDR gene polymorphism were studied, with the objective of recognizing patients at risk for osteoporosis. In 275 women bone mineral density was measured by Dual Energy X-rays Absorptiometry (DEXA. In 50 of them the individual genetic pattern for VDR was evaluated by DNA extraction followed by PCR amplification of the VDR gene, and digestion with the restriction enzyme BsmI. Age and bone mineral density were inversely related (R2 = 0.298. Body weight was associated with bone mineral density (R2 = 0.059, but not with age. In osteoporotic women, mean (± SD body weight was 59.9 ± 6.5 Kg, lower than that recorded in non osteoporotic women (64.2 ± 9.4 Kg, even though not significantly different (p = 0.18. No association was found between VDR gene polymorphism, bone density or body weight. The performance of anthropometric and genetic components appear to be poor, and, at least for the time being, bone mineral density measurement by means of MOC-DEXA represents the optimal method to detect women at risk for postmenopausal osteoporosis.

  15. Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.

    Science.gov (United States)

    Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C

    2018-04-01

    Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p BMC (p BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.

  16. Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations

    Directory of Open Access Journals (Sweden)

    Michaela Fousova

    2017-08-01

    Full Text Available Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.

  17. Bone mineral decreases in the calcanei in men after arthroscopic shoulder surgery: a prospective study over 5 years.

    Science.gov (United States)

    Elmlund, Anna O; Kartus, Jüri; Ejerhed, Lars

    2016-12-01

    It is well known that injuries and surgical procedures in the lower extremities affect bone mineral both in the injured limb and in the contralateral limb. The possible effect on bone mineral after upper extremity surgery is not well studied, and the aim of this study was to study the effect on bone mineral in the calcanei after arthroscopic shoulder surgery. Twenty-two men scheduled for arthroscopic shoulder surgery underwent bone mineral area (BMA) mass measurements in both calcanei using the Calscan DXL device prior to surgery and after 6, 18, 36 and 60 months. On every occasion, the Tegner activity score and EuroQoL 5-dimensions (EQ-5D) were assessed. During 5 years, there was a significant decrease in the BMA in both calcanei (p = 0.003). The Tegner activity score decreased from preinjury to the operation and did not increase significantly after the operation. The EQ-5D increased significantly after the operation. The bone mineral in the calcanei in men during the 5-year study period decreased more than the expected age-dependent decline after arthroscopic shoulder surgery. There was an increase in health-related quality of life as measured with the EQ-5D after arthroscopic Bankart reconstruction. Case-control study, Level III.

  18. Bone mineral density and polymorphisms in metallothionein 1A and 2A in a Chinese population exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Lei, Lijian [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China); Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi 030001 (China); Tian, Liting [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China); Zhu, Guoying, E-mail: chx_win@hotmail.com [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Jin, Taiyi, E-mail: tyjin@shmu.edu.cn [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China)

    2012-04-15

    Cadmium (Cd) effect on bone varies between individuals. We investigated whether genetic variation in metallothionein (MT)1A and MT2A associated with Cd induced bone loss in this study. A total of 465 persons (311 women and 154 men), living in control, moderately and heavily polluted areas, participated. The participants completed a questionnaire and the bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at the proximal radius and ulna. Samples of urine and blood were collected for determination of Cd in urine (UCd) and blood (BCd). Genotypes for polymorphisms in MT1A (rs11076161) and MT2A (rs10636) were determined by Taqman allelic discrimination assays. BCd had a weak association with variant alleles for MT1A (rs11076161) and MT2A (rs10636) in female living in the highly polluted group (p = 0.08 and 0.05, respectively). A weak association was found between bone mineral density and MT2A polymorphisms variation (p = 0.06) in female living in the highly polluted group. Only a weak association was found between bone mineral density and MT1A polymorphisms variation in female. Genetic variation in the MT1A and MT2A genes may not associate with bone loss caused by cadmium exposure. - Highlights: Black-Right-Pointing-Pointer We investigated the association between metallothionein polymorphisms bone mineral density. Black-Right-Pointing-Pointer MT1A and MT2A polymorphisms showed a weak association with cadmium in blood. Black-Right-Pointing-Pointer MT1A and MT2A polymorphisms showed no association with bone mineral density.

  19. Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis.

    Science.gov (United States)

    van Leeuwen, J; Koes, B W; Paulis, W D; van Middelkoop, M

    2017-05-01

    This study examines the differences in bone mineral density between normal-weight children and children with overweight or obesity. A systematic review and meta-analysis of observational studies (published up to 22 June 2016) on the differences in bone mineral density between normal-weight children and overweight and obese children was performed. Results were pooled when possible and mean differences (MDs) were calculated between normal-weight and overweight and normal-weight and obese children for bone content and density measures at different body sites. Twenty-seven studies, with a total of 5,958 children, were included. There was moderate and high quality of evidence that overweight (MD 213 g; 95% confidence interval [CI] 166, 261) and obese children (MD 329 g; 95%CI [229, 430]) have a significantly higher whole body bone mineral content than normal-weight children. Similar results were found for whole body bone mineral density. Sensitivity analysis showed that the association was stronger in girls. Overweight and obese children have a significantly higher bone mineral density compared with normal-weight children. Because there was only one study included with a longitudinal design, the long-term impact of childhood overweight and obesity on bone health at adulthood is not clear. © 2017 World Obesity Federation.

  20. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhuang, Caiping [Department of Anesthesiology, Huizhou Central People' s Hospital, Huizhou 516001 (China); Li, Lihua, E-mail: tlihuali@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Lu, Lu; Ding, Shan; Tian, Jinhuan [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China)

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  1. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    International Nuclear Information System (INIS)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-01-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  2. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones.

    Science.gov (United States)

    Kovacs, Christopher S

    2014-10-01

    Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium. Copyright © 2014 the American Physiological Society.

  3. The relationships of irisin with bone mineral density and body composition in PCOS patients.

    Science.gov (United States)

    Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu

    2016-05-01

    Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Measurement of humerus and radius bone mineral content in the term and preterm infant

    International Nuclear Information System (INIS)

    Vyhmeister, N.R.; Linkhart, T.A.

    1988-01-01

    We compared two anatomic sites for single-photon absorptiometric measurement of bone mineral content (BMC) in term and preterm infants. The distal one third of the radius and the midportion of the humerus were evaluated for measurements of BMC with an unmodified, commercially available bone densitometer. We assessed reproducibility of BMC and bone width (BW) measurements and defined normal at-birth ranges of BMC, BW, and BMC/BW ratio for infants with gestational ages of 24 to 42 weeks. Humerus BMC correlated with gestational age, birth weight, and BW of patients and did not differ from humerus BMC values determined over the same range of gestational ages at another center. Representative serial measurements of two very low birth weight (VLBW) infants are presented to demonstrate the feasibility of using humerus BMC in longitudinal studies to assess changes in bone mineralization. We conclude that bone densitometer measurements of mid-humerus BMC can be successfully performed and are preferable to similar measurements of the radius for VLBW infants. Normal humerus BMC values were defined for use in diagnosis and evaluation of the efficacy of treatment in VLBW infants who are at high risk of developing osteopenia of prematurity

  5. Inflammation and bone mineral density: A Mendelian randomization study

    OpenAIRE

    Huang, Jian V.; Schooling, C. Mary

    2017-01-01

    Osteoporosis is a common age-related disorder leading to an increase in osteoporotic fractures and resulting in significant suffering and disability. Inflammation may contribute to osteoporosis, as it does to many other chronic diseases. We examined whether inflammation is etiologically relevant to osteoporosis, assessed from bone mineral density (BMD), as a new potential target of intervention, or whether it is a symptom/biomarker of osteoporosis. We obtained genetic predictors of inflammato...

  6. VARIANTS OF SPINE OSTEOSYNTESIS AT LOW MINERAL DENSITY OF BONE

    Directory of Open Access Journals (Sweden)

    V. D. Usikov

    2010-01-01

    Full Text Available The analysis of the results of transpedicular screw fixation in the treatment of patients with osteoporotic vertebral compression fractures was done. In the first group (N=27 the polysegmental transpedicular screw fixation was applied. In the second group (N=20 we used short-level stabilization with additional augmentation of transpedicular screws by bone cement. The spinal stability, restoration of function, correction of spine's deformation and pain relief was same in both groups. But in the second group the results was achieved with less traumatization and time of rehabilitation of the patients.

  7. The study on changes of bone mineral content of mandible by quantitative computed tomography

    International Nuclear Information System (INIS)

    Tamai, Manabu; Ishii, Yasuo

    1996-01-01

    A method to measure bone mineral of mandible has not been established. The bone mineral content (BMC) of the mandible with single energy quantitative computed tomography (SEQCT), which was compared with that of the spine, was discussed. The subjects were 104 healthy persons (54 males and 50 females, age range: 21-69) and 33 patients of mandibular atrophy (10 males and 23 females, age range: 46-87). The BMC changes of the mandible differed according to sex. In males BMC of trabecular bone and cortical bone decreased slightly after 40 and 30 years of age respectively. In females, BMC decreased consistently during menopause. BMC of the spine tended to decrease with aging, especially in females. In males having mandibular atrophy, the BMC of trabecular bone of the mandible decreased, and that of cortical bone of the mandible increased with aging. In females having atrophy, the BMC of trabecular bone and cortical bone of the mandible decreased with aging. The BMC of the mandible was correlated with the length of the denture-wearing time in males. In females, it appears that the BMC of the mandible participates in estrogen deficiency like the BMC of the spine. From the above, measurement of the BMC of the mandible by SEQCT was considered to be very useful for grasping the severity and progressive rate, and other conditions of alveolar ridge atrophy and determining the remedial course. (author)

  8. The study on changes of bone mineral content of mandible by quantitative computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Manabu; Ishii, Yasuo [Fukui Medical School, Matsuoka (Japan)

    1996-04-01

    A method to measure bone mineral of mandible has not been established. The bone mineral content (BMC) of the mandible with single energy quantitative computed tomography (SEQCT), which was compared with that of the spine, was discussed. The subjects were 104 healthy persons (54 males and 50 females, age range: 21-69) and 33 patients of mandibular atrophy (10 males and 23 females, age range: 46-87). The BMC changes of the mandible differed according to sex. In males BMC of trabecular bone and cortical bone decreased slightly after 40 and 30 years of age respectively. In females, BMC decreased consistently during menopause. BMC of the spine tended to decrease with aging, especially in females. In males having mandibular atrophy, the BMC of trabecular bone of the mandible decreased, and that of cortical bone of the mandible increased with aging. In females having atrophy, the BMC of trabecular bone and cortical bone of the mandible decreased with aging. The BMC of the mandible was correlated with the length of the denture-wearing time in males. In females, it appears that the BMC of the mandible participates in estrogen deficiency like the BMC of the spine. From the above, measurement of the BMC of the mandible by SEQCT was considered to be very useful for grasping the severity and progressive rate, and other conditions of alveolar ridge atrophy and determining the remedial course. (author).

  9. The use of first stage bone augmentation screws to stabilize the surgical template in the second stage.

    NARCIS (Netherlands)

    Verhamme, L.M.; Meijer, G.J.; Berge, S.J.; Maal, T.J.J.

    2015-01-01

    A new method is presented in which the osteosynthesis screws from a first stage bone augmentation of the maxilla are used to stabilize the surgical template during implant placement in the second stage. This method was evaluated in one patient and the results compared to those of previous studies.

  10. The use of first stage bone augmentation screws to stabilize the surgical template in the second stage

    NARCIS (Netherlands)

    Verhamme, L. M.; Meijer, G. J.; Bergé, S. J.; Maal, T. J J

    2015-01-01

    A new method is presented in which the osteosynthesis screws from a first stage bone augmentation of the maxilla are used to stabilize the surgical template during implant placement in the second stage. This method was evaluated in one patient and the results compared to those of previous studies.

  11. Neutron activation analysis in the central nervous system tissues and bones of rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    It is presumed that by the shortage of Mg, Zn and Ca, functional or organic diseases may occur. When Al deposits to central nervous tissues and bones, various diseases are induced. As the degeneracy of central nervous system, in which minerals are presumed to take part, amyotrophic lateral sclerosis, Parkinsonism dementia, Alzheimer disease and Parkinson`s disease are enumerated. Four groups of Winstar rats were bred for 90 days with standard diet, low Ca diet, low Ca and Mg diet and low Ca and Mg, high Al diet, and the contents of Mg, Ca and Zn in the tissues of various parts were analyzed by plasma luminescence analysis, and the content of Al was analyzed by activation analysis. The results for blood serum, bones, soft tissues and the correlation of respective minerals in thighbones and lumbars are reported. It was presumed that the adjustment of the mineralization of bones was disturbed by low Ca and Mg diet, and consequently, also the adjustment of Al, Mn, Zn and other elements caused failure in living bodies. It is considered that as the adjustment of the mineralization of bones was disturbed, the deposit of Al in living bodies was increased. The possibility of preventing Al deposit can be expected by the rational adjustment of mineral metabolism. (K.I.).

  12. Neutron activation analysis in the central nervous system tissues and bones of rats maintained on minerally unbalanced diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa.

    1994-01-01

    It is presumed that by the shortage of Mg, Zn and Ca, functional or organic diseases may occur. When Al deposits to central nervous tissues and bones, various diseases are induced. As the degeneracy of central nervous system, in which minerals are presumed to take part, amyotrophic lateral sclerosis, Parkinsonism dementia, Alzheimer disease and Parkinson's disease are enumerated. Four groups of Winstar rats were bred for 90 days with standard diet, low Ca diet, low Ca and Mg diet and low Ca and Mg, high Al diet, and the contents of Mg, Ca and Zn in the tissues of various parts were analyzed by plasma luminescence analysis, and the content of Al was analyzed by activation analysis. The results for blood serum, bones, soft tissues and the correlation of respective minerals in thighbones and lumbars are reported. It was presumed that the adjustment of the mineralization of bones was disturbed by low Ca and Mg diet, and consequently, also the adjustment of Al, Mn, Zn and other elements caused failure in living bodies. It is considered that as the adjustment of the mineralization of bones was disturbed, the deposit of Al in living bodies was increased. The possibility of preventing Al deposit can be expected by the rational adjustment of mineral metabolism. (K.I.)

  13. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals

    DEFF Research Database (Denmark)

    Jensen, T; Schou, S; Stavropoulos, Andreas

    2012-01-01

    The objective of the present systematic review was to test the hypothesis of no differences between the use of Bio-Oss or Bio-Oss mixed with autogenous bone as graft for maxillary sinus floor augmentation (MSFA) applying the lateral window technique, as evaluated in animals. A MEDLINE (Pub...... of the graft improved significantly with increased proportion of Bio-Oss. Bone regeneration, bone-to-implant contact (BIC), biomechanical implant test values, and biodegradation of Bio-Oss after MSFA with Bio-Oss or Bio-Oss mixed with autogenous bone have never been compared within the same study in animals....... Thus, the hypothesis of no differences between the use of Bio-Oss and Bio-Oss mixed with autogenous bone as graft for MSFA could neither be confirmed nor rejected based on existing animal studies....

  14. Association between bone mineral density and low backache in postmenopausal women

    International Nuclear Information System (INIS)

    Qayum, M.; Ali, W.

    2017-01-01

    Objective: To determine association between bone mineral density (BMD) and low backache in post menopausal women in general population of Lahore. Study Design: Descriptive study. Place and Duration of Study: Gynaecological outpatint department of Punjab Rangers Hospital Lahore during the period, from Feb 2015 to Feb 2016. Material and Methods: Screening for association between BMD and low backache in 481 post menopausal women was carried out. Low back pain was considered clinically relevant if the patient complained of moderate to severe pain, or if the patient needed any medical treatment. Their BMD was measured. The measurement site for BMD was the calcaneus of patient. The diagnosis was based on T score. Data was analyzed. Result: Osteoporosis was found in 303 (88.3%) of 50-60 years age group and 40 (11.7%) of 61-plus years age group. Conclusion: Bone mineral density was significantly lower in postmenopausal women and there was a strong association between low back ache and decreased BMD value. (author)

  15. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  16. Prevalência de doença mineral óssea em adolescentes com fibrose cística Prevalence of bone mineral disease among adolescents with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Reinaldo José do Amaral Caldeira

    2008-02-01

    Full Text Available OBJETIVO: Avaliar a prevalência de doença mineral óssea em adolescentes com fibrose cística e associar os achados com as variáveis estudadas. MÉTODOS: Foram selecionados 37 adolescentes, dos quais foram avaliados: estado nutricional pelos índices de altura/idade e massa corporal/idade; densidade mineral óssea da coluna lombar e corpo inteiro por densitometria com emissão de raio X de dupla energia; ingestão dietética diária pelo registro alimentar de 3 dias; e prova de função pulmonar pelo volume expiratório forçado no primeiro segundo. RESULTADOS: A média de idade foi de 13,2 (±2,8 anos. O estado nutricional adequado foi de 70,3 e 75,7% pelos índices de altura/idade e de massa corporal/idade, respectivamente; 54,1% dos pacientes apresentaram redução da densidade mineral óssea para coluna lombar e 32,5% para corpo inteiro. Houve correlação positiva entre densidade mineral óssea e índice de massa corporal (p = 0,04. A doença pulmonar e a insuficiência pancreática apresentaram correlação com a alteração da densidade mineral óssea. O inquérito alimentar revelou percentuais de adequação para o cálcio, fósforo e calorias, de acordo com a recomendação nutricional preconizada pelo Consenso Europeu de Fibrose Cística. Essas variáveis não se mostraram estatisticamente significantes na análise multivariada. CONCLUSÃO: A prevalência de doença mineral óssea é alta na adolescência. O estado nutricional adequado, a reposição de enzimas pancreáticas e o controle da doença pulmonar podem ter efeito protetor para a massa óssea.OBJECTIVE: To evaluate the prevalence of bone mineral disease among adolescents with cystic fibrosis and to relate the findings with the variables studied. METHODS: The study enrolled 37 adolescents who were assessed for: nutritional status according to height/age and body mass/age ratios; bone mineral density of the lumbar spine and entire body by densitometry with dual emission X

  17. Total and regional bone mineral content in healthy Spanish subjects by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Aguado Henche, S.; Rodriguez Torres, R.; Clemente de Arriba, C.; Gomez Pellico, L.

    2008-01-01

    This is an observational cross-sectional study. The aim of the present study was to describe and analyze patterns of change in total and regional bone mineral content in relation to age and gender in a sedentary Spanish sample population (from the Community of Madrid). The age range of the sample population was from birth to 80 years. One thousand one hundred twenty healthy subjects were recruited and divided into 16 groups according to age. Each subject underwent whole-body densitometry using dual-energy X-ray absorptiometry. An analysis was made of the amount of bone mineral content (BMC) in the whole body and in different regions: the head, trunk, upper limbs, and lower limbs. Gender differences in mean values for upper limbs and lower limbs are statistically significant between 16 and 70 years of age. For the head and trunk, the mean BMC values show the most significant gender differences between 16 and 25 years of age (p≤0.001). Total bone mineral content (TBMC) and TBMC-to-height ratio show significant gender differences between 16 and 70 years of age. In females, TBMC values increase up to 20 years of age and in males up to 25 years of age. We have determined an evolutionary normal pattern of bone mineral content in urban Spanish people. (orig.)

  18. Total and regional bone mineral content in healthy Spanish subjects by dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Aguado Henche, S.; Rodriguez Torres, R.; Clemente de Arriba, C.; Gomez Pellico, L. [Universidad de Alcala, Departamento de Anatomia y Embriologia Humana, Facultad de Medicina, Alcala de Henares, Madrid (Spain)

    2008-11-15

    This is an observational cross-sectional study. The aim of the present study was to describe and analyze patterns of change in total and regional bone mineral content in relation to age and gender in a sedentary Spanish sample population (from the Community of Madrid). The age range of the sample population was from birth to 80 years. One thousand one hundred twenty healthy subjects were recruited and divided into 16 groups according to age. Each subject underwent whole-body densitometry using dual-energy X-ray absorptiometry. An analysis was made of the amount of bone mineral content (BMC) in the whole body and in different regions: the head, trunk, upper limbs, and lower limbs. Gender differences in mean values for upper limbs and lower limbs are statistically significant between 16 and 70 years of age. For the head and trunk, the mean BMC values show the most significant gender differences between 16 and 25 years of age (p{<=}0.001). Total bone mineral content (TBMC) and TBMC-to-height ratio show significant gender differences between 16 and 70 years of age. In females, TBMC values increase up to 20 years of age and in males up to 25 years of age. We have determined an evolutionary normal pattern of bone mineral content in urban Spanish people. (orig.)

  19. Association between passive smoking in adulthood and phalangeal bone mineral density

    DEFF Research Database (Denmark)

    Holmberg, T; Bech, M; Curtis, T

    2011-01-01

    and body fat percentage were measured and 96.7% (n = 15,038) of the participants answered a self-reported questionnaire with information on passive smoking, other lifestyle factors, education, etc. The association between passive smoking and BMD was examined using multiple linear regression analysis...... in their home during adulthood. INTRODUCTION: Smoking is associated with decreased bone mineral density (BMD) and increased risk of osteoporotic fractures. This study aimed to investigate a possible association between BMD at the phalangeal bones and self-reported passive smoking. METHODS: The study included...

  20. A multicenter study of the influence of fat and lean mass on bone mineral content

    DEFF Research Database (Denmark)

    Hla, M M; Davis, J W; Ross, P D

    1996-01-01

    We examined the relative influence of fat and lean mass on bone mineral content (BMC) among 1600 early postmenopausal women aged 45-59 y from four geographical locations (Nottingham, United Kingdom; Portland, OR; Honolulu; and Copenhagen). Bone sites investigated included the major fracture sites...

  1. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    Science.gov (United States)

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  2. Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Aksglaede, L.; Mølgaard, Christian; Skakkebaek, N.E.

    2008-01-01

    OBJECTIVE: To evaluate body composition and bone mineral content (BMC) in children and adolescents with Klinefelter syndrome (KS). DESIGN: Retrospective cross-sectional study. SETTING: Tertiary endocrine clinic at the University Hospital, Copenhagen. PATIENTS: Eighteen untreated boys with KS...

  3. Quantitative computed tomography for measuring bone mineral content

    International Nuclear Information System (INIS)

    Felsenberg, D.; Kalender, W.A.; Banzer, D.; Schmilinsky, G.; Heyse, M.; Fischer, E.; Schneider, U.; Siemens A.G., Erlangen; Krankenhaus Zehlendorf, Berlin

    1988-01-01

    Quantitative computed tomography (QCT) for measuring bone mineral content of lumbar vertebrae is increasingly used internationally. The effect of using conventional CT (single energy CT, SE-CT) and dual energy CT (DE-CT) on reproducibility has been examined. We defined a standard measurement protocol, which automatically evaluates a calibration phantom. This should ensure an in vivo reproducibility of 1 to 2%. Reference data, which has been obtained with this protocol from 113 normal subjects, using SE-CT ad DE-CT, are presented. (orig.) [de

  4. Veganism, bone mineral density, and body composition: a study in Buddhist nuns.

    Science.gov (United States)

    Ho-Pham, L T; Nguyen, P L T; Le, T T T; Doan, T A T; Tran, N T; Le, T A; Nguyen, T V

    2009-12-01

    This cross-sectional study showed that, although vegans had lower dietary calcium and protein intakes than omnivores, veganism did not have adverse effect on bone mineral density and did not alter body composition. Whether a lifelong vegetarian diet has any negative effect on bone health is a contentious issue. We undertook this study to examine the association between lifelong vegetarian diet and bone mineral density and body composition in a group of postmenopausal women. One hundred and five Mahayana Buddhist nuns and 105 omnivorous women (average age = 62, range = 50-85) were randomly sampled from monasteries in Ho Chi Minh City and invited to participate in the study. By religious rule, the nuns do not eat meat or seafood (i.e., vegans). Bone mineral density (BMD) at the lumbar spine (LS), femoral neck (FN), and whole body (WB) was measured by DXA (Hologic QDR 4500). Lean mass, fat mass, and percent fat mass were also obtained from the DXA whole body scan. Dietary calcium and protein intakes were estimated from a validated food frequency questionnaire. There was no significant difference between vegans and omnivores in LSBMD (0.74 +/- 0.14 vs. 0.77 +/- 0.14 g/cm(2); mean +/- SD; P = 0.18), FNBMD (0.62 +/- 0.11 vs. 0.63 +/- 0.11 g/cm(2); P = 0.35), WBBMD (0.88 +/- 0.11 vs. 0.90 +/- 0.12 g/cm(2); P = 0.31), lean mass (32 +/- 5 vs. 33 +/- 4 kg; P = 0.47), and fat mass (19 +/- 5 vs. 19 +/- 5 kg; P = 0.77) either before or after adjusting for age. The prevalence of osteoporosis (T scores < or = -2.5) at the femoral neck in vegans and omnivores was 17.1% and 14.3% (P = 0.57), respectively. The median intake of dietary calcium was lower in vegans compared to omnivores (330 +/- 205 vs. 682 +/- 417 mg/day, P < 0.001); however, there was no significant correlation between dietary calcium and BMD. Further analysis suggested that whole body BMD, but not lumbar spine or femoral neck BMD, was positively correlated with the ratio of animal protein to vegetable protein. These

  5. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    OpenAIRE

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those...

  6. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    OpenAIRE

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured...

  7. Effects of laser photherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study.

    Science.gov (United States)

    Pinheiro, Antonio L B; Aciole, Gilberth T S; Cangussú, Maria Cristina T; Pacheco, Marcos T T; Silveira, Landulfo

    2010-12-15

    We have used Raman analysis to assess bone healing on different models. Benefits on the isolated or combined use of mineral trioxide aggregate, bone morphogenetic proteins, guided bone regeneration and laser on bone repair have been reported, but not their combination. We studied peaks of hydroxyapatite and CH groups on defects grafted with MTA, treated or not with laser, BMPs, and GBR. Ninety rats were divided in 10 groups each, subdivided into three subgroups. Laser (λ850 nm) was applied at every other day for 2 weeks. Raman readings were taken at the surface of the defect. Statistical analysis (CHA) showed significant differences between all groups (p = 0.001) and between Group II and all other (p hydroxyapatite (CHA) that is indicative of greater calcification and resistance of the bone. We conclude that the association of the MTA with laser phototherapy (LPT) and/or not with GBR resulted in a better bone repair. The use of the MTA associated to IR LPT resulted in a more advanced and quality bone repair. Copyright © 2010 Wiley Periodicals, Inc.

  8. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    International Nuclear Information System (INIS)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.; Beusekom, Mara M. van; Mol, Isabel M.; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Rooij, Karien E. de

    2014-01-01

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining

  9. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    Energy Technology Data Exchange (ETDEWEB)

    Moester, Martiene J.C. [Department of Radiology, Leiden University Medical Center (Netherlands); Schoeman, Monique A.E. [Department of Orthopedic Surgery, Leiden University Medical Center (Netherlands); Oudshoorn, Ineke B. [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands); Beusekom, Mara M. van [Department of Radiology, Leiden University Medical Center (Netherlands); Mol, Isabel M. [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands); Kaijzel, Eric L.; Löwik, Clemens W.G.M. [Department of Radiology, Leiden University Medical Center (Netherlands); Rooij, Karien E. de, E-mail: k.e.de_rooij@lumc.nl [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands)

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.

  10. Bone mineral density and body composition before and during treatment with gonadotropin-releasing hormone agonist in children with central precocious and early puberty

    NARCIS (Netherlands)

    A.M. Boot (Annemieke); S.M.P.F. de Muinck Keizer-Schrama (Sabine); H.A.P. Pols (Huib); E.P. Krenning (Eric); S.L.S. Drop (Stenvert)

    1998-01-01

    textabstractMajor changes in bone mineral density (BMD) and body composition occur during puberty. In the present longitudinal study, we evaluated BMD and calculated volumetric BMD [bone mineral apparent density (BMAD)], bone metabolism, and body composition of children

  11. Correlations between insulin sensitivity and bone mineral density in non-diabetic men

    DEFF Research Database (Denmark)

    Abrahamsen, B.; Rohold, A.; Henriksen, Jan Erik

    2000-01-01

    AIMS: To investigate relationships between bone mineral density (BMD), insulin secretion and insulin sensitivity, controlling for body composition, in view of data suggesting that hyperglycaemia [corrected] leads to decreased osteoblast proliferation and a negative calcium balance and that insulin...

  12. Serum bicarbonate and bone mineral density in US adults.

    Science.gov (United States)

    Chen, Wei; Melamed, Michal L; Abramowitz, Matthew K

    2015-02-01

    Chronic metabolic acidosis leads to bone mineral loss and results in lower bone mineral density (BMD), which is a risk factor for osteoporosis-related fractures. The effect of low-level metabolic acidosis on bone density in the general population is unknown. Cross-sectional study. 9,724 nationally representative adults 20 years or older in NHANES (National Health and Nutrition Examination Survey) 1999-2004. Serum bicarbonate level. Lumbar and total BMD, as well as low lumbar and total bone mass, defined as 1.0 SD below the sex-specific mean value of young adults. BMD was measured by dual-energy x-ray absorptiometry and serum bicarbonate was measured in all participants. Both men and women with lower serum bicarbonate levels were more likely to be current smokers and had higher body mass index and estimated net endogenous acid production. There was a significant linear trend across quartiles of serum bicarbonate with lumbar BMD in the total population, as well as in sex-specific models (P=0.02 for all 3 models, P=0.1 for interaction). For total BMD, a significant association was seen with serum bicarbonate level for women but not men (P=0.02 and P=0.1, respectively; P=0.8 for interaction), and a significant association was seen for postmenopausal women but not premenopausal women (P=0.02 and P=0.2, respectively; P=0.5 for interaction). Compared with women with serum bicarbonate levels <24mEq/L, those with serum bicarbonate levels ≥27mEq/L had 0.018-g/cm(2) higher total BMD (95% CI, 0.004-0.032; P=0.01) and 31% lower odds of having low total bone mass (OR, 0.68; 95% CI, 0.46-0.99; P=0.049). Cross-sectional study using a single measurement of serum bicarbonate. Subgroup differences are not definitive. Lower serum bicarbonate levels are associated with lower BMD in US adults. Further studies should examine whether serum bicarbonate levels should be incorporated into the diagnostic assessment and management of osteoporosis. Copyright © 2015 National Kidney Foundation

  13. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2017-02-01

    Full Text Available Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2 gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1 lovastatin 11 mg/kg/day alone; (2 tocotrienol derived from annatto bean (annatto tocotrienol 60 mg/kg/day alone; (3 lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05. There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05. The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  14. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  15. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  16. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  17. Long-term hormone replacement therapy preserves bone mineral density in Turner syndrome

    DEFF Research Database (Denmark)

    Cleemann, Line; Hjerrild, Britta E; Lauridsen, Anna L

    2009-01-01

    CONTEXT: Reduced bone mineral density (BMD) and increased risk of fractures are present in many women with Turner syndrome (TS). OBJECTIVE: Examine longitudinal changes in BMD in TS and relate changes to biochemical parameters. DESIGN: Prospective, pragmatic, and observational study. Examinations...

  18. The effect of bisphosphonates on bone mineral density in patients with ankylosing spondylitis in daily clinical practice

    NARCIS (Netherlands)

    Arends, S.; Veneberg, J.G.; Wink, F.R.; Bos, R.; Brouwer, E.; Van Der Veer, E.; Bootsma, H.; Van Roon, E.N.; Maas, F.; Spoorenberg, A.

    2016-01-01

    Background: Ankylosing spondylitis (AS) is not only characterized by excessive bone formation, but also by excessive bone loss which may lead to low bone mineral density (BMD). So far, little is known about the effect of treatment with bisphosphonates on BMD in patients with AS. Objectives: To

  19. Status of bone mineral content and body composition in boys engaged in intensive physical activity

    Directory of Open Access Journals (Sweden)

    Madić Dejan

    2010-01-01

    Full Text Available Background/Aim. It is well known that physical activity has an anabolic effect on bone tissue. But there is a lack of information about the effect of intensive physical activity in childhood, particularly at the prepubertal stage. To examine the influence of training on body composition and bone mineral density we have studied a group of prepubertal soccer players as well as a group of inactive prepubertal boys at the starting phase of their peak bone mass acquisition. Methods. A total of 62 healthy prepubertal boys took part in this study. They were divided into two groups. The first one consisted of 32 soccer players (aged 10.7 ± 0.5 years, who had been playing football for at least 1 year (10-15 h per week. The second group a control group 30 boys (aged 11.2 ± 0.7 years doing 1.5 h per week physical activity at school. Body composition was assessed by a Body Fat Analyzer 'BES 200 Z'. Bone mineral density measurements of the left and the right calcaneus were done by using ultrasound densitometer 'Sahara' (Hologic, Inc., MA, USA. Results. There were significant differences between soccer players and the control group in fat mass (p = 0.01. Besides, a significant difference was determined between the group of athletes and the control group in bone mineral density of both calcaneal bones (p = 0.01. Conclusion. The results of this study confirm the significant effects of physical activity on reducing body mass and increasing bone density. Considering that football training can be very easily implemented in the broader population of children and young people, which does not apply to many other sports, it should be used more in the prevention of obesity and osteoporosis.

  20. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    Science.gov (United States)

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  1. Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1

    Science.gov (United States)

    Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; el Khassawna, Thaqif; Stevenson, David A.; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz

    2014-01-01

    Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions. PMID:24465906

  2. Intraoperative mechanical measurement of bone quality with the DensiProbe.

    Science.gov (United States)

    Hoppe, Sven; Uhlmann, Michael; Schwyn, Robert; Suhm, Norbert; Benneker, Lorin M

    2015-01-01

    Reduced bone stock can result in fractures that mostly occur in the spine, distal radius, and proximal femur. In case of operative treatment, osteoporosis is associated with an increased failure rate. To estimate implant anchorage, mechanical methods seem to be promising to measure bone strength intraoperatively. It has been shown that the mechanical peak torque correlates with the local bone mineral density and screw failure load in hip, hindfoot, humerus, and spine in vitro. One device to measure mechanical peak torque is the DensiProbe (AO Research Institute, Davos, Switzerland). The device has shown its effectiveness in mechanical peak torque measurement in mechanical testing setups for the use in hip, hindfoot, and spine. In all studies, the correlation of mechanical torque measurement and local bone mineral density and screw failure load could be shown. It allows the surgeon to judge local bone strength intraoperatively directly at the region of interest and gives valuable information if additional augmentation is needed. We summarize methods of this new technique, its advantages and limitations, and give an overview of actual and possible future applications. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  3. Parallel Assessment of Bone Mineral Density and RANKL/OPG Ratio in Saudi Females

    OpenAIRE

    AI Hassan; SA Eltarhouny; HE Hashem; SA Algaidi; AR Abdallah; AM Sandokji

    2016-01-01

    Background: Osteoporosis is a significant risk factor for morbidity, and its high prevalence among Saudi women should be considered to be a public health problem. Quantitative ultrasound was recommended for bone mineral density (BMD) screening. Receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) and their ratio are critical for physiological bone remodelling, and related abnormalities may lead to several osteopathies. Methods: The BMD of 499 Saudi female...

  4. Femoral Cortical Bone Mineral Density and Biomechanical Properties in Sheep Consuming an Acidifying Diet

    Directory of Open Access Journals (Sweden)

    Eileen S. Hackett

    2009-01-01

    Full Text Available Dietary acidity is a likely contributor to the development of osteoporosis. Dietary acidosis in an ovine model has effects on trabecular bone that have been previously shown to mimic human osteoporosis. Effects on cortical bone using this model have not been investigated. The objective of this study was to examine the effects of dietary acidosis on cortical bone mineral density and material properties. Skeletally mature ovariectomized (OVX sheep consumed either a normal diet (ND or a metabolic acidosis diet (MA for 6 or 12 months. Whole femoral and cortical bone beam BMD was determined using dual energy x-ray absorptiometry (DEXA. Beams were then subjected to three point flexure monotonically to failure to determine strength and modulus and then ashed to determine percent mineralization. Femoral BMD in adult OVX ND 6 mo sheep was significantly greater than those in the non-OVX ND group. The BMD in the MA groups was lower than the control non-OVX ND group. Cortical beams had significantly decreased modulus in all MA and OVX groups when compared with the non-OVX ND group and a tendency towards decreased strength in all groups with significance only in the OVX ND 6 mo sheep. Percent mineralization increased in MA and OVX groups when compared to the non-OVX ND group and was significantly increased in the OVX ND 6 mo and OVX MA 12 mo groups. A significant correlation was seen between BMD of the beam and breaking strength and modulus. Dietary acidity impacts cortical bone and results in reduced material properties that may contribute to failure.

  5. Changes of bone mineral density, bone metabolism indices and cell factors in patients with hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Dan Lu

    2017-02-01

    Full Text Available Objective: To observe the changes of bone mineral density, bone metabolism indices and cell factor in patients with hyperthyroidism Methods: A total of 116 cases of hyperthyroidism patients from June 2015 to June 2016 in our hospital were selected. as the object of observation group. Then, 120 cases of healthy people were selected as the object of control group. Thyroid function indexes (TT3, TT4, FT3, FT4, TSH, bone mineral density (BMD, bone metabolism indexes (PTH, BGP, PINP and cell factors (IL-2, IL-6 in both groups were detected and compared. Results: TT3, TT4, FT3, FT4, TSH in control group were (1.40±0.81 nmol/ L, (94.36±32.10 nmol/L, (5.04±1.18 pmol/L, (15.37±4.60 pmol/L, (2.55±1.21 mU/L. TT3, TT4, FT3, FT4, TSH in observation group were (5.48±2.36 nmol/L, (405.55±71.48 nmol/L, (16.27±5.14 pmol/L, (46.83±12.66 pmol/L, (0.04±0.01 mU/L. TT3, TT4, FT3, FT4 in the observation group were higher than that in control group obviously. TSH in the observation group was lower than that in observation group obviously. The difference between two groups was considered statistically significant. BMD, PTH in observation group were (0.62±0.08 g/m2, (26.25±9.16 pg/mL, which were obviously lower than BMD (1.23±0.11 g/m2, PTH (37.13±8.05 pg/mL in control group. The difference between two groups was considered statistically significant. BGP, PINP in observation group were (14.51±6.25 ng/ mL, (223.63±10.38 μg/L, which were obviously higher than BGP (5.97±1.98 ng/mL, PINP (33.18±6.15 μg/L in control group. The difference between two groups was considered statistically significant. IL-2 in observation group was (1.60±0.51 ng/L, which was obviously lower than IL-2 (4.72±1.29 ng/L, in control group. IL-6 in observation group was (1.98±0.34 pg/L, which was obviously higher than IL-6, (1.50±0.23 pg/L, in control group. The difference between two groups was considered statistically significant. Conclusion: Bone mineral density in patients

  6. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials.

    Science.gov (United States)

    Hind, K; Burrows, M

    2007-01-01

    Osteoporosis is a serious skeletal disease and as there is currently no cure, there is a large emphasis on its prevention, including the optimisation of peak bone mass. There is increasing evidence that regular weight-bearing exercise is an effective strategy for enhancing bone status during growth. This systematic review evaluates randomised and non-randomised controlled trials to date, on the effects of exercise on bone mineral accrual in children and adolescents. An online search of Medline and the Cochrane database enabled the identification of studies. Those that met the inclusion criteria were included in the review and graded according to risk for bias. Twenty-two trials were reviewed. Nine were conducted in prepubertal children (Tanner I), 8 in early pubertal (Tanner II-III) and 5 in pubertal (Tanner IV-V). Sample sizes ranged from n=10 to 65 per group. Exercise interventions included games, dance, resistance training and jumping exercises, ranging in duration from 3 to 48 months. Approximately half of the trials (n=10) included ground reaction force (GRF) data (2 to 9 times body weight). All trials in early pubertal children, 6 in pre pubertal and 2 in pubertal children, reported positive effects of exercise on bone (P<0.05). Mean increases in bone parameters over 6 months were 0.9-4.9% in prepubertal, 1.1-5.5% in early pubertal and 0.3-1.9% in pubertal exercisers compared to controls (P<0.05). Although weight-bearing exercise appears to enhance bone mineral accrual in children, particularly during early puberty; it remains unclear as to what constitutes the optimal exercise programme. Many studies to date have a high risk for bias and only a few have a low risk. Major limitations concerned selection procedures, compliance rates and control of variables. More well designed and controlled investigations are needed. Furthermore, the specific exercise intervention that will provide the optimal stimulus for peak bone mineral accretion is unclear. Future

  7. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    Science.gov (United States)

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (Pmyostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  8. Accuracy of lumbar spine bone mineral content by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Podenphant, J.; Norgaard, H.; Nilas, L.; Nielsen, V.A.; Christiansen, C.

    1988-01-01

    The accuracy of measurement of the bone mineral content (BMC, g) and bone mineral density (BMD, g/cm 2 ) of the lumbar spine by dual photon absorptiometry (DPA) was estimated by means of two different spine scanners (a Nuclear Data 2100 and a Lunar Radiation DP3). The lumbar spines of 13 cadavers were used. BMC and BMD were measured in situ and on the excised vertebrae in a solution of water/ethanol; and covered with ox muscle/porcine muscle/lard. The actual mineral weight and areal density were determined after chemical maceration, fat extraction, drying to a constant weight, ashing for 24 hr at 600 degrees C, and correction for the transverse processes. The true are was measured by parallax free X rays and planimetry. All measurements of BMC or BMD were highly interrelated (r = 0.94-0.99). The standard error of estimate (s.e.e.) of BMC in situ versus BMC in water/ethanol was 5.2%. The agreement between the BMD values of the two scanners was very good (s.e.e. = 2.9%). BMC in situ predicted the actual vertebral mineral mass with an s.e.e. of 8.1%. BMD in situ and BMD in water/ethanol predicted the actual area density with s.e.e.s of 10.3% and 5.0%, respectively. This study discloses the correlation and accuracy error of spinal DPA measurements in situ in whole cadavers versus the actual BMC and BMD. The error, which is underestimated in in vitro studies, amounts to 10%

  9. Cushing's syndrome and bone mineral density: lowest Z scores in young patients.

    NARCIS (Netherlands)

    Eerden, A.W.A.; Heijer, M. den; Oyen, W.J.G.; Hermus, A.R.M.M.

    2007-01-01

    Background: Patients with Cushing's syndrome have a high prevalence of osteoporotic fractures. Little is known about factors determining bone mineral density (BMD) in these patients. Objective: To evaluate which factors influence BMD at the time of diagnosis of Cushing's syndrome. Methods: In 77

  10. Local bone mineral mass as a function of dose in radium cases

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Bone mineral mass at specific sites in the forearms and fingers of females with exposure to radium and mesothorium appears to have no dependence on dose. Data analysis is continuing, so these results should be considered preliminary. Future analyses will include males

  11. Total body and regional bone mineral content in hemodialysis patients

    International Nuclear Information System (INIS)

    Hagiwara, Satoshi; Aratani, Hideyui; Miki, Takami; Nishizawa, Yoshiki; Okamura, Terue; Koizumi, Yoshiko; Ochi, Hironobu; Morii, Hirotoshi

    1994-01-01

    Bone mineral content (BMC) in the total body and lumbar spine was evaluated in 126 hemodialysis patients (60 males, 66 females) by dual photon absorptiometry with the Norland DBD 2600. Measurements of: 1) total body BMC divided by lean body mass (BMC TB /LBM), 2) bone mineral density (BMD) of total body, 3) BMD of four regional sections (head, trunk, pelvis, and legs), and 4) BMD of lumbar spine, generally showed a significant decrease in the hemodialysis patients compared to the reference population. However, arm BMD did not show a significant difference between patients and control populations. The z-score of BMC TB /LBM declined significantly throughout the duration of hemodialysis, although that of the lumbar spine BMD did not. It should be noted that the degree of decrease in BMC was more prominent in the total body measurement than in the lumbar spine measurement. There was preferential osteopenia of the total body in the hemodialysis patients. Although the lumbar spine BMD showed a lower value than the control population, the lumbar spine is not the recommended region to monitor the BMD change in hemodialysis patients. (author)

  12. Quantitative computed tomography bone mineral density measurements in irradiated and non-irradiated minipig alveolar bone: an experimental study.

    NARCIS (Netherlands)

    Verdonck, H.W.; Meijer, G.J.; Nieman, F.H.; Stoll, C.; Riediger, D.; Baat, C. de

    2008-01-01

    OBJECTIVE: The objective of this study was to analyse the effect of irradiation on bone mineral density (BMD). MATERIALS AND METHODS: All maxillary and mandibular pre-molars and molars of six minipigs were extracted. After a 3-month healing period, the maxilla and mandibles of three minipigs

  13. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  14. Association of the presence of bone bars on radiographs and low bone mineral density

    International Nuclear Information System (INIS)

    Pitt, Michael J.; Morgan, Sarah L.; Lopez-Ben, Robert; Steelman, Rebecca E.; Nunnally, Nancy; Burroughs, Leandria; Fineberg, Naomi

    2011-01-01

    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  15. Association of the presence of bone bars on radiographs and low bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Michael J. [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Morgan, Sarah L. [Schools of Health Professions, Medicine, and Dentistry, Departments of Nutrition Sciences and Medicine, Birmingham (United Kingdom); Lopez-Ben, Robert [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Steelman, Rebecca E. [University of Alabama, Birmingham (United Kingdom); Nunnally, Nancy; Burroughs, Leandria [UAB Osteoporosis Prevention and Treatment Clinic, Birmingham (United Kingdom); Fineberg, Naomi [University of Alabama at Birmingham, Department of Biostatistics, School of Public Health, Birmingham (United Kingdom)

    2011-07-15

    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  16. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.

    Science.gov (United States)

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G

    2017-12-01

    Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Vitamin D Status, Bone Mineral Density and Mental Health in Young Australian Women: The Safe-D Study.

    Science.gov (United States)

    Callegari, Emma T; Reavley, Nicola; Garland, Suzanne M; Gorelik, Alexandra; Wark, John D

    2015-11-17

    Vitamin D deficiency has been associated with both poor bone health and mental ill-health. More recently, a number of studies have found individuals with depressive symptoms tend to have reduced bone mineral density. To explore the interrelationships between vitamin D status, bone mineral density and mental-ill health we are assessing a range of clinical, behavioural and lifestyle factors in young women (Part A of the Safe-D study). Part A of the Safe-D study is a cross-sectional study aiming to recruit 468 young females aged 16-25 years living in Victoria, Australia, through Facebook advertising. Participants are required to complete an extensive, online questionnaire, wear an ultra-violet dosimeter for 14 consecutive days and attend a study site visit. Outcome measures include areal bone mineral measures at the lumbar spine, total hip and whole body, as well as soft tissue composition using dual energy x-ray absorptiometry. Trabecular and cortical volumetric bone density at the tibia is measured using peripheral quantitative computed tomography. Other tests include serum 25-hydroxyvitamin D, serum biochemistry and a range of health markers. Details of mood disorder/s and depressive and anxiety symptoms are obtained by self-report. Cutaneous melanin density is measured by spectrophotometry. The findings of this cross-sectional study will have implications for health promotion in young women and for clinical care of those with vitamin D deficiency and/or mental ill-health. Optimising both vitamin D status and mental health may protect against poor bone health and fractures in later life. Significance for public healthVitamin D deficiency, depression and osteoporosis are all major public health issues. Vitamin D deficiency has been associated with both reduced bone mineral density and depressive symptoms. Moreover, cohort studies have found that subjects with depression have lower bone mineral density when compared to healthy controls. Early adulthood is a critical

  18. Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.

    Science.gov (United States)

    Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya

    2016-01-01

    In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.

  19. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study.

    Science.gov (United States)

    Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian

    2016-02-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability.

  20. Digestibility, Determination of Metabolizable Energy and Bone Mineralization of Broilers Fed with Nutritionally Valued Phytase

    Directory of Open Access Journals (Sweden)

    FH Litz

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of using exoenzyme phytase in broiler's diets on digestibility of nutrients, feed energy and tibia bone mineralization. A completely randomized design was used, with the following treatments: sorghum with dicalcium phosphate (SDP, corn with dicalcium phosphate (CDP, sorghum with meat and bone meal (SMBM, sorghum with valued phytase (SVP and sorghum with phytase without valued (SPWV. For digestibility analysis, eighty 15 day old broilers were used, a total of 1400 male Hubbard Flex chickens, which were submitted to total excreta collection to obtain the percentages of food digestibility, crude protein, ether extract, apparent metabolizable energy, calcium and phosphorus while for tibias mineralization. Six birds per treatment were used, where determination of mineral matter, calcium and phosphorus were performed. Metabolizable energy (ME and apparent metabolizable energy corrected for nitrogen (AMEn of the feed were also calculated. Data were subjected to variation analysis and the average compared by 5% Tukey test. There was no difference between treatments for the digestibility at 15-20 day old as well as for the feed energy values, but the diets with phytase had higher phosphorous percentage values for tibia bone mineralization, demonstrating that exogenous phytase enzyme is able to hydrolyze phytate origininated from plant and release the phosphorus for assimilation by animals, acting as a substitute for phosphorus plant sources.

  1. Low bone mineral density is related to atherosclerosis in postmenopausal Moroccan women

    Directory of Open Access Journals (Sweden)

    Cherkaoui Mohammed

    2009-10-01

    Full Text Available Abstract Background Some studies have implicated several possible metabolic linkages between osteoporosis and vascular calcification, including estrogen deficiency, vitamin D excess, vitamin K deficiency and lipid oxidation products. Nevertheless, it remains unclear whether osteoporosis and atherosclerosis are related to each other or are independent processes, both related to aging. The aim of this cross-sectional study was to evaluate the correlation between arterial thickening and bone status in a sample of apparently healthy Moroccan women. Methods Seventy-two postmenopausal women were studied. All patients were without secondary causes that might affect bone density. Bone status was assessed by bone mineral density (BMD in lumbar spine and all femoral sites. Arterial wall thickening was assessed by intima-media thickness (IMT in carotid artery (CA and femoral artery (FA. Prevalent plaques were categorized into four groups ranging from low echogenicity to high echogenicity. Results The mean age was 59.2 ± 8.3 years. 84.7% had at least one plaque. By Spearman Rank correlation, CA IMT was negatively correlated to Femoral total BMD (r = -0.33, Femoral neck BMD (r = -0.23, Ward triangle BMD (r = -0.30 and Trochanter BMD (r = -0.28 while there was no association with lumbar BMD. In multiple regression analysis, CA IMT emerged as an independent factor significantly associated with all femoral sites BMD after adjusting of confounding factors. FA IMT failed to be significantly associated with both Femoral and Lumbar BMD. No significant differences between echogenic, predominantly echogenic, predominantly echolucent and echolucent plaques groups were found concerning lumbar BMD and all femoral sites BMD Conclusion Our results demonstrate a negative correlation between bone mineral density (BMD qnd carotid intima-media thickness (IMT in postmenopausal women, independently of confounding factors. We suggest that bone status should be evaluated in

  2. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    Science.gov (United States)

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  3. A comparison of bone mineral density in osteoporotic fracture of the proximal femur using dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Lee, Jong Seok; Yoo, Beong Gyu; Kim, Keung Sik

    2000-01-01

    There were some controversies about direct cause of hip fracture. We attempted to look at 40 osteoporotic proximal femur fractures in women over 50 years between March in 1999 and February in 2000. The bone density of the fracture group and the healthy 85 control group was measured by Dual Energy X-ray absorptiometry (DEXA). The result was compared using age matched paired T test. The results were as follows: The femoral neck fractures were 14 cases and the trochanteric fractures were 26 cases. Mean age at a fracture was 67.1 years in neck fracture group and 76.5 years in trochanteric fracture. In the control group, the bone density of both side of the proximal femur was measured and it showed statistically no difference between both sides in same person. The bone density of neck, Ward's triangle, trochanter (P<0.05) and lumbar spine (P<0.001) was significantly reduced in the proximal femoral fracture group comparing with the control group. The bone density of neck, Ward's triangle, trochanter (P<0.05) was significantly reduced in the proximal femoral neck fracture group comparing with the control group, but there was no statistical difference in lumbar spine comparing with the control group. The bone density of neck, Ward's triangle, trochanter and lumbar spine (P<0.001) was significantly reduced in the proximal femoral neck fracture group comparing with the control group. We concluded that the bone mineral densities (BMD) of proximal femur and lumbar spine had decreased in hip fractures but that the bone mineral density and T-score % of the proximal femur were statistically lower than that of the lumbar spine. We suggest that measuring the bone mineral density of the proximal femur may reflect the weakness of the proximal femur more precisely than measuring the bone mineral density of the lumbar spine

  4. A comparison of bone mineral density in osteoporotic fracture of the proximal femur using dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Seok; Yoo, Beong Gyu [Wonkwang Health Science College, Iksan (Korea, Republic of); Kim, Keung Sik [Yonsei University Yong Dong Severance Hospital, Seoul (Korea, Republic of)

    2000-04-15

    There were some controversies about direct cause of hip fracture. We attempted to look at 40 osteoporotic proximal femur fractures in women over 50 years between March in 1999 and February in 2000. The bone density of the fracture group and the healthy 85 control group was measured by Dual Energy X-ray absorptiometry (DEXA). The result was compared using age matched paired T test. The results were as follows: The femoral neck fractures were 14 cases and the trochanteric fractures were 26 cases. Mean age at a fracture was 67.1 years in neck fracture group and 76.5 years in trochanteric fracture. In the control group, the bone density of both side of the proximal femur was measured and it showed statistically no difference between both sides in same person. The bone density of neck, Ward's triangle, trochanter (P<0.05) and lumbar spine (P<0.001) was significantly reduced in the proximal femoral fracture group comparing with the control group. The bone density of neck, Ward's triangle, trochanter (P<0.05) was significantly reduced in the proximal femoral neck fracture group comparing with the control group, but there was no statistical difference in lumbar spine comparing with the control group. The bone density of neck, Ward's triangle, trochanter and lumbar spine (P<0.001) was significantly reduced in the proximal femoral neck fracture group comparing with the control group. We concluded that the bone mineral densities (BMD) of proximal femur and lumbar spine had decreased in hip fractures but that the bone mineral density and T-score % of the proximal femur were statistically lower than that of the lumbar spine. We suggest that measuring the bone mineral density of the proximal femur may reflect the weakness of the proximal femur more precisely than measuring the bone mineral density of the lumbar spine.

  5. A measurement instrument for bone mineral content of adult and children

    International Nuclear Information System (INIS)

    Liu Shaofang

    1996-01-01

    The γ radiation source was used in bone mineral content measurement analysis of adult and children and a new instrument is developed successfully. It's precision is +2%. The advantage of this instrument is light, cheap and reliable. It can be used widely in medical science and clinic for diagnosis on certain diseases and research work

  6. Association of Perfluoroalkyl Substances, Bone Mineral Density, and Osteoporosis in the U.S. Population in NHANES 2009-2010.

    Science.gov (United States)

    Khalil, Naila; Chen, Aimin; Lee, Miryoung; Czerwinski, Stefan A; Ebert, James R; DeWitt, Jamie C; Kannan, Kurunthachalam

    2016-01-01

    Perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA), are detectable in the serum of 95% of the U.S. Considering the role of PFASs as endocrine disruptors, we examined their relationships with bone health. The association between serum PFAS concentration and bone mineral density at total femur (TFBMD), femoral neck (FNBMD), lumbar spine (LSBMD), and physician-diagnosed osteoporosis was assessed in 1,914 participants using data from the National Health and Nutritional Examination Survey 2009-2010. The mean age of the participants was 43 years. Men had higher serum PFAS concentrations than women (p PFAS concentrations were associated with lower bone mineral density, which varied according to the specific PFAS and bone site assessed. Most associations were limited to women. Osteoporosis in women was also associated with PFAS exposure, based on a small number of cases. Khalil N, Chen A, Lee M, Czerwinski SA, Ebert JR, DeWitt JC, Kannan K. 2016. Association of perfluoroalkyl substances, bone mineral density, and osteoporosis in the U.S. population in NHANES 2009-2010. Environ Health Perspect 124:81-87; http://dx.doi.org/10.1289/ehp.1307909.

  7. Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing

    DEFF Research Database (Denmark)

    Rosholm, A; Hyldstrup, L; Backsgaard, L

    2002-01-01

    A new automated radiogrammetric method to estimate bone mineral density (BMD) from a single radiograph of the hand and forearm is described. Five regions of interest in radius, ulna and the three middle metacarpal bones are identified and approximately 1800 geometrical measurements from these bones......-ray absoptiometry (r = 0.86, p Relative to this age-related loss, the reported short...... sites and a precision that potentially allows for relatively short observation intervals. Udgivelsesdato: 2001-null...

  8. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease

    NARCIS (Netherlands)

    A.M. Boot (Annemieke); J. Bouquet (Jan); E.P. Krenning (Eric); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    1998-01-01

    textabstractBACKGROUND: Osteoporosis has been reported in adult patients with inflammatory bowel disease. AIMS: To evaluate bone mineral density (BMD), nutritional status, and determinants of BMD in children with inflammatory bowel disease. PATIENTS: Fifty five patients

  9. Effects of odanacatib on bone matrix mineralization in rhesus monkeys are similar to those of alendronate

    Directory of Open Access Journals (Sweden)

    Barbara M. Misof

    2016-12-01

    Full Text Available Odanacatib (ODN is a selective and reversible inhibitor of cathepsin K which is an important enzyme for the degradation of collagen I. Aim of the present work was the head-to-head comparison between the effects of ODN and alendronate (ALN on bone mineralization density distribution (BMDD, based on quantitative backscattered electron imaging in relation to changes in histomorphometric mineralizing surface per bone surface (MS/BS in 12–22 years old ovariectomized rhesus monkeys. Trabecular and cortical BMDD derived parameters from vertebrae and proximal tibiae were compared among vehicle (VEH, n = 8, odanacatib low dose (ODN-L, n = 8, odanacatib high dose (ODN-H, n = 8, and alendronate (ALN, n = 6 treated animals. Additionally, data from an intact, non-treated group of animals are shown (INT, n = 8. In trabecular bone from the vertebra and metaphyseal tibia, the BMDD of the ODN and ALN treatment groups was shifted toward higher mineralization densities (p < 0.001 consistent with the significant reduction of MS/BS (p < 0.05 in ODN-H and ALN compared to VEH. Vertebral trabecular CaMean (average degree of mineralization was significantly higher in ODN-L (+6.5%, ODN-H (+6.1%, and ALN (+6.7%, all p < 0.001. Tibial osteonal cortical bone revealed also significantly increased CaMean for ODN-L (+1.4%, p < 0.05, ODN-H (+2.2%, p < 0.05, and ALN (+3.4%, p < 0.001 versus VEH, while primary cortical bone (devoid of secondary osteons did not show any significant differences between the study groups. The percentage of primary bone area in the tibial cross-sections (on average 45 ± 12% was also not significantly different between the study groups (p = 0.232. No significant differences in any BMDD parameters of all studied skeletal sites between ODN and ALN treatment were found. Correlation analysis revealed that MS/BS was highly predictive for trabecular BMDD in vertebral bone. The higher MS/BS, the lower was CaMean. Our findings are

  10. The effects of L-thyroxin replacement therapy on bone minerals and body composition in hypothyroid children

    OpenAIRE

    Salama, Hassan M.; El-Dayem, Soha A.; Yousef, Hala; Fawzy, Ashraf; Abou-Ismail, Laila; El-lebedy, Dalia

    2010-01-01

    Introduction Prolonged treatment with levothyroxine 4 (L-T4) is a well known risk factor for osteoporosis. Patients on L-T4 replacement occasionally have a subnormal TSH, which carries a risk of development of bone loss. Thyroid hormones directly affect bone cells, stimulating osteoclastic and osteoblastic activity with a predominance of bone resorption and decrease of bone mineral density (BMD). Material and methods The study included 35 hypothyroid patients with mean age 11.57 ±5.06, while ...

  11. Alcoholic liver disease and changes in bone mineral density

    Directory of Open Access Journals (Sweden)

    Germán López-Larramona

    2013-12-01

    Full Text Available Osteoporosis and osteopenia are alterations in bone mineral density (BMD that frequently occur in the context of chronic liver disease (CLD. These alterations have been studied predominantly in chronic cholestatic disease and cirrhosis of the liver. Alcohol consumption is an independent risk factor for the onset of osteoporosis, whose estimated prevalence in patients with alcoholic liver disease (ALD ranges between 5 % and 40 %. The loss of BMD in ALD is the result of an imbalance between bone formation and resorption. Its pathogenesis is multifactorial and includes the toxic effects of alcohol on bone and endocrine and nutritional disorders secondary to alcoholism and a deficiency of osteocalcin, vitamin D and insulin growth factor-1. The diagnosis of BMD alterations in ALD is based on its measurement using bone densitometry. Treatment includes smoking and alcohol cessation and general measures such as changes in nutrition and exercise. Calcium and vitamin D supplements are recommended in all patients with ALD and osteoporosis. Bisphosphonates are the most commonly prescribed drugs for the specific treatment of this condition. Alternatives include raloxifene, hormone replacement therapy and calcitonin. This review will address the most important aspects involved in the clinical management of abnormal BMD in the context of ALD, including its prevalence, pathogenesis and diagnosis. We will also review the treatment of osteoporosis in CLD in general, focusing on specific aspects related to bone loss in ALD.

  12. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S

    1994-01-01

    Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...... the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4...... months in a double-blind, placebo-controlled GH trial, while 13 of the patients then received further GH for an additional 14 months. Serum insulin-like growth factor I (IGF-I) increased significantly from 100 to 279 micrograms/l and IGF binding protein-3 (IGFBP-3) from 1930 to 3355 micrograms/l after 4...

  13. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  14. Bone mineral density and nutritional indices in adolescent females with recently diagnosed anorexia

    International Nuclear Information System (INIS)

    Wong, J.C.H.; Lewindon, P.J.; Mortimer, R.; Sheperd, R.W.; Royal Children's Hospital, Brisbane, QLD

    1999-01-01

    Full text: Osteopenia/osteoporosis and fractures have been shown to occur with anorexia nervosa (AN). This study evaluated adolescent females diagnosed with AN less than 12 months previously to determine the presence of any significant bone mass reduction at this early stage of diagnosis and to evaluate the correlation between total body (TB) and lumbar spine (LS) bone mineral densities (BMD) and bone mineral content (BMC), and nutritional indices (body weight, body mass index (BMI), lean mass, fat mass and percentage fat). The subjects were 22 adolescent females aged 12-17 years (mean= 14.3 years) diagnosed with AN less than 12 months earlier (range 2.5-11 months; mean = 6.7 months). They had bone density measurements of the TB and LS using a Lunar DPX-L densitometer. Comparison was made with values of age-matched controls in the Lunar normative database. Although there was a tendency towards low TB and LS bone mass, these changes were not statistically significant. Bivariate analyses showed significant correlation between TB BMD and lean mass (P < 0.001) and weight (P < 0.001) and between TB BMC and lean mass (P < 0.001) and weight (P < 0.01). There was similar significant correlation between LS BMD and lean mass (P < 0.01) and weight (P<0.01), and between LS BMC and lean mass (P < 0.01) and weight (P < 0.01). With stepwise regression analysis, only lean mass remained significantly correlated with TB BMD and BMC and LS BMD and BMC. There was no longer any significant correlation with weight. In this study, the weight percentile was found to be correlated highly with the LS BMD Z-score (P < 0.01). Therefore, during adolescence, the lean mass in particular, but also body weight, are good indicators of bone densities. Adolescent females do not appear to show bone mass reduction in the early stages of diagnosis of anorexia nervosa. This suggests early intervention may preserve bone gain and attainment of normal peak bone mass

  15. Detecting reduced bone mineral density from dental radiographs using statistical shape models

    NARCIS (Netherlands)

    Allen, P.D.; Graham, J.; Farnell, D.J.J.; Harrison, E.J.; Jacobs, R.; Nicopoulou-Karyianni, K.; Lindh, C.; van der Stelt, P.F.; Horner, K.; Devlin, H.

    2007-01-01

    We describe a novel method of estimating reduced bone mineral density (BMD) from dental panoramic tomograms (DPTs), which show the entire mandible. Careful expert width measurement of the inferior mandibular cortex has been shown to be predictive of BMD in hip and spine osteopenia and osteoporosis.

  16. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  17. THE FEEDING AND PHYSICAL GROWTH OF THE SCHOOL CHILDREN WITH THE HIGHER LEVEL OF THE BONE TISSUE MINERALIZATION

    Directory of Open Access Journals (Sweden)

    T.Yu. Vishnevetskaya

    2007-01-01

    Full Text Available The article analyzes feeding organization and quality for the children aged between 10 and 16 with the higher level of the bone tissue mineralization. The authors noted down the radical excess of the ration calorie content together with the excess of the protein and especially fat components. The researchers revealed the reduced content of the main vitamins, which contributes to the increase of the bone tissue mineralization levels among children and change in their morphofunctional status with the obesity development. in the given situation, it is necessary to speak of the ration correction according to the main components and distribution of its daily calorie content, as well as the ration supplements by introducing missing vitamins, which the polyvitaminic complexes may prove to be a good alternative to.Key words: children, bone tissue mineralization, food ration, vitamins.

  18. Assessment of risk factors bone mineral density decrease in adolescents with dentoalveolar anomalies

    Directory of Open Access Journals (Sweden)

    Yu. A. Kalinichenko

    2016-01-01

    Full Text Available The aim of the study was to investigate the prevalence of osteopenia and its relationship with combined orthodontic and somatic disorders in adolescents to build a working model of the formation of osteopenia, identifying the most significant risk factors.Materials and methods. 525 grade 5–10 schoolchildren from Lugansk’ secondary schools and orphans school aged 12–17 years were examined. We assessed the state of dental hard tissues and periodontal tissues, the state of oral health, the prevalence of different types of dentoalveolar anomalies (DAA and chronic diseases of the gastrointestinal tract (CDGIT. Bone mineral density was assessed by ultrasound osteodensitometry (SONOST-2000. The level of mineralization of the skeleton was assessed by speed of sound (SOS, m/s, it depends on the degree of elasticity and density of the bone tissue. We analyzed the performance – Broadband Ultrasound Attenuation (BUA – broadband absorption, dB/MHz, it’s characterized by loss of the intensity of the ultrasound in the absorption medium, as well as the number, size and spatial orientation of the trabecular bone. The statistical processing of the obtained results was carried out with application program package Statistic 6.0.Results. During study the combined pathology as the dentoalveolar anomalies and chronic diseases of the gastrointestinal tract were identified in 68,4% of adolescents. Light form of osteopenia met in every third patient with combined pathology. Certain combinations of factors that have a negative effect to bone mineral density were discovered, and we have created the model of osteopenia in adolescents. Underweight is one of the leading factors in the osteopenia development, the highest incidence of osteopenia were in children who had weight deficit (69,5%, and children with a harmonic age loss of the weight and growth parameters (70,7%.Conclusion. Adolescents with DAA and chronic diseases of the gastrointestinal

  19. Comparison of Bone Mineral Density in Thalassemia Major Patients with Healthy Controls

    Directory of Open Access Journals (Sweden)

    Mahesh Chand Meena

    2015-01-01

    Full Text Available Chronic hemoglobinopathies like thalassemia are associated with many osteopathies like osteoporosis. Methods. This observational study was carried out to compare the bone mineral density (BMD in transfusion dependent thalassemics with that of healthy controls. Thirty-two thalassemia patients, aged 2–18 years, and 32 age and sex matched controls were studied. The bone mineral concentration (BMC and BMD were assessed at lumbar spine, distal radius, and neck of femur. Biochemical parameters like serum calcium and vitamin D levels were also assessed. Results. The BMC of neck of femur was significantly low in cases in comparison to controls. We also observed significantly lower BMD at the lumbar spine in cases in comparison to controls. A significantly positive correlation was observed between serum calcium levels and BMD at neck of femur. Conclusion. Hence, low serum calcium may be used as a predictor of low BMD especially in populations where incidence of hypovitaminosis D is very high.

  20. Changes in Bone Mineral Density, Body Composition, Vitamin D Status, and Mineral Metabolism in Urban HIV-Positive South African Women Over 12 Months.

    Science.gov (United States)

    Hamill, Matthew M; Pettifor, John M; Ward, Kate A; Norris, Shane A; Prentice, Ann

    2017-08-01

    Human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are associated with bone loss and poor vitamin D status in white populations, though their relative roles are not known. No previous studies have examined longitudinal changes in areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), or in vitamin D status in HIV-positive African women. Of 247 premenopausal, urban, black African women from Soweto, South Africa, initially recruited, 187 underwent anthropometry, DXA scanning and blood and urine collections at both baseline and 12 months. Of these, 67 were HIV-negative throughout (Nref), 60 were HIV-positive with preserved CD4 counts at baseline (Ppres), and 60 were HIV-positive with low CD4 counts at baseline, eligible for ART by South African standards of care at the time (Plow). No participant had been exposed to ART at baseline. By 12 months, 51 Plow women had initiated ART, >85% of whom took combined tenofovir disoproxil fumarate (TDF), lamivudine, and efavirenz. By 12 months, Plow and Nref, but not Ppres, increased in body weight and fat mass (group-by-timepoint p ≤ 0.001, p = 0.002, respectively). Plow had significant decreases in aBMD of 2% to 3%, before and after size adjustment, at the femoral neck (p ≤ 0.002) and lumbar spine (p ≤ 0.001), despite significant weight gain. These decreases were associated with increased bone turnover but there were no significant differences or changes over time in vitamin D status, serum phosphate concentrations, or renal phosphate handling. Excluding data from nine Plow women unexposed to ART and 11 Ppres women who had initiated ART accentuated these findings, suggesting the bone loss in Plow was related to ART exposure. This is the first study describing DXA-defined bone loss in HIV-positive Sub-Saharan African women in association with ART. Further work is required to establish if bone loss continues with ongoing ART and, if so, whether this