WorldWideScience

Sample records for bone mechanical properties

  1. Heritability of lumbar trabecular bone mechanical properties in baboons.

    Science.gov (United States)

    Havill, L M; Allen, M R; Bredbenner, T L; Burr, D B; Nicolella, D P; Turner, C H; Warren, D M; Mahaney, M C

    2010-03-01

    Genetic effects on mechanical properties have been demonstrated in rodents, but not confirmed in primates. Our aim was to quantify the proportion of variation in vertebral trabecular bone mechanical properties that is due to the effects of genes. L3 vertebrae were collected from 110 females and 46 male baboons (6-32 years old) from a single extended pedigree. Cranio-caudally oriented trabecular bone cores were scanned with microCT then tested in monotonic compression to determine apparent ultimate stress, modulus, and toughness. Age and sex effects and heritability (h(2)) were assessed using maximum likelihood-based variance components methods. Additive effects of genes on residual trait variance were significant for ultimate stress (h(2)=0.58), toughness (h(2)=0.64), and BV/TV (h(2)=0.55). When BV/TV was accounted for, the residual variance in ultimate stress accounted for by the additive effects of genes was no longer significant. Toughness, however, showed evidence of a non-BV/TV-related genetic effect. Overall, maximum stress and modulus show strong genetic effects that are nearly entirely due to bone volume. Toughness shows strong genetic effects related to bone volume and shows additional genetic effects (accounting for 10% of the total trait variance) that are independent of bone volume. These results support continued use of bone volume as a focal trait to identify genes related to skeletal fragility, but also show that other focal traits related to toughness and variation in the organic component of bone matrix will enhance our ability to find additional genes that are particularly relevant to fatigue-related fractures.

  2. Mechanical properties of femoral trabecular bone in dogs

    Directory of Open Access Journals (Sweden)

    Nolte Ingo

    2005-03-01

    Full Text Available Abstract Background Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. Methods From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated. Results The elastic modulus along principal bone trajectories was found to be 11.2 GPa ± 0.4, 10.5 ± 2.1 GPa and 10.5 ± 1.8 GPa, respectively. The mean density of the specimens was 1.40 ± 0.09 g/cm3. The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads. Discussion This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data. Conclusion This study provides data about directional elastic

  3. Structural and mechanical properties of mandibular condylar bone.

    Science.gov (United States)

    van Eijden, T M G J; van der Helm, P N; van Ruijven, L J; Mulder, L

    2006-01-01

    The trabecular bone of the mandibular condyle is structurally anisotropic and heterogeneous. We hypothesized that its apparent elastic moduli are also anisotropic and heterogeneous, and depend on trabecular density and orientation. Eleven condyles were scanned with a micro-CT system. Volumes of interest were selected for the construction of finite element models. We simulated compressive and shear tests to determine the principal mechanical directions and the apparent elastic moduli. Compressive moduli were relatively large in directions acting in the sagittal plane, and small in the mediolateral direction. The degree of mechanical anisotropy ranged from 4.7 to 10.8. Shear moduli were largest in the sagittal plane and smallest in the transverse plane. The magnitudes of the moduli varied with the condylar region and were proportional to the bone volume fraction. Furthermore, principal mechanical direction correlated significantly with principal structural direction. It was concluded that variation in trabecular structure coincides with variation in apparent mechanical properties.

  4. The role of collagen in determining bone mechanical properties

    NARCIS (Netherlands)

    Wang, X.; Bank, R.A.; teKoppele, J.M.; Mauli Agrawal, C.

    2001-01-01

    The hypothesis of this study was that collagen denaturation would lead to a significant decrease in the toughness of bone, but has little effect on the stiffness of bone. Using a heating model, effects of collagen denaturation on the biomechanical properties of human cadaveric bone were examined. Pr

  5. Mechanical Properties of 3d Scaffolds for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Deividas Mizeras

    2017-01-01

    Full Text Available One of the biggest challenges in modern tissue engineering is a creation 3D scaffolds for bone tissue regeneration. Until now, in order to restore bone defects are used various bone substitutes (autologous and allogeneic, however, their usage is limited because is required additional surgery, possible complications, also limited their use is associated with ethical point of view. In this work we aim to determine the mechanical properties of 3D printed PLA objects having various orientation woodpile microarchitectures. In this work we chose three different 3D microarchitectures: woodpile BCC (each layer consists of parallel logs which are rotated 90 deg every next layer, woodpile FCC (every layer is additionally shifted half of the period in respect to the previous parallel log layer and a rotating woodpile 60 deg (each layer is rotated 60 deg in respect to the previous one. Compressive and bending tests were carried out with TIRAtest2300 universal testing machine. We found that 60 deg rotating woodpile geometry had the highest mechanical values which were approximately about 3 times higher than the BCC or FCC microstructures.

  6. Mechanical Properties of a Single Cancellous Bone Trabeculae Taken from Bovine Femur

    Science.gov (United States)

    Enoki, Shinichi; Sato, Mitsuhiro; Tanaka, Kazuto; Katayama, Tsutao

    The increase of patients with osteoporosis is becoming a social problem, thus it is an urgent issue to find its prevention and treatment methods. Since cancellous bone is metabolically more active than cortical bone, cancellous bone is often used for diagnosis of osteoporosis and has received much attention within the study of bone. Bone is a hierarchically structured material and its mechanical properties vary at different structural levels, therefore it is important to break down the mechanical testing of bone according to the various levels within bone material. Mechanical properties of cancellous bone is said to be depended on quantities and orientation of trabecular bone. It is supposed that mechanical properties of trabecular bone are constant without depending on any structural arrangement and parts. However, such assumption has not been established in studies of trabecular bone. Furthermore test results have a large margin of error caused by insufficient shape assessment. In this study, three point bending tests of single cancellous bone trabeculae extracted from bovine femur were conducted to evaluate the effects of directions to the femur major axis direction on the mechanical properties. X-ray μCT was used to obtain shape of trabecular bone specimens. Furthermore compression tests of cancellous bone specimens, which were extracted in 10mm cubic geometry, were conducted for evaluation of directional properties.There were small difference in the elastic modulus of the trabecular bones which were extracted in parallel and in perpendicular to the major axis of femur. Considering from the results that the cancellous bone specimens, which were extracted in 10mm cubic geometry, have different elastic properties depending on the tested directions; the bone structure has larger influence than bone material property on the mechanical properties of cancellous bone.

  7. Variability of the mechanical properties of bone, and its evolutionary consequences

    OpenAIRE

    Currey, John D.; Pitchford, Jonathan W; Paul D Baxter

    2006-01-01

    The relative variabilities (coefficient of variation (CV)) of 10 different mechanical properties of compact bone were determined from 2166 measurements. All measures of variability were made on a minimum of four specimens from any bone. Three pre-yield properties had a CV of about 12%. Six post-yield properties had CVs varying from 24 to 46%. Pre-yield properties increase as a function of mineral content, whereas post-yield properties decrease. These differences give insight into mechanical p...

  8. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    Science.gov (United States)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  9. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by means...... normal donors aged 16-83 years were tested in compression. The deformation was measured simultaneously in bone and cartilage to obtain the mechanical properties of both tissues. RESULTS: The stiffnesses and elastic energies of both cartilage and bone showed an initial increase, with maxima at 40 years......, followed by a steady decline. The viscoelastic energy was maximal at younger ages (16-29 years), followed by a steady decline. The energy absorption capacity did not vary with age. Stiffnesses and elastic energies were correlated significantly between cartilage and bone. CONCLUSIONS: The present study...

  10. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    Science.gov (United States)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  11. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  12. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic

    DEFF Research Database (Denmark)

    Giesen, EB; Ding, Ming; Dalstra, M;

    2001-01-01

    ). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them...

  13. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    Science.gov (United States)

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  14. Influence of bone microstructure on the mechanical properties of skull cortical bone - A combined experimental and computational approach.

    Science.gov (United States)

    Boruah, Sourabh; Subit, Damien L; Paskoff, Glenn R; Shender, Barry S; Crandall, Jeff R; Salzar, Robert S

    2017-01-01

    The strength and compliance of the dense cortical layers of the human skull have been examined since the beginning of the 20th century with the wide range in the observed mechanical properties attributed to natural biological variance. Since this variance may be explained by the difference in structural arrangement of bone tissue, micro-computed tomography (µCT) was used in conjunction with mechanical testing to study the relationship between the microstructure of human skull cortical coupons and their mechanical response. Ninety-seven bone samples were machined from the cortical tables of the calvaria of ten fresh post mortem human surrogates and tested in dynamic tension until failure. A linear response between stress and strain was observed until close to failure, which occurred at 0.6% strain on average. The effective modulus of elasticity for the coupons was 12.01 ± 3.28GPa. Porosity of the test specimens, determined from µCT, could explain only 51% of the variation of their effective elastic modulus. Finite element (FE) models of the tested specimens built from µCT images indicated that modeling the microstructural arrangement of the bone, in addition to the porosity, led to a marginal improvement of the coefficient of determination to 54%. Modulus for skull cortical bone for an element size of 50µm was estimated to be 19GPa at an average. Unlike the load bearing bones of the body, almost half of the variance in the mechanical properties of cortical bone from the skull may be attributed to differences at the sub-osteon (< 50µm) level. ANOVA tests indicated that effective failure stress and strain varied significantly between the frontal and parietal bones, while the bone phase modulus was different for the superior and inferior aspects of the calvarium. The micro FE models did not indicate any anisotropy attributable to the pores observable under µCT.

  15. Hierarchical relationship between bone traits and mechanical properties in inbred mice.

    Science.gov (United States)

    Jepsen, Karl J; Akkus, Ozan J; Majeska, Robert J; Nadeau, Joseph H

    2003-02-01

    Osteoporotic fracture incidence and underlying risk factors like low peak bone mass are heritable, but the genetic basis of osteoporosis remains poorly understood. Based on beam theory, stating that mechanical properties of a structure depend on both the amount and quality of the constituent materials, we investigated the relationship between whole bone mechanical properties and a set of morphological and compositional traits in femurs of eight inbred mouse strains. K-means cluster analysis revealed that individual femora could be classified reliably according to genotype based on the combination of bone area (tissue amount), moment of inertia (tissue distribution), and ash content (tissue quality). This trait combination explained 66-88% of the inter-strain variability in four whole-bone mechanical properties that describe all aspects of the failure process, including measures of brittleness. Stiffness and maximum load were functionally associated with cortical area, while measures of brittleness were associated with ash content. In contrast, work-to-failure was not directly related to a single trait but depended on a combination of trait magnitudes. From these findings, which were entirely consistent with established mechanical theory, we developed a hierarchical paradigm relating the mechanical properties that define bone fragility with readily measurable phenotypic traits that exhibit strong heritability. This paradigm will help guide the search for genes that underlie fracture susceptibility and osteoporosis. Moreover, because the traits we examined are measurable with non-invasive means, this approach may also prove directly applicable to osteoporosis risk assessment.

  16. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Science.gov (United States)

    Hossain, M. Jayed; Rahman, M. Moshiur; Alam, Morshed

    2016-07-01

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  17. Mechanical Properties and Cytocompatibility Improvement of Vertebroplasty PMMA Bone Cements by Incorporating Mineralized Collagen

    Directory of Open Access Journals (Sweden)

    Hong-Jiang Jiang

    2015-05-01

    Full Text Available Polymethyl methacrylate (PMMA bone cement is a commonly used bone adhesive and filling material in percutaneous vertebroplasty and percutaneous kyphoplasty surgeries. However, PMMA bone cements have been reported to cause some severe complications, such as secondary fracture of adjacent vertebral bodies, and loosening or even dislodgement of the set PMMA bone cement, due to the over-high elastic modulus and poor osteointegration ability of the PMMA. In this study, mineralized collagen (MC with biomimetic microstructure and good osteogenic activity was added to commercially available PMMA bone cement products, in order to improve both the mechanical properties and the cytocompatibility. As the compressive strength of the modified bone cements remained well, the compressive elastic modulus could be significantly down-regulated by the MC, so as to reduce the pressure on the adjacent vertebral bodies. Meanwhile, the adhesion and proliferation of pre-osteoblasts on the modified bone cements were improved compared with cells on those unmodified, such result is beneficial for a good osteointegration formation between the bone cement and the host bone tissue in clinical applications. Moreover, the modification of the PMMA bone cements by adding MC did not significantly influence the injectability and processing times of the cement.

  18. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    the groups, while there was a trend towards decreasing bending mechanical properties in the glucocorticoid-2 group. In conclusion, 7 months of glucocorticoid treatment with malnutrition had a significant impact on the cortical microarchitecture of the sheep femur midshaft. These observed changes occurred 3...... months after glucocorticoid cessation, suggesting a delayed effect of glucocorticoid on cortical bone. Thus, changes in cortical bone beyond cancellous bone might further increase fracture risk in patients treated with glucocorticoids. This model might be used as a glucocorticoid-induced osteoporotic...

  19. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    mechanical properties in the glucocorticoid-2. In conclusion, 7 months glucocorticoid treatment with malnutrition had significant impact on cortical microarchitecture of sheep femur midshaft. These changes occurred particularly 3 months after the glucocorticoid cessation suggesting a delayed effect......The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory...

  20. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Milovac, Dajana, E-mail: dmilovac@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia); Gallego Ferrer, Gloria [Center for Biomaterials and Tissue Engineering, Polytechnic University of Valencia (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Ivankovic, Marica; Ivankovic, Hrvoje [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia)

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed.

  1. Changes in mechanical properties of bone within the mandibular condyle with age.

    Science.gov (United States)

    Huja, Sarandeep S; Rummel, Andrew M; Beck, Frank M

    2008-02-01

    The purpose of the study was to compare indentation modulus (IM) and hardness of condylar bone in young and adult dogs. In addition we desired to examine histologic sections for bone formation activity in the two groups. Mandibular condyles were obtained from adult (1- to 2-year-old) and young (approximately 5-m old) dogs. Two sections/condyle were obtained and one was processed for histomorphometry and the other for mechanical analyses. Indents were made on moist condylar trabecular bone to a depth of 500 nm at a loading rate of 10 nm/s using a custom-made hydration system to obtain IM and hardness. Histomorphometric analyses measured the bone volume/total volume (BV/TV%) and ratio of labeled to unlabeled bone within the condyle. Data were analyzed using a repeated-measures factorial analysis of variance and Tukey-Kramer method. Overall, the IM of the adult condyles (10.0+/-3.4 GPa, Mean+/-SD) were significantly (Pcondylar bone suggested higher bone forming activity than in adult condyles (27.5%). With age there is a change in mass and material properties in the trabecular bone of the mandibular condyle in dogs.

  2. Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†

    Science.gov (United States)

    Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal

    The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.

  3. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength.

  4. Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2015-06-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by a change in bone tissue quality, but little data are available to describe the factors involved at the macroscopic scale. To better understand the effect of microstructure alterations on the mechanical properties at the sample scale, we studied the structural and mechanical properties of six cortical bone samples from children with OI treated with bisphosphonates and compared them to the properties of three controls. Scanning electron microscopy, high resolution computed tomography and compression testing were used to assess these properties. More resorption cavities and a higher osteocyte lacunar density were observed in OI bone compared with controls. Moreover, a higher porosity was measured for OI bones along with lower macroscopic Young's modulus, yield stress and ultimate stress. The microstructure was impaired in OI bones; the higher porosity and osteocyte lacunar density negatively impacted the mechanical properties and made the bone more prone to fracture.

  5. Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, M.J.; Butler, D.L.; Grood, E.S.; Bylski-Austrow, D.I.; Levy, M.S.; Noyes, F.R. (Univ. of Cincinnati, OH (USA))

    1991-03-01

    The effects of {sup 60}Co gamma irradiation on the initial mechanical properties of the composite bone-patellar tendon-bone unit (CU) and the tendon midsubstance (TM) were studied. Frozen specimens were exposed to either 2 or 3 Mrad of gamma irradiation. Paired frozen specimens served as intraanimal controls. Treatment effects on the CU were assessed using four mechanical parameters. Effects on the TM were assessed using four material parameters measured using an optical surface-strain analysis system. The maximum force and strain energy to maximum force of the composite unit were significantly reduced 27% and 40%, respectively, after 3 Mrad of irradiation (p less than .05). Mechanical properties of the CU were not significantly altered, however, following 2 Mrad of irradiation. Based on individual paired contrasts between treatment and control, significant differences were also found in the material properties of the tendon midsubstance. The maximum stress, maximum strain, and strain energy density to maximum stress were significantly reduced following 3 Mrad, but not 2 Mrad, of irradiation. The results provide important time zero material property data, which will be useful for later anterior cruciate ligament reconstruction studies using irradiated allograft patellar tendons in the goat model and other animal models as well.

  6. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties.

    Science.gov (United States)

    Zhang, Jingtao; Liu, Weizhen; Schnitzler, Verena; Tancret, Franck; Bouler, Jean-Michel

    2014-03-01

    Since their initial formulation in the 1980s, calcium phosphate cements (CPCs) have been increasingly used as bone substitutes. This article provides an overview on the chemistry, kinetics of setting and handling properties (setting time, cohesion and injectability) of CPCs for bone substitution, with a focus on their mechanical properties. Many processing parameters, such as particle size, composition of cement reactants and additives, can be adjusted to control the setting process of CPCs, concomitantly influencing their handling and mechanical performance. Moreover, this review shows that, although the mechanical strength of CPCs is generally low, it is not a critical issue for their application for bone repair--an observation not often realized by researchers and clinicians. CPCs with compressive strengths comparable to those of cortical bones can be produced through densification and/or homogenization of the cement matrix. The real limitation for CPCs appears to be their low fracture toughness and poor mechanical reliability (Weibull modulus), which have so far been only rarely studied.

  7. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    Directory of Open Access Journals (Sweden)

    Jesus Corona-Gomez

    2016-07-01

    Full Text Available Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering.

  8. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone.

    Science.gov (United States)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2012-06-01

    In this study, 18 female skeletally mature sheep were randomly allocated into three groups of six each. Group 1 (glucocorticoid-1) received prednisolone treatment (0.60 mg/kg/day, five times weekly) for 7 months. Group 2 (glucocorticoid-2) received the same treatment regime followed by observation of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group. Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between the groups, while there was a trend towards decreasing bending mechanical properties in the glucocorticoid-2 group. In conclusion, 7 months of glucocorticoid treatment with malnutrition had a significant impact on the cortical microarchitecture of the sheep femur midshaft. These observed changes occurred 3 months after glucocorticoid cessation, suggesting a delayed effect of glucocorticoid on cortical bone. Thus, changes in cortical bone beyond cancellous bone might further increase fracture risk in patients treated with glucocorticoids. This model might be used as a glucocorticoid-induced osteoporotic model for orthopaedic biomaterial, joint prosthesis and medical device researches.

  9. Bone Mineral Densities and Mechanical Properties of Retrieved Femoral Bone Samples in relation to Bone Mineral Densities Measured in the Respective Patients

    Directory of Open Access Journals (Sweden)

    Yvonne Haba

    2012-01-01

    Full Text Available The bone mineral density (BMD of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (Es and ultimate compression strength (σmax of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016±166 mg/cm2 to 1376±404 mg/cm2. BMDs of the bone samples measured by DXA and ashing yielded values of 315±199 mg/cm2 and 347±113 mg/cm3, respectively. Es and σmax amounted to 232±151 N/mm2 and 6.4±3.7 N/mm2. Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r=0.85 and 0.79, resp.. Es correlated significantly with BMD in the patients and bone samples as well as the ashing data (r=0.79, r=0.82, and r=0.8, resp..

  10. bone mineral densities and mechanical properties of retrieved femoral bone samples in relation to bone mineral densities measured in the respective patients.

    Science.gov (United States)

    Haba, Yvonne; Skripitz, Ralf; Lindner, Tobias; Köckerling, Martin; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The bone mineral density (BMD) of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (E(s)) and ultimate compression strength (σ(max)) of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA) as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016 ± 166 mg/cm(2) to 1376 ± 404 mg/cm(2). BMDs of the bone samples measured by DXA and ashing yielded values of 315 ± 199 mg/cm(2) and 347 ± 113 mg/cm(3), respectively. E(s) and σ(max) amounted to 232 ± 151 N/mm(2) and 6.4 ± 3.7 N/mm(2). Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r = 0.85 and 0.79, resp.). E(s) correlated significantly with BMD in the patients and bone samples as well as the ashing data (r = 0.79, r = 0.82, and r = 0.8, resp.).

  11. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.

    Science.gov (United States)

    Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong

    2014-09-01

    Porous magnesium has been recently recognized as a biodegradable metal for bone substitute applications. A novel porous Mg scaffold with three-dimensional (3D) interconnected pores and with a porosity of 33-54% was produced by the fiber deposition hot pressing (FDHP) technology. The microstructure and morphologies of the porous Mg scaffold were characterized by scanning electron microscopy (SEM), and the effects of porosities on the microstructure and mechanical properties of the porous Mg were investigated. Experimental results indicate that the measured Young's modulus and compressive strength of the Mg scaffold are ranged in 0.10-0.37 GPa, and 11.1-30.3 MPa, respectively, which are fairly comparable to those of cancellous bone. Such a porous Mg scaffold having a 3D interconnected network structure has the potential to be used in bone tissue engineering.

  12. Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds

    Science.gov (United States)

    Salmasi, Shima; Nayyer, Leila; Seifalian, Alexander M.; Blunn, Gordon W.

    2016-01-01

    BACKGROUND Statistical reports show that every year around the world approximately 15 million bone fractures occur; of which up to 10% fail to heal completely and hence lead to complications of non-union healing. In the past, autografts or allografts were used as the “gold standard” of treating such defects. However, due to various limitations and risks associated with these sources of bone grafts, other avenues have been extensively investigated through which bone tissue engineering; in particular engineering of synthetic bone graft substitutes, has been recognised as a promising alternative to the traditional methods. METHODS A selective literature search was performed. RESULTS Bone tissue engineering offers unlimited supply, eliminated risk of disease transmission and relatively low cost. It could also lead to patient specific design and manufacture of implants, prosthesis and bone related devices. A potentially promising building block for a suitable scaffold is synthetic nanohydroxyapatite incorporated into synthetic polymers. Incorporation of nanohydroxyapatite into synthetic polymers has shown promising bioactivity, osteoconductivity, mechanical properties and degradation profile compared to other techniques previously considered. CONCLUSION Scientific research, through extensive physiochemical characterisation, in vitro and in vivo assessment has brought together the optimum characteristics of nanohydroxyapatite and various types of synthetic polymers in order to develop nanocomposites of suitable nature for bone tissue engineering. The aim of the present article is to review and update various aspects involved in incorporation of synthetic nanohydroxyapatite into synthetic polymers, in terms of their potentials to promote bone growth and regeneration in vitro, in vivo and consequently in clinical applications. PMID:28217213

  13. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue [Institute of Materials Physics and Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Key Laboratory for Anisotropy and Texture Engineering of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Li, Xiao-Wu, E-mail: xwli@mail.neu.edu.cn [Institute of Materials Physics and Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Key Laboratory for Anisotropy and Texture Engineering of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Li, Ji-Guang; Sun, Xu-Dong [Key Laboratory for Anisotropy and Texture Engineering of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2014-09-01

    Porous magnesium has been recently recognized as a biodegradable metal for bone substitute applications. A novel porous Mg scaffold with three-dimensional (3D) interconnected pores and with a porosity of 33–54% was produced by the fiber deposition hot pressing (FDHP) technology. The microstructure and morphologies of the porous Mg scaffold were characterized by scanning electron microscopy (SEM), and the effects of porosities on the microstructure and mechanical properties of the porous Mg were investigated. Experimental results indicate that the measured Young's modulus and compressive strength of the Mg scaffold are ranged in 0.10–0.37 GPa, and 11.1–30.3 MPa, respectively, which are fairly comparable to those of cancellous bone. Such a porous Mg scaffold having a 3D interconnected network structure has the potential to be used in bone tissue engineering. - Highlights: • A novel porous Mg was produced by a fiber deposition hot pressing technology. • The porous Mg has a 3D interconnected network structure with a porosity of 33-54%. • Mechanical properties of the porous Mg are comparable to those of cancellous bone.

  14. Influence of Cow Bone Particle Size Distribution on the Mechanical Properties of Cow Bone-Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole Oladele

    2013-01-01

    Full Text Available This work was carried out to investigate the influence of cow bone particle size distribution on the mechanical properties of polyester matrix composites in order to consider the suitability of the materials as biomaterials. Cow bone was procured from an abattoir, washed with water, and sun-dried for 4 weeks after which it was crushed with a sledge hammer and was further pulverized with laboratory ball mill. Sieve size analysis was carried out on the pulverized bone where it was sieved into three different sizes of 75, 106, and 300 m sieve sizes. Composite materials were developed by casting them into tensile and flexural tests moulds using predetermined proportions of 2, 4, 6, and 8%. The samples after curing were striped from the moulds and were allowed to be further cured at room temperature for 3 weeks before tensile and flexural tests were performed on them. Both tensile and flexural strength were highly enhanced by 8 wt% from 75 m while toughness was highly enhanced by 6 and 8 wt% from 300 m. This shows that fine particles lead to improved strength while coarse particles lead to improved toughness. The results show that these materials are structurally compatible and are being developed from animal fibre based particle; it is expected to also aid the compatibility with the surface conditions as biomaterials.

  15. Structural mechanical properties of radiation-sterilized human Bone-Tendon-Bone grafts preserved by different methods.

    Science.gov (United States)

    Gut, Grzegorz; Marowska, Joanna; Jastrzebska, Anna; Olender, Ewa; Kamiński, Artur

    2016-06-01

    To avoid the risk of infectious disease transmission from donor to recipient, allografts should be terminally sterilized. In the previous paper (Kaminski et al. in Cell Tissue Bank 10:215-219, 2009) we presented the effect of various methods of preservation (deep fresh freezing, glycerolization, lyophilization), followed by irradiation with different doses of electron beam (EB), on material (intrinsic) mechanical properties of human patellar tendons cut out as for anterior cruciate ligament reconstruction, obtained in failure tensile test. As structural mechanical properties are equally important to predict the behaviour of the graft as a whole functional unit, the purpose of the present paper was to show the results for failure load and elongation, obtained in the same experiment. Paired Bone-Tendon-Bone grafts (BTB) were prepared from cadaveric human patella tendons with both patellar and tibial attachments. They were preserved by deep freezing, glycerolization or lyophilization and subsequently EB-irradiated with the doses of 25, 35, 50 or 100 kGy (fresh-frozen grafts) or a single dose of 35 kGy (glycerolized and lyophilized grafts). Each experimental (irradiated) group was provided with control (non-irradiated), donor-matched group. The specimens from all groups were subjected to mechanical failure tensile test with the use of Instron system in order to measure their structural properties (failure load and elongation). All lyophilized grafts were rehydrated before mechanical testing. In our study we did not observe significant deterioration of structural mechanical properties of BTB grafts processed by fresh-freezing and then terminal sterilized with growing doses of EB up to 100 kGy. In contrast, BTB grafts processed by glycerolization or lyophilization and irradiated with 35 kGy showed significant decrease of failure load. Obtained results suggest that deep-frozen irradiated grafts retain their initial mechanical properties to an extent which does not

  16. A novel bone cement impregnated with silver–tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties

    Directory of Open Access Journals (Sweden)

    Prokopovich P

    2013-06-01

    Full Text Available Polina Prokopovich,1,2 Ralph Leech,3 Claire J Carmalt,3 Ivan P Parkin,3 Stefano Perni41School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; 2Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University, Cardiff, UK; 3Materials Chemistry Research Centre, Department of Chemistry, University College London, London, UK; 4School of Chemical Engineering, University of Birmingham, Birmingham, UKAbstract: Post-operatory infections in orthopedic surgeries pose a significant risk. The common approach of using antibiotics, both parenterally or embedded in bone cement (when this is employed during surgery faces the challenge of the rising population of pathogens exhibiting resistance properties against one or more of these compounds; therefore, novel approaches need to be developed. Silver nanoparticles appear to be an exciting prospect because of their antimicrobial activity and safety at the levels used in medical applications. In this paper, a novel type of silver nanoparticles capped with tiopronin is presented. Two ratios of reagents during synthesis were tested and the effect on the nanoparticles investigated through TEM, TGA, and UV-Vis spectroscopy. Once encapsulated in bone cement, only the nanoparticles with the highest amount of inorganic fraction conferred antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA at concentrations as low as 0.1% w/w. No other characteristics of the bone cement, such as cytotoxicity or mechanical properties, were affected by the presence of the nanoparticles. Our work presents a new type of silver nanoparticles and demonstrates that they can be embedded in bone cement to prevent infections once the synthetic conditions are tailored for such applications.Keywords: bone cement, antimicrobial, silver nanoparticles, tiopronin, MRSA

  17. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  18. Effects of long-term administration of omeprazole on bone mineral density and the mechanical properties of the bone

    Directory of Open Access Journals (Sweden)

    Gabriela Rezende Yanagihara

    2015-04-01

    Full Text Available OBJECTIVES: Epidemiological studies have shown a relationship between long-term use of proton pump inhibitors and bone metabolism. However, this relationship has not yet become established. The aim of the present study was to analyze the mechanical properties and bone mineral density (BMD of rats that were subjected to long-term omeprazole use.METHODS: Fifty Wistar rats weighing between 200 and 240 g were divided equally into five groups: OMP300 (omeprazole intake at a dose of 300 µmoL/kg/day; OMP200 (200 µmoL/kg/day; OMP40 (40 µmoL/kg/day; OMP10 (10 µmoL/kg/day; and Cont (control group; intake of dilution vehicle. The solutions were administered for 90 consecutive days. After the rats had been sacrificed, their BMD, the mechanical properties of the dissected femurs and their serum Ca++ levels were analyzed.RESULTS: The BMD of the OMP300 group was lower than that of the controls (p = 0.006. There was no difference on comparing the OMP200, OMP40 and OMP10 groups with the controls. The maximum strength and rigidity of the femur did not differ in the experimental groups in comparison with the controls. The OMP300 group had a statistically lower serum Ca++ concentration than that of the controls (p = 0.049, but the other groups did not show any difference in relation to the controls.CONCLUSION: Daily intake of 300 µmoL/kg/day of omeprazole decreased the BMD of the femur, but without changes to the rigidity and strength of the femur in adult rats.

  19. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  20. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    Science.gov (United States)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  1. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    De-Gang Yu

    2015-01-01

    Full Text Available Background: The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA. However, the characteristics of subchondral bone alterations remain unresolved. The present study aimed to observe the dynamic alterations in the microarchitecture, mineralization, and mechanical properties of subchondral bone during the progression of OA. Methods: A medial meniscal tear (MMT operation was performed in 128 adult Sprague Dawley rats to induce OA. At 2, 4, 8, and 12 weeks following the MMT operation, cartilage degeneration was evaluated using toluidine blue O staining, whereas changes in the microarchitecture indices and tissue mineral density (TMD, mineral-to-collagen ratio, and intrinsic mechanical properties of subchondral bone plates (BPs and trabecular bones (Tbs were measured using micro-computed tomography scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction. Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV, trabecular number, connectivity density and trabecular thickness [Tb.Th], and increased trabecular spacing (Tb.Sp at 2 and 4 weeks to bone accretion late (increased BV/TV, Tb.Th and thickness of subchondral bone plate, and reduced Tb.Sp at 8 and 12 weeks. The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks. The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction. Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction. The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks. Conclusion: The microarchitecture, mineralization and mechanical

  2. Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Erika Kristensen

    2012-01-01

    Full Text Available Growth hormone (GH deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD mouse model undergoing GH treatment commencing at an early (prepubertal or late (postpubertal time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostructure and vertebral trabecular microarchitecture, and mechanical properties were determined using finite element analyses. In the GHD animals, bone macrostructure was 25 to 43% smaller as compared to the GH-sufficient (GHS controls (P<0.001. GHD animals had 20% and 19% reductions in bone volume ratio (BV/TV and trabecular thickness (Tb.Th, respectively. Whole bone mechanical properties of the GHD mice were lower at the femur and vertebra (67% and 45% resp. than the GHS controls (P<0.001. Both early and late GH treatment partially recovered the bone macrostructure (15 to 32 % smaller than GHS controls and the whole bone mechanical properties (24 to 43% larger than GHD animals although there remained a sustained 27–52% net deficit compared to normal mice (P<0.05. Importantly, early treatment with GH led to a recovery of BV/TV and Tb.Th with a concomitant improvement of trabecular mechanical properties. Therefore, the results suggest that GH treatment should start early, and that measurements of microarchitecture should be considered in the management of GHD.

  3. Nanoscale deformation mechanisms in bone.

    Science.gov (United States)

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  4. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Ayaka Iura

    Full Text Available Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs, in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties.

  5. Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone

    Directory of Open Access Journals (Sweden)

    Aysha B. Khalid

    2015-12-01

    Full Text Available Cnr2 is one of two cannabinoid receptors known to regulate bone metabolism. Here, we compared the whole bone properties of femora and tibiae from three-month-old Cnr2−/- mice with wild-type controls using a C57BL/6 background. Bending stiffness was measured by three-point bending. The elastic modulus, density and mineral content were measured using ultrasound, Archimedes’ principle and ashing. Micro-CT was used to measure the second moment of area, inner and outer perimeters of the cortical shaft and trabecular parameters. Deleting Cnr2 increased the bending stiffness by increasing the second moment of area. Bone from affected male mice had a greater modulus than controls, although no difference was observed in females. The fractional volume of trabecular bone was greater in Cnr2−/- females than controls, while no difference was seen in males. These data indicate that inactivating Cnr2 increases the amount of cortical bone in both males and females at 3 months of age, but the effect on trabecular bone is different in the two sexes. These findings extend previous studies looking only at trabecular bone and provide further support for the possible use of Cnr2 antagonists for improving bone properties that may be of value in the treatment of bone disorders.

  6. Changed morphology and mechanical properties of cancellous bone in the mandibular condyles of edentate people.

    NARCIS (Netherlands)

    Giesen, E.B.W.; Ding, M.; Dalstra, M.; Eijden, T.M. van

    2004-01-01

    Since edentate subjects have a reduced masticatory function, it can be expected that the morphology of the cancellous bone of their mandibular condyles has changed according to the altered mechanical environment. In the present study, the morphology of cylindrical cancellous bone specimens of the ma

  7. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone

    OpenAIRE

    Mick E.; Steinke H.; Wolfskämpf T.; Wieding J.; Hammer N.; Schulze M.; Souffrant R.; Bader R.

    2015-01-01

    Bone specimens obtained for biomechanical experiments are fresh-frozen for storage to slow down tissue degradation and autolysis in long-term storage. Alternatively, due to infectious risks related to the fresh tissues, fixative agents are commonly used. However, fixatives will likely change the mechanical properties of bone. Existing studies on this issue gave controversial results that are hardly comparable due to a variety of measurement approaches. For this reason, the influence of ethano...

  8. Characterising structural, mechanical and cytotoxic properties of coral-based composite material intended for bone implant applications

    Directory of Open Access Journals (Sweden)

    Angela Samper Gaitán

    2011-08-01

    Full Text Available Studies concerning the application of Porites asteroides coral for bone implant purposes have demonstrated the biological viability of its use. As a complement to previous research regarding the development of bone-powder based composite materials which are useful for such applications, this study was aimed at developing a coral powder-based composite material which would be able to satisfy the appropriate structural, mechanical and cytotoxic properties required for its use. A composite material made of coral powder, calcium sulphate powder and water was therefore developed, and its properties were tested in different compositions. The results showed how the resulting composite material had properties which were comparable to those of human cortical bone (from both a structural and mechanical point of view, as well as being non-toxic below a 0.35 mg/ml critical composite material concentration.

  9. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone.

    Science.gov (United States)

    Cornu, Olivier; Boquet, Jérome; Nonclercq, Olivier; Docquier, Pierre-Louis; Van Tomme, John; Delloye, Christian; Banse, Xavier

    2011-11-01

    Freeze-drying and irradiation are common process used by tissue banks to preserve and sterilize bone allografts. Freeze dried irradiated bone is known to be more brittle. Whether bone brittleness is due to irradiation alone, temperature during irradiation or to a synergetic effect of the freeze-drying-irradiation process was not yet assessed. Using a left-right femoral head symmetry model, 822 compression tests were performed to assess the influence of sequences of a 25 kGy irradiation with and without freeze-drying compared to the unprocessed counterpart. Irradiation of frozen bone did not cause any significant reduction in ultimate strength, stiffness and work to failure. The addition of the freeze-drying process before or after irradiation resulted in a mean drop of 35 and 31% in ultimate strength, 14 and 37% in stiffness and 46 and 37% in work to failure. Unlike irradiation at room temperature, irradiation under dry ice of solvent-detergent treated bone seemed to have no detrimental effect on mechanical properties of cancellous bone. Freeze-drying bone without irradiation had no influence on mechanical parameters, but the addition of irradiation to the freeze-drying step or the reverse sequence showed a detrimental effect and supports the idea of a negative synergetic effect of both procedures. These findings may have important implications for bone banking.

  10. Treatment with tibolone partially protects 3-D microarchitecture of lumbar Vertebral Bone Tissues and Prevents Ovariectomy-induced Reduction in Mechanical Properties

    DEFF Research Database (Denmark)

    Ding, Ming

    Treatment with Tibolone partially Protects 3-D Microarchitecture of Lumbar Vertebral Bone Tissues and Prevents Ovariectomy-induced Reduction in Mechanical Properties Tibolone (Org OD14) is a tissue selective steroid with estrogenic effects on the brain, bone and vagina, without stimulating...... the breast and endometrium. A previous study has shown that longterm treatment with tibolone prevents ovariectomy (OVX) induced bone loss in rats. The aim of this study was to investigate the effects of tibolone on three-dimensional (3-D) microarchitecture and mechanical properties of rat lumbar vertebra. We...... and cortical bones were quantified and the mechanical properties of the lumbar cancellous and cortical bones were determined separately. Our data demonstrated that OVX lead to pronounced reduction in mechanical properties and bone mass. Treatment with tibolone increased mechanical properties and improved 3-D...

  11. Diet calcium level but not calcium supplement particle size affects bone density and mechanical properties in ovariectomized rats.

    Science.gov (United States)

    Shahnazari, Mohammad; Martin, Berdine R; Legette, Leecole L; Lachcik, Pamela J; Welch, Jo; Weaver, Connie M

    2009-07-01

    Calcium (Ca) supplements, especially Ca carbonate (CaCO3), are the main alternative sources of dietary Ca and an important part of a treatment regimen for osteoporosis, the most common metabolic bone disorder of aging and menopause. In a female ovariectomized (OVX) rat model for studying postmenopausal osteoporosis, we tested the hypothesis that a small compared with a large particle size of CaCO3 (13.0- vs. 18.5-mum geometric diameter) would result in increased Ca balance and subsequently bone mass and that this would be affected by dietary Ca level. We used 6-mo-old rats that were OVX either at 6 or 3 mo of age as models of early or stable menopausal status, respectively. The rats received semipurified diets that contained either 0.4 or 0.2% dietary Ca provided from CaCO3 of 2 particle sizes. A group of Sham-operated rats with intact ovaries served as control and were fed 0.4% dietary Ca from large particles. Estrogen deficiency as a result of ovariectomy had an adverse effect on bone density, mineral content, and bone mechanical properties (P < 0.001). Reducing dietary Ca from 0.4 to 0.2% resulted in significant adverse effects on bone density and mechanical properties (P < 0.001). The particle size of CaCO3 did not affect total Ca balance, bone dual energy X-ray absorptiometry and peripheral quantitative computed tomography indices, bone ash and Ca content, or the mechanical determinants of bone strength. We conclude that a decrease in particle size of CaCO3 to 70% of that typically found in Ca supplements does not provide a benefit to overall Ca metabolism or bone characteristics and that the amount of Ca consumed is of greater influence in enhancing Ca nutrition and skeletal strength.

  12. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral

    Science.gov (United States)

    Paschalis, E.P.; Tatakis, D.N.; Robins, S.; Fratzl, P.; Manjubala, I.; Zoehrer, R.; Gamsjaeger, S.; Buchinger, B.; Roschger, A.; Phipps, R.; Boskey, A.L.; Dall'Ara, E.; Varga, P.; Zysset, P.; Klaushofer, K.; Roschger, P.

    2011-01-01

    In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2–L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p < 0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence

  13. Effect of Formononetin on Mechanical Properties and Chemical Composition of Bones in Rats with Ovariectomy-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ilona Kaczmarczyk-Sedlak

    2013-01-01

    Full Text Available Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol’s effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg and ovariectomized treated with formononetin (10 mg/kg. Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place. Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content. To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.

  14. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    De-Gang Yu; Shao-Bo Nie; Feng-Xiang Liu; Chuan-Long Wu; Bo Tian; Wen-Gang Wang; Xiao-Qing Wang

    2015-01-01

    Background:The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA).However,the characteristics of subchondral bone alterations remain unresolved.The present study aimed to observe the dynamic alterations in the microarchitecture,mineralization,and mechanical properties of subchondral bone during the progression of OA.Methods:A medial meniscal tear (MMT) operation was performed in 128 adult Sprague Dawley rats to induce OA.At 2,4,8,and 12 weeks following the MMT operation,cartilage degeneration was evaluated using toluidine blue O staining,whereas changes in the microarchitecture indices and tissue mineral density (TMD),mineral-to-collagen ratio,and intrinsic mechanical properties of subchondral bone plates (BPs) and trabecular bones (Tbs) were measured using micro-computed tomography scanning,confocal Raman microspectroscopy and nanoindentation testing,respectively.Results:Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction.Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV,trabecular number,connectivity density and trabecular thickness [Tb.Th],and increased trabecular spacing (Tb.Sp) at 2 and 4 weeks) to bone accretion late (increased BV/TV,Tb.Th and thickness of subchondral bone plate,and reduced Tb.Sp at 8 and 12 weeks).The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks.The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction.Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction.The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks.Conclusion:The microarchitecture,mineralization and mechanical properties of subchondral bone changed in a time

  15. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  16. Sex-Specific Differences of Moderate Iron Elevations on Bone Mechanical Properties

    Science.gov (United States)

    Bokhari, R. S.; Metzger, C. E.; Allen, M. R.; Lenfest, S.; Seidel, D.; Hogan, H. A.; Turner, N. D.; Zwart, S. R.; Bloomfield, S. A.

    2016-01-01

    Moderate elevations in iron stores accelerate loss of BMD in middle-aged men and women over 40 years, but are associated with elevated vertebral fracture incidence in women only (Kim et al. JBMR 2012). To further explore potential sex differences in the response to elevated iron stores, we tested the hypothesis that increasing iron stores would lead to bone loss. Male and female C57BL/6 mice (n=21 male and n=25 female; age 16 wks) were fed AIN93-G purified diet with normal (45 mg Fe/kg, CC) or high (650 mg Fe/kg, Fe) iron content. After 8 weeks on the diet, liver iron in both FE groups was approximately 28% higher than in CC. Males and females on FE diet respectively had 38% and 33% greater distal femur cancellous BV/TV than control animals (all values at a level of p sex with elevated iron. Serum measures of C-terminal telopeptides (CTX) of type 1 collagen were found to be 10% greater in FE females with no change in males (psexes following iron treatment, structural mechanical properties were only enhanced in males. This suggests sex- specific differences exist at the material level (collagen, mineral) in response to elevated dietary iron.

  17. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone

    Directory of Open Access Journals (Sweden)

    Mick E.

    2015-09-01

    Full Text Available Bone specimens obtained for biomechanical experiments are fresh-frozen for storage to slow down tissue degradation and autolysis in long-term storage. Alternatively, due to infectious risks related to the fresh tissues, fixative agents are commonly used. However, fixatives will likely change the mechanical properties of bone. Existing studies on this issue gave controversial results that are hardly comparable due to a variety of measurement approaches. For this reason, the influence of ethanol and a formalin-based fixative agent was evaluated on the mechanical properties of human cortical bone specimens by means of four-point-bending tests. 127 prismatic specimens with rectangular cross sections (2.5 x 2.5 x 20 mm3 were obtained from different regions of two fresh human femora (medial, lateral, dorsal, ventral. Specimens were either fixed in ethanol or in a mixed formalin solution or frozen following a given scheme. After two weeks of storage the samples were re-hydrated in isotonic saline and subsequently tested mechanically. The elastic bending modulus and ultimate bending strength were computed considering the actual dimensions of each specific specimen. For statistical analysis a one-way-ANOVA and an LSD post-hoc-test were performed. For ultimate bending strength no significant differences due to formalin or ethanol fixation, as compared to unfixed-fresh bone specimens could be found. And only for few cases significant differences in elastic bending modulus were observed when the two bones were evaluated separately. Since more differences of significant level due to the anatomical region of the samples were determined, the original location seems to have more influence on the evaluated mechanical properties than the method of (chemical fixation. Consequently, ethanol and the mixed formalin solution can be recommended as a fixation agent for samples in biomechanical testing, if these samples are rinsed in isotonic saline prior to static

  18. A high mixed protein diet reduces body fat without altering the mechanical properties of bone in female rats.

    Science.gov (United States)

    Pye, Kathleen M; Wakefield, Andrew P; Aukema, Harold M; House, James D; Ogborn, Malcolm R; Weiler, Hope A

    2009-11-01

    Long-term consumption of high-protein (HP) diets at 35% of energy is postulated to negatively influence bone health. Previous studies have not comprehensively examined the biochemical, physical, and biomechanical properties of bone required to arrive at this conclusion. Our objective in this study was to examine the long-term effect of a HP diet on bone metabolism, mass, and strength in rats. Adult female Sprague-Dawley rats (n = 80) were randomized to receive for 4, 8, 12, or 17 mo a normal-protein (NP) control diet (15% of energy) or a HP diet (35% of energy). Diets were balanced for calcium because the protein sources were rich in calcium. At each time point, measurements included weight, body composition, and bone mass using dual-energy X-ray absorptiometry, mechanical strength at the mid-diaphysis of femur and tibia, microarchitecture of femurs using microcomputerized tomography and serum osteocalcin, carboxy-terminal crosslinks of type I collagen (CTX), insulin-like growth factor-1 (IGF-1), leptin, and adiponectin. Effects of diet, time, and their interaction were tested using factorial ANOVA. The HP diet resulted in lower body weight, total body, and abdominal fat and higher lean mass. Serum leptin and adiponectin were greater in HP-fed than in NP-fed rats, but IGF-1 did not differ between the groups. Whereas the HP diet resulted in higher relative bone mineral content (g/kg) in the femur, tibia, and vertebrae, serum osteocalcin and CTX and bone internal architecture and biomechanical strength were unaffected. In conclusion, HP diets at 35% of energy lower body fat content without hindering the mechanical and weight-bearing properties of bone.

  19. Investigation of the mechanical properties and failure modes of hybrid natural fiber composites for potential bone fracture fixation plates.

    Science.gov (United States)

    Manteghi, Saeed; Mahboob, Zia; Fawaz, Zouheir; Bougherara, Habiba

    2017-01-01

    The purpose of this study is to investigate the mechanical feasibility of a hybrid Glass/Flax/Epoxy composite material for bone fracture fixation such as fracture plates. These hybrid composite plates have a sandwich structure in which the outer layers are made of Glass/Epoxy and the core from Flax/Epoxy. This configuration resulted in a unique structure compared to prior composites proposed for similar clinical applications. In order to evaluate the mechanical properties of this hybrid composite, uniaxial tension, compression, three-point bending and Rockwell Hardness tests were conducted. In addition, water absorption tests were performed to investigate the rate of water absorption for the specimens. This study confirms that the proposed hybrid composite plates are significantly more flexible axially compared to conventional metallic plates. Furthermore, they have considerably higher ultimate strength in tension, compression and flexion. Such high strength will ensure good stability of bone-implant construct at the fracture site, immobilize adjacent bone fragments and carry clinical-type forces experienced during daily normal activities. Moreover, this sandwich structure with stronger and stiffer face sheets and more flexible core can result in a higher stiffness and strength in bending compared to tension and compression. These qualities make the proposed hybrid composite an ideal candidate for the design of an optimized fracture fixation system with much closer mechanical properties to human cortical bone.

  20. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.

    Science.gov (United States)

    Khalid, Aysha B; Goodyear, Simon R; Ross, Ruth A; Aspden, Richard M

    2016-10-01

    The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.

  1. Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods.

    Science.gov (United States)

    Kaminski, Artur; Grazka, Ewelina; Jastrzebska, Anna; Marowska, Joanna; Gut, Grzegorz; Wojciechowski, Artur; Uhrynowska-Tyszkiewicz, Izabela

    2012-08-01

    Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy

  2. Effects of Composite Formulation on Mechanical Properties of Biodegradable Poly(Propylene Fumarate/Bone Fiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Xun Zhu

    2010-01-01

    Full Text Available The objective of our paper was to determine the effects of composite formulation on the compressive modulus and ultimate strength of a biodegradable, in situ polymerizable poly(propylene fumarate (PPF and bone fiber scaffold. The following parameters were investigated: the incorporation of bone fibers (either mineralized or demineralized, PPF molecular weight, N-vinyl pyrrolidinone (NVP crosslinker amount, benzoyl peroxide (BP initiator amount, and sodium chloride porogen amount. Eight formulations were chosen based on a resolution III two-level fractional factorial design. The compressive modulus and ultimate strength of these formulations were measured on a materials testing machine. Absolute values for compressive modulus varied from 21.3 to 271 MPa and 2.8 to 358 MPa for dry and wet samples, respectively. The ultimate strength of the crosslinked composites varied from 2.1 to 20.3 MPa for dry samples and from 0.4 to 16.6 MPa for wet samples. Main effects of each parameter on the measured property were calculated. The incorporation of mineralized bone fibers and an increase in PPF molecular weight resulted in higher compressive modulus and ultimate strength. Both mechanical properties also increased as the amount of benzoyl peroxide increased or the NVP amount decreased in the formulation. Sodium chloride had a dominating effect on the increase of mechanical properties in dry samples but showed little effects in wet samples. Demineralization of bone fibers led to a decrease in the compressive modulus and ultimate strength. Our results suggest that bone fibers are appropriate as structural enforcement components in PPF scaffolds. The desired orthopaedic PPF scaffold might be obtained by changing a variety of composite formulation parameters.

  3. Effects of composite formulation on the mechanical properties of biodegradable poly(propylene fumarate)/bone fiber scaffolds.

    Science.gov (United States)

    Zhu, Xun; Liu, Nathan; Yaszemski, Michael J; Lu, Lichun

    2010-01-01

    The objective of our study was to determine the effects of composite formulation on the compressive modulus and ultimate strength of a biodegradable, in situ polymerizable poly(propylene fumarate) (PPF) and bone fiber scaffold. The following parameters were investigated: the incorporation of bone fibers (either mineralized or demineralized), PPF molecular weight, N-vinyl pyrrolidinone (NVP) crosslinker amount, benzoyl peroxide (BP) initiator amount, and sodium chloride porogen amount. Eight formulations were chosen based on a resolution III two level fractional factorial design. The compressive modulus and ultimate strength of these formulations were measured on a materials testing machine. Absolute values for compressive modulus varied from 21.3 to 271 MPa and 2.8 to 358 MPa for dry and wet samples, respectively. The ultimate strength of the crosslinked composites varied from 2.1 to 20.3 MPa for dry samples and from 0.4 to 16.6 MPa for wet samples. Main effects of each parameter on the measured property were calculated. The incorporation of mineralized bone fibers and an increase in PPF molecular weight resulted in higher compressive modulus and ultimate strength. Both mechanical properties also increased as the amount of benzoyl peroxide increased or the NVP amount decreased in the formulation. Sodium chloride had a dominating effect on the increase of mechanical properties in dry samples but showed little effects in wet samples. Demineralization of bone fibers led to a decrease in the compressive modulus and ultimate strength. Our results suggest that bone fibers are appropriate as structural enforcement components in PPF scaffolds. The desired orthopaedic PPF scaffold might be obtained by changing a variety of composite formulation parameters.

  4. The influence of feed phosphates on the structural, mechanical and chemical properties of bone tissue in pigs.

    Science.gov (United States)

    Nikodem, A; Dragan, Sz; Kołacz, Sz; Dobrzanski, Z

    2012-01-01

    The aim of the study was to assess the influence of various feed phosphates on the structural and mechanical properties as well as on the chemical composition of femurs in adult pigs (weight approx. 110 kg). Three types of phosphates--monocalcium phosphate (MCP), dicalcium phosphate (n-DCP) and calcium-sodium phosphate (CSP)--were used alternatively in pigs fed with the standard feed mixture. The MCP and CSP phosphates were typical, imported products used traditionally in pig feeding. Dicalcium phosphate (n-DCP) was manufactured in Poland on the basis of phosphoric acid with the new pro-ecological method. The following parameters were determined: the mean physical density of the samples of the compact and spongy bone tissue, values of Young's modulus, strength and the energy of deformation, and Vickers microhardness (HV). Also the content of C, O, Na, Mg, Al, and Si, as well as Ca, P and Sr was determined. Significant differences in mean values of the mentioned parameters occurred between the studied groups. The best mechanical properties were shown by the bones from the n-DCP group, and the compact bone tissue (diaphysis) contained the most Ca, P, and Sr when compared to the MCP and CSP groups.

  5. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Science.gov (United States)

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  6. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Pei Feng

    Full Text Available A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP scaffolds via selective laser sintering (SLS. We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO. Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF, indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  7. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    Science.gov (United States)

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  8. [Research on the mechanical properties of bone scaffold reinforced by magnesium alloy/bioceramics composite with stereolithography double channels].

    Science.gov (United States)

    Li, Changhai; Lian, Qin; Zhuang, Pei; Wang, Junzhong; Li, Dichen

    2015-02-01

    Focusing on the poor mechanical strength of porous bioceramics bone scaffold, and taking into account of the good mechanical properties of biodegradable magnesium alloy, we proposed a novel method to fabricate magnesium alloy/bioceramics composite bone scaffold with stereolithography double channels. Firstly, a scaffold structure without mutually connected double channels was designed. Then, an optimized bioceramics scaffold was fabricated according to stereolithography and gel-casing. Molten AZ31 magnesium alloy was perfused into the secondary channel of scaffold by low-pressure casting, and magnesium alloy/bioceramics composite bone scaffold was obtained when magnesium alloy was solidified. The compression test showed that the strength of bioceramics scaffold with only one channel and without magnesium alloy was (9.76 ± 0.64) MPa, while the strength of magnesium alloy/bioceramics composite scaffold with double channels was (17.25 ± 0.88) MPa. It can be concluded that the magnesium alloy/bioceramics composite is obviously able to improve the scaffold strength.

  9. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

    Science.gov (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A

    2014-10-08

    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  10. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.

    Science.gov (United States)

    Samavedi, Satyavrata; Vaidya, Prasad; Gaddam, Prudhvidhar; Whittington, Abby R; Goldstein, Aaron S

    2014-12-01

    Although bone-patellar tendon-bone (B-PT-B) autografts are the gold standard for repair of anterior cruciate ligament ruptures, they suffer from drawbacks such as donor site morbidity and limited supply. Engineered tissues modeled after B-PT-B autografts are promising alternatives because they have the potential to regenerate connective tissue and facilitate osseointegration. Towards the long-term goal of regenerating ligaments and their bony insertions, the objective of this study was to construct 2D meshes and 3D cylindrical composite scaffolds - possessing simultaneous region-wise differences in fiber orientation, diameter, chemistry and mechanical properties - by electrospinning two different polymers from off-set spinnerets. Using a dual drum collector, 2D meshes consisting of an aligned polycaprolactone (PCL) fiber region, randomly oriented poly(lactide-co-glycolide) (PLGA) fiber region and a transition region (comprised of both PCL and PLGA fibers) were prepared, and region-wise differences were confirmed by microscopy and tensile testing. Bone marrow stromal cells (BMSCs) cultured on these meshes exhibited random orientations and low aspect ratios on the random PLGA regions, and high aspect ratios and alignment on the aligned PCL regions. Next, meshes containing an aligned PCL region flanked by two transition regions and two randomly oriented PLGA regions were prepared and processed into 3D cylindrical composite scaffolds using an interpenetrating photo-crosslinkable polyethylene glycol diacrylate hydrogel to recapitulate the shape of B-PT-B autografts. Tensile testing indicated that cylindrical composites were mechanically robust, and eventually failed due to stress concentration in the aligned PCL region. In summary, this study demonstrates a process to fabricate electrospun meshes possessing region-wise differences in properties that can elicit region-dependent cell responses, and be readily processed into scaffolds with the shape of B-PT-B autografts.

  11. The effect of water, various incorporations and substitutions on physical and chemical properties of bioapatite and mechanical properties of bone tissue

    Directory of Open Access Journals (Sweden)

    A. S. Avrunin

    2015-01-01

    Full Text Available Basing on scientific publications and original research the authors specified the effect of incorporation and adsorption of different ions and water molecules on physical, chemical and mechanical properties of bioapatite and determined new directions for investigations of intercrystallite interactions in nanoscale. Inner structure of the apatite crystallites more adaptable to chemical substitutions in comparison with other minerals controls their important characteristics such as a size, solubility, hardness, fragility, formability and thermal stability. The water molecules incorporated in crystallites and adsorbed on their surfaces stabilize them. In case the distances between crystallites become shorter than 10 nm the water molecules adsorbed on their surface play dominant role in bonding between the crystallites. This bond determines the main mechanical properties of bones. We bring forward a suggestion that theoretical model developed on the basis of near edge X-ray spectroscopic studies of bones using the contemporary high brilliant sources of X-ray radiation (synchrotrons and X-ray free electrons lasers will allow to receive new quantitative data on local electronic and atomic structure (coordination numbers, ionic charges, interatomic distances interatomic and intercrystallite forces of nanoelements in osseous tissue. The investigation results must bring to construction of new morphologically correct model providing deeper understanding of processes occurring in mineral matrix and mechanical properties of bones.

  12. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    Science.gov (United States)

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites.

  13. Characterization of the physical and mechanical properties of femoral bone defects filled with polyanionic collagen scaffolds in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues Cunha

    2010-06-01

    Full Text Available The aim of this study was to evaluate the effect of scaffolds native or polyanionic collagen matrix (submitted to alkaline treatment for 48 or 96 hours, PCM48 or PCM96, respectively on the repair of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats undergoing hormone replacement therapy. The physical and mechanical characteristics of bone were analyzed. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas. The percent mineral matter and bone mineral density of the femurs were lower in ovariectomized rats. The mechanical strength of newly formed bone was greater in the area receiving the PCM96 scaffolds compared to the area implanted with the native scaffolds. The PCM96 scaffold is the best choice for bone repair in animals with hormone deficiency since it promotes faster bone growth and good mechanical strength.

  14. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

    Directory of Open Access Journals (Sweden)

    Marco A. Velasco

    2016-10-01

    Full Text Available Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

  15. Effects of long-term administration of omeprazole on bone mineral density and the mechanical properties of the bone☆

    Science.gov (United States)

    Yanagihara, Gabriela Rezende; de Paiva, Aline Goulart; Neto, Maurílio Pacheco; Torres, Larissa Helena; Shimano, Antônio Carlos; Louzada, Mário Jefferson Quirino; Annoni, Raquel; de Oliveira Penoni, Álvaro César

    2015-01-01

    Objectives Epidemiological studies have shown a relationship between long-term use of proton pump inhibitors and bone metabolism. However, this relationship has not yet become established. The aim of the present study was to analyze the mechanical properties and bone mineral density (BMD) of rats that were subjected to long-term omeprazole use. Methods Fifty Wistar rats weighing between 200 and 240 g were divided equally into five groups: OMP300 (omeprazole intake at a dose of 300 μmoL/kg/day); OMP200 (200 μmoL/kg/day); OMP40 (40 μmoL/kg/day); OMP10 (10 μmoL/kg/day); and Cont (control group; intake of dilution vehicle). The solutions were administered for 90 consecutive days. After the rats had been sacrificed, their BMD, the mechanical properties of the dissected femurs and their serum Ca++ levels were analyzed. Results The BMD of the OMP300 group was lower than that of the controls (p = 0.006). There was no difference on comparing the OMP200, OMP40 and OMP10 groups with the controls. The maximum strength and rigidity of the femur did not differ in the experimental groups in comparison with the controls. The OMP300 group had a statistically lower serum Ca++ concentration than that of the controls (p = 0.049), but the other groups did not show any difference in relation to the controls. Conclusion Daily intake of 300 μmoL/kg/day of omeprazole decreased the BMD of the femur, but without changes to the rigidity and strength of the femur in adult rats. PMID:26229922

  16. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering.

    Science.gov (United States)

    Owen, Robert; Sherborne, Colin; Paterson, Thomas; Green, Nicola H; Reilly, Gwendolen C; Claeyssens, Frederik

    2016-02-01

    Polymerised High Internal Phase Emulsions (PolyHIPEs) are manufactured via emulsion templating and exhibit a highly interconnected microporosity. These materials are commonly used as thin membranes for 3D cell culture. This study uses emulsion templating in combination with microstereolithography to fabricate PolyHIPE scaffolds with a tightly controlled and reproducible architecture. This combination of methods produces hierarchical structures, where the microstructural properties can be independently controlled from the scaffold macrostructure. PolyHIPEs were fabricated with varying ratios of two acrylate monomers (2-ethylhexyl acrylate (EHA) and isobornyl acrylate (IBOA)) and varying nominal porosity to tune mechanical properties. Young's modulus, ultimate tensile stress (UTS) and elongation at failure were determined for twenty EHA/IBOA compositions. Moduli ranged from 63.01±9.13 to 0.36±0.04MPa, UTS from 2.03±0.33 to 0.11±0.01MPa and failure strain from 21.86±2.87% to 2.60±0.61%. Selected compositions were fabricated into macro-porous woodpile structures, plasma treated with air or acrylic acid and seeded with human embryonic stem-cell derived mesenchymal progenitor cells (hES-MPs). Confocal and two-photon microscopy confirmed cell proliferation and penetration into the micro- and macro-porous architecture. The scaffolds supported osteogenic differentiation of mesenchymal cells and interestingly, the stiffest IBOA-based scaffolds that were plasma treated with acrylic acid promoted osteogenesis more strongly than the other scaffolds.

  17. Compression of Multilayered Composite Electrospun Scaffolds: A Novel Strategy to Rapidly Enhance Mechanical Properties and Three Dimensionality of Bone Scaffolds

    Directory of Open Access Journals (Sweden)

    Parthasarathy A. Madurantakam

    2013-01-01

    Full Text Available One major limitation of electrospun scaffolds intended for bone tissue engineering is their inferior mechanical properties. The present study introduces a novel strategy to engineer stiffer scaffolds by stacking multiple layers and cold welding them under high pressure. Electrospun polydioxanone (PDO and PDO:nanohydroxyapatite (PDO:nHA scaffolds (1, 2, or 4 layered stacks were compressed either before or after mineralizing treatment with simulated body fluid (SBF. After two weeks in SBF, scaffolds were analyzed for total mineral content and stiffness by Alizarin red S and uniaxial tensile testing, respectively. Scaffolds were also analyzed for permeability, pore size, and fiber diameter. Results indicated that compression of multiple layers significantly increased the stiffness of scaffolds while reducing mineralization and permeability. This phenomenon was attributed to increased density of fibers and loss of surface area due to fiber welding. Statistics revealed, the 4-layered PDO:nHA scaffold compressed first followed by mineralization in revised SBF had maximal stiffness, low permeability and pore size, and mineralization second only to noncompressed scaffolds. Within the limitations of permeability and pore size, this scaffold configuration represents an optimal midway for desired stiffness and mineral content for bone tissue engineering.

  18. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    Directory of Open Access Journals (Sweden)

    Shepherd Duncan ET

    2008-10-01

    Full Text Available Abstract Background Polyurethane (PU foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm and of different densities (0.09, 0.16 and 0.32 g.cm-3, to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern.

  19. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    Science.gov (United States)

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size.

  20. Influence of raw powder granulometry on the mechanical properties of a calcium phosphate bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Pittet, C. [Swiss Federal Inst. of Tech., Lausanne (Switzerland). Lab. de Technologie des Poudres; Hopital Orthopedique de la Suisse Romande, Lausanne (Switzerland); Grasso, P.; Lemaitre, J. [Swiss Federal Inst. of Tech., Lausanne (Switzerland). Lab. de Technologie des Poudres

    2002-07-01

    Brushite cement is a calcium phosphate cement obtained by mixing three powders with water. Starting powders are monocalcium phosphate monohydrate (MCPM), calcium sulfate hemihydrate (CSH) and {beta}-tricalcium phosphate ({beta}-TCP). The main phase obtained after setting is brushite (DCPD). The goal of this work was to mill the starting powders to obtain a finer and more homogeneous microstructure after setting, in order to enhance the mechanical properties of the cement. All three powders were milled and freeze-dried. The median diameters passed from 70.5 to 6.2 {mu}m for MCPM, 27.2 to 1.1 {mu}m for CSH, 2.4 to 1.5 {mu}m for {beta}-TCP. Specific surface areas of the powders increased on milling. Attrition of MCPM and CSH appeared to be beneficial to the maximum stresses the set cement can withstand. Cements prepared with raw powders showed 1.4 MPa indirect tensile strength and 4.4 MPa compressive strength. With milled MCPM and CSH, those values reached 4.1 and 22.1 MPa respectively. After these benefits, we tried to use the milled {beta}-TCP expecting further enhancement. To ensure wetting of all three powders and to keep the same paste rheology, the liquid/solid ratio had to be increased. The indirect tensile strength was seen to decrease by a factor of 3 when three milled powders were used at the same time. SEM of the fracture surfaces showed that milled {beta}-TCP formed clusters that did not react to form brushite. Lowering the maximum indirect tension stress is due to the fact that less brushite was formed, and to a higher porosity in the final product (mainly due to the higher liquid/solid ratio). (orig.)

  1. Investigation of statistical relationships between quantities describing bone architecture, its fractal dimensions and mechanical properties.

    Science.gov (United States)

    Cichański, Artur; Nowicki, Krzysztof; Mazurkiewicz, Adam; Topoliński, Tomasz

    2010-01-01

    The paper presents linear, logarithmic and exponential regression tabecular bone indices, fractal dimensions and strength. The analysis of the above parameters was supported by determining non-parametric correlation coefficients: Spearman's ρ, gamma and Kendall's τ. The principal components' analysis (PCA) was also performed in order to reduce the number of indices describing the variance in the data set. The analysis showed the most independent indices: lacunarity (λm, λmin, λmax), BMD, Conn.D., SMI, DA, ρA and age.

  2. Microstructure and Mechanical Properties of Calcium Phosphate Cement/Gelatine Composite Scaffold with Oriented Pore Structure for Bone Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    QI Xiaopeng; HE Fupo; YE Jiandong

    2012-01-01

    The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatine composite increased to 5.12 MPa,around fifty times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.Participating the external load by the deformable gelatine,patching the defects of the CPC pores wall,and crack deflection were supposed to be the reinforcement mechanisms.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.

  3. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.

    Science.gov (United States)

    Dehaghani, Majid Taghian; Ahmadian, Mehdi

    2016-04-01

    Porous nano-composites were successfully prepared on addition of 58S bioactive glass to Co-base alloy with porosities of 37.2-58.8% by the combination of milling, space-holder and powder metallurgy techniques. The results of X-ray diffraction analysis showed that induced strain during milling of the Co-base alloy powder and also isothermal heat treatment during sintering process led to HCP↔FCC phase transformation which affected mechanical properties of the samples during compression test. Field emission scanning electron microscopy images showed that despite the remaining 58S powder in nanometer size in the composite, there were micro-particles due to sintering at high temperature which led to two different apatite morphologies after immersion in simulated body fluid. Calculated elastic modulus and 0.2% proof strength from stress-strain curves of compression tests were in the range of 2.2-8.3GPa and 34-198MPa, respectively. In particular, the mechanical properties of sample with 37.2% were found to be similar to those of human cortical bone. Apatite formation which was identified by scanning electron microscopy (SEM), pH meter and Fourier-transform infrared spectroscopy (FTIR) analysis showed that it could successfully convert bioinert Co-base alloy to bioactive type by adding 58S bioglass nano-particles. SEM images of cell cultured on the porous nano-composite with 37.2% porosity showed that cells properly grew on the surface and inside the micro and macro-pores.

  4. Changed morphology and mechanical properties of cancellous bone in the mandibular condyles of edentate people

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    of the mandibular condyles of edentate subjects (n = 25) was compared with that of dentate subjects (n = 24) by means of micro-computed tomography and by the application of Archimedes' principle. Stiffness and strength were determined by destructive mechanical testing. Compared with dentate subjects, it appeared...

  5. Non-invasive predictors of human cortical bone mechanical properties: T(2-discriminated H NMR compared with high resolution X-ray.

    Directory of Open Access Journals (Sweden)

    R Adam Horch

    Full Text Available Recent advancements in magnetic resonance imaging (MRI have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, (1H nuclear magnetic resonance (NMR and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that (1H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These (1H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.

  6. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.

    Science.gov (United States)

    Yang, Kai; Zhang, Jing; Ma, Xiaoyu; Ma, Yifan; Kan, Chao; Ma, Haiyan; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2015-11-01

    Despite good biocompatibility and osteoconductivity, porous β-TCP scaffolds still lack the structural stability and mechanical robustness, which greatly limit their application in the field of bone regeneration. The hybridization of β-TCP with conventional synthetic biodegradable PLA and PCL only produced a limited toughening effect due to the plasticity of the polymers in nature. In this study, a β-TCP/poly(glycerol sebacate) scaffold (β-TCP/PGS) with well interconnected porous structure and robust mechanical property was prepared. Porous β-TCP scaffold was first prepared with polyurethane sponge as template and then impregnated into PGS pre-polymer solution with moderate viscosity, followed by in situ heat crosslinking and freezing-drying process. The results indicated that the freezing-drying under vacuum process could further facilitate crosslinking of PGS and formation of Ca(2+)-COO(-) ionic complexing and thus synergistically improved the mechanical strength of the β-TCP/PGS with in situ heat crosslinking. Particularly, the β-TCP/PGS with 15% PGS content after heat crosslinking at 130°C and freezing-drying at -50°C under vacuum exhibited an elongation at break of 375±25% and a compressive strength of 1.73MPa, 3.7-fold and 200-fold enhancement compared to the β-TCP, respectively. After the abrupt drop of compressive load, the β-TCP/PGS scaffolds exhibited a full recovery of their original shape. More importantly, the PGS polymer in the β-TCP/PGS scaffolds could direct the biomineralization of Ca/P from particulate shape into a nanofiber-interweaved structure. Furthermore, the β-TCP/PGS scaffolds allowed for cell penetration and proliferation, indicating a good cytobiocompatibility. It is believed that β-TCP/PGS scaffolds have great potential application in rigid tissue regeneration.

  7. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat.

    Science.gov (United States)

    Ghanizadeh, G; Babaei, M; Naghii, Mohammad Reza; Mofid, M; Torkaman, G; Hedayati, M

    2014-04-01

    Evidence indicates that optimal nutrition plays a role in bone formation and maintenance. Besides major components of mineralization such as calcium, phosphorus, and vitamin D, other nutrients like boron and fluoride have beneficial role, too. In this study, 34 male Wistar rats were divided into five groups: control diet, fluoride, fluoride + boron, fluoride + calcium + vitamin D, and fluoride + boron + calcium + vitamin D. Boron equal to 1.23 mg, calcium and vitamin D equal to 210 mg + 55 IU and fluoride equal to 0.7 mg/rat/day was added to their drinking water for 8 weeks. Plasma blood samples and bones were collected. Findings are evidence that fluoride + boron intake revealed significant positive effects on bone mechanical properties and bone metabolic hormones. These findings suggest that combined intake of these two elements has beneficial effects on bone stiffness and breaking strength comparing to even calcium + vitamin D supplementation. This evidence dealing with health problems related to bone and skeletal system in humans should justify further investigation of the role of boron and fluoride with other elements in relation to bone.

  8. Low intensity pulsed ultrasound increases the mechanical properties of the healing tissues at bone-tendon junction.

    Science.gov (United States)

    Lu, Min-Hua; Zheng, Yong-Ping; Huang, Qing-Hua; Lu, Hong-Bin; Qin, Ling

    2009-01-01

    The re-establishment of bone-tendon junction (BTJ) tissues is involved in many trauma and reconstructive surgeries. A direct BTJ repair requires a long period of immobilization which may be associated with a postoperative weak knee. In this study, we investigated if low-intensity pulsed ultrasound treatment increases the material properties of healing tissues at bone-tendon junction (BTJ) after partial patellectomy using rabbit models. Standard partial patellectomy was conducted on one knee of twenty four rabbits which were randomly divided into an ultrasound group and a control group. The bony changes of BTJ complexes around the BTJ healing interface were measured by anteroposterior x-ray radiographs; then the volumetric bone-mineral density (BMD) of the new bone was assessed using a peripheral computed tomography scanner (pQCT). The stiffness of patellar cartilage, fibrocartilage at the healing interface and the tendon were measured in situ using a novel noncontact ultrasound water jet indentation system. Not only significantly more newly formed bone at the BTJ healing interface but also increased stiffness of the junction tissues were found in the ultrasound group compared with the controls at week 18. In addition, the ultrasound group also showed significantly 44% higher BMD at week 6 than controls.

  9. Bone Mechanical Properties and Mineral Density in Response to Cessation of Jumping Exercise and Honey Supplementation in Young Female Rats

    Directory of Open Access Journals (Sweden)

    Somayeh Sadat Tavafzadeh

    2015-01-01

    Full Text Available This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise. Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation.

  10. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Jing; Ma, Xiaoyu; Ma, Yifan; Kan, Chao [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Ma, Haiyan [Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Li, Yulin, E-mail: yulinli@ecust.edu.cn [Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Yuan, Yuan, E-mail: yyuan@ecust.edu.cn [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, Changsheng, E-mail: liucs@ecust.edu.cn [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2015-11-01

    Despite good biocompatibility and osteoconductivity, porous β-TCP scaffolds still lack the structural stability and mechanical robustness, which greatly limit their application in the field of bone regeneration. The hybridization of β-TCP with conventional synthetic biodegradable PLA and PCL only produced a limited toughening effect due to the plasticity of the polymers in nature. In this study, a β-TCP/poly(glycerol sebacate) scaffold (β-TCP/PGS) with well interconnected porous structure and robust mechanical property was prepared. Porous β-TCP scaffold was first prepared with polyurethane sponge as template and then impregnated into PGS pre-polymer solution with moderate viscosity, followed by in situ heat crosslinking and freezing–drying process. The results indicated that the freezing–drying under vacuum process could further facilitate crosslinking of PGS and formation of Ca{sup 2+}–COO{sup −} ionic complexing and thus synergistically improved the mechanical strength of the β-TCP/PGS with in situ heat crosslinking. Particularly, the β-TCP/PGS with 15% PGS content after heat crosslinking at 130 °C and freezing–drying at − 50 °C under vacuum exhibited an elongation at break of 375 ± 25% and a compressive strength of 1.73 MPa, 3.7-fold and 200-fold enhancement compared to the β-TCP, respectively. After the abrupt drop of compressive load, the β-TCP/PGS scaffolds exhibited a full recovery of their original shape. More importantly, the PGS polymer in the β-TCP/PGS scaffolds could direct the biomineralization of Ca/P from particulate shape into a nanofiber-interweaved structure. Furthermore, the β-TCP/PGS scaffolds allowed for cell penetration and proliferation, indicating a good cytobiocompatibility. It is believed that β-TCP/PGS scaffolds have great potential application in rigid tissue regeneration. - Graphical abstract: Robust β-TCP/PGS porous scaffolds are developed by incorporation of poly(glycerol sebacate) (PGS, a flexible

  11. Properties of deproteinized bone for reparation of big segmental defect in long bone

    Institute of Scientific and Technical Information of China (English)

    JIAN Yue-kui; TIAN Xiao-bin; LI Bo; QIU Bing; ZHOU Zuo-jia; YANG Zheng; LI Qi-hong

    2008-01-01

    Objective: To explore suitable scaffold material for big segmental long bone defect by studying the properties of the prepared deproteinized bone. Methods: Cancellated bone were made as 30 mm ×3 mm ×3 mm bone blocks from inferior extremity of pig femur along bone trabecula. The deproteinized bone was prepared with an improved method. Their morphological features, components, cell compatibility, mechanical and immunological properties were investigated respectively. Results: Deproteinized bone maintained natural re ticular pore system. The main organic material is collagen Ⅰand inorganic composition is hydroxyapatite. It has good mechanical properties, cell adhesion rate and histocompatibility. Conlusion: This deproteinized bone can be applicable as scaffold for reparation of big segmental defect in long bone.

  12. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    Science.gov (United States)

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2015-09-01

    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  13. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application

    Directory of Open Access Journals (Sweden)

    Zeinab Fereshteh

    2015-09-01

    Full Text Available This article presents data related to the research article entitled “The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering” [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG scaffolds coated by poly (ε-caprolactone (PCL and zein used as a controlled release device for tetracycline hydrochloride (TCH. By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds to 0.15±0.02 MPa (PCL/zein coated BG scaffolds. A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF. The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  14. Effect of Different Manufacturing Methods on the Conflict between Porosity and Mechanical Properties of Spiral and Porous Polyethylene Terephthalate/Sodium Alginate Bone Scaffolds

    Directory of Open Access Journals (Sweden)

    Ching-Wen Lou

    2015-12-01

    Full Text Available In order to solve the incompatibility between high porosity and mechanical properties, this study fabricates bone scaffolds by combining braids and sodium alginate (SA membranes. Polyethylene terephthalate (PET plied yarns are braided into hollow, porous three dimensional (3D PET braids, which are then immersed in SA solution, followed by cross-linking with calcium chloride (CaCl2 and drying, to form PET bone scaffolds. Next, SA membranes are rolled and then inserted into the braids to form the spiral and porous PET/SA bone scaffolds. Samples are finally evaluated for surface observation, porosity, water contact angle, compressive strength, and MTT assay. The test results show that the PET bone scaffolds and PET/SA bone scaffolds both have good hydrophilicity. An increasing number of layers and an increasing CaCl2 concentration cause the messy, loose surface structure to become neat and compact, which, in turn, decreases the porosity and increases the compressive strength. The MTT assay results show that the cell viability of differing SA membranes is beyond 100%, indicating that the PET/SA bone scaffolds containing SA membranes are biocompatible for cell attachment and proliferation.

  15. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction.

  16. Leptin Deficiency and Its Effects on Tibial and Vertebral Bone Mechanical Properties in Mature Genetically Lean and Obese JCR:LA-Corpulent Rats.

    Science.gov (United States)

    Reimer, Raylene A; Lamothe, Jeremy M; Zernicke, Ronald F

    2012-01-01

    Leptin signaling deficient rodents have emerged as models of obesity/insulin resistance syndrome. Altered leptin signaling, however, can affect axial and appendicular bone geometrical properties differently, and, thus, we hypothesized that leptin-deficiency would differentially influence mechanical properties of vertebrae and tibiae compared to lean rats. Mature (9 mo) leptin receptor deficient obese (cp/cp; n = 8) and lean (+/?; n = 7) male JCR:LA-corpulent rats were used to test that hypothesis. Tibiae and the sixth lumbar vertebrae (L(6)) were scanned with micro-CT and were broken in three point-bending (tibiae) or axial loading (L(6)). Supporting the hypothesis, vertebrae and tibiae were differentially affected by leptin signaling deficiency. Tibiae, but not vertebrae, were significantly shorter in obese rats and achieved a significantly greater load (>18%), displacement (>15%), and stress (>18%) at the proportional limit, relative to the lean rats. Conversely, L(6) in obese rats had significantly reduced displacement (>25%) and strain (>32%) at proportional limit, relative to the lean rats. Those combined results suggest that the etiology and duration of obesity may be important determinants of bone mechanical properties, and axial and appendicular bones may be affected differently.

  17. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model

    Directory of Open Access Journals (Sweden)

    Jbahi Samira

    2015-10-01

    Full Text Available Background: Synthetic bone graft substitutes such as bioactive glass (BG material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn and its applications in biomedicine. Methods: Female Wistar rats were ovariectomized. BG and BG-Zn were implanted in the femoral condyles of Wistar rats and compared to that of control group. Grafted bone tissues were carefully removed to evaluate the oxidative stress status, histomorphometric profile, mechanical property, and mineral bone distribution by using inductively coupled plasma optical emission spectrometry. Results: A significant decrease of thiobarbituric acid–reactive substances was observed after BG-Zn implantation. Superoxide dismutase, catalase (CAT, and glutathione peroxidase (GPx activities significantly increased in ovariectomized group implanted with Zinc-doped bioactive glass (OVX-BG-Zn as compared to ovariectomized group implanted with bioactive glass (OVX-BG. An improved mechanical property was noticed in contact of OVX-BG-Zn (39±6 HV when compared with that of OVX-BG group (26±9 HV. After 90 days of implantation, the histomorphometric analysis showed that trabecular thickness (Tb.Th and trabecular number (Tb.N were significantly increased with 28 and 24%, respectively, in treated rats of OVX-BG-Zn group as compared to those of OVX-BG groups. Trabecular separation (Tb.Sp and trabecular bone pattern factor (TBPf were significantly decreased in OVX-BG-Zn group with 29.5 and 54% when compared with those of OVX-BG rat groups. On the other hand, a rise in Ca and P ion concentrations in the implanted microenvironment was shown and lead to the formation/deposition of Ca-P phases. The ratio of pyridinoline [Pyr] to dihydroxylysinonorleucine [DHLNL] cross-links was normalized to the

  18. Mechanisms of cancer metastasis to the bone

    Institute of Scientific and Technical Information of China (English)

    Juan Juan YIN; Claire B. POLLOCK; Kathleen KELLY

    2005-01-01

    Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.

  19. Study of Mechanical Properties of Bone by Measuring Load Transfer via High-energy X-ray Diffraction

    Science.gov (United States)

    Singhal, Anjali

    Synchrotron high-energy X-ray scattering is used to investigate the in situ strains in hydroxyapatite (HAP) platelets and mineralized collagen fibrils in bovine cortical bone. Compressive load-unload tests at room temperature (27°C) and body temperature (37°C) show that the load transfer to the stiff nano-sized platelets from the surrounding compliant protein matrix does not vary significantly with temperature. This emphasizes that the stiffness of bone is controlled by the stiffness of the HAP phase, which remains unaffected by this change in temperature. Monotonic loading tests in compression and tension, conducted at 37°C, illustrate the spatial variation of properties within a single femur, which is correlated to the mineral content, porosity and microstructure of the samples. The average apparent modulus of HAP and fibrils (EappHAP and Eappfib, respectively), defined as the ratio of applied stress and phase strain, is obtained as 27.5 ± 6.6 and 18.5 ± 8.9 GPa, respectively, in compression. These values are significantly higher than the values of 20.0 ± 5.4 and 4.1 ± 2.6 GPa obtained for HAP and fibrils, respectively, in tension. The difference between the two types of loading is attributed to greater plastic deformation of collagen in tension, which results in greater strains in the collagen fibril, and concomitant greater load transfer to the HAP. Increasing synchrotron X-ray doses (5-3880 kGy) affect neither apparent HAP nor fibrillar modulus, up to stresses of -60 MPa (measured during in situ loading and unloading). However, the residual elastic strains in the HAP phase decrease markedly with increased irradiation, indicating damage at the HAP-collagen interface. Analysis of the X-ray diffraction peak widths shows that unit cells of HAP which are under the highest initial residual strains are most able to relax due to irradiation, resulting in a net decrease in the strain distribution (RMS strain). The constancy of apparent moduli is explained by

  20. The effect of naturally occurring chronic kidney disease on the micro-structural and mechanical properties of bone.

    Directory of Open Access Journals (Sweden)

    Anna Shipov

    Full Text Available Chronic kidney disease (CKD is a growing public health concern worldwide, and is associated with marked increase of bone fragility. Previous studies assessing the effect of CKD on bone quality were based on biopsies from human patients or on laboratory animal models. Such studies provide information of limited relevance due to the small size of the samples (biopsies or the non-physiologic CKD syndrome studied (rodent models with artificially induced CKD. Furthermore, the type, architecture, structure and biology of the bone of rodents are remarkably different from human bones; therefore similar clinicopathologic circumstances may affect their bones differently. We describe the effects of naturally occurring CKD with features resembling human CKD on the skeleton of cats, whose bone biology, structure and composition are remarkably similar to those of humans. We show that CKD causes significant increase of resorption cavity density compared with healthy controls, as well as significantly lower cortical mineral density, cortical cross-sectional area and cortical cross-sectional thickness. Young's modulus, yield stress, and ultimate stress of the cortical bone material were all significantly decreased in the skeleton of CKD cats. Cancellous bone was also affected, having significantly lower trabecular thickness and bone volume over total volume in CKD cats compared with controls. This study shows that naturally occurring CKD has deleterious effects on bone quality and strength. Since many similarities exist between human and feline CKD patients, including the clinicopathologic features of the syndrome and bone microarchitecture and biology, these results contribute to better understanding of bone abnormalities associated with CKD.

  1. Effect of thermodisinfection on mechanic parameters of cancellous bone.

    Science.gov (United States)

    Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander

    2016-09-01

    Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.

  2. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing.

  3. Changes of trabecular bone under control of biologically mechanical mechanism

    Science.gov (United States)

    Wang, C.; Zhang, C. Q.; Dong, X.; Wu, H.

    2008-10-01

    In this study, a biological process of bone remodeling was considered as a closed loop feedback control system, which enables bone to optimize and renew itself over a lifetime. A novel idea of combining strain-adaptive and damage-induced remodeling algorithms at Basic Multicellular Unit (BMU) level was introduced. In order to make the outcomes get closer to clinical observation, the stochastic occurrence of microdamage was involved and a hypothesis that remodeling activation probability is related to the value of damage rate was assumed. Integrated with Finite Element Analysis (FEA), the changes of trabecular bone in morphology and material properties were simulated in the course of five years. The results suggest that deterioration and anisotropy of trabecluar bone are inevitable with natural aging, and that compression rather than tension can be applied to strengthen the ability of resistance to fracture. This investigation helps to gain more insight the mechanism of bone loss and identify improved treatment and prevention for osteoporosis or stress fracture.

  4. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.

    Science.gov (United States)

    Bakhtiyari, Sanaz Soleymani Eil; Karbasi, Saeed; Monshi, Ahmad; Montazeri, Mahbobeh

    2016-01-01

    To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate.

  5. Hybrid Membranes of PLLA/Collagen for Bone Tissue Engineering: A Comparative Study of Scaffold Production Techniques for Optimal Mechanical Properties and Osteoinduction Ability

    Directory of Open Access Journals (Sweden)

    Flávia Gonçalves

    2015-01-01

    Full Text Available Synthetic and natural polymer association is a promising tool in tissue engineering. The aim of this study was to compare five methodologies for producing hybrid scaffolds for cell culture using poly-l-lactide (PLLA and collagen: functionalization of PLLA electrospun by (1 dialkylamine and collagen immobilization with glutaraldehyde and by (2 hydrolysis and collagen immobilization with carbodiimide chemistry; (3 co-electrospinning of PLLA/chloroform and collagen/hexafluoropropanol (HFP solutions; (4 co-electrospinning of PLLA/chloroform and collagen/acetic acid solutions and (5 electrospinning of a co-solution of PLLA and collagen using HFP. These materials were evaluated based on their morphology, mechanical properties, ability to induce cell proliferation and alkaline phosphatase activity upon submission of mesenchymal stem cells to basal or osteoblastic differentiation medium (ODM. Methods (1 and (2 resulted in a decrease in mechanical properties, whereas methods (3, (4 and (5 resulted in materials of higher tensile strength and osteogenic differentiation. Materials yielded by methods (2, (3 and (5 promoted osteoinduction even in the absence of ODM. The results indicate that the scaffold based on the PLLA/collagen blend exhibited optimal mechanical properties and the highest capacity for osteodifferentiation and was the best choice for collagen incorporation into PLLA in bone repair applications.

  6. Structural orientation dependent sub-lamellar bone mechanics.

    Science.gov (United States)

    Jimenez-Palomar, Ines; Shipov, Anna; Shahar, Ron; Barber, Asa H

    2015-12-01

    The lamellar unit is a critical component in defining the overall mechanical properties of bone. In this paper, micro-beams of bone with dimensions comparable to the lamellar unit were fabricated using focused ion beam (FIB) microscopy and mechanically tested in bending to failure using atomic force microscopy (AFM). A variation in the mechanical properties, including elastic modulus, strength and work to fracture of the micro-beams was observed and related to the collagen fibril orientation inferred from back-scattered scanning electron microscopy (SEM) imaging. Established mechanical models were further applied to describe the relationship between collagen fibril orientation and mechanical behaviour of the lamellar unit. Our results highlight the ability to measure mechanical properties of discrete bone volumes directly and correlate with structural orientation of collagen fibrils.

  7. Effect of consumption of fatty acids, calcium, vitamin D and boron with regular physical activity on bone mechanical properties and corresponding metabolic hormones in rats.

    Science.gov (United States)

    Naghii, M R; Ebrahimpour, Y; Darvishi, P; Ghanizadeh, G; Mofid, M; Torkaman, G; Asgari, A R; Hedayati, M

    2012-03-01

    The consumption of fatty acids, nutrients, and regular physical activity, individually influence bone mechanical properties in rats. To investigate their effects in combination, male rats were divided into the seven groups: G1: regular food and drinking water; G2: same as Gr.1 + physical activity (Whole body vibration; WBV); G3: same as Gr.2 + Calcium, Vit. D, Boron; G4: same as Gr.3 + canola oil; G5: same as Gr.3 + sunflower oil; G6: same as Gr.3 + mix of sunflower oil and canola oil; and G7: same as Gr.3 + coconut oil; and treated for 8 weeks. Analysis between the control with the groups 2 and 3 revealed that vibration in the G2 increased the body weight (P = 0.04), with no other major difference in plasma and bone indices. Comparison between the control with the G4-G7 (the oil groups) revealed that the rats in the G5 had a lower body weight (15 % less) and a significant increase in plasma levels of Estradiol in the G7 was noted. In addition, levels of Testosterone in the G4 and G7, and Free Testosterone in the G7 had a remarkable increase. Similar trend was observed for plasma levels of Vit. D in the G4 and G5. The stiffness and the breaking strength of the femur in the G7, and the breaking strength of the lumbar in the G7 compared to the control and the G4 and G5 was significantly higher and tended to increase in comparison to the G6. Better and stronger measurements observed for coconut oil is warranted to further study its effect on biomechanical properties of bones.

  8. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  9. Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius.

    Science.gov (United States)

    Mueller, Thomas L; Stauber, Martin; Kohler, Thomas; Eckstein, Felix; Müller, Ralph; van Lenthe, G Harry

    2009-02-01

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength. Bone strength depends, among others, on bone density, bone geometry and its internal architecture. With the recent introduction of a new generation high-resolution 3D peripheral quantitative computed tomography (HR-pQCT) system, direct quantification of structural bone parameters has become feasible. Furthermore, it has recently been demonstrated that bone mechanical competence can be derived from HR-pQCT based micro-finite element modeling (microFE). However, reproducibility data for HR-pQCT-derived mechanical indices is not well-known. Therefore, the aim of this study was to quantify reproducibility of HR-pQCT-derived indices. We measured 14 distal formalin-fixed cadaveric forearms three times and analyzed three different regions for each measurement. For each region cortical and trabecular parameters were determined. Reproducibility was assessed with respect to precision error (PE) and intraclass correlation coefficient (ICC). Reproducibility values were found to be best in all three regions for the full bone compartment with an average PE of 0.79%, followed by the cortical compartment (PE=1.19%) and the trabecular compartment with an average PE of 2.31%. The mechanical parameters showed similar reproducibility (PE=0.48%-2.93% for bone strength and stiffness, respectively). ICC showed a very high reproducibility of subject-specific measurements, ranging from 0.982 to 1.000, allowing secure identification of individual donors ranging from healthy to severely osteoporotic subjects. From these in vitro results we conclude that HR-pQCT derived morphometric and mechanical parameters are highly reproducible such that differences in bone structure and strength can be detected with a reproducibility error smaller than 3%; hence, the technique has a high potential to become a tool for detecting bone quality and bone competence of individual subjects.

  10. Study on the mechanical and biological property of PMMA bone cement modified with ultra fine glass fibers and nano-hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    WU Qisheng; CHENG Futao; WEI Wuji

    2007-01-01

    In this study,polymethylmethacrylate(PMMA)bone cement (BC) was modified with ultra-fine glass fibers (UFGF)and nano-hydroxapatite(nano-HAP) synthesized by hydrothermal method.The results show that when the contents of both UFGF and nano-HAP powders are about 5%,the ultimate tensile strength(UTS),ultimate impact toughness (UIT),tensile strain(TS),and elastic modulus(EM)have been promoted a lot.The interface bond was improved by silicane treatment.Pre-grinding mixture of PMMA,UFGF,and nano-HAP can largely improve the mechanical property of PMMA.The PMMA modified with UFGF and HAP has better bioactivity than that modified with pure UFGF when they share the same content.Nano-HAP powder and modified PMMA were characterized by X-ray diffractometry (XRD),scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR).

  11. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration.

    Science.gov (United States)

    Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo

    2015-12-01

    Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration.

  12. Mechanisms of multiple myeloma bone disease

    Science.gov (United States)

    Galson, Deborah L; Silbermann, Rebecca; Roodman, G David

    2012-01-01

    Multiple myeloma is the second most common hematological malignancy and the most frequent cancer to involve the skeleton. Multiple myeloma bone disease (MMBD) is characterized by abnormal bone remodeling with dysfunction of both bone resorption and bone formation, and thus can be used as a paradigm for other inflammatory bone diseases, and the regulation of osteoclasts and osteoblasts in malignancy. Studies of MMBD have identified novel regulators that increase osteoclastogenesis and osteoclast function, repress osteoblast differentiation, increase angiogenesis, or permanently alter stromal cells. This review will discuss the current understanding of mechanisms of osteoclast and osteoblast regulation in MMBD, and therapeutic approaches currently in use and under development that target mediators of bone destruction and blockade of bone formation for myeloma patients, including new anabolic therapies. PMID:23951515

  13. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  14. Age- and gender-related distribution of bone mineral density and mechanical properties of the proximal humerus; Alters- und geschlechtsabhaengige Knochenmineraldichteverteilung und mechanische Eigenschaften des proximalen Humerus

    Energy Technology Data Exchange (ETDEWEB)

    Lill, H.; Hepp, P.; Korner, J.; Josten, C. [Klinik fuer Unfall- und Wiederherstellungschirurgie, Univ. Leipzig (Germany); Gowin, W. [Center of Muscle and Bone Research, Klinik fuer Radiologie und Nuklearmedizin, Universitaetsklinikum Benjamin Franklin, Freie Univ. Berlin (Germany); Oestmann, J.W. [Klinik fuer Radiologie, Charite, Virchow-Klinikum, Humboldt Univ., Berlin (Germany); Haas, N.P.; Duda, G.N. [Klinik fuer Unfall- und Wiederherstellungschirurgie, Charite, Virchow-Klinikum Humboldt-Univ. Berlin (Germany)

    2002-12-01

    Purpose: To evaluate age- and gender-related mechanical properties and bone mineral density (BMD) of the proximal humerus at different levels and regions. Materials and methods: Mechanical indentation testing, DXA, QCT, pQCT and the radiogrammetry (Cortical Index, CI) were carried out in 70 freshly harvested humeri from 46 human cadavers (23 females, 23-males; median age 70.5 years). Results: In the female group, a high correlation between age and BMD was found ({rho}=0.62 to -0.70, p<0.01) with statistically significant differences between specimens of patients 69 years or younger, and 70 years or older (p<0.05). In the group of female specimens of age 70 years or older, BMD values were found to be significantly lower compared to their male counterparts (p<0.05). Regardless of the specimen's age, the highest BMD and bone strength were found in the proximal aspect and in the medial and dorsal regions of the proximal humerus. Conclusion: These findings provide an insight into the fracture mechanism of the proximal humerus and should be the basis for designing structure-oriented implants with improved implant-bone stability in osteoporotic patients. (orig.) [German] Ziel: Das Ziel der vorliegenden Studie war die alters- und geschlechtsspezifische Analyse der mechanischen Eigenschaften und der Knochenmineraldichte (BMD) des proximalen Humerus in verschiedenen Hoehen und Regionen. Methoden: Folgende Verfahren wurden angewandt: Mechanische Indentation Testung, DXA, QCT, pQCT und die Radiogrammetrie (Cortical Index, CI). Die Untersuchungen wurden an 70 frischen Humeri von 46 humanen Praeparaten (23 weiblich, 23 maennlich; Alter median: 70,5 Jahre) durchgefuehrt. Ergebnisse: In der Gruppe der weiblichen Humeri fand sich eine hohe Korrelation zwischen Alter und Knochenmineraldichte ({rho}=-0,62 to -0,70 p<0,01) mit statistisch signifikanten Unterschieden zwischen Praeparaten juenger als 69 Jahre und aelter als 70 Jahre (p<0.05). In der Gruppe der weiblichen Praeparate

  15. Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties.

    Science.gov (United States)

    Young, Anne M; Man Ho, Sze; Abou Neel, Ensanya A; Ahmed, Ifty; Barralet, Jake E; Knowles, Jonathan C; Nazhat, Showan N

    2009-07-01

    An experimental, light-curable, degradable polyester-based bone adhesive reinforced with phosphate glass particles ((P(2)O(5))(0.45)(CaO)(x)(Na(2)O)(0.55-)(x), x=0.3 or 0.4mol) or calcium phosphate (monocalcium phosphate/beta-tricalcium phosphate (MCPM/beta-TCP)) has been characterized. Early water sorption (8wt.% at 1week) by the unfilled set adhesive catalysed subsequent bulk degradation (4wt.% at 2weeks) and substantial decline in both elastic and storage moduli. Addition of phosphate glass fillers substantially enhanced this water sorption, catalysed greater bulk mass loss (40-50 and 52-55wt.%, respectively) but enabled generation of a microporous scaffold within 2weeks. The high levels of acidic polymer degradation products (38-50wt.% of original polymer) were advantageously buffered by the filler, which initially released primarily sodium trimetaphosphate (P(3)O93-). Calcium phosphate addition raised polymer water sorption to a lesser extent (16wt.%) and promoted intermediate early bulk mass loss (12wt.%) but simultaneous anomalous increase in modulus. This was attributed to MCPM reacting with absorbed water and beta-TCP to form more homogeneously dispersed brushite (CaHPO(4)) throughout the polymer. Between 2 and 10weeks, linear erosion of both polymer (0.5wt.%week(-1)) and composites (0.7-1.2wt.%week(-1)) occurred, with all fillers providing long-term buffer action through calcium and orthophosphate (PO43-) release. In conclusion, both fillers can raise degradation of bone adhesives whilst simultaneously providing the buffering action and ions required for new bone formation. Through control of water sorption catalysed filler reactions, porous structures for cell support or substantially stiffer materials may be generated.

  16. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    Science.gov (United States)

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  17. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.

    Science.gov (United States)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.

  18. Bone Material Properties in Osteogenesis Imperfecta.

    Science.gov (United States)

    Bishop, Nick

    2016-04-01

    Osteogenesis imperfecta entrains changes at every level in bone tissue, from the disorganization of the collagen molecules and mineral platelets within and between collagen fibrils to the macroarchitecture of the whole skeleton. Investigations using an array of sophisticated instruments at multiple scale levels have now determined many aspects of the effect of the disease on the material properties of bone tissue. The brittle nature of bone in osteogenesis imperfecta reflects both increased bone mineralization density-the quantity of mineral in relation to the quantity of matrix within a specific bone volume-and altered matrix-matrix and matrix mineral interactions. Contributions to fracture resistance at multiple scale lengths are discussed, comparing normal and brittle bone. Integrating the available information provides both a better understanding of the effect of current approaches to treatment-largely improved architecture and possibly some macroscale toughening-and indicates potential opportunities for alternative strategies that can influence fracture resistance at longer-length scales.

  19. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.

    Science.gov (United States)

    Lewis, Gladius; Janna, Si; Bhattaram, Anuradha

    2005-07-01

    Two variants of antibiotic powder-loaded acrylic bone cements (APLBCs) are widely used in primary total joint replacements. In the United States, the antibiotic is manually blended with the powder of the cement at the start of the procedure, while, in Europe, pre-packaged commercially-available APLBCs (in which the blending is carried out using an industrial mixer) are used. Our objective was to investigate the influence of the method of blending gentamicin sulphate with the powder of the Cemex XL formulation on a wide collection of properties of the cured cement. The blending methods used were manual mixing (the MANUAL Set), use of a small-scale, easy-to-use, commercially-available mechanical powder mixer, OmoMix 1 (the MECHANICAL Set), and use of a large-scale industrial mixer (Cemex Genta) [the INDUSTRIAL Set]. In the MECHANICAL and MANUAL Sets, the blending time was 3 min. In preparing the test specimens for each set, the blended powder used contained 4.22 wt% of the gentamicin powder. The properties determined were the strength, modulus, and work-to-fracture (all obtained under four-point bending), plane-strain fracture toughness, Weibull mean fatigue life (fatigue conditions: +/-15 MPa; 2 Hz), activation energy and frequency factor for the cement polymerization process (both determined using differential scanning calorimetry, at heating rates of 5, 10, 15, and 20 Kmin(-1)), the diffusion coefficient for the absorption of phosphate buffered saline, PBS, at 37 degrees C, and the rate of elution of the gentamicin into PBS, at 37 degrees C (E). Also determined were the particle size, particle size distribution, and morphology of the blended powders and of the gentamicin. For each of the cured cement properties (except for E), there is no statistically significant difference between the means for the 3 cements, a finding that parallels the observation that there are no significant differences in either the mean particle size or the morphology of the blended cement

  20. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Science.gov (United States)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  1. Mechanism of mineral formation in bone.

    Science.gov (United States)

    Anderson, H C

    1989-03-01

    The mechanism of mineral formation in bone is seen best where active new bone formation is occurring, e.g., in newly forming subperiosteal bone of the embryo, in the growing bone of young animals, and in healing rickets where the calcification process in osteoid is reactivated. A large body of ultrastructural evidence, using conventional and anhydrous methods for tissue preparation, has shown convincingly that extracellular matrix vesicles are present at or near the mineralization front in all of the above, and that these vesicles are the initial site of apatite mineral deposition. Thus bone resembles growth plate cartilage, predentin, and turkey tendon in having calcification initiated by matrix vesicles. Once the calcification cascade is begun, matrix vesicles are no longer needed to support mineralization and are consumed by the advancing mineralization front in which performed crystals serve as nuclei for the formation of new crystals. The rate of crystal proliferation is promoted by the availability of Ca2+, PO4(3-), and the presence of collagen, and retarded by naturally occurring inhibitors of mineralization such as proteoglycans and several noncollagenous calcium-binding proteins of bone including bone-Gla protein (osteocalcin), phosphoproteins, osteonectin, and alpha-2HS-glycoproteins. New electron microscopic immunocytochemical findings in our laboratory suggest that the origin of alkaline phosphatase-positive bone matrix vesicles is polarized to the mineral-facing side of osteoblasts and may be concentrated near the intercellular junctions of human embryonic osteoblasts.

  2. The mechanical consequences of mineralization in embryonic bone.

    NARCIS (Netherlands)

    Tanck, E.J.M.; Donkelaar, C.C. van; Jepsen, K.J.; Goldstein, S.A.; Weinans, H.; Burger, E.H.; Huiskes, R.

    2004-01-01

    The purpose of this study was to examine the effect of mineralization on the mechanical properties of embryonic bone rudiments. For this purpose, four-point bending experiments were performed on unmineralized and mineralized embryonic mouse ribs at 16 and 17 days of gestational age. Young's modulus

  3. Effects of 1.25-Dihydroxycholecalciferol and Hydroalcoholic Extract of Withania Coagulans Fruit on Bone Mineralization and Mechanical and Histological Properties of Male Broiler Chickens

    Directory of Open Access Journals (Sweden)

    SJ Hosseini

    2016-03-01

    Full Text Available Abstract An experiment was conducted to investigate the effects of hydroalcoholic extract of Withania coagulans (WC fruit and 1.25-dihydroxycholecalciferol (1.25-(OH2 D3 on bone mineralization, mechanical and histological properties of male broiler chickens at 21 and 42 d of age. A total of six hundred male day-old Ross 308 broiler chickens were randomly distributed according to a completely randomized experimental design in a 2×3×2 factorial arrangement with 12 treatments of five replicates of 10 birds each. Treatments consisted of two basal diets (positive control with adequate Ca level and negative control with 30% less Ca, three levels of WC (0, 100, or 200 mg/kg diet, and two levels of 1.25-(OH2 D3 (0 or 0.5 µg/kg diet. Birds were housed in floor pens. The diets were fed ad libitum from one to 42 days of age. On day 21 and 42, one bird per replicate was sacrificed and its tibiae were removed. Both Ca and P retention increased when dietary Ca level was reduced (p<0.001. The addition of 200 mg WC/kg to positive control diet increased Ca retention (p<0.01. Except for tibia diameter, no significant main effects of experimental treatments were observed on tibia physical characteristics or on bone mineralization. The diet with 30% Ca reduction decreased tibia diameter at 42 days of age (p<0.05. The dietary addition of 1.25-(OH2 D3 increased tibia fracture energy, width of tibia mineralized zone, and serum Ca at 42 days of age (p<0.05. At 21 days of age, supplementation of 100 mg WC/kg increased cortical thickness (p<0.05. At 42 days of age, supplementation of 100 mg WC/kg increased tibia shear force (p<0.05 and fracture energy (p<0.01. The results of this experiment showed that supplementation of 100 mg/kg hydroalcoholic extract of WC fruit increased tibia cortical thickness, shear force, and fracture energy.

  4. Quantifying the Effects of Formalin Fixation on the Mechanical Properties of Cortical Bone Using Beam Theory and Optimization Methodology With Specimen-Specific Finite Element Models.

    Science.gov (United States)

    Zhang, Guan-Jun; Yang, Jie; Guan, Feng-Jiao; Chen, Dan; Li, Na; Cao, Libo; Mao, Haojie

    2016-09-01

    The effects of formalin fixation on bone material properties remain debatable. In this study, we collected 36 fresh-frozen cuboid-shaped cortical specimens from five male bovine femurs and immersed half of the specimens into 4% formalin fixation liquid for 30 days. We then conducted three-point bending tests and used both beam theory method and an optimization method combined with specimen-specific finite element (FE) models to identify material parameters. Through the optimization FE method, the formalin-fixed bones showed a significantly lower Young's modulus (-12%) compared to the fresh-frozen specimens, while no difference was observed using the beam theory method. Meanwhile, both the optimization FE and beam theory methods revealed higher effective failure strains for formalin-fixed bones compared to fresh-frozen ones (52% higher through the optimization FE method and 84% higher through the beam theory method). Hence, we conclude that the formalin fixation has a significant effect on bovine cortical bones at small, elastic, as well as large, plastic deformations.

  5. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC;

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...

  6. Mechanical and thermal properties of castor oil polyurethane bone cement after gamma irradiation;Propriedades mecanicas e termicas de poliuretanas derivadas do oleo de mamona usadas como cimento osseo depois da irradiacao com radiacao gamma

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, E.C. [Universidade Tecnologica Federal do Parana (DF/UTFPR), Curitiba, PR (Brazil). Dept. de Fisica; Soboll, D.S. [Universidade Tecnologica Federal Parana (CPGEI/UTFPR), Curitiba, PR (Brazil); Chierice, G.O.; Claro Neto, S. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica; Lepiesnki, C.M. [Universidade Federal do Parana (DF/UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Nascimento, E.M. [Universidade Tecnologica Federal do Parana (DM/UTFPR), Curitiba (Brazil). Dept. de Mecanica

    2009-07-01

    Polyurethanes from castor oil are being employed as bone cement in medical applications. In this work the thermal and mechanical properties of gamma irradiated polyurethanes derivative from castor oil were investigated by instrumented indentation, thermogravimetry and scanning electron microscopy. A slightly increase in hardness is observed only for doses as high as 100 kGy. Thermal analysis indicates stability at human body temperature. The glass transition temperature has small changes after gamma irradiation. (author)

  7. Mechanisms of Bone Resorption in Periodontitis

    Directory of Open Access Journals (Sweden)

    Stefan A. Hienz

    2015-01-01

    Full Text Available Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.

  8. How Does The Bone Shaft Geometry Affect its Bending Properties?

    Directory of Open Access Journals (Sweden)

    Kaveh P. Saffar

    2009-01-01

    Full Text Available In this research, ten fresh specimens of sheep tibiae were provided from slaughtered animals. Whole bone specimens were loaded in three-point bending according to standard wet bone test protocols. Mechanical properties were determined and compared with the results which were obtained from two dry bone tests. The results showed that fracture bending moment and bone extrinsic stiffness had significant relations with fracture cross-section dependent parameters (i.e., cross-section area and area moment of inertia. Where, fracture energy and ultimate strength did not have such a relation with these parameters. Finite element modeling of bone shaft was made with simplified geometry (neglecting cross-section variations along bone shaft in two steps: First, by elliptical cross-section and second, by circular cross-section, assuming linear elastic and isotropic properties for the specimens. Elastic (Young’s modulus and fracture load, evaluated from curves obtained from tests, were applied to the finite element model and close results of maximum stress in both test specimen and first (elliptical cross-section model showed up. There was an average difference of about 2% between ultimate strength of wet bone specimens and maximum (tensile stress occurred in the elliptical models. However, this value for circular models was about 16%.

  9. Mechanical properties of viruses.

    Science.gov (United States)

    de Pablo, Pedro J; Mateu, Mauricio G

    2013-01-01

    Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

  10. Mechanical and physicochemical properties of xenogeneic bone scaffold materials A comparative study%猪骨支架材料与人骨支架材料的理化性能及力学特征

    Institute of Scientific and Technical Information of China (English)

    李晋; 曲戎梅; 戴景兴; 周志涛; 原林

    2008-01-01

    BACKGROUND: The core of bone tissue engineering is to construct a scaffold that is similar to human bone tissue structure and features.OBJECTIVE: To compare pathochemical and mechanical characteristics between pig and human bone scaffold materials.DESIGN, TIME AND SETTING: Contrast study was performed at Clinical Anatomy Institute, South Medical University; Guangdong Province Key Laboratory of Tissue Construction and Detection from March to December 2006.MATERIALS: Four fresh health adult human cadavers were provided by South Medical University, Guangzhou Red Cross Society, and the relatives knew the fact. Ultra low temperature freezing 6-month iliac bones of 6 adult swines were also used in this study.METHODS: Pig iliac and healthy adults iliac bones were obtained to remove soft tissue, curettage periosteum and bone marrow. Bone sawing machine was used to cut cancellous bone into smaller bone sections around 5 mm×5 mm×40 mm, which underwent ultrasonic cleaning, H2O2 and alcohol soaking, freeze drying and radiation treatment; finally, xenogeneic bone scaffold and allogeneic bone scaffold were obtained.MAIN OUTCOME MEASURES: Xenogeneic bone scaffold material and human allograft bone scaffold were observed with scanning electron microscopy to compare porosity, contents of protein content, calcium and phosphorus, and mechanical properties.RESULTS: Xenogeneic bone scaffold and allogeneic bone scaffold both had intrinsical bone trabecula, trabecular spaces and bone cavity system. Both of them had unabridged natural three dimensional network structure. The 3D supporting frames of them were complete. The xenogeneic bone scaffold had more spaces than allogeneic bone scaffold. The size of both scaffolds was approximation, about 400 μm. The interval porosity of xenogeneic bone scaffold was higher than the allogeneic bone scaffold (P0.05), and there was no significant difference in Young's modulus of xenogeneic bone scaffold and allogeneic bone scaffold (P>0.05).CONCLUSION

  11. Vitamin D and Bone Health; Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    J.J. Strain

    2010-07-01

    Full Text Available Osteoporosis is associated with increased morbidity, mortality and significant economic and health costs. Vitamin D is a secosteriod hormone essential for calcium absorption and bone mineralization which is positively associated with bone mineral density [BMD]. It is well-established that prolonged and severe vitamin D deficiency leads to rickets in children and osteomalacia in adults. Sub-optimal vitamin D status has been reported in many populations but it is a particular concern in older people; thus there is clearly a need for effective strategies to optimise bone health. A number of recent studies have suggested that the role of vitamin D in preventing fractures may be via its mediating effects on muscle function (a defect in muscle function is one of the classical signs of rickets and inflammation. Studies have demonstrated that vitamin D supplementation can improve muscle strength which in turn contributes to a decrease in incidence of falls, one of the largest contributors to fracture incidence. Osteoporosis is often considered to be an inflammatory condition and pro-inflammatory cytokines have been associated with increased bone metabolism. The immunoregulatory mechanisms of vitamin D may thus modulate the effect of these cytokines on bone health and subsequent fracture risk. Vitamin D, therefore, may influence fracture risk via a number of different mechanisms.

  12. Development and mechanical characterization of porous titanium bone substitutes.

    Science.gov (United States)

    Barbas, A; Bonnet, A-S; Lipinski, P; Pesci, R; Dubois, G

    2012-05-01

    Commercially Pure Porous Titanium (CPPTi) can be used for surgical implants to avoid the stress shielding effect due to the mismatch between the mechanical properties of titanium and bone. Most researchers in this area deal with randomly distributed pores or simple architectures in titanium alloys. The control of porosity, pore size and distribution is necessary to obtain implants with mechanical properties close to those of bone and to ensure their osseointegration. The aim of the present work was therefore to develop and characterize such a specific porous structure. First of all, the properties of titanium made by Selective Laser Melting (SLM) were characterized through experimental testing on bulk specimens. An elementary pattern of the porous structure was then designed to mimic the orthotropic properties of the human bone following several mechanical and geometrical criteria. Finite Element Analysis (FEA) was used to optimize the pattern. A porosity of 53% and pore sizes in the range of 860 to 1500 μm were finally adopted. Tensile tests on porous samples were then carried out to validate the properties obtained numerically and identify the failure modes of the samples. Finally, FE elastoplastic analyses were performed on the porous samples in order to propose a failure criterion for the design of porous substitutes.

  13. Interactions between remodelling, architecture and tissue properties in cancellous bone

    OpenAIRE

    Linden, Jacqueline

    2003-01-01

    textabstractThe aim of the research projects described in this thesis was to gain more insight in the regulation of bone remodeling and in the interactions between bone remodeling, architecture and bone tissue properties. The most striking changes during aging and osteoporosis take place in cancellous bone. For this reason, the research presented in this thesis focussed on bone remodeling in cancellous bone. We used computer modeling, finite element calculations and in vivo labeled bone speci...

  14. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2 6.7 MHz frequency range

    Science.gov (United States)

    Hakulinen, Mikko A.; Day, Judd S.; Töyräs, Juha; Timonen, Matti; Kröger, Heikki; Weinans, Harrie; Kiviranta, Ilkka; Jurvelin, Jukka S.

    2005-04-01

    The ultrasound (US) backscattering method has been introduced as an alternative for the through-transmission measurement of sound attenuation and speed in diagnosis of osteoporosis. Both attenuation and backscattering depend strongly on the US frequency. In this study, 20 human trabecular bone samples were measured in transmission and pulse-echo geometry in vitro. The aim of the study was to find the most sensitive frequency range for the quantitative ultrasound (QUS) analyses. Normalized broadband US attenuation (nBUA), speed of sound (SOS), broadband US backscatter (BUB) and integrated reflection coefficient (IRC) were determined for each sample. The samples were spatially scanned with five pairs of US transducers covering a frequency range of 0.2-6.7 MHz. Furthermore, mechanical properties and density of the same samples were determined. At all frequencies, SOS, BUB and IRC showed statistically significant linear correlations with the mechanical properties or density of human trabecular bone (0.51 < r < 0.82, 0.54 < r < 0.81 and 0.70 < r < 0.85, respectively). In contrast to SOS, IRC and BUB, nBUA showed statistically significant correlations with mechanical parameters or density at the centre frequency of 1 MHz only. Our results suggest that frequencies up to 5 MHz can be useful in QUS analyses for the prediction of bone mechanical properties and density. Since the use of higher frequencies provides better axial and spatial resolution, improved structural analyses may be possible. While extensive attenuation of high frequencies in trabecular bone limits the clinically feasible frequency range, selection of optimal frequency range for in vivo QUS application should be carefully considered.

  15. Physicomechanical properties of the extracellular matrix of a demineralized bone

    Science.gov (United States)

    Kirilova, I. A.; Sharkeev, Yu. P.; Nikolaev, S. V.; Podorozhnaya, V. T.; Uvarkin, P. V.; Ratushnyak, A. S.; Chebodaeva, V. V.

    2016-08-01

    The article describes the results of a study of physicomechanical properties of a demineralized bone matrix of human cancellous and compact bones. A demineralized cancellous bone was shown to have the best characteristics of a porous system for colonization of matrices by cells. The ultimate stress and elasticity modulus of samples of demineralized femoral heads isolated in primary hip replacement was demonstrated to vary in wide ranges. The elasticity modulus ranged from 50 to 250 MPa, and the tensile strength varied from 1.1 to 5.5 MPa. Microhardness measurements by the recovered indentation method were not possible because of the viscoelastic properties of a bone material. To study the piezoelectric properties of samples, a measuring system was developed that comprised a measuring chamber with contact electrodes, a system for controlled sample loading, an amplifier-converter unit, and signal recording and processing software. The measurement results were used to determine the dependence of the signal amplitude on the dynamic deformation characteristics. The findings are discussed in terms of the relationship between the mechanical and electrical properties and the structure of the organic bone component.

  16. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann;

    2015-01-01

    -species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...

  17. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    Science.gov (United States)

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  18. Tooth and bone deformation: structure and material properties by ESPI

    Science.gov (United States)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  19. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet.

    Science.gov (United States)

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-02-04

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower (p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  20. An adaptation model for trabecular bone at different mechanical levels

    Directory of Open Access Journals (Sweden)

    Lv Linwei

    2010-07-01

    Full Text Available Abstract Background Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different. Methods An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method. Results The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone. Conclusions The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological

  1. Fluoride inhibits the response of bone cells to mechanical loading

    NARCIS (Netherlands)

    Willems, H.M.E.; van den Heuvel, E.G.H.M.; Castelein, S.; Keverling Buisman, J.; Bronckers, A.L.J.J.; Bakker, A.D.; Klein-Nulend, J.

    2011-01-01

    The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The mechano-respon

  2. Molecular mechanism of bone formation and regeneration

    Institute of Scientific and Technical Information of China (English)

    Akira Yamaguchi

    2008-01-01

    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  3. Mechanical Properties of Cells

    Science.gov (United States)

    Bradley, Robert; Becerril, Joseph; Jeevarajan, Anthony

    2007-01-01

    Many physiologic and pathologic processes alter the biomechanical properties of the tissue they affect, and these changes may be manifest at the single cell level. The normal and abnormal mechanical properties of a given cell type can be established with the aid of an atomic force microscope (AFM), nonetheless, consistency in the area of the tip has been a mayor limitation of using the AFM for quantitative measurements of mechanical properties. This project attempts to overcome this limitation by using materials with a known elastic modulus, which resembles the one of the cell, to create force-deformation curves to calculate the area of indentation by means of Hooke s Law (sigma = E(epsilon)), which states that stress (sigma) is proportional to the strain (epsilon) where the constant of proportionality, E, is called the Young s modulus, also referred as the elastic modulus. Hook s Law can be rearranged to find the area of indentation (Area= Force/ E(epsilon)), where the indentation force is defined by the means of the added mass spring calibration method.

  4. In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering.

    Science.gov (United States)

    Ergun, Asli; Yu, Xiaojun; Valdevit, Antonio; Ritter, Arthur; Kalyon, Dilhan M

    2011-12-01

    In vitro culturing and mechanical properties of three types of three-dimensional poly(caprolactone) scaffolds with interconnecting open-foam networks are reported. The scaffolds targeted bone tissue regeneration and were fabricated using twin screw extrusion and coextrusion techniques, for continuous mixing/shaping and formation of single or multilayers with distinct and tailorable porosities and pore sizes. Human fetal preosteoblastic cells, hFOB, were cultured on the extruded and coextruded scaffolds under osteogenic supplements and the samples of the resulting tissue constructs were removed and characterized for cell viability and proliferation using the MTS assay, differentiation, and mineralized matrix synthesis via the alkaline phosphatase, ALP, activity and Alizarin Red staining and cell migration using confocal microscopy and scanning electron microscopy. The hFOB cells formed a confluent lining on scaffold surfaces, migrated to the interior and generated abundant extracellular matrix after 2 weeks of culturing, indicative of the promise of such scaffolds for utilization in tissue engineering. The scaffolds and tissue constructs exhibited compressive fatigue behavior that was similar to that of cancellous bone, suggesting the suitability of their use as bone graft substitutes especially for repair of critical-sized defects or nonunion fractures.

  5. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    Science.gov (United States)

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  6. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.;

    1997-01-01

    The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid, thes...

  7. Interactions between remodelling, architecture and tissue properties in cancellous bone

    NARCIS (Netherlands)

    J.C. van der Linden (Jacqueline)

    2003-01-01

    textabstractThe aim of the research projects described in this thesis was to gain more insight in the regulation of bone remodeling and in the interactions between bone remodeling, architecture and bone tissue properties. The most striking changes during aging and osteoporosis take place in cancello

  8. Determinants of ovine compact bone viscoelastic properties: effects of architecture, mineralization, and remodeling.

    Science.gov (United States)

    Les, C M; Spence, C A; Vance, J L; Christopherson, G T; Patel, B; Turner, A S; Divine, G W; Fyhrie, D P

    2004-09-01

    Significant decreases in ovine compact bone viscoelastic properties (specifically, stress-rate sensitivity, and damping efficiency) are associated with three years of ovariectomy and are particularly evident at higher frequencies [Proc. Orthop. Res. Soc. 27 (2002) 89]. It is unclear what materials or architectural features of bone are responsible for either the viscoelastic properties themselves, or for the changes in those properties that were observed with estrogen depletion. In this study, we examined the relationship between these viscoelastic mechanical properties and features involving bone architecture (BV/TV), materials parameters (ash density, %mineralization), and histologic evidence of remodeling (%remodeled, cement line interface). The extent of mineralization was inversely proportional to the material's efficiency in damping stress oscillations. The damping characteristics of bone material from ovariectomized animals were significantly more sensitive to variation in mineralization than was bone from control animals. At low frequencies (6 Hz or less), increased histologic evidence of remodeling was positively correlated with increased damping efficiency. However, the dramatic decreases in stress-rate sensitivity that accompanied 3-year ovariectomy were seen throughout the bone structure and occurred even in areas with little or no secondary Haversian remodeling as well as in areas of complete remodeling. Taken together, these data suggest that, while the mineral component may modify the viscoelastic behavior of bone, the basic mechanism underlying bone viscoelastic behavior, and of the changes in that behavior with estrogen depletion, reside in a non-mineral component of the bone that can be significantly altered in the absence of secondary remodeling.

  9. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet

    Science.gov (United States)

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-01-01

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower (p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health. PMID:28165410

  10. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L. Mill. (Cactaceae Cladodes as Calcium Source in Diet

    Directory of Open Access Journals (Sweden)

    Ezequiel Hernández-Becerra

    2017-02-01

    Full Text Available Mechanical, microstructural properties, mineral content and bone mineral density (BMD of the femur were evaluated in growing rats fed with Opuntia ficus indica (L. Mill. (Cactaceae cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet. The failure load of femurs was significantly lower (p ≤ 0.05 in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi and trabecular thickness (Tb.Th of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05 than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  11. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  12. Biomechanical Properties of Bone and Biomechanics of Age - Related Fractures - Review

    Directory of Open Access Journals (Sweden)

    Rezzan Günaydın

    2007-06-01

    Full Text Available From a biomechanical viewpoint, fractures are due to a structural failure of the bone. This failure occurs when the forces applied to the bone exceed its load – bearing capacity. The load – bearing capacity of a bone depends on the geometry (its size, shape and distribution of bone mass, and the material properties of a bone as well as the direction and magnitude of applied load. Bone fragility can be defined by biomechanical parameters such as strength, brittleness and work to failure. Strategies to reduce fracture risk must be based on a sound understanding of the cellular, molecular and biomechanical mechanisms that underlie the increased risk of fractures while aging. In this review biomechanics of bone and the etiology of age – related fractures from a biomechanical viewpoint have been discussed in the view of current literature. (From the World of Osteoporosis 2007;13:44-8

  13. Effects of short-term alendronate treatment on the three-dimensional microstructural, physical and mechanical properties of dog trabecular bone

    DEFF Research Database (Denmark)

    Hu, J; Ding, Ming; Søballe, K;

    2002-01-01

    The bisphosphonate, alendronate, is well known for its potent inhibition of osteoclast-mediated bone resorption. It has been used clinically for the treatment of osteoporosis and has also recently been used to reduce osteolysis around prostheses in a canine revision model of implant loosening (fe...

  14. Bone Fragility in Turner Syndrome: Mechanisms and Prevention Strategies.

    Science.gov (United States)

    Faienza, Maria Felicia; Ventura, Annamaria; Colucci, Silvia; Cavallo, Luciano; Grano, Maria; Brunetti, Giacomina

    2016-01-01

    Bone fragility is recognized as one of the major comorbidities in Turner syndrome (TS). The mechanisms underlying bone impairment in affected patients are not clearly elucidated, but estrogen deficiency and X-chromosomal abnormalities represent important factors. Moreover, although many girls with TS undergo recombinant growth hormone therapy to treat short stature, the efficacy of this treatment on bone mineral density is controversial. The present review will focus on bone fragility in subjects with TS, providing an overview on the pathogenic mechanisms and some prevention strategies.

  15. Mechanical properties of radial bone defects treated with autogenous graft covered with hydroxyapatite in rabbit Propriedades mecânicas de defeito de osso radial tratado com enxerto autógeno coberto com nano-hydroxyapatite em coelho

    Directory of Open Access Journals (Sweden)

    Davood Sharifi

    2012-03-01

    Full Text Available PURPOSE: To determine biomechanical property of autogenous bone graft covered with hydroxyapatite in the defect of radial bone in rabbit. METHODS: Eighteen adult male New Zealand white rabbits were used which were divided into three groups (I, II, III of six rabbits each. A segmental bone defect of 10 mm in length was created in the middle of the right radial shaft under general effective anesthesia in all rabbits and were stabilized using mini-plate with four screws. The defects In group I were left as such without filler, whereas in group II the defect were filled up with harvested 10 mm rib bone and in group III the defect were packed with rib bone covered with nano-hydroxyapatite. All rabbits in three groups were divided into two subgroups (one month and three months duration with three rabbits in each one. RESULTS: The mechanical property and the mean load for fracturing normal radial bone was recorded 388.2±6 N whereas it was 72.4±12.8 N for group I in 1 month duration which was recorded 182.4±14.2 N for group II and 211.6±10.4 N for group III at the end of 1 month. These values were 97.6±10.2 N for group I and 324.6±8.2 N for group II and 372.6±17.4 N for group III at the end of three months after implantation. CONCLUSION: Implantation of autologous graft covered with hydroxyapatite indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.OBJETIVO: Determinar as propriedades biomecânicas de enxerto ósseo autógeno coberto com hidroxiapatita em defeito do osso radial em coelhos. MÉTODOS: Foram utilizados 18 coelhos adultos, machos, brancos, Nova Zelândia, distribuídos em três grupos (I, II, III de seis coelhos cada. Um defeito segmentar de 10 mm de comprimento foi criado no meio do eixo radial direito sob anestesia geral efetiva em todos os coelhos e foram fixados usando mini-placa com quatro parafusos. Os

  16. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.

    Science.gov (United States)

    Badr-Mohammadi, Mohammad-Reza; Hesaraki, Saeed; Zamanian, Ali

    2014-01-01

    In the present study, different amounts (0.5-5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100-1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80% higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (α-TCP) and beta-tricalcium phosphate (β-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of β-TCP at 1,200 °C and progression of α-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties

  17. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  18. [Effects of SERMs on bone health. Mechanisms of bone mass control by selective estrogen receptor modulator].

    Science.gov (United States)

    Imai, Yuuki; Kato, Shigeaki

    2010-03-01

    The bone mass, which is controlled by the balances between bone formation and bone resorption can be reduced by estrogen deficiency in post-menopausal osteoporosis. Reduced bone mass can be recovered by hormone replacement therapy (HRT) , however, HRT has various side effects. Although SERMs can rescue the bone mass with less side effect compared to HRT, the precise mechanisms of this effect is still elusive. From the results of the analyses for osteoclast specific estrogen receptor (ER) alphaknockout mice and the genome wide approach of ERalphabinding site, estrogen and SERMs can, at least in part, protect the bone mass by inducing the expression of Fas ligand and controling the life span of osteoclasts. More precise molecular mechanisms of the effect of SERM, especially in tissue/cell type specificity, may help to investigate new SERM, which is more specific and effective to treat post-menopausal osteoporosis.

  19. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    Science.gov (United States)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  20. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Arghavan Farzadi

    Full Text Available Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z, on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  1. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    Science.gov (United States)

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  2. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  3. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  4. Mechanical Property of Foamed Metal

    Institute of Scientific and Technical Information of China (English)

    LIU Pei-sheng; SANG Hai-bo

    2004-01-01

    A comprehensive study on the mechanical behavior of foamed metals was demonstrated. The relationship among their mechanical properties, preparation method, porosity and the structure was briefly studied as well.

  5. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    such as osteoarthrosis and osteoporosis, and for the design, fixation and durability of total joint prosthesis. The specific aims of the present studies were: 1) to investigate normal age-related variations in the mechanical, physical/compositional, and structural properties of human tibial trabecular bone; and 2......) to investigate the age-related and osteoarthrosis-related changes in the mechanical properties of the human tibial cartilage-bone complex; and 3) to evaluate mutual associations among various properties. Normal specimens from human autopsy proximal tibiae were used for investigation of age variations...

  6. Relationships among maxillofacial morphologies, bone properties, and bone metabolic markers in patients with jaw deformities.

    Science.gov (United States)

    Saito, D; Mikami, T; Oda, Y; Hasebe, D; Nishiyama, H; Saito, I; Kobayashi, T

    2016-08-01

    The aim of this study was to determine the relationships among bone properties, bone metabolic markers, and types of jaw deformity. The subjects were 55 female patients with jaw deformities. Skeletal morphology was examined using lateral cephalograms, and the patients were divided into three groups according to the type of anteroposterior skeletal pattern. Serum osteocalcin, bone alkaline phosphatase, and tartrate-resistant acid phosphatase isoform 5b, as well as deoxypyridinoline in urine, were measured as bone metabolic markers. Quantitative ultrasound (QUS) measurements were used to assess bone properties at the calcaneal bone. The bone volume and bone density of the condylar process were measured in 43 patients by computed tomography. There were no significant differences in bone metabolic markers and QUS parameters between the groups, although bone formation and resorption markers tended to be higher in patients with a protrusive mandible. On the other hand, patients with mandibular retrusion had a higher tendency to have small and dense condylar processes. In conclusion, the results suggest that growth depression or a degenerative change in the mandibular condyle is involved in the pathogenesis of mandibular retrusion, although risk factors for progressive condylar resorption were not determined.

  7. Preparation and physicochemical properties of scaffold materials of heterogeneous deproteinized bone

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; LI Qi-hong; TANG Kang-lai; YANG Liu; JIAN Yue-kui

    2007-01-01

    Objective:To prepare and observe the physicochemical properties of scaffold materials of heterogeneous deproteinized tissue-engineered bone.Methods:Deproteinized bone was made through a series of physicochemical treatments in pig ribs and analyzed with histological observation,scanning electron microscopy, infrared spectrum, X-ray diffraction and energy dispersive analysis, Kjeldahl determination and mechanics analysis.Results:Interstitial collagen fiber was positive and mucin was negative in deproteinized bone,but,both were positive in fresh bone. Deproteinized bone maintained natural pore network.Its pore size was 472.51 μm±7.02μm and the porosity was 78.15 % ± 6.45 %.The results of infrared spectrum showed that collagen was present in deproteinized bone.Both fresh and deproteinized bone had curve of hydroxyapatite.The Ca/P ratios were 1.71 ±0.95and 1.68 ± 0.76 ( P > 0.05 ),and the protein contents were 26.6% ± 2.23% and 19.1% ± 2.14% (P < 0.05)in fresh and deproteinized bone,respectively.There was no significant difference of destruction load under compression and maximal destruction load between fresh and deproteinized bone (P > 0.05).The elastic modulus was higher in deproteinized bone than that in fresh bone (P < 0.05).Conclusions:Physicochemical properties and mechanic strength of deproteinized tissue-engineered bone meet the demands of ideal scaffold materials. But,its immunogenicity should be observed through further experiments for its clinical applications.

  8. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    Science.gov (United States)

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  9. Nuevos enfoques para mejorar las propiedades mecánicas y biológicas de substitutos óseos basados en calcio (New Approaches for Improving Mechanical and Biological Properties of Calcium-Based Bone Substitutes

    Directory of Open Access Journals (Sweden)

    Arias Fernández, José Ignacio.

    2007-12-01

    substitutes, the use of calcareous natural structures such as superficially phosphated corals, the generation of diverse cements based on alpha and beta tricalcium phosphate alone or mixed with natural organic or synthetic compounds, have been tested. One of the forms of calcium phosphate most commonly used is hydroxyapatite (HA, which mixed with diverse organic and inorganic compounds has been developed to improve the resistance to tension, compression and flexion forces. Future challenges are therefore to achieve compounds that not only allow and enhance bone regeneration process, but also give the necessary mechanical support while that process is taking place. In the present article, the main chemical, physical and biological properties of calcium-based bone substitutes are reviewed, and some new approaches to be considered for improving their efficiency, are proposed.

  10. Bone Aging by Advanced Glycation End Products: A Multiscale Mechanical Analysis.

    Science.gov (United States)

    Ganeko, K; Masaki, C; Shibata, Y; Mukaibo, T; Kondo, Y; Nakamoto, T; Miyazaki, T; Hosokawa, R

    2015-12-01

    The quality and quantity of mandibular bone are essential prerequisites for osseointegrated implants. Only the Hounsfield unit on preoperative computed tomography is currently used as a clinical index. Nevertheless, a considerable mismatch occurs between bone quality and the Hounsfield unit. Loss of bone toughness during aging has been accepted based on empirical evidence, but this concept is unlikely evidence based at the level of mechanical properties. Nonenzymatic bone matrix cross-links associated with advanced glycation end products predominate as a consequence of aging. Thus, loss of tissue integrity could diminish the bone toughening mechanism. Here, we demonstrate an impaired bone toughening mechanism caused by mimicking aging in rabbits on a methionine-rich diet, which enabled an enhanced nonenzymatically cross-linked bone matrix. A 3-point bending test revealed a greater reduction in femoral fracture resistance in rabbits on a methionine-rich diet, despite higher maximum and normalized breaking forces (287.3 N and 88.1%, respectively), than in rabbits on a normal diet (262.2 N and 79.7%, respectively). In situ nanoindentation on mandibular cortical bone obtained from rabbits on a methionine-rich diet did not enable strain rate-dependent stiffening and consequent large-dimensional recovery during rapid loading following constant displacement after a rapid-load indentation test as compared with those in rabbits on a normal diet. Such nanoscale structure-function relationships dictate resistance to cracking propagation at the material level and allow for the overall bone toughening mechanism to operate under large external stressors. The strain-dependent stiffening was likely associated with strain-energy transfer to the superior cross-linked bone matrix network of the normal diet, while the reduction in the enzymatically cross-linked matrix in bone samples from rabbits on a methionine-rich diet likely diminished the intrinsic bone toughening mechanism. The

  11. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    Science.gov (United States)

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by standard architectural metrics.

  12. BONE FRAGILITY IN TURNER SYNDROME: MECHANISMS AND PREVENTION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Maria Felicia Faienza

    2016-04-01

    Full Text Available Bone fragility is recognized as one of major comorbidities in Turner Syndrome (TS. The mechanisms underlying bone impairment in affected patients are not clearly elucidated, but estrogen deficiency and X-chromosomal abnormalities represent important factors. Moreover, although many girls with TS undergo recombinant growth hormone (rGH therapy to treat short stature, the efficacy of this treatment on BMD is controversial. The present review will focus on bone fragility in subjects with TS, providing an overview on the pathogenic mechanisms and some prevention strategies.

  13. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    Science.gov (United States)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  14. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    Science.gov (United States)

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  15. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation

    DEFF Research Database (Denmark)

    Trinquier, Anne Marie-Pierre Emilie; Kassem, Moustapha

    2011-01-01

    the mechanisms involved in the age-related defective bone formation. Evidence Acquisition: The mechanisms discussed in this review are based on a PubMed search and knowledge of the authors in the field. Evidence Synthesis: Available basic and clinical studies indicate that multiple mechanisms are involved...

  16. The effects of replacing dicalcium phosphate with Busumbu rock phosphate on performance and the mechanical properties of bone in growing chicks.

    Science.gov (United States)

    Odongo, N E; Plaizier, J; van Straaten, P; McBride, B

    2002-07-01

    Three hundred, day-old broiler chicks, with an average initial weight of 41.8 +/- 1.79 g, were used in a 15-day study (10 birds per battery cage) to characterize their performance and fluorine status when dicalcium phosphate (DCP) was replaced by Busumbu rock phosphate (BRP) as the source of phosphorus in the chicks' ration. The treatments comprised a standard ration with BRP replacing 0, 25%, 50%, 75% or 100% of DCP. Replacing DCP with BRP significantly reduced the final weight of the chicks (p < 0.01), feed intake (p < 0.01), weight gains (p < 0.01) and dry matter digestibility (p < 0.05) but increased (p < 0.05) the feed-to-gain ratio. True phosphorus absorption and the percentage of phosphorus in the tibia were not affected by increasing amounts of BRP in the diet. Increasing levels of BRP in the diet linearly reduced (p < 0.01) the percentage bone ash, calcium, Ca:P ratio, ultimate breaking force, bending moment, stress, and modulus of elasticity. Leg stiffness, lameness, reduced feed intake, and a decline in general health were recorded in 10-40% of the chicks on 75% and 100% BRP, respectively. These results suggest that excessive ingestion of fluorine from the BRP caused the reduction in the chicks' performance.

  17. Effect of boundary conditions on yield properties of human femoral trabecular bone.

    Science.gov (United States)

    Panyasantisuk, J; Pahr, D H; Zysset, P K

    2016-10-01

    Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7-72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient [Formula: see text]. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.

  18. Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time

    Science.gov (United States)

    Vayron, Romain; Matsukawa, Mami; Tsubota, Ryo; Mathieu, Vincent; Barthel, Etienne; Haiat, Guillaume

    2014-03-01

    The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of elastic properties of newly formed bone tissue as a function of healing time. To do so, nanoindentation and micro-Brillouin scattering techniques are coupled following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity. Two rabbits were sacrificed after 7 and 13 weeks of healing time. The histological analyses allow us to distinguish mature and newly formed bone tissue. The bone mechanical properties were measured in mature and newly formed bone tissue. Analysis of variance and Tukey-Kramer tests reveals a significant effect of healing time on the indentation modulus and ultrasonic velocities of bone tissue. The results show that bone mass density increases by 12.2% (2.2% respectively) between newly formed bone at 7 weeks (13 weeks respectively) and mature bone. The dependence of bone properties on healing time may be explained by the evolution of bone microstructure and mineralization.

  19. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  20. Exploration of electric properties of bone compared to cement: streaming potential and piezoelectirc properties

    Science.gov (United States)

    Dry, Carolyn

    2015-03-01

    Bone is a material after which to model construction materials for many reasons, including its great strength, toughness, and adaptability. This paper focuses on bone's intrinsic ability to adapt to its environment, namely loading conditions. Research on bone's electrical properties reveals that two phenomena occur in bone to allow it to adapt to environmental changes; they are the inherent piezoelectric property of bone and the streaming potential of bone [1]. Together they create charge differences that attract ions to specific regions of the bone, namely those under greatest stress, in order to build up the region to handle the applied load. Research on the utilization of these properties in cement in order to increase adaptability was studied along with 1) the inherent electric properties of the cement itself and 2) considered the introduction of a different polymer or ceramic within the cement to impart piezoelectricity and streaming potential.

  1. Mechanical Properties of Materials

    CERN Document Server

    Pelleg, Joshua

    2013-01-01

    The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years.  This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a differ...

  2. A critical damping approach for assessing the role of marrow fat on the mechanical strength of trabecular bone.

    Science.gov (United States)

    Braidotti, P; Stagni, L

    2007-01-01

    Several clinical findings revealed that post-menopausal osteoporosis and age-related osteopenia are accompanied by trabecular bone marrow fat (BMF) increase. To help understand this phenomenon, a vibrating string model is proposed, based on the hypothesis that, when bone marrow properties change, the trabecular bone structure remodels itself to preserve its critical damping state. It is found that an inverse relationship holds between trabecular average length and marrow damping coefficient. Such a result leads us to hypothesize the following bone-weakening mechanism. Since fat-rich bone marrow is a worse damper, a BMF increment causes an increase of trabecular average length, which is accomplished by the absorption of horizontal trabeculae (structurally less important than vertical trabeculae). The resulting bone patterns are in excellent agreement with clinical observations of osteoporotic bone. A definitive confirmation of the proposed mechanism will support a therapeutical approach to widespread osteopenic diseases aimed at avoiding, or limiting, BMF increase.

  3. Mechanical design optimization of bioabsorbable fixation devices for bone fractures.

    Science.gov (United States)

    Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret

    2009-03-01

    Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.

  4. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  5. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    Science.gov (United States)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  6. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  7. OSL properties of anthropological bone and tooth

    Energy Technology Data Exchange (ETDEWEB)

    Meric, Niyazi [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler-Ankara (Turkey)], E-mail: meric@ankara.edu.tr; Kosal, Mehmet [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler-Ankara (Turkey)], E-mail: kosal@eng.ankara.edu.tr; Altay Atlihan, M. [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler-Ankara (Turkey)], E-mail: atlihan@eng.ankara.edu.tr; Rabia Yuece, Ulkue [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler-Ankara (Turkey)], E-mail: ulku.yuce@taek.gov.tr

    2008-06-15

    The aim of present work was to investigate whether anthropological bone and teeth can be used in dosimetric and dating studies. The radiation dose responses of anthropological human bone and pig teeth were obtained and studied using infrared stimulated luminescence (IRSL). The radiation dose responses of these materials were found to be compatible with commonly used feldspar and quartz compounds. The IRSL signal was shown to be linear with a radiation dose until {approx}200 Gy and stable at ambient temperature, which may allow the use of such materials for dating.

  8. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  9. Mechanical Properties and Biocompatibility of a Biomaterial Based on Deproteinized Hydroxyapatite and Endodentine Cement

    Directory of Open Access Journals (Sweden)

    Rupeks Lauris

    2016-05-01

    Full Text Available Hydroxyapatite is used for bone reconstruction, in order to improve its mechanical properties different substances can be added. In our study new biomaterial is created from deproteinised hydroxyaptite and endodentic cement, its mechanical properties were tested. Material was implanted subcutaneous in rats, then histological and biocompatability tests were performed. Results indicate that stuff has good mechanical properties, short setting time and gradual resorption creating porosity and ability to integrate in bone.

  10. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  11. Material Properties of the Mandibular Trabecular Bone

    Directory of Open Access Journals (Sweden)

    Éva Lakatos

    2014-01-01

    Full Text Available The present paper introduces a numerical simulation aided, experimental method for the measurement of Young’s modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young’s modulus values ranged from 6.9 to 199.5 MPa.

  12. 卵巢切除对大鼠皮质骨结构和力学性能的影响%Effect of ovariectomy on structure and mechanical properties o f cortical bone in rat

    Institute of Scientific and Technical Information of China (English)

    闫景龙; 戴克戎; 赵雅君; 陈赞

    2001-01-01

    Objective With the aim of studying the changes in geo metry,morphology and mechanical properties of cortical bone in ovariectomized ra t s,the authors tried to find out the mechanism of changes in cortical bone due to estrogenic hormone deficiency. Methods Fifty-six female SD rats,three months old,weighing 240 g ,were randomly divided into sham-operated group(sham),and ovariectomined group( OVX).Seven rats each time were killed at the end of the 4 th,12 th,20 th and 28 th week,and tibias were taken out for experiment.The left tibia was excised at t he junction of proximal 3/5 and distal 2/5,and was photographed under electron m icroscope.The total tissue area,cortical area,periosteal perimeter,area of marro w cavity and perimeter of endosteum were measured.For the right tibia,the contin u ous loading point was chosen at proximal 3/5 and distal 2/5 as place to make thr ee-point bending tests. Results In the sham group,the total tissue area and periosteal p erimeter gradually increased from 4 th to 28 th week while there was no distinct change in the area of marrow cavity and perimeter of endosteum.In OVX group the total tissue area and periosteal perimeter also showed a tendency to increase,b ut there was no significant difference between the two groups.The perimeter of e ndosteum and area of marrow cavity were significantly larger than those in the s h am group,but no distinct difference was found in the cortical area of tibia betw een the two groups at the same stage of experiment.The three-point bending test showed that from 4 th to 28 th week,the structure strain and stiffness of tibia increased gradually in both groups, but there was no significant difference betw een the two groups.Neither was in the mechanical properties of tibial cortical b one between the two groups at every stage of experiment. Conclusion The effect of ovariectomy on corticat bone mainly consi s ts of expanded area of marrow cavity while periosteum was little affected and no remarkable

  13. Determination of mechanical properties of impacted human morsellized cancellous allografts for revision joint arthroplasty.

    Science.gov (United States)

    Tanabe, Y; Wakui, T; Kobayashi, A; Ohashi, H; Kadoya, Y; Yamano, Y

    1999-12-01

    This paper deals with the characterization of mechanical properties of impacted morsellized cancellous allograft (IMCA) produced by dynamic compaction of allograft femoral heads ground by commercially available bone mills, i.e. rotating rasp and reciprocating type bone mills. Various ranges and profiles of particle size in the graft aggregates were obtained using these bone mills, and the effect of number of compaction as well as the distribution of particle sizes on the mechanical properties of IMCA under quasistatic compression and shear loading conditions was discussed. The morsellized cancellous allograft prepared by the reciprocating type bone mill showed a broad distribution of particle sizes, and gave IMCA superior mechanical properties to the graft with a more uniform size distribution, or prepared by the rotating rasp type bone mills. The increase of number of compaction also improved the mechanical properties of IMCA in compression.

  14. Acrylic bone cements: influence of time and environment on physical properties.

    Science.gov (United States)

    Nottrott, Markus

    2010-06-01

    Acrylic bone cements are in extensive use in joint replacement surgery. They are weight bearing and load transferring in the bone-cement-prosthesis complex and therefore, inter alia, their mechanical properties are deemed to be crucial for the overall outcome. In spite of adequate preclinical test results according to the current specifications (ISO, ASTM), cements with inferior clinical results have appeared on the market. The aim of this study was to investigate whether it is possible to predict the long term clinical performance of acrylic bone cement on the basis of mechanical in vitro testing. We performed in vitro quasistatic testing of cement after aging in different media and at different temperatures for up to 5 years. Dynamic creep testing and testing of retrieved cement were also performed. Testing under dry conditions, as required in current standards, always gave higher values for mechanical properties than did storage and testing under more physiological conditions. We could demonstrate a continuous increase in mechanical properties when testing in air, while testing in water resulted in a slight decrease in mechanical properties after 1 week and then levelled out. Palacos bone cement showed a higher creep than CMW3G and the retrieved Boneloc specimens showed a higher creep than retrieved Palacos. The strength of a bone cement develops more slowly than the apparent high initial setting rate indicates and there are changes in mechanical properties over a period of five years. The effect of water absorption is important for the physical properties but the mechanical changes caused by physical aging are still present after immersion in water. The established standards are in need of more clinically relevant test methods and their associated requirements need better definition. We recommend that testing of bone cements should be performed after extended aging under simulated physiological conditions. Simple quasistatic and dynamic creep tests seem unable

  15. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  16. Mechanical Properties of Picea sitchensis

    DEFF Research Database (Denmark)

    Bräuner, Lise; Hoffmeyer, Preben; Poulsson, Lise

    2000-01-01

    the requirements at the same level as Danish grown Norway spruce. The study shows that Sitka spruce and Norway spruce of the same origin exhibit highly comparable mechanical properties. Key words: annual ring width, bending strength, characteristic strength, dry density, EN 338, INSTA 142, modulus of elasticity...

  17. MECHANISMS IN ENDOCRINOLOGY: Mechanisms and evaluation of bone fragility in type 1 diabetes mellitus.

    Science.gov (United States)

    Hough, F S; Pierroz, D D; Cooper, C; Ferrari, S L

    2016-04-01

    Subjects with type 1 diabetes mellitus (T1DM) have decreased bone mineral density and an up to sixfold increase in fracture risk. Yet bone fragility is not commonly regarded as another unique complication of diabetes. Both animals with experimentally induced insulin deficiency syndromes and patients with T1DM have impaired osteoblastic bone formation, with or without increased bone resorption. Insulin/IGF1 deficiency appears to be a major pathogenetic mechanism involved, along with glucose toxicity, marrow adiposity, inflammation, adipokine and other metabolic alterations that may all play a role on altering bone turnover. In turn, increasing physical activity in children with diabetes as well as good glycaemic control appears to provide some improvement of bone parameters, although robust clinical studies are still lacking. In this context, the role of osteoporosis drugs remains unknown.

  18. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  19. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    Science.gov (United States)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  20. Antler stiffness in moose (Alces alces): correlated evolution of bone function and material properties?

    Science.gov (United States)

    Blob, Richard W; Snelgrove, Jason M

    2006-09-01

    stiffness from that of other members of this clade. Although similarities in the mineral composition of bone across species likely limit the overall range of phylogenetic variation in bone material properties, our results demonstrate that evolutionary diversity in bone material properties can show correspondence with phylogenetic differences in mechanical or ecological demands on skeletal elements.

  1. Pain and nociception: mechanisms of cancer-induced bone pain.

    Science.gov (United States)

    Falk, Sarah; Dickenson, Anthony H

    2014-06-01

    Cancer pain, especially pain caused by metastasis to bone, is a severe type of pain, and unless the cause and consequences can be resolved, the pain will become chronic. As detection and survival among patients with cancer have improved, pain has become an increasing challenge, because traditional therapies are often only partially effective. Until recently, knowledge of cancer pain mechanisms was poor compared with understanding of neuropathic and inflammatory pain states. We now view cancer-induced bone pain as a complex pain state involving components of both inflammatory and neuropathic pain but also exhibiting elements that seem unique to cancer pain. In addition, the pain state is often unpredictable, and the intensity of the pain is highly variable, making it difficult to manage. The establishment of translational animal models has started to reveal some of the molecular components involved in cancer pain. We present the essential pharmacologic and neurobiologic mechanisms involved in the generation and continuance of cancer-induced bone pain and discuss these in the context of understanding and treating patients. We discuss changes in peripheral signaling in the area of tumor growth, examine spinal cord mechanisms of sensitization, and finally address central processing. Our aim is to provide a mechanistic background for the sensory characteristics of cancer-induced bone pain as a basis for better understanding and treating this condition.

  2. Finite Element Simulation of the Mechanical Properties of Mineralized Biomaterials

    Science.gov (United States)

    Yuan, Fang

    Mineralized biomaterials are natural composite materials with both biomineral and biopolymer phases. They have attracted intense attention in the past decades, due to their outstanding mechanical properties and great potential as future materials. Such exceptional properties are believed to be attributed to their complex structures. Therefore, two different mineralized biomaterials (bone and sea urchin spine) were studied mainly by the finite element method and their structure-mechanical properties relationships were investigated. The research on bone was performed with a bottom-up approach. We focused on the nanoscale level structure-properties relationship first: the models of mineralized collagen fibril, consisting of hydroxyapatite platelets aligned within a collagen matrix, were created and the importance of the parameters defining its structure and constituent properties was evaluated. With the elastic model well established, the long-term mechanical behavior at nanoscale level was studied. The viscoelastic properties of undamaged collagen phase were deduced from low-irradiation-dosage creep measurements, then different damage scenarios were evaluated to explain the evolution of phase strains with larger irradiation dosage. The higher level structure-properties relationship of bone was simulated by two different approaches: 1) Assuming the macroscopic composite strain was comparable to nanoscale fibrillar strain, then based on nanoscale model, the macroscopic distributions of nanoscale phase strains were investigated; 2) Considering the structural complexity of bone at several length scales, the effective properties from lower scales were applied as the input properties at higher scales, and the elastic properties at each level were investigated. The computational results were validated by experimental data obtained by synchrotron X-ray diffraction and show the mechanical properties of bone are greatly influenced by its structure. The research on sea urchin

  3. Mechanical properties of graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Faccio, Ricardo; Pardo, Helena; Goyenola, Cecilia; Mombru, Alvaro W [Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Avenida General Flores 2124, PO Box 1157, Montevideo (Uruguay); Denis, Pablo A [Computational Nanotechnology, DETEMA, Facultad de Quimica, Universidad de la Republica, Avenida General Flores 2124, CC 1157, 11800 Montevideo (Uruguay)], E-mail: rfaccio@fq.edu.uy

    2009-07-15

    Herein, we investigate the structural, electronic and mechanical properties of zigzag graphene nanoribbons in the presence of stress by applying density functional theory within the GGA-PBE (generalized gradient approximation-Perdew-Burke-Ernzerhof) approximation. The uniaxial stress is applied along the periodic direction, allowing a unitary deformation in the range of {+-} 0.02%. The mechanical properties show a linear response within that range while a nonlinear dependence is found for higher strain. The most relevant results indicate that Young's modulus is considerable higher than those determined for graphene and carbon nanotubes. The geometrical reconstruction of the C-C bonds at the edges hardens the nanostructure. The features of the electronic structure are not sensitive to strain in this linear elastic regime, suggesting the potential for using carbon nanostructures in nano-electronic devices in the near future.

  4. Mechanical properties of artificial snow

    OpenAIRE

    Lintzén, Nina

    2013-01-01

    Mechanical properties of snow have been a subject of research since the mid-20th century. Theresearch done is based on natural snow. During the last decades the winter business industryhas been growing and also the interest for constructing buildings and artwork of snow. Suchconstructions are generally built using artificial snow, i.e. snow produced by snow guns. Up tothe present constructions of snow are designed based on knowledge by experience. Only minorscientific studies on artificial sn...

  5. Mechanical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kjelstrup-Hansen, Jakob; Hansen, Ole; Rubahn, H.R.

    2006-01-01

    Intrinsic elastic and inelastic mechanical Properties of individual, self-assembled, quasi-single-crystalline para-hexaphenylene nanofibers supported on substrates with different hydrophobicities are investigated as well as the interplay between the fibers and the underlying substrates. We find f...... on a silicon substrate with a low-adhesion coating, whereas such motion on a noncoated substrate is limited to very short (sub-micrometer) nanofiber pieces due to strong adhesive forces....

  6. Mechanical Properties of Flexographic Prints

    Directory of Open Access Journals (Sweden)

    Simona Grigaliūnienė

    2014-02-01

    Full Text Available Mechanical properties of paper and flexographic prints madewith different anilox rollers were investigated experimentally.Flexographic prints roughness, breaking force and folding resistancevalues were determined. The results showed that foldingresistance is bigger for machine direction prints than for crossmachine direction prints. Flexographic prints on cardboardsfolding resistance values are different for machine direction andcross machine direction. It was determined that roughness offlexographic prints increases with the amount of ink on aniloxroller. Results were explained by the ink water influence.

  7. Mechanical properties of collagen fibrils

    OpenAIRE

    Wenger, M. P. E.; Bozec, L.; Horton, M. A.; Mesquida, P

    2007-01-01

    The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils ( diameter 50 - 200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa ( in air and at room temperature)...

  8. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    Science.gov (United States)

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  9. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation.

  10. An Injectable Hydrogel as Bone Graft Material with Added Antimicrobial Properties

    Science.gov (United States)

    Tommasi, Giacomo; Perni, Stefano

    2016-01-01

    Currently, the technique which provides the best chances for a successful bone graft, is the use of bone tissue from the same patient receiving it (autograft); the main limitations are the limited availability and the risks involved in removing living bone tissue, for example, explant site pain and morbidity. Allografts and xenografts may overcome these limitations; however, they increase the risk of rejection. For all these reasons the development of an artificial bone graft material is particularly important and hydrogels are a promising alternative for bone regeneration. Gels were prepared using 1,4-butanediol diacrylate as crosslinker and alpha tricalciumphosphate; ZnCl2 and SrCl2 were added to the aqueous phase. MTT results demonstrated that the addition of strontium had a beneficial effect on the osteoblast cells density on hydrogels, and zinc instead did not increase osteoblast proliferation. The amount of calcium produced by the osteoblast cells quantified through the Alizarin Red protocol revealed that both strontium and zinc positively influenced the formation of calcium; furthermore, their effect was synergistic. Rheology properties were used to mechanically characterize the hydrogels and especially the influence of crosslinker's concentration on them, showing the hydrogels presented had extremely good mechanical properties. Furthermore, the antimicrobial activity of strontium and zinc in the hydrogels against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis was determined. PMID:27174392

  11. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone.

    Science.gov (United States)

    Henriksen, S S; Ding, M; Juhl, M Vinther; Theilgaard, N; Overgaard, S

    2011-05-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture. Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength. The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant effect on mechanical strength. The novel composite scaffold is comparable to that of human bone which may be suitable for transplantation in specific weight-bearing situations, such as long bone repair.

  12. The mechanical properties of the human hip capsule ligaments.

    Science.gov (United States)

    Hewitt, John D; Glisson, Richard R; Guilak, Farshid; Vail, T Parker

    2002-01-01

    The human hip capsule is adapted to facilitate upright posture, joint stability, and ambulation, yet it routinely is excised in hip surgery without a full understanding of its mechanical contributions. The objective of this study was to provide information about the mechanical properties of the ligaments that form the hip capsule. Cadaver bone-ligament-bone specimens of the iliofemoral, ischiofemoral, and femoral arcuate ligaments were tested to failure in tension. The hip capsule was found to be an inhomogeneous structure and should be recognized as being composed of discrete constituent ligaments. The anterior ligaments, consisting of the 2 arms of the iliofemoral ligament, were much stronger than the posterior ischiofemoral ligament, withstanding greater force at failure and exhibiting greater stiffness. Knowledge of the anatomy and mechanical properties of the capsule may help the hip surgeon choose an appropriate surgical approach or repair strategy.

  13. Mechanical Properties of Four Human Longbones.

    Science.gov (United States)

    1981-11-30

    Ultimate Properties of Compact Bone Tissue," J. Biomechanics, 1975, pp. 393-405. 41. Bass, William M., Human Osteology: A Laboratory and Field Manual of...bone’s proximal and distal epiphyses. Most of the measurements used can be found in the antropological literature [1, 2, 4, 5, 61. Those that cannot...using strain sensing load cells connected to j a manual switch and balance unit and digital display. The torque applied was inferred by the tensile

  14. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models

    NARCIS (Netherlands)

    R. van Rietbergen (Bert); H.H. Weinans (Harrie); R. Huiskes (Rik); A. Odgaard

    1995-01-01

    textabstractThe apparent mechanical behavior of trabecular bone depends on properties at the tissue or trabecular level. Many investigators have attempted to determine trabecular tissue properties and loading. However, accuracy and applicability of all methods reported are limited. The small size of

  15. Mechanical properties of metal dihydrides

    Science.gov (United States)

    Schultz, Peter A.; Snow, Clark S.

    2016-03-01

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides, \\text{M}{{\\text{H}}2} {\\text{M}   =  Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. The source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.

  16. Modelo de suspensão pela cauda e seu efeito em algumas propriedades mecânicas do osso do rato Model of tail suspension and its effect in some mechanical properties of the rat bone

    Directory of Open Access Journals (Sweden)

    Adriana Valadares da Silva

    2004-03-01

    Full Text Available A manutenção do metabolismo mineral normal dos ossos é um resultado de vários fatores inclusive das solicitações mecânicas que são aplicadas aos ossos pelas contrações musculares e pela força da gravidade. O propósito desta investigação foi estudar um modelo de suspensão de rato pela cauda que simulasse assim as alterações esqueléticas que podem acontecer em um ambiente de microgravidade. O modelo foi analisado em termos de tolerância do animal e dos efeitos sobre a resistência mecânica do complexo tíbia-fíbula. Após a realização do ensaio de flexão em três pontos, foram obtidos os principais parâmetros mecânicos (carga e deflexão no limite máximo, carga e deflexão no limite elástico, rigidez e resiliência. Foram utilizadas cinqüenta e três ratas fêmeas, distribuídas em quatro grupos conforme o período de suspensão (controle, 7, 14 e 21 dias. O modelo de suspensão mostrou-se eficaz com boa adaptação dos animais e promoveu um enfraquecimento significativo nos ossos principalmente no período de 21 dias.The maintenance of the normal metabolism of minerals in the bone is a result of several factors including the mechanical demands that are applied to the bones by muscle contractions and gravity force. The proposal of this investigation was to study a model of tail suspension of rats thus simulating the skeletal alterations that may occur in a microgravity environment. The model was analyzed in terms of animal tolerance and the ensuing effects on the mechanical resistance of the tibiofibular complex. After a three-point bending test in flexion the main mechanical parameters were obtained, (load and deflection at the ultimate limit, load and deflection at the yielding point, stiffness and resilience. 53 adult female rats were used and distributed in four groups according to the length of time in suspension (control, 7, 14 and 21 days. The model of suspension was efficient with good animals adaptation and it

  17. Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality.

    Science.gov (United States)

    van der Meulen, Marjolein C H; Boskey, Adele L

    2012-08-29

    Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with 'atypical femoral fractures' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.

  18. The Novel Mechanical Property of Tongue of a Woodpecker

    Institute of Scientific and Technical Information of China (English)

    P Zhou; X Q Kong; C W Wu; Z Chen

    2009-01-01

    Biomaterials such as bone, teeth, nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures. Here we report that the woodpecker's tongue exhibits a novel strength and flexibility due to its special composite micro/nanostructure. The tongue consists of a flexible cartilage-and-bone skeleton covered with a thin layer tissue of high strength and elasticity. At the interface between the cartilage-and-bone skeleton and the tissue layer, there is a hierarchical fiber-typed connection. It is this special design of the tongue that makes the woodpeckers efficient in catching the insects inside trees. The special micro/nanostructures of the woodpecker's tongue show us a potential method to enhance the interfacial connection between soft and hard material layers forr bio-inspired composite system designs.

  19. Mechanical property of silver-loaded coralline hydroxyapatite bone in the repair of large segmental contaminative radial defects%载银珊瑚羟基磷灰石人工骨的机械性能及修复桡骨大段污染性骨缺损

    Institute of Scientific and Technical Information of China (English)

    张宇; 尹庆水; 张余

    2015-01-01

    BACKGROUND:Scholars have made certain progress in the basic and clinical studies regarding antibacterial bone graft materials. OBJECTIVE: To investigate the mechanical property of antimicrobial silver-loaded coral hydroxyapatite bone usingin vitro mechanical experiments and to explore its ability to repair large segmental contaminative bone defects. METHODS:Compression test and three-point bending test were used to evaluate the mechanical properties of silver-load coraline hydroxyapatite, coraline hydroxyapatite and coral. Thirty-six New Zealand white rabbits were selected and randomly divided into four groups to establish right-side large segment of contaminative radial bone defect models. Rabbits in three groups were implanted silver-load coraline hydroxyapatite, coraline hydroxyapatite andin situ autologous bone, and rabbits in the other group were not implanted any material (as control). At 2, 6 and 10 weeks post-operation, the rabbits were sacrificed to take specimens. The repair of bone defects in each group was observed and compared by gross observation, radiographic examination and histological examination. The antimicrobial condition in each group was evaluated by bacteriological examination. RESULTS AND CONCLUSION:There was no significant difference between the mechanical properties of silver-load coraline hydroxyapatite, coraline hydroxyapatite and coral. At the 10th week post-operation, X-ray and histological observation showed mature bone tissues in the silver-load coraline hydroxyapatite bone group. A large number of lacunae and mature bone cels were visible in bone tissues. Haversian system was visible. Most of the materials were degraded, and there was only a smal amount of residual material. Partial recanalization was visible in bone marrow cavity. The repair effect of silver-load coraline hydroxyapatite bone group was similar with the autologous bone group, and better than the coraline hydroxyapatite group and the control group. Bacteriological

  20. Mechanical Properties of Nanocrystal Supercrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  1. A periodontal attachment mechanism without alveolar bone. Case report.

    Science.gov (United States)

    Novak, M J; Polson, A M; Caton, J; Freeman, E; Meitner, S

    1983-02-01

    A 22-year-old black male was referred for periodontal therapy because of radiographic evidence of advanced bone loss associated with the posterior teeth. Clinical examination revealed gingivitis, normal sulcus depths, and minimal loss of clinical attachment. Complete blood counts, serum chemistry, and neutrophil function were within normal limits. Histological, histochemical and ultrastructural analysis of an extracted tooth revealed no loss of attachment; large areas of the cementum were collagen-poor and, ultrastructurally, resembled afibrillar cementum. It is proposed that the periodontal attachment mechanism present in this case was associated with a localized failure in normal periodontal development.

  2. Marked increase in bone formation markers after cinacalcet treatment by mechanisms distinct from hungry bone syndrome in a haemodialysis patient

    Science.gov (United States)

    Goto, Shunsuke; Fujii, Hideki; Matsui, Yutaka; Fukagawa, Masafumi

    2010-01-01

    A 59-year-old female who was on dialysis due to diabetic nephropathy was referred to our hospital for severe hyperparathyroidism refractory to intravenous vitamin D receptor activator treatment. With subsequent cinacalcet hydrochloride treatment, parathyroid hormone (PTH) levels were only slightly suppressed. However, progressive increases were observed in serum alkaline phosphatase (ALP) and bone-specific alkaline phosphatase (BAP) levels with mild hypocalcaemia. A bone biopsy, obtained immediately before surgical parathyroidectomy after 3 months of cinacalcet treatment, revealed no disappearance of osteoclasts. These data suggest that cinacalcet hydrochloride treatment may induce a marked promotion of bone formation by mechanisms distinct from hungry bone syndrome that usually develops after parathyroidectomy. PMID:25949410

  3. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties.

    Science.gov (United States)

    Day, J S; Ding, M; Bednarz, P; van der Linden, J C; Mashiba, T; Hirano, T; Johnston, C C; Burr, D B; Hvid, I; Sumner, D R; Weinans, H

    2004-05-01

    Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear. We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose for osteoporosis treatment. After one year, the dogs were killed, and samples from the first lumbar vertebrae were examined using a combination of micro-computed tomography, finite element modeling, and mechanical testing. By combining these methods, we examined the treatment effects on the calcified matrix and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage.

  4. The effect of osteoporosis treatments on fatigue properties of cortical bone tissue

    Directory of Open Access Journals (Sweden)

    Garry R. Brock

    2015-06-01

    Full Text Available Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFFs. AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen reception modulator (raloxifene, a bisphosphonate (alendronate or zoledronate, or parathyroid hormone (teriparatide, PTH. Beams of cortical bone tissue were created and tested in four-point bending fatigue to failure. Tissue treated with alendronate had reduced fatigue life and less modulus loss at failure compared with other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared with alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment.

  5. Inulin, oligofructose and bone health: experimental approaches and mechanisms.

    Science.gov (United States)

    Weaver, Connie M

    2005-04-01

    Inulin-type fructans have been proposed to benefit mineral retention, thereby enhancing bone health. Many, but not all, experimental animal studies have shown increased mineral absorption by feeding non-digestible oligosaccharides. Possible reasons for inconsistencies are explored. A few studies have reported an enhanced bone mineral density or content. Bone health can be evaluated in chronic feeding studies with bone densitometry, bone breaking strength, bone mineral concentration and bone structure. Isotopic Ca tracers can be used to determine the point of metabolism affected by feeding a functional food ingredient. These methods and the effects of feeding inulin-type fructose are reviewed. Inulin-type fructans enhance Mg retention. Chicory long-chain inulin and oligofructose enhance femoral Ca content, bone mineral density and Ca retention through enhanced Ca absorption and suppressed bone turnover rates, but it is not bone-promoting under all conditions.

  6. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.

    Science.gov (United States)

    Cattalini, Juan P; Roether, Judith; Hoppe, Alexander; Pishbin, Fatemeh; Haro Durand, Luis; Gorustovich, Alejandro; Boccaccini, Aldo R; Lucangioli, Silvia; Mouriño, Viviana

    2016-10-21

    Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate. According to this, even though highly porous structures were created with suitable pore sizes for cell ingrowth and vascularization in both cases, copper-crosslinked scaffolds showed higher values of porosity, elastic modulus, degradation rate and the amount of copper and alendronate released, when compared with calcium-crosslinked scaffolds. In addition, in all cases, the scaffolds showed bioactivity and mechanical properties close to the endogenous trabecular bone tissue in terms of viscoelasticity. Furthermore, the scaffolds showed osteogenic and angiogenic properties on bone and endothelial cells, respectively, and the extracts of the biomaterials used promoted the formation of blood vessels in an ex vivo model. These new bioactive nanocomposite scaffolds represent an exciting new class of therapeutic cell delivery carrier with tunable mechanical and degradation properties; potentially useful in the controlled and sustainable delivery of therapeutic agents with active roles in bone formation and angiogenesis, as well as in the support of cell proliferation and osteogenesis for bone tissue engineering.

  7. Biomechanical properties of regenerated bone by mandibular distraction osteogenesis

    Institute of Scientific and Technical Information of China (English)

    李继华; 胡静; 王大章; 唐正龙; 高占巍

    2002-01-01

    Objective: To study the biomechanical properties of the new bone generated by mandibular distractionosteogenesis (DO).Methods: A total of 11 healthy adult goats wererandomly divided into 2 groups, the experimental group (n=9) and the control group (n = 2). For the goats in theexperimental group, the bilateral mandibles were graduallylengthened for 10 mm with distraction appliances. Threegoats were sacrificed respectively at 2, 4 and 8 weeks aftercompletion of distraction. Compressive, three-pointbending and shearing tests were conducted on the standardregenerated bone samples and the whole unilateralmandibular specimens. For the goats in the control group,no operation was made and the whole unilateral mandiblewas taken as the test specimen.Results: The compressive strength and bendingstiffness of the new bone reached the normal level at 4 and 8weeks after completion of distraction, respectively. But theshearing strength remained significantly weaker than that of the controls at 8 weeks after distraction.Conclusions: The distraction appliance can beremoved and the lengthened mandible should be exposed toadaptive functional exercise at 8 weeks after completion ofdistraction.

  8. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading.

    Science.gov (United States)

    Morikawa, Daichi; Nojiri, Hidetoshi; Saita, Yoshitomo; Kobayashi, Keiji; Watanabe, Kenji; Ozawa, Yusuke; Koike, Masato; Asou, Yoshinori; Takaku, Tomoiku; Kaneko, Kazuo; Shimizu, Takahiko

    2013-11-01

    Oxidative stress contributes to the pathogenesis of age-related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)-deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low-turnover bone loss and impaired collagen cross-linking (Nojiri et al. J Bone Miner Res. 2011;26:2682-94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail-suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.

  9. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  10. Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms

    Science.gov (United States)

    Backly, Rania M. El; Cancedda, Ranieri

    The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.

  11. Mechanical Reinforcement of Diopside Bone Scaffolds with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2014-10-01

    Full Text Available Carbon nanotubes are ideal candidates for the mechanical reinforcement of ceramic due to their excellent mechanical properties, high aspect ratio and nanometer scale diameter. In this study, the effects of multi-walled carbon nanotubes (MWCNTs on the mechanical properties of diopside (Di scaffolds fabricated by selective laser sintering were investigated. Results showed that compressive strength and fracture toughness improved significantly with increasing MWCNTs from 0.5 to 2 wt %, and then declined with increasing MWCNTs to 5 wt %. Compressive strength and fracture toughness were enhanced by 106% and 21%, respectively. The reinforcing mechanisms were identified as crack deflection, MWCNTs crack bridging and pull-out. Further, the scaffolds exhibited good apatite-formation ability and supported adhesion and proliferation of cells in vitro.

  12. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji

    2014-08-01

    Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.

  13. Composition dependent mechanical behaviour of S53P4 bioactive glass putty for bone defect grafting.

    Science.gov (United States)

    van Gestel, N A P; Hulsen, D J W; Geurts, J; Hofmann, S; Ito, K; Arts, J J; van Rietbergen, B

    2017-05-01

    To improve the handling properties of S53P4 bioactive glass granules for clinical applications, bioactive glass putty formulations were developed. These formulations contain both granules and a synthetic binder to form an injectable material that is easy to shape. To explore its applicability in load-bearing bone defect grafting, the relation between the putty composition and its mechanical behaviour was assessed in this study. Five putty formulations with variations in synthetic binder and granule content were mechanically tested in confined compression. The results showed that the impaction strains significantly decreased and the residual strains significantly increased with an increasing binder content. The stiffness of all tested formulations was found to be in the same range as the reported stiffness of cancellous bone. The measured creep strains were low and no significant differences between formulations were observed. The stiffness significantly increased when the samples were subjected to a second loading stage. The residual strains calculated from this second loading stage were also significantly different from the first loading stage, showing an increasing difference with an increasing binder content. Since residual strains are detrimental for graft layer stability in load-bearing defects, putty compositions with a low binder content would be most beneficial for confined, load-bearing bone defect grafting.

  14. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  15. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    Science.gov (United States)

    Paietta, Rachel C.

    The objective of this dissertation is to understand the influences of material structure on the properties, function and failure of biological connective tissues. Biological interfaces are becoming an increasingly studied system within mechanics and tissue engineering as a model for attaching dissimilar materials. The elastic modulus of bone (≈ 20 GPa) and cartilage (≈ 0.1-1 MPa) differ over orders of magnitude, which should intuitively create high stress concentrations and failure at the interface. Yet, these natural interface systems rarely fail in vivo, and the mechanism by which loads are transferred between tissues has not yet been established. Tissue quality is one major contributor to the mechanical behavior of bone and cartilage, and is defined by properties such as collagen orientation, mineral volume fraction, porosity and tissue geometry. These properties have yet to be established at the bone-cartilage interface in the spine, and the lack of quantitative data on material microstructure and behavior limits treatments and tissue engineering construct design. In this dissertation, second harmonic generation imaging, quantitative backscattered scanning electron imaging and nanoindentation are combined to characterize micrometer scale tissue quality and modulus in both bone and calcified cartilage. These techniques are utilized to: 1) determine the hierarchical micrometer to millimeter scale properties of lamellar bone, 2) quantify changes throughout development and aging at the human intervertebral disc-vertebral body junction, and 3) explore compressive fractures at this interface. This work is the first to provide quantitative data on the mineral volume fraction, collagen orientation and modulus from the same, undecalcified sections of tissue to corroborate tissue structure and mineralization and describe quantitative parameters of the interface. The principal findings from this work indicate that the underlying matrix, or collagen, organization in

  16. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm;

    2016-01-01

    of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...... orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...

  17. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.

    Science.gov (United States)

    Wu, Chengtie

    2009-05-01

    CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.

  18. A physical mechanism for coupling bone resorption and formation in adult human bone

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Sondergaard, Teis Esben; Skorzynska, Katarzyna Ewa

    2009-01-01

    During skeletal remodeling, pre-osteoclasts and pre-osteoblasts are targeted to critical sites of the bone to resorb and reconstruct bone matrix, respectively. Coordination of site-specific recruitment of these two cell types is a prerequisite to maintain the specific architecture of each bone...... within strict limits throughout adult life. Here, we determined that the bone marrow microanatomy adjacent to remodeling areas is a central player in this process. By using histomorphometry and multiple immunostainings, we demonstrated in biopsies exhibiting coupled bone resorption and formation...... that osteoclasts and osteoblasts on the bone surface were always covered by a canopy of flat cells expressing osteoblast markers. In contrast, in biopsies in which this canopy was disrupted, bone formation was deficient. Three-dimensional visualizations revealed that this canopy covered the entire remodeling site...

  19. Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model.

    Science.gov (United States)

    Kobayashi, Naomi; Ong, Kevin; Villarraga, Marta; Schwardt, Jeffrey; Wenz, Robert; Togawa, Daisuke; Fujishiro, Takaaki; Turner, A Simon; Seim, Howard B; Bauer, Thomas W

    2007-06-15

    We investigated the histological and compressive properties of three different calcium phosphate cements (CPCs) using a sheep vertebral bone void model. One of the CPCs contained barium sulfate to enhance its radiopacity. Bone voids were surgically created in the lumbar region of 23 ovine spines - L3, L4, and L5 (n = 69 total vertebral bodies) - and the voids were filled with one of the three CPCs. A fourth group consisted of whole intact vertebrae. Histologic evaluation was performed for 30 of the 69 vertebrae 2 or 4 months after surgery along with radiographic evaluation. Compressive testing was performed on 39 vertebrae 4 months after surgery along with micro-CT analysis. All three CPCs were biocompatible and extremely osteoconductive. Osteoclasts associated with adjacent bone formation suggest that each cement can undergo slow resorption and replacement by bone and bone marrow. Compressive testing did not reveal a significant difference in the ultimate strength, ultimate strain, and structural modulus, among the three CPCs and intact whole vertebrae. Micro-CT analysis revealed good osseointegration between all three CPCs and adjacent bone. The barium sulfate did not affect the CPCs biocompatibility or mechanical properties. These results suggest that CPC might be a good alternative to polymethylmethacrylate for selected indications.

  20. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  1. Mechanisms by which nutritional disorders cause reduced bone mass in adults.

    Science.gov (United States)

    Miller, Karen K

    2003-03-01

    Nutritional disorders that cause bone loss in adults include disordered eating behaviors (female athlete triad and anorexia nervosa), gastrointestinal diseases (celiac sprue, inflammatory bowel disease, and other malabsorption syndromes), alcoholism, and hypervitaminosis A. These disorders exert their effects on bone through a number of mechanisms, including estrogen deficiency. Deficiencies of anabolic hormones may also be important, including insulin-like growth factor I (IGF-I), a nutritionally regulated bone trophic factor. In addition, low weight itself is a risk factor for bone loss and decreased bone formation. Reduced calcium and vitamin D availability, with resultant secondary hyperparathyroidism, is another important mechanism of bone loss in nutritional disorders. This review discusses nutritional causes of reduced bone mass in adults and how nutritional disorders exert deleterious effects on the skeleton.

  2. In vitro ultrasonic and mechanic characterization of the modulus of elasticity of children cortical bone.

    Science.gov (United States)

    Berteau, Jean-Philippe; Baron, Cécile; Pithioux, Martine; Launay, Franck; Chabrand, Patrick; Lasaygues, Philippe

    2014-07-01

    The assessment of elastic properties in children's cortical bone is a major challenge for biomechanical engineering community, more widely for health care professionals. Even with classical clinical modalities such as X-ray tomography, MRI, and/or echography, inappropriate diagnosis can result from the lack of reference values for children bone. This study provides values for elastic properties of cortical bone in children using ultrasonic and mechanical measurements, and compares them with adult values. 18 fibula samples from 8 children (5-16 years old, mean age 10.6 years old ±4.4) were compared to 16 fibula samples from 3 elderly adults (more than 65 years old). First, the dynamic modulus of elasticity (Edyn) and Poisson's ratio (ν) are evaluated via an ultrasonic method. Second, the static modulus of elasticity (Esta) is estimated from a 3-point microbending test. The mean values of longitudinal and transverse wave velocities measured at 10 MHz for the children's samples are respectively 3.2mm/μs (±0.5) and 1.8mm/μs (±0.1); for the elderly adults' samples, velocities are respectively 3.5mm/μs (±0.2) and 1.9 mm/μs (±0.09). The mean Edyn and the mean Esta for the children's samples are respectively 15.5 GPa (±3.4) and 9.1 GPa (±3.5); for the elderly adults' samples, they are respectively 16.7 GPa (±1.9) and 5.8 GPa (±2.1). Edyn, ν and Esta are in the same range for children's and elderly adults' bone without any parametric statistical difference; a ranking correlation between Edyn and Esta is shown for the first time.

  3. Weakness in the mechanical properties of the femurs of growing female rats exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina [Medical University of Bialystok, Department of Toxicology, Bialystok (Poland); Majewska, Katarzyna [University of Warmia and Mazury (Poland). Faculty of Food Science

    2005-09-01

    The study assessed the effect of cadmium (Cd) intoxication on the risk of deformities and fractures of the growing bones of female rats, in order to model human exposure to this metal. For this purpose, bone mineral density and mechanical properties of the proximal and distal ends and diaphysis of the femur were investigated in female Wistar rats exposed to 1, 5 and 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months after the onset of weaning. Daily Cd doses received from drinking water during the treatment period were in the following ranges: 0.059-0.219, 0.236-1.005 and 2.247-9.649 mg/kg body weight at 1, 5 and 50 mg Cd/l, respectively. Biomechanical properties of the femoral proximal and distal ends were evaluated in a compression test, and those of the femoral diaphysis in a cutting test, with loading perpendicular to the longitudinal axis of the bone in all tests. The mineralization and mechanical properties of the bone tissue at various locations on the femur were affected by exposure to Cd in a dose- and duration-dependent manner. Exposure to 1 mg Cd/l (corresponding to low human exposure) during skeletal development weakened the fracture strength of the femoral neck and the trabecular bone at the level of the distal end of the femur and affected the elastic properties of the cortical bone at the femoral diaphysis. At higher levels of Cd exposure, adverse effects were generally observed after a shorter exposure period than for 1 mg Cd/l, and were more advanced. The cadmium-induced weakening of the biomechanical properties of bone at particular sites on the femur correlated with the decreased bone mineralization. The results indicate that even a low exposure to Cd may affect the mineralization and biomechanical properties of growing bone, thus enhancing the risk of fracture. (orig.)

  4. Weakness in the mechanical properties of the femur of growing female rats exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina [Medical University of Bialystok, Department of Toxicology, Bialystok (Poland); Majewska, Katarzyna [University of Warmia and Mazury, Olsztyn (Poland). Faculty of Food Science

    2005-05-01

    This study was aimed at assessing the effect of cadmium (Cd) intoxication on the risk of deformities and fractures of the growing bone on a female rat model of human exposure to this metal. For this purpose, bone mineral density (BMD) and mechanical properties of the proximal and distal ends and diaphysis of the femur were investigated in female Wistar rats exposed to 1, 5, and 50 mg Cd L{sup -1} in drinking water for 3, 6, 9, and 12 months since weaning. Daily Cd doses received from the drinking water during the treatment period were in the ranges 0.059-0.219, 0.236-1.005, and 2.247-9.649 mg kg{sup -1} body weight at 1, 5, and 50 mg Cd L{sup -1}, respectively. Biomechanical properties of the femoral proximal and distal ends were evaluated in a compression test and those of the femoral diaphysis in a cutting test with loading perpendicular to the bone longitudinal axis in all tests. Cd dose- and exposure duration-dependently affected the mineralization and mechanical properties of the bone tissue at various locations of the femur. Exposure to 1 mg Cd L{sup -1} (corresponding to low human exposure) during skeletal development weakened the fracture strength of the femoral neck and of the trabecular bone at the level of the distal end of the femur and affected the elastic properties of the cortical bone at the femoral diaphysis. At the higher levels of Cd treatment, the adverse action generally occurred after shorter exposure than at 1 mg Cd L{sup -1} and was more seriously advanced. The Cd-induced weakening in the bone biomechanical properties at particular sites of the femur correlated with the decreased bone mineralization. The results indicate that even low exposure to Cd may affect the mineralization and biomechanical properties of growing bone, thus increasing the risk of fractures. (orig.)

  5. The effect of composition on mechanical properties of brushite cements.

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2014-01-01

    Due to a fast setting reaction, good biological properties, and easily available starting materials, there has been extensive research within the field of brushite cements as bone replacing material. However, the fast setting of brushite cement gives them intrinsically low mechanical properties due to the poor crystal compaction during setting. To improve this, many additives such as citric acid, pyrophosphates, and glycolic acid have been added to the cement paste to retard the crystal growth. Furthermore, the incorporation of a filler material could improve the mechanical properties when used in the correct amounts. In this study, the effect of the addition of the two retardants, disodium dihydrogen pyrophosphate and citric acid, together with the addition of β-TCP filler particles, on the mechanical properties of a brushite cement was investigated. The results showed that the addition of low amounts of a filler (up to 10%) can have large effects on the mechanical properties. Furthermore, the addition of citric acid to the liquid phase makes it possible to use lower liquid-to-powder ratios (L/P), which strongly affects the strength of the cements. The maximal compressive strength (41.8MPa) was found for a composition with a molar ratio of 45:55 between monocalcium phosphate monohydrate and beta-tricalcium phosphate, an L/P of 0.25ml/g and a citric acid concentration of 0.5M in the liquid phase.

  6. Role and mechanism of action of leucine-rich repeat kinase 1 in bone

    Science.gov (United States)

    Xing, Weirong R; Goodluck, Helen; Zeng, Canjun; Mohan, Subburaman

    2017-01-01

    Leucine-rich repeat kinase 1 (LRRK1) plays a critical role in regulating cytoskeletal organization, osteoclast activity, and bone resorption with little effect on bone formation parameters. Deficiency of Lrrk1 in mice causes a severe osteopetrosis in the metaphysis of the long bones and vertebrae bones, which makes LRRK1 an attractive alternative drug target for the treatment of osteoporosis and other high-turnover bone diseases. This review summarizes recent advances on the functions of the Lrrk1-related family members, Lrrk1 deficiency-induced skeletal phenotypes, LRRK1 structure–function, potential biological substrates and interacting proteins, and the mechanisms of LRRK1 action in osteoclasts. PMID:28326224

  7. The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics.

    Directory of Open Access Journals (Sweden)

    Meagan M Gilbert

    Full Text Available The ostrich Struthio camelus reaches the highest speeds of any extant biped, and has been an extraordinary subject for studies of soft-tissue anatomy and dynamics of locomotion. An elongate tarsometatarsus in adult ostriches contributes to their speed. The internal osteology of the tarsometatarsus, and its mechanical response to forces of running, are potentially revealing about ostrich foot function.Computed tomography (CT reveals anatomy and bone densities in tarsometatarsi of an adult and a young juvenile ostrich. A finite element (FE model for the adult was constructed with properties of compact and cancellous bone where these respective tissues predominate in the original specimen. The model was subjected to a quasi-static analysis under the midstance ground reaction and muscular forces of a fast run. Anatomy-Metatarsals are divided proximally and distally and unify around a single internal cavity in most adult tarsometatarsus shafts, but the juvenile retains an internal three-part division of metatarsals throughout the element. The juvenile has a sparsely ossified hypotarsus for insertion of the m. fibularis longus, as part of a proximally separate third metatarsal. Bone is denser in all regions of the adult tarsometatarsus, with cancellous bone concentrated at proximal and distal articulations, and highly dense compact bone throughout the shaft. Biomechanics-FE simulations show stress and strain are much greater at midshaft than at force applications, suggesting that shaft bending is the most important stressor of the tarsometatarsus. Contraction of digital flexors, inducing a posterior force at the TMT distal condyles, likely reduces buildup of tensile stresses in the bone by inducing compression at these locations, and counteracts bending loads. Safety factors are high for von Mises stress, consistent with faster running speeds known for ostriches.High safety factors suggest that bone densities and anatomy of the ostrich tarsometatarsus

  8. Bone marrow ablation demonstrates that estrogen plays an important role in osteogenesis and bone turnover via an antioxidative mechanism.

    Science.gov (United States)

    Shi, Chunmin; Wu, Jun; Yan, Quanquan; Wang, Rong; Miao, Dengshun

    2015-10-01

    To assess the effect of estrogen deficiency on osteogenesis and bone turnover in vivo, 8-week-old mice were sham-operated or bilaterally ovariectomized (OVX), and after 8 weeks, mechanical bone marrow ablation (BMX) was performed and newly formed bone tissue was analyzed from 6 days to 2 weeks after BMX. Our results demonstrated that OVX mice following BMX displayed 2 reversed phase changes, one phase observed at 6 and 8 days after BMX delayed osteogenesis accompanied by a delay in osteoclastogenesis, and the other phase observed at 12 and 14 days after BMX increased osteoblastic activity and osteoclastic activity. Furthermore, we asked whether impaired osteogenesis caused by estrogen deficiency was associated with increased oxidative stress, and oxidative stress parameters were examined in bone tissue from sham-operated and OVX mice and OVX mice were administrated with antioxidant N-acetyl-l-cysteine (NAC) or vehicle after BMX. Results demonstrated that estrogen deficiency induced oxidative stress in mouse bone tissue with reduced antioxidase levels and activity, whereas NAC administration almost rescued the abnormalities in osteogenesis and bone turnover caused by OVX. Results from this study indicate that estrogen deficiency resulted in primarily impaired osteogenesis and subsequently accelerated bone turnover by increasing oxidative stress and oxidative stress promises to be an effective target in the process of treatment of postmenopausal osteoporosis.

  9. Organoapatites: materials for artificial bone. II. Hardening reactions and properties.

    Science.gov (United States)

    Stupp, S I; Mejicano, G C; Hanson, J A

    1993-03-01

    This article reports on chemical reactions and the properties they generated in artificial bone materials termed "organoapatites." These materials are synthesized using methodology we reported in the previous article of this series. Two different processes were studied here for the transition from organoapatite particles to implants suitable for the restoration of the skeletal system. One process involved the hardening of powder compacts by beams of blue light derived from a lamp or a laser and the other involved pressure-induced interdiffusion of polymers. In both cases, the hardening reaction involved the formation of a polyion complex between two polyelectrolytes. In the photo-induced reaction an anionic electrolyte polymerizes to form the coulombic network and in the pressure-induced one, pressure forms the complex by interdiffusion of two polyions. Model reactions were studied using various polycations. Based on these results the organoapatite selected for the study was that containing dispersed poly(L-lysine) and sodium acrylate as the anionic monomer. The organomineral particles can be pressed at room temperature into objects of great physical integrity and hydrolytic stability relative to anorganic controls. The remarkable fact about these objects is that intimate molecular dispersion of only 2-3% by weight organic material provides integrity to the mineral network in an aqueous medium and also doubles its tensile strength. This integrity is essentially nonexistent in "anorganic" samples prepared by the same methodology used in organoapatite synthesis. The improvement in properties was most effectively produced by molecular bridges formed by photopolymerization. The photopolymerization leads to the "hardening" of pellets prepared by pressing of organoapatite powders. The reaction was found to be more facile in the microstructure of the organomineral, and it is potentially useful in the surgical application of organoapatites as artificial bone.

  10. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  11. Porosity and mechanical properties of porous titanium fabricated by gelcasting

    Institute of Scientific and Technical Information of China (English)

    LI Yan; GUO Zhimeng; HAO Junjie; REN Shubin

    2008-01-01

    Porous Ti compacts with large size and complex shape for biomedical applications were fabricated in the porosity range from 40.5% to 53.8% by controlling gelcasting parameters and sintering conditions. The experimental results show that the total porosity and open porosity of porous titanium compacts gelcast from the Ti slurry with 34 vol.% solid loading and sintered at 1100℃ for 1.5h are 46.5% and 40.7%, respectively, and the mechanical properties are as follows: compressive strength 158.6MPa and Young's modulus 8.5GPa, which are similar to those of human cortical bone and appropriate for implanting purpose.

  12. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    Science.gov (United States)

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  13. Bioactive glasses: Importance of structure and properties in bone regeneration

    Science.gov (United States)

    Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

    2014-09-01

    This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

  14. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss

    Science.gov (United States)

    Jeney, Viktória

    2017-01-01

    Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone. PMID:28270766

  15. Determination of bone property by sound transfer function

    Institute of Scientific and Technical Information of China (English)

    QIAN Shengyou

    2001-01-01

    Sound transfer functions of bones were measured in vivo and in vitro with two accelerometers. Experimental results show that bones behave as a sound low-pass filter, and vibrate in several modes. Characteristics of sound traasfer function vary with individuals, but data obtained in both legs of one person are comparable. The resonant frequency of the sound transfer function indicates the size of defect in bone well, so it can be used for diagnosis of bone disease and assessment of fracture healing.

  16. Enhancement of Osteoclastic Bone Resorption and Suppression of Osteoblastic Bone Formation in Response to Reduced Mechanical Stress Do Not Occur in the Absence of Osteopontin

    OpenAIRE

    Ishijima, Muneaki; Rittling, Susan R.; Yamashita, Teruhito; Tsuji, Kunikazu; Kurosawa, Hisashi; Nifuji, Akira; Denhardt, David T.; Noda, Masaki

    2001-01-01

    Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investi...

  17. Mechanical properties of C-5 epimerized alginates.

    Science.gov (United States)

    Mørch, Y A; Holtan, S; Donati, I; Strand, B L; Skjåk-Braek, G

    2008-09-01

    There is an increased need for alginate materials with both enhanced and controllable mechanical properties in the fields of food, pharmaceutical and specialty applications. In the present work, well-characterized algal polymers and mannuronan were enzymatically modified using C-5 epimerases converting mannuronic acid residues to guluronic acid in the polymer chain. Composition and sequential structure of controls and epimerized alginates were analyzed by (1)H NMR spectroscopy. Mechanical properties of Ca-alginate gels were further examined giving Young's modulus, syneresis, rupture strength, and elasticity of the gels. Both mechanical strength and elasticity of hydrogels could be improved and manipulated by epimerization. In particular, alternating sequences were found to play an important role for the final mechanical properties of alginate gels, and interestingly, a pure polyalternating sample resulted in gels with extremely high syneresis and rupture strength. In conclusion, enzymatic modification was shown to be a valuable tool in modifying the mechanical properties of alginates in a highly specific manner.

  18. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption.

    Science.gov (United States)

    An, Jing; Hao, Dingjun; Zhang, Qian; Chen, Bo; Zhang, Rui; Wang, Yi; Yang, Hao

    2016-07-01

    Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.

  19. Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage, and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea.

    Science.gov (United States)

    Tomaszewska, Ewa; Dobrowolski, Piotr; Winiarska-Mieczan, Anna; Kwiecień, Małgorzata; Tomczyk, Agnieszka; Muszyński, Siemowit; Radzki, Radosław

    2016-09-01

    Adolescent male Wistar rats were used to check whether regular consumption of black, red, white, or green tea would have a protective effect on femur development during 12-week exposure to Cd and Pb (7mg Cd and 50mg Pb in 1kg of the diet). The animals were randomly divided (n=12) into a positive control (without Cd, Pb and teas), a negative control group (Cd and Pb), and groups supplemented additionally with green (GT), black (BT), red (RT), and white tea (WT). Heavy metals reduced the geometric and densitometric parameters and the total thickness of articular cartilage irrespective of tea administration and influenced mechanical endurance, growth plate thickness, and trabecular histomorphometry depending on the tea type. It is difficult to indicate which tea has the best protective effects on bone and hyaline cartilage against heavy metal action.

  20. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  1. Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds

    Directory of Open Access Journals (Sweden)

    Cijun Shuai, Pei Feng, Liyang Zhang, Chengde Gao, Huanlong Hu, Shuping Peng and Anjie Min

    2013-01-01

    Full Text Available A porous β-tricalcium phosphate (β-TCP bioceramic scaffold was successfully prepared with our homemade selective laser sintering system. Microstructure observation by a scanning electron microscope showed that the grains grew from 0.21 to 1.32 μm with the decrease of laser scanning speed from 250 to 50 mm min−1. The mechanical properties increased mainly due to the improved apparent density when the laser scanning speed decreased to 150 mm min−1. When the scanning speed was further decreased, the grain size became larger and the mechanical properties severely decreased. The highest Vickers hardness and fracture toughness of the scaffold were 3.59 GPa and 1.16 MPa m1/2, respectively, when laser power was 11 W, spot size was 1 mm in diameter, layer thickness was 0.1–0.2 mm and laser scanning speed was 150 mm min−1. The biocompatibility of these scaffolds was assessed in vitro with MG63 osteoblast-like cells and human bone marrow mesenchymal stem cells. The results showed that all the prepared scaffolds are suitable for cell attachment and differentiation. Moreover, the smaller the grain size, the better the cell biocompatibility. The porous scaffold with a grain size of 0.71 μm was immersed in a simulated body fluid for different days to assess the bioactivity. The surface of the scaffold was covered by a bone-like apatite layer, which indicated that the β-TCP scaffold possesses good bioactivity. These discoveries demonstrated the evolution rule between grain microstructure and the properties that give a useful reference for the fabrication of β-TCP bone scaffolds.

  2. Effect of HMB and 2-Ox administered during pregnancy on bone properties in primiparous and multiparous minks (Neivison vison

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2015-12-01

    Full Text Available The aim of the study was to determine the mechanical and geometric properties as well as bone tissue density of long bones in primiparous and multiparous dams of minks supplemented with β-hydroxy β-methylbutyrate (HMB and/or 2-oxoketoglutarate (2-Ox during gestation. Powdered 2-Ox was given at the daily dosage of 0.4 g/kg b.w. separately or simultaneously with HMB, which was administered at the daily dosage of 0.02 g/kg b.w. The study demonstrates for the first time that administration of 2-Ox and/or HMB to dams markedly influences bone tissue density and the mechanical and geometrical properties of mother`s bones in minks. Moreover, it was demonstrated that the supplementation was more effective in the thoracic limb, which was comprehensively used in contrast to the pelvic limb. The mechanical parameters and bone tissue density significantly increased in the humerus in multiparous minks. Only such diet may provide satisfactory production results in the animals. Nutritional deficiencies occurring during pregnancies may trigger body`s own reserves to cover the bone mass increase in developing foetuses and support milk production. This can prevent regeneration of dams’ organisms, which negatively affects their reproductive performance. 2-Ox or HMB may be regarded as a protective metabolite when administered orally to minks, counteracting the negative influences of pregnancy and lactation periods on bones condition. Both simultaneous treatment with 2-Ox and HMB and their separate administration were equally effective.

  3. Nitric oxide signaling in mechanical adaptation of bone

    NARCIS (Netherlands)

    Klein Nulend, J.; van Oers, R.F.M.; Bakker, A.D.; Bacabac, R.G.

    2014-01-01

    One of the most serious healthcare problems in the world is bone loss and fractures due to a lack of physical activity in elderly people as well as in bedridden patients or otherwise inactive youth. Crucial here are the osteocytes. Buried within our bones, these cells are believed to be the mechanos

  4. Characterisation of debris from laser and mechanical cutting of bone.

    Science.gov (United States)

    Rachmanis, Nikolaos; McGuinness, Garrett B; McGeough, Joseph A

    2014-07-01

    Laser cutting of bones has been proposed as a technology in orthopaedic surgery. In this short study, the laser-bone interaction was examined using a pulsed erbium-doped yttrium aluminium garnet laser and compared to a conventional cutting technique. Microscopic analysis revealed the nature of waste debris and showed higher proportions of finer particles for conventional sagittal sawing compared to laser cutting.

  5. Remodelling of bone and bones. Effects of altered mechanical stress on anlages.

    Science.gov (United States)

    Storey, E; Feik, S A

    1982-04-01

    Tails from 4-day-old Sprague-Dawley rats were bent in situ or skinned bent tail segments were transplanted s.c. into 50 g hosts. Tissue changes were studied for up to 24 weeks by radiographic and histological techniques. The early changes in situ resulted largely from limited translation of bones within their encasing tissues with resorption on the leading (pressure) side inducing thinning, and on the trailing (tension) side thickening of bone. The changes in transplanted anlages occurred in 3 stages: initially, bending of the anlages, with tension between the stretched periosteum and the outer bone surface inducing formation, and compression of cartilage and bone on the inner aspect leading to resorption; then resumption of longitudinal growth and expansion of the bent loop leading to translation of bones within the encasing soft tissues with resorption and thinning of bone on the leading pressure side and formation, with thickening of the inner shaft, on the trailing tension side; and finally with cessation of growth and translation, a reversal to the previous phase. The results support the hypothesis that 2 processes are involved: first, internal stress, and second, translation of bones with, in all instances, pressure inducing resorption and tension inducing formation of bone.

  6. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    Science.gov (United States)

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations.

  7. BONES WITH BIOCERAMICS

    Directory of Open Access Journals (Sweden)

    Wijianto Wijianto

    2017-01-01

    Full Text Available This paper discuss about ceramics in application as bone implant. Bioceramics for instance Hydroxyapatite, usually is abbreviated with HA or HAp, is a mineral that is very good physical properties as bone replacement in human body. To produce Hydroxyapatite, coating process is used which have good potential as they can exploit the biocompatible and bone bonding properties of the ceramic. There are many advantages and disadvantages of bioceramics as bone implant. Advantages of hydroxyapatite as bone implant are rapidly integrated into the human body, and is most interesting property that will bond to bone forming indistinguishable unions. On contrary, disadvantages of hydroxyapatite as bone implant are poor mechanical properties (in particular fatigue properties mean that hydroxyapatite cannot be used in bulk form for load bearing applications such as orthopaedics and poor adhesion between the calcium phosphate coating and the material implant will occur.

  8. Mechanical property characterization of intraply hybrid composites

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  9. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.

    Science.gov (United States)

    Rubin, C; Turner, A S; Mallinckrodt, C; Jerome, C; McLeod, K; Bain, S

    2002-03-01

    Departing from the premise that it is the large-amplitude signals inherent to intense functional activity that define bone morphology, we propose that it is the far lower magnitude, high-frequency mechanical signals that continually barrage the skeleton during longer term activities such as standing, which regulate skeletal architecture. To examine this hypothesis, we proposed that brief exposure to slight elevations in these endogenous mechanical signals would suffice to increase bone mass in those bones subject to the stimulus. This was tested by exposing the hind limbs of adult female sheep (n = 9) to 20 min/day of low-level (0.3g), high-frequency (30 Hz) mechanical signals, sufficient to induce a peak of approximately 5 microstrain (micro epsilon) in the tibia. Following euthanasia, peripheral quantitative computed tomography (pQCT) was used to segregate the cortical shell from the trabecular envelope of the proximal femur, revealing a 34.2% increase in bone density in the experimental animals as compared with controls (p = 0.01). Histomorphometric examination of the femur supported these density measurements, with bone volume per total volume increasing by 32% (p = 0.04). This density increase was achieved by two separate strategies: trabecular spacing decreased by 36.1% (p = 0.02), whereas trabecular number increased by 45.6% (p = 0.01), indicating the formation of cancellous bone de novo. There were no significant differences in the radii of animals subject to the stimulus, indicating that the adaptive response was local rather than systemic. The anabolic potential of the signal was evident only in trabecular bone, and there were no differences, as measured by any assay, in the cortical bone. These data suggest that subtle mechanical signals generated during predominant activities such as posture may be potent determinants of skeletal morphology. Given that these strain levels are three orders of magnitude below strains that can damage bone tissue, we

  10. Complementary Physical and Mechanical Techniques to Characterise Tooth: A Bone-like Tissue

    Institute of Scientific and Technical Information of China (English)

    Peter Zioupos; Keith D. Rogers

    2006-01-01

    Bone like tissues are biocomposites comprising an organic matrix (mostly collagen) and a reinforcement phase in the form of mineral crystals (poorly stoichiometric apatite). The composite properties are a result of the material characteristics of the two phases, their interaction, the relative composition, the orientation and the micro-architecture of the structure. The inherent spatial heterogeneity of these tissues (a result of evolutionary and functional requirements) and their exposure to various environmental and mechanical influences result in highly variable properties on the microscale, which can only be characterised by modern microanalytical methods. We present here results obtained by the complementary use of the modern nanoindentation and micro-X-ray diffraction techniques, which were used to probe the properties and structure of human dentine and enamel of primary molar teeth. The results show that both the addition and the higher organization of mineral within the organic matrix produce stiffer and harder tissue and that the examination of properties within small tissue volumes can be reliably achieved by use of these two methods in parallel. This opens new avenues in the study of biomaterial in general, and for the local characterisation of regions of teeth that suffered bacterial attack, mechanical wear, fluoridisation, chemical bleaching, or dental treatment such as laser ablation or drilling.

  11. Mechanical deformation mechanisms and properties of amyloid fibrils.

    Science.gov (United States)

    Choi, Bumjoon; Yoon, Gwonchan; Lee, Sang Woo; Eom, Kilho

    2015-01-14

    Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined.

  12. Mechanically loaded ex vivo bone culture system 'Zetos': Systems and culture preparation

    Directory of Open Access Journals (Sweden)

    C M Davies

    2006-04-01

    Full Text Available This paper introduces the culture preparation of ovine, bovine and human cancellous bone cores to be used in an explants model Zetos. The three dimensional (3D bone cores were prepared and evaluated for all three animals. Bone cells in vivo constantly interact with each other, migratory cells, surrounding extracellular matrix (ECM and interstitial fluid in a microenvironment, which continuously responds to various endogenous and exogenous stimuli. The Zetos system was designed to culture and mechanically load viable cancellous bone explants in their near natural microenvironment. This 3D ex vivo system bridges the current gap between in vitro and in vivo methods. One aim of this work was to compare the macro and micro-architecture of ovine, bovine and human cancellous bone tissue in preparation for culture within the Zetos system in order to determine the optimal source of experimental material. A second aim was to optimise the preparations of the bone cores as well as develop techniques involved during tissue maintenance. Bone core response was visualised using histological and immunohistochemical methods. The results demonstrate that cancellous bone explants vary greatly in trabecular density and bone volume depending on species, age and location. Sheep and human samples displayed the greatest variation between bones cores when compared to bovine. Even cores taken from the same animal possessed very different characteristics. The histology demonstrated normal bone and cell structure after the core preparation. Immunohistochemistry results demonstrated antigen retention after preparation methods.

  13. Some Mechanical Properties of Austempered Ductile Iron

    Science.gov (United States)

    Waanders, F. B.; Vorster, S. W.; Vorster, M. J.

    1998-12-01

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a "process window", on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Mössbauer spectra (CEMS) were measured, after heat treatment.

  14. Some mechanical properties of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, F.B.; Vorster, S.W.; Vorster, M.V. [Potchefstroom Univ. (South Africa). Dept. of Metall. Eng.

    1997-12-01

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a ``process window``, on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Moessbauer spectra (CEMS) were measured, after heat treatment. (orig.). 7 refs.

  15. Some Mechanical Properties of Austempered Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, F.B.; Vorster, S.W.; Vorster, M.J. [Potchefstroom University, Department of Metallurgical Engineering (South Africa)

    1998-12-15

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a 'process window', on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Moessbauer spectra (CEMS) were measured, after heat treatment.

  16. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  17. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  18. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord

    Science.gov (United States)

    Xu, Yang; Liu, Jia; He, Mu; Liu, Ran; Belegu, Visar; Dai, Ping; Liu, Wei; Wang, Wei; Xia, Qing-Jie; Shang, Fei-Fei; Luo, Chao-Zhi; Zhou, Xue; Liu, Su; McDonald, JohnW.; Liu, Jin; Zuo, Yun-Xia; Liu, Fei; Wang, Ting-Hua

    2016-01-01

    Patients with tumors that metastasize to bone frequently suffer from debilitating pain, and effective therapies for treating bone cancer are lacking. This study employed a novel strategy in which herpes simplex virus (HSV) carrying a small interfering RNA (siRNA) targeting platelet-derived growth factor (PDGF) was used to alleviate bone cancer pain. HSV carrying PDGF siRNA was established and intrathecally injected into the cavum subarachnoidale of animals suffering from bone cancer pain and animals in the negative group. Sensory function was assessed by measuring thermal and mechanical hyperalgesia. The mechanism by which PDGF regulates pain was also investigated by comparing the differential expression of pPDGFRα/β and phosphorylated ERK and AKT. Thermal and mechanical hyperalgesia developed in the rats with bone cancer pain, and these effects were accompanied by bone destruction in the tibia. Intrathecal injection of PDGF siRNA and morphine reversed thermal and mechanical hyperalgesia in rats with bone cancer pain. In addition, we observed attenuated astrocyte hypertrophy, down-regulated pPDGFRα/β levels, reduced levels of the neurochemical SP, a reduction in CGRP fibers and changes in pERK/ERK and pAKT/AKT ratios. These results demonstrate that PDGF siRNA can effectively treat pain induced by bone cancer by blocking the AKT-ERK signaling pathway. PMID:27282805

  19. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  20. The mechanical effects of different levels of cement penetration at the cement–bone interface

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.W.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement–bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement–bone interface were created from micro-computed tomography data and the p

  1. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    Institute of Scientific and Technical Information of China (English)

    Qing-Hua Qin; Ya-Nan Wang

    2012-01-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper.The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model.Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model),but also predict the realtime development pattern of BMC and BFE,as well as the dynamics of osteoblasts (OBA),osteoclasts (OCA),nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme,which can hardly be monitored through experiment.In conclusion,the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass.More importantly,this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated.The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies.Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  2. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading.

    Science.gov (United States)

    Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Sasaki, Muneteru; Inoue, Maaya; Yasutake, Munenori; Sawase, Takashi

    2017-01-15

    The aim was to investigate the effect of groove designs on bone quality under controlled-repetitive load conditions for optimizing dental implant design. Anodized Ti-6Al-4V alloy implants with -60° and +60° grooves around the neck were placed in the proximal tibial metaphysis of rabbits. The application of a repetitive mechanical load was initiated via the implants (50N, 3Hz, 1800 cycles, 2days/week) at 12weeks after surgery for 8weeks. Bone quality, defined as osteocyte density and degree of biological apatite (BAp) c-axis/collagen fibers, was then evaluated. Groove designs did not affect bone quality without mechanical loading; however, repetitive mechanical loading significantly increased bone-to-implant contact, bone mass, and bone mineral density (BMD). In +60° grooves, the BAp c-axis/collagen fibers preferentially aligned along the groove direction with mechanical loading. Moreover, osteocyte density was significantly higher both inside and in the adjacent region of the +60° grooves, but not -60° grooves. These results suggest that the +60° grooves successfully transmitted the load to the bone tissues surrounding implants through the grooves. An optimally oriented groove structure on the implant surface was shown to be a promising way for achieving bone tissue with appropriate bone quality. This is the first report to propose the optimal design of grooves on the necks of dental implants for improving bone quality parameters as well as BMD. The findings suggest that not only BMD, but also bone quality, could be a useful clinical parameter in implant dentistry.

  3. Metastatic bone cancer as a recurrence of early gastric cancer - characteristics and possible mechanisms

    Institute of Scientific and Technical Information of China (English)

    Michiya Kobayashi; Takehiro Okabayashi; Takeshi Sano; Keijiro Araki

    2005-01-01

    The surgical outcome of most early gastric cancer (EGC)is usually satisfactory. Some cases show bone metastasis even though the depth of cancer invasion is confined to the mucosa. The most frequent site for recurrence of EGC is the liver. Cases of EGC with bone metastasis are reviewed to clarify the clinicopathological characteristics of EGC giving rise to bone metastasis. Possible mechanisms and risk factors underlying this rare condition are proposed.Forty-six cases of bone metastasis from EGC are reviewed from published reports and meeting proceedings in Japan.This investigation suggests that risk factors for bone metastasis from EGC include depressed-type signet-ring cell carcinoma, poorly differentiated carcinoma, and/or the likely involvement of lymph node metastasis, even though the cancer is confined to the gastric mucosa. The risk factors do not include recurrence of EGC in the liver. We speculate that the mechanism of bone metastasis from EGC is via lymphatic channels and systemic circulation. Postoperative follow-up of cases should consider the development of bone metastasis from EGC. We propose the use of elevated alkaline phosphatase levels for the detection of bone metastasis and recommend bone scintigraphy in positive cases.

  4. Mechanical Stimulus Inhibits the Growth of a Bone Tissue Model Cultured In Vitro

    Institute of Scientific and Technical Information of China (English)

    Zong-ming Wan; Lu Liu; Jian-yu Li; Rui-xin Li; Yong Guo; Hao Li; Jian-ming Zhang; Xi-zheng Zhang

    2013-01-01

    Objectives To construct the cancellous bone explant model and a method of culturing these bone tissues in vitro, and to investigate the effect of mechanical load on growth of cancellous bone tissue in vitro. Methods Cancellous bone were extracted from rabbit femoral head and cut into 1-mm-thick and 8-mm-diameter slices under sterile conditions. HE staining and scanning electron microscopy were employed to identify the histomorphology of the model after being cultured with a new dynamic load and circulating perfusion bioreactor system for 0, 3, 5, and 7 days, respectively. We built a three-dimensional model using microCT and analyzed the loading effects using finite element analysis. The model was subjected to mechanical load of 1000, 2000, 3000, and 4000μεrespectively for 30 minutes per day. After 5 days of continuous stimuli, the activities of alkaline phosphatase (AKP) and tartrate-resistant acid phosphatase (TRAP) were detected. Apoptosis was analyzed by DNA ladder detection and caspase-3/8/9 activity detection. Results After being cultured for 3, 5, and 7 days, the bone explant model grew well. HE staining showed the apparent nucleus in cells at the each indicated time, and electron microscope revealed the living cells in the bone tissue. The activities of AKP and TRAP in the bone explant model under mechanical load of 3000 and 4000μεwere significantly lower than those in the unstressed bone tissues (all P Conclusions The cancellous bone explant model extracted from the rabbit femoral head could be alive at least for 7 days in the dynamic load and circulating perfusion bioreactor system, however, pathological mechanical load could affect the bone tissue growth by apoptosis in vitro. The differentiation of osteoblasts and osteoclasts might be inhibited after the model is stimulated by mechanical load of 3000 and 4000με.

  5. A study on the changes of microstructural and mechanical properties of the bone in tail-suspended rats as osteoporosis models%尾部悬吊大鼠骨质疏松模型骨的微观结构及力学性能变化的研究

    Institute of Scientific and Technical Information of China (English)

    刘宁; 崔赓; 雷伟; 李洁; 毕龙; 陈永锋; 王军

    2012-01-01

    目的 观察模拟失重尾部悬吊大鼠模型松质骨骨密度、骨小梁结构及力学性能变化.方法 3个月龄雄性SD大鼠24只,随机分为3组,尾部悬吊14d、28d和空白对照组.到期处死动物,测定L4椎体、股骨髁部骨密度,并进行显微CT及生物力学测试.结果 尾部悬吊组较对照组椎体、股骨髁部骨密度均显著下降,且尾部悬吊大鼠骨质疏松随时间加重,松质骨的骨体积分数(BV/TV)、骨小梁厚度(Tb.\tTh)、骨小梁数目(Tb.\tN)较对照组显著降低(P<0.05),股骨髁部表面积体积比(BS/BV)、椎体骨小梁间隙(Tb.\tSp)则较对照显著增高.生物力学测试表明,尾部悬吊14d、28d组腰椎的最大压缩应力分别较空白对照组下降11.8%、26.3%,股骨抗弯曲载荷较空白对照组下降13.9%,24.6%,力学强度显著下降.结论 尾部悬吊大鼠从14d即表现出明显的松质骨骨密度下降,骨小梁三维微结构破坏,椎体力学强度也显著下降,并随时间发展不断加重,理论上骨折风险性增加.%Objective To observe the changes of bone mineral density (BMD) of cancellous bone, structure and mechanical properties of trabecular bone in tail-suspended rats as osteoporosis models in simulated weightlessness. Methods 24 male SD rats aging 3 months were randomly divided into 3 groups. Group A: rats were suspended for 14 days. Group B: rats were suspended for 28 days. Group C: control group. All rats were sacrificed at predetermined time points. The BMD of lumbar vertebral body L4 and femoral condyle was evaluated. Micro-CT and biomechanic testing were applied. Results Comparing group A, B with group C, the BMD of the lumbar vertebra and femoral condyle of the group A and group B were significantly lower than those of the group C (P<0.05). Furthermore the BMD decreased with the extension of suspension. The bone volume fraction (BV/TV), trabecular bone thickness (Tb. Th) and trabecular bone number (Tb. N) of the cancellous bone in

  6. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    Science.gov (United States)

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  7. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Zhang

    2017-01-01

    Full Text Available Additive manufacturing (AM, nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors’ view on the current challenges and further research directions.

  8. Material properties and in vitro biocompatibility of a newly developed bone cement

    Directory of Open Access Journals (Sweden)

    Elke Mitzner

    2009-01-01

    Full Text Available In this study mechanical properties and biocompatibility (In Vitro of a new bone cement were investigated. A new platform technology named COOL is a variable composite of dissolved, chemically modified PMMA and different bioceramics. COOL cures at body temperature via a classical cementation reaction. Compressive strengths ranging from 3.6 ± 0.8 to 62.8 ± 1.3 MPa and bending strengths ranging from 9.9 ± 2.4 to 26.4 ± 3.0 MPa were achieved with different COOL formulations. Porosity varied between 31 and 43%. Varying the components of each formulation mechanical properties and porosity could be adjusted. In Vitro biocompatibility studies with primary human osteoblasts (pHOB in direct contact with different COOL formulations, did not reveal any signs of toxicity. In contrast to Refobacin® R, cells incubated with COOL showed similar density, viability and ALP activity compared to control, if specimen were added immediately to the cell monolayer after preparation. In conclusion, COOL has promising mechanical properties in combination with high biocompatibility In Vitro and combines different advantages of both CPCs and PMMA cements by avoiding some of the respective shortcomings.

  9. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model

    NARCIS (Netherlands)

    Fisher, J.P.; Lalani, Z.; Bossano, C.M.; Brey, E.M.; Demian, N.; Johnston, C.M.; Dean, D.; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2004-01-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion.

  10. Effect of storage on osteoinductive properties of demineralized bone in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1994-01-01

    A requirement for the clinical use of demineralized bone is the possibility of storing the material without loss of its osteoinductive properties. Seventy-five 8-week-old male Wistar rats were randomly assigned to one of five groups of 15 rats each. Lyophilized demineralized allogeneic bone was p...

  11. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis.

    Science.gov (United States)

    Lories, Rik J U; Luyten, Frank P; de Vlam, Kurt

    2009-01-01

    Targeted therapies that neutralize tumour necrosis factor are often able to control the signs and symptoms of spondyloarthritis. However, recent animal model data and clinical observations indicate that control of inflammation may not be sufficient to impede disease progression toward ankylosis in these patients. Bone morphogenetic proteins and WNTs (wingless-type like) are likely to play an important role in ankylosis and could be therapeutic targets. The relationship between inflammation and new bone formation is still unclear. This review summarizes progress made in our understanding of ankylosis and offers an alternative view of the relationship between inflammation and ankylosis.

  12. Structural Influence on the Mechanical Response of Adolescent Gottingen Porcine Cranial Bone

    Science.gov (United States)

    2016-10-01

    SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution...images. The model enabled the prediction of local moduli based on morphological parameters measured with μCT and provided an estimation of the...tissue modulus of the cranial bone. 15. SUBJECT TERMS bone mechanics, cranial mechanics, skull morphology , minipig skull, DIC 16. SECURITY

  13. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016.

  14. Differences in Mechanical Properties of the Human and Monkey Tibia

    Science.gov (United States)

    Arnaud, Sara B.; Hutchinson, T. M.; Bakulin, A. V.; Rahkmanov, A. S.; Steele, C. R.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    A method which uses an instrument that detects the response of a long bone to a vibratory stimulus to quantify mechanical properties non-invasively was revised and validated for use in the tibia. Stored data from healthy men was reanalyzed and compared with values from non-human primates. The analysis uses the relationship K(sub b) = 48 EI/L(sup 3) where K(sub b) is the lateral stiffness of a beam with force applied midspan, E is the elastic modulus, I the geometric moment of inertia and L, the limb length. Values for stiffness (EI, Nm(sup2)), the Euler buckling load (P(sub cr) = EI (pi/L)(sup 2)), and bone sufficiency (S) which represents the axial load the bone can support, adjusted to BW (S=P(sub cr)/BW) were obtained. The interest precision of the method in relaxed men, 5.8%, and in sedated male monkeys, 4.3%, was based on repeated measures in the same subjects at 1 month intervals. The R tibias of 40 men, aged 38.6 +/- 7.3 yrs with BW 78.9 +/- 7.9 kg, showed average (+/- SD) L to be 35 +/- 2 cm, EI 222 +/- 71 Nm(sup 2), P(sub cr) 18.1 +/- 4.9 kN, and S 23.4 +/- 5.7 N. The R tibias of 24 Rhesus monkeys ranging in age from 2-12 years, BW 4.9 +/- 3 kg, showed L to be 14.7 +/- 1.9 cm, EI 6.0 +/- 4.8 Nm(sup 2), P(sub cr) 2.51 +/- 1.2 kN and S 57.3 N. These measurements indicate that the tibia of a terrestrial non-human primate, M. mulatta, has higher load carrying capacity for the level of body weights in the species than the human bone.

  15. SWCNT Composites, Interfacial Strength and Mechanical Properties

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong bond...... is applied to the composite materials. The effect of polymer matrix, modification and concentration of the CNTs are discussed. The strain transfer i.e. 2D band shift under tension is compared to the mechanical properties of the SWCNT composite material.......Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong...

  16. Mechanical properties of nanoparticles: basics and applications

    Science.gov (United States)

    Guo, Dan; Xie, Guoxin; Luo, Jianbin

    2014-01-01

    The special mechanical properties of nanoparticles allow for novel applications in many fields, e.g., surface engineering, tribology and nanomanufacturing/nanofabrication. In this review, the basic physics of the relevant interfacial forces to nanoparticles and the main measuring techniques are briefly introduced first. Then, the theories and important results of the mechanical properties between nanoparticles or the nanoparticles acting on a surface, e.g., hardness, elastic modulus, adhesion and friction, as well as movement laws are surveyed. Afterwards, several of the main applications of nanoparticles as a result of their special mechanical properties, including lubricant additives, nanoparticles in nanomanufacturing and nanoparticle reinforced composite coating, are introduced. A brief summary and the future outlook are also given in the final part.

  17. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response.

    Science.gov (United States)

    Hadjicharalambous, Chrystalleni; Buyakov, Ales; Buyakova, Svetlana; Kulkov, Sergey; Chatzinikolaidou, Maria

    2015-04-23

    Zirconia (ZrO2) and alumina (Al2O3) based ceramics are widely used for load-bearing applications in bone repair due to their excellent mechanical properties and biocompatibility. They are often regarded as bioinert since no direct bone-material interface is created unless a porous structure intercedes, leading to better bone bonding. In this regard, investigating interactions between cells and porous ceramics is of great interest. In the present study, we report on the successful fabrication of sintered alumina A-61, zirconia Z-50 and zirconia/alumina composite ZA-60 ceramics with medium porosities of 61, 50 and 60%, respectively, indicating a bimodal pore size distribution and good interconnectivity. They exhibit elastic moduli of 3-10 GPa and compressive strength values of 60-240 MPa, similar to those of human cortical bone.We performed in vitro cell-material investigations comparing the adhesion, proliferation and differentiation of mouse pre-osteoblasts MC3T3-E1 on the three porous materials. While all three ceramics demonstrate a strong cell attachment, better cell spreading is observed on zirconia-containing substrates. Significantly higher cell growth was quantified on the latter ceramics, revealing an increased alkaline phosphatase activity, higher collagen production and increased calcium biomineralization compared to A-61. Hence, these porous zirconia-containing ceramics elicit superior biological responses over porous alumina of similar porosity, promoting enhanced biological interaction, with potential use as non-degradable bone grafts or as implant coatings.

  18. Physical and mechanical properties of hemp seed

    Science.gov (United States)

    Taheri-Garavand, A.; Nassiri, A.; Gharibzahedi, S. M. T.

    2012-04-01

    The current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (Phemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (Phemp seed were significant (P<0.05).

  19. Biocompatibility and other properties of acrylic bone cements prepared with antiseptic activators.

    Science.gov (United States)

    de la Torre, B; Fernández, M; Vázquez, B; Collía, F; de Pedro, J A; López-Bravo, A; San Román, J

    2003-08-15

    Acrylic bone cements prepared with activators of reduced toxicity have been formulated with the aim of improving the biocompatibility of the final material. The activators used were N,N-dimethylaminobenzyl alcohol (DMOH) and 4,4'-dimethylamino benzydrol (BZN). The toxicity, cytotoxicity, and antiseptic action of these activators were first studied. DMOH and BZN presented LD50 values 3-4 times higher than DMT, were less cytotoxic against polymorphonuclear leucocytes, and possessed an antimicrobial character, with a high activity against the most representative microorganisms involved in postoperative infections. The properties of the acrylic bone cements formulated with DMOH and BZN were evaluated to determine the influence of these activators on the curing process and the physicochemical characteristics of the cements. A decrease of the peak temperature was observed for the curing with DMOH or BZN with respect to that of one commercially available formulation (CMW 3). However, residual monomer content and mechanical properties in tension and compression were comparable to those of CMW 3. The biocompatibility of acrylic bone cements containing DMOH or BZN was studied and compared with CMW 3. To that end, intramuscular and intraosseous implantation procedures were carried out and the results were obtained from the histological analysis of the surrounding tissues at different periods of time. Implantation of rods of cement into the dorsal muscle of rats showed the presence of a membrane of connective tissue, which increased in collagen fibers with time of implantation, for all formulations. The intraosseous implantation of the cements in the dough state in the femur of rabbits, revealed a higher and early osseous neoformation, with the presence of osteoid material surrounding the rest of the cured material, for the cement prepared with the activator BZN in comparison with that obtained following the implantation of the cement cured with DMOH or DMT (CMW 3).

  20. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  1. Stainless Steel Microstructure and Mechanical Properties Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  2. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model.

    Science.gov (United States)

    Fisher, John P; Lalani, Zahid; Bossano, Carla M; Brey, Eric M; Demian, Nagi; Johnston, Carol M; Dean, David; Jansen, John A; Wong, Mark E K; Mikos, Antonios G

    2004-03-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion. To test this hypothesis, healing bone was investigated within a rabbit incisor extraction socket, a subcritical size bone defect that resists significant soft tissue invasion by virtue of its conformity. After removal of the incisor teeth, one tooth socket was left as an empty control, one was filled with crosslinked polymer networks formed from the hydrophobic polymer poly(propylene fumarate) (PPF), and one was filled with a hydrogel formed from the hydrophilic oligomer oligo(poly(ethylene glycol) fumarate) (OPF). At five different times (4 days as well as 1, 2, 4, and 8 weeks), jaw bone specimens containing the tooth sockets were removed. We analyzed bone healing by histomorphometrical analysis of hematoxylin and eosin stained sections as well as immunohistochemically stained sections. The proposed hypothesis, that a hydrophilic material would hinder bone healing, was supported by the histomorphometrical results. In addition, the immunohistochemical results reflect molecular signaling indicative of the early invasion of platelets, the vascularization of wound-healing tissue, the differentiation of migrating progenitor cells, and the formation and remodeling of bone tissue. Finally, the results emphasize the need to consider biomaterial properties and their differing effects upon endogenous growth factors, and thus bone healing, during the development of tissue engineering devices.

  3. Relationship between microstructure, material distribution, and mechanical properties of sheep tibia during fracture healing process.

    Science.gov (United States)

    Gao, Jiazi; Gong, He; Huang, Xing; Fang, Juan; Zhu, Dong; Fan, Yubo

    2013-01-01

    The aim of this study was to investigate the relationship between microstructural parameters, material distribution, and mechanical properties of sheep tibia at the apparent and tissue levels during the fracture healing process. Eighteen sheep underwent tibial osteotomy and were sacrificed at 4, 8, and 12 weeks. Radiographs and micro-computed tomography (micro-CT) scanning were taken for microstructural assessment, material distribution evaluation, and micro-finite element analysis. A displacement of 5% compressive strain on the longitudinal direction was applied to the micro-finite element model, and apparent and tissue-level mechanical properties were calculated. Principle component analysis and linear regression were used to establish the relationship between principle components (PCs) and mechanical parameters. Visible bony callus formation was observed throughout the healing process from radiographic assessment. Apparent mechanical property increased at 8 weeks, but tissue-level mechanical property did not increase significantly until 12 weeks. Three PCs were extracted from microstructural parameters and material distribution, which accounted for 87.592% of the total variation. The regression results showed a significant relationship between PCs and mechanical parameters (R>0.8, PCT imaging could efficiently predict bone strength and reflect the bone remodeling process during fracture healing, which provides a basis for exploring the fracture healing mechanism and may be used as an approach for fractured bone strength assessment.

  4. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping.

    Science.gov (United States)

    Xie, Jiajun; Yang, Xianyan; Shao, Huifeng; Ye, Juan; He, Yong; Fu, Jianzhong; Gao, Changyou; Gou, Zhongru

    2016-02-01

    The large-area bone defects in head (including calvarial, orbital, and maxillofacial bone) and segmental bone are attracting increased attention in a wide range of clinical departments. A key requirement for the clinical success of the bioactive ceramics is the match of the mechanical behavior of the implants with the specific bone tissue to be filled. This raises the question as to what design strategy might be the best indicators for the balance between mechanical properties and biological performances. Here we go beyond the traditional approaches that use phase conversion or biphasic hybrid; instead, we achieved a simultaneous enhancement of several mechanical parameters and optimalization of biodegradability by using a dilute doping of Mg in a single-phase wollastonite bioceramic. We show that the wollastonite ceramic can be rationally tuned in phase (α or β), mechanical strength (in compression and bending mode), elastic modulus (18-23GPa), and fracture toughness (>3.2MPam(1/2)) through the usage of Mg dopant introduced at precisely defined dilute concentrations (Mg/Ca molar ratio: 1.2-2.1%). Meanwhile, the dilute Mg-doped wollastonite ceramics are shown to exhibit good bioactivity in vitro in SBF but biodegradation in Tris is inversely proportional to Mg content. Consequently, such new highly bioactive ceramics with appreciable strength and toughness are promising for making specific porous scaffolds for enhancing large segmental bone defect and thin-wall bone defect repair.

  5. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  6. Molecular Mechanisms of Bone Metastasis: Which Targets Came from the Bench to the Bedside?

    Directory of Open Access Journals (Sweden)

    Sandra Casimiro

    2016-08-01

    Full Text Available Bone metastases ultimately result from a complex interaction between cancer cells and bone microenvironment. However, prior to the colonization of the bone, cancer cells must succeed through a series of steps that will allow them to detach from the primary tumor, enter into circulation, recognize and adhere to specific endothelium, and overcome dormancy. We now know that as important as the metastatic cascade, tumor cells prime the secondary organ microenvironment prior to their arrival, reflecting the existence of specific metastasis-initiating cells in the primary tumor and circulating osteotropic factors. The deep comprehension of the molecular mechanisms of bone metastases may allow the future development of specific anti-tumoral therapies, but so far the approved and effective therapies for bone metastatic disease are mostly based in bone-targeted agents, like bisphosphonates, denosumab and, for prostate cancer, radium-223. Bisphosphonates and denosumab have proven to be effective in blocking bone resorption and decreasing morbidity; furthermore, in the adjuvant setting, these agents can decrease bone relapse after breast cancer surgery in postmenopausal women. In this review, we will present and discuss some examples of applied knowledge from the bench to the bed side in the field of bone metastasis.

  7. The Effects of Surface Properties of Nanostructured Bone Repair Materials on Their Performances

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available Nanotechnology has been expected to be an extraordinarily promising method for bone repair. Meanwhile, the promise of nanobiomaterials for therapeutic applications has been widely reported, and a lot of studies have been made in terms of repairing bone using nanomaterials accompanied by rapid development of nanotechnology. Compared with conventional biomaterials, nanostructured implants have been shown to possess positive effects on cellular functions because of their unique surface properties, such as nanotopography, increased wettability, larger surface area, and microenvironment similar to extracellular matrix. Moreover, many positive cellular responses have been found to take place at the interface between nanostructured implants and host bone. In this paper, we will give a review about the effects of surface properties of nanostructured bone repair materials on their performances in terms of several aspects and a detailed interpretation or introduction on the specific cellular recognitions at the interface between nanostructured implants and host bone.

  8. Probing cell mechanical properties with microfluidic devices

    Science.gov (United States)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  9. Age-related changes in collagen properties and mineralization in cancellous and cortical bone in the porcine mandibular condyle

    NARCIS (Netherlands)

    Willems, N.M.B.K.; Langenbach, G.E.J.; Everts, V.; Mulder, L.; Grünheid, T.; Bank, R.A.; Zentner, A.; Eijden, T.M.G.J. van

    2010-01-01

    Collagen is an important constituent of bone, and it has been suggested that changes in collagen and mineral properties of bone are interrelated during growth. The aim of this study was to quantify age-related changes in collagen properties and the degree of mineralization of bone (DMB). The DMB in

  10. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2016-03-01

    Full Text Available The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  11. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    Kolmakova, T. V., E-mail: kolmakova@ftf.tsu.ru; Buyakova, S. P., E-mail: sbuyakova@ispms.tsc.ru; Kul’kov, S. N., E-mail: kulkov@ms.tsc.ru [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (Russian Federation); National Research Tomsk State University (Russian Federation)

    2015-11-17

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  12. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    Science.gov (United States)

    Kolmakova, T. V.; Buyakova, S. P.; Kul'kov, S. N.

    2015-11-01

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  13. Researches of mechanical behaviour of the bone micro volumes and porous ceramics under uniaxial compression

    Science.gov (United States)

    Kolmakova, T. V.; Buyakova, S. P.; Kulkov, S. N.

    2017-02-01

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative micro volume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental and computer studies of the mechanics are performed and the effective mechanical characteristics of the porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  14. Mechanical properties of wet granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Z; Geromichalos, D; Herminghaus, S; Kohonen, M M; Mugele, F; Scheel, M; Schulz, M; Schulz, B; Schier, Ch; Seemann, R; Skudelny, A

    2005-03-09

    We elaborate on the impact of liquids upon the mechanical properties of granular materials. We find that most of the experimental and simulation results may be accounted for by a simple model assuming frictionless, spherical grains, with a hysteretic attractive interaction between neighbouring grains due to capillary forces.

  15. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone.

    Science.gov (United States)

    Meakin, Lee B; Price, Joanna S; Lanyon, Lance E

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones' strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone's mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them.

  16. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  17. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  18. Improvement of mechanical properties of glass substrates

    Science.gov (United States)

    Karbay, Ismail Hakki Cengizhan; Budakoglu, Refika; Zayim, Esra Ozkan

    2015-12-01

    This paper aims to enhance the mechanical and optical properties of glass substrates with thin films by the sol-gel method. TiO2-SiO2 binary system and Ta2O5 were deposited on glass substrates with high transparency. Ring-on-ring flexure and scratch tests were the main mechanical characterization tests. Herein, we report that the thin films can be used to enhance the mechanical properties of the glass substrates efficiently and effectively. TiO2-SiO2 binary system shows more than two times and Ta2O5 thin films show nearly three times better ultimate strength in the ring-on-ring flexure test. Besides, Ta2O5 thin film samples show superior scratch resistance. Additionally, the finite element method was also used to check the conformity in the application of mechanical properties of composite materials. It is also worth noting that, the finite element method can be used to accurately analyze the mechanical stability of composite materials. The use of the finite element method can reduce the total number of experimental trials without losing reliability.

  19. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis

    OpenAIRE

    2009-01-01

    Targeted therapies that neutralize tumour necrosis factor are often able to control the signs and symptoms of spondyloarthritis. However, recent animal model data and clinical observations indicate that control of inflammation may not be sufficient to impede disease progression toward ankylosis in these patients. Bone morphogenetic proteins and WNTs (wingless-type like) are likely to play an important role in ankylosis and could be therapeutic targets. The relationship between inflammation an...

  20. Mechanical properties of additively manufactured octagonal honeycombs.

    Science.gov (United States)

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs.

  1. Mechanical Properties of Polymer Nano-composites

    Science.gov (United States)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  2. Food mechanical properties and dietary ecology.

    Science.gov (United States)

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet.

  3. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-08-01

    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  4. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Directory of Open Access Journals (Sweden)

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  5. Heat-deproteinated xenogeneic bone from slaughterhouse waste: Physico-chemical properties

    Indian Academy of Sciences (India)

    R Murugan; K Panduranga Rao; T S Sampath Kumar

    2003-08-01

    Xenogeneic bone procured from the slaughterhouse waste was deproteinated by heat treatment method intended for use as a bone substitute. The effect of heat treatment was investigated by thermal analysis and by physico-chemical methods such as X-ray powder diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The heat treatment temperatures for the bovine bone samples were predetermined by thermogravimetric (TG) analysis. The XRD results revealed that the process of heat treatment promoted the crystallinity of bone samples, particularly at 700 and 900°C. There was no secondary phase transformation detected for heat-deproteinated bone except the presence of the hydroxyapatite (HA) phase, which indicated its phase purity even at a higher temperature. The FTIR spectra of raw bone and bone heated at 300°C indicated the presence of organic macromolecules whereas these disappeared in the samples heated at 500, 700 and 900°C, which suggested the removal of antigenic organic matters around 500°C. The same results were also confirmed quantitatively by calculating the amount of collagen using hydroxyproline estimation. There was no significant change in the TG-thermogram of bone heated at 500, 700 and 900°C, which indicated their thermal stability. These findings implied that the heat treated bone at 500°C had properties similar to carbonated HA with low crystallinity, while 700 and 900°C samples had the same with higher crystallinity. As low temperature treatment does not alter morphological and structural properties, we propose that the 500°C heat treated xenogeneic bone may act as an excellent osteogenic bone substitute.

  6. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  7. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on bone material properties.

    Science.gov (United States)

    Finnilä, Mikko A J; Zioupos, Peter; Herlin, Maria; Miettinen, Hanna M; Simanainen, Ulla; Håkansson, Helen; Tuukkanen, Juha; Viluksela, Matti; Jämsä, Timo

    2010-04-19

    Dioxins are known to decrease bone strength, architecture and density. However, their detailed effects on bone material properties are unknown. Here we used nanoindentation methods to characterize the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on nanomechanical behaviour of bone matrix. Pregnant rats were treated with a single intragastric dose of TCDD (1 microg/kg) or vehicle on gestational day 11. Tibias of female offspring were sampled on postnatal day (PND) 35 or 70, scanned at mid-diaphysis with pQCT, and evaluated by three-point bending and nanoindentation. TCDD treatment decreased bone mineralization (p<0.05), tibial length (p<0.01), cross-sectional geometry (p<0.05) and bending strength (p<0.05). Controls showed normal maturation pattern between PND 35 and 70 with decreased plasticity by 5.3% and increased dynamic hardness, storage and complex moduli by 26%, 13% and 12% respectively (p<0.05), while similar maturation was not observed in TCDD-exposed pups. In conclusion, for the first time, we demonstrate retardation of bone matrix maturation process in TCDD-exposed animals. In addition, the study confirms that developmental TCDD exposure has adverse effects on bone size, strength and mineralization. The current results in conjunction with macromechanical behaviour suggest that reduced bone strength caused by TCDD is more associated with the mineralization and altered geometry of bones than with changes at the bone matrix level.

  8. Studies on the mechanisms underlying the transfer of calcium and phosphate from bone to blood

    Energy Technology Data Exchange (ETDEWEB)

    Brommage, Robert J. Jr.

    1978-01-01

    The skeleton is recognized as a crucial organ in the minute-to-minute regulation of the blood levels of calcium and phosphate. The fluxes of calcium and phosphate to and from bone greatly exceed the entry and exit of these ions occurring in the intestine and kidneys. Parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D/sub 3/ (1,25-(OH)/sub 2/D/sub 3/ are known to influence the transfer of calcium and phosphate from bone to blood. Three mechanisms have been proposed to explain the hormonal control of the calcium and phosphate effluxes from bone. The concept of a bone membrane maintaining a distinct bone extracellular fluid composition has led to the pump and pH gradient theories. An alternate solubilizer theory proposes that bone cells secrete a substance which increases the solubility of the bone mineral. The bone membrane concept was originally proposed to explain the presence of the apparent anomalously high concentrations of potassium in the bone extracellular fluid. However, the available evidence does not allow an unambiguous decision concerning the presence of a bone membrane. Calvarial lactate production was unaltered by 1,25-(OH)/sub 2/D/sub 3/ treatment and consequently 1,25-(OH)/sub 2/D/sub 3/ does not appear to promote the mobilization of bone mineral through a lactate-mediated pH gradient mechanism. 1,25-(OH)/sub 2/D/sub 3/ did increase the solubility of non-vital bone, clearly demonstrating that the solubilizer mechanism is at least partially responsible for the mobilization of bone mineral and the regulation of blood levels of calcium and phosphate. Vitamin D-deficient female rats fed a 0.2% calcium, 0.4% phosphorous diet and supplemented with daily injections of 0.75 pmole of 1,25-(OH)/sub 2/D/sub 3/ were shown to be capable of bearing young. When the injections of 1,25-(OH)/sub 2/D/sub 3/ were terminated at delivery, the dams and pups showed signs of vitamin D deficiency approximately one week later.

  9. Experimental Investigation on the Mechanical Behavior of Bovine Bone Using Digital Image Correlation Technique

    Directory of Open Access Journals (Sweden)

    Yuxi Chen

    2015-01-01

    Full Text Available In order to understand the fracture mechanisms of bone subjected to external force well, an experimental study has been performed on the bovine bone by carrying out the three-point bending test with 3D digital image correlation (DIC method, which provides a noncontact and full field of displacement measurement. The local strain and damage evolution of the bone has been recorded real time. The results show that the deflection measured by DIC agrees well with that obtained by the displacement sensor of the mechanical testing machine. The relationship between the deflection and the force is nearly linear prior to reaching the peak strength which is about 16 kN for the tested bovine tibia. The full-field strain contours of the bone show that the strain distribution depends on not only the force direction, but also the natural bone shape. The natural arched-shape bovine tibia bone could bear a large force, due to the tissue structure with high strength, and the fracture propagation process of the sample initiates at the inner side of the bone first and propagates along the force direction.

  10. Nanocrystalline forsterite for biomedical applications: synthesis, microstructure and mechanical properties.

    Science.gov (United States)

    Ramesh, S; Yaghoubi, A; Lee, K Y Sara; Chin, K M Christopher; Purbolaksono, J; Hamdi, M; Hassan, M A

    2013-09-01

    Forsterite (Mg2SiO4) because of its exceptionally high fracture toughness which is close to that of cortical bones has been nominated as a possible successor to calcium phosphate bioceramics. Recent in vitro studies also suggest that forsterite possesses good bioactivity and promotes osteoblast proliferation as well as adhesion. However studies on preparation and sinterability of nanocrystalline forsterite remain scarce. In this work, we use a solid-state reaction with magnesium oxide (MgO) and talc (Mg3Si4(OH)2) as the starting precursors to synthesize forsterite. A systematic investigation was carried out to elucidate the effect of preparatory procedures including heat treatment, mixing methods and sintering temperature on development of microstructures as well as the mechanical properties of the sintered forsterite body.

  11. Injectability and mechanical properties of magnesium phosphate cements.

    Science.gov (United States)

    Moseke, Claus; Saratsis, Vasileios; Gbureck, Uwe

    2011-12-01

    Up to now magnesium phosphate cements are mainly being utilized in wastewater treatment due to their adsorptive properties. Recently they also have been shown to have a high potential as degradable biocements for application as replacement materials for bone defects. In comparison to degradable calcium phosphate cements they have the advantage of setting at neutral pH, which is favorable in biological environment. In this study two parameters of the cement composition, namely powder-to-liquid ratio (PLR) and citrate content, were varied in order to optimize the injectability properties of the cement paste and the mechanical properties of the reaction product. These properties were determined by means of testing setting time and temperature, paste viscosity, and injectability as well as phase composition and compressive strength of the set cements. Best results were obtained, when the cements were prepared with a PLR of 2.5 and a binder liquid consisting of an aqueous solution of 3 mol/l diammonium hydrogen phosphate and 0.5 mol/l diammonium citrate.

  12. Physical activity and bone: The importance of the various mechanical stimuli for bone mineral density. A review

    Directory of Open Access Journals (Sweden)

    Bente Morseth

    2011-08-01

    Full Text Available Numerous studies have reported benefits of regular physical activity on bone mineral density (BMD. The effects of physical activity on BMD are primarily linked to the mechanisms of mechanical loading, but the understanding of the precise mechanism behind the association is incomplete. The aim of this paper was to review the main findings concerning sources and types of mechanical stimuli in relation to BMD. Mechanical forces that act on bone are generated from impact with the ground (ground-reaction forces and from skeletal muscle contractions (muscle forces or muscle-joint forces, but the relative importance of these two sources has not been elucidated. Both muscle-joint forces and gravitational forces seem to be able to induce bone adaptation independently, and there may be differences in the importance of loading sources at different skeletal sites. The nature of the stimuli is affected by the type, intensity, frequency, and duration of the activity. The activity should be dynamic, not static, and the magnitude and rate of the stimuli should be high. In accordance with this, cross-sectional studies report highest BMD in athletes of high-impact activities such as dancing, soccer, volleyball, basketball, squash, speed skating, gymnastics, hockey, and step-aerobics. Endurance activities such as orienteering, skiing, and triathlon seem to be beneficial to a lesser degree, whereas low-impact activities such as swimming and cycling are associated with lower BMD than controls. Both the intensity and frequency of the activity should be varied and increased beyond the habitual level. Duration of the activity seems to be less important, and a few loading cycles seem to be sufficient.

  13. Mechanical Properties of Cellulose Microfiber Reinforced Polyolefin

    Science.gov (United States)

    Kobayashi, Satoshi; Yamada, Hiroyuki

    Cellulose microfiber (CeF) has been expected as a reinforcement of polymer because of its high modulus and strength and lower cost. In the present study, mechanical properties of CeF/polyolefin were investigated. Tensile modulus increased with increasing CeF content. On the other hand, tensile strength decreased. Fatigue properties were also investigated with acoustic emission measurement. Stiffness of the composites gradually decreased with loading. Drastic decrease in stiffness was observed just before the final fracture. Based on the Mori-Tanaka's theory, the method to calculate modulus of CeF were proposed to evaluate dispersion of CeF.

  14. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.

    Science.gov (United States)

    Kane, Robert J; Weiss-Bilka, Holly E; Meagher, Matthew J; Liu, Yongxing; Gargac, Joshua A; Niebur, Glen L; Wagner, Diane R; Roeder, Ryan K

    2015-04-01

    Hydroxyapatite (HA) reinforced collagen scaffolds have shown promise for synthetic bone graft substitutes and tissue engineering scaffolds. Freeze-dried HA-collagen scaffolds are readily fabricated and have exhibited osteogenicity in vivo, but are limited by an inherent scaffold architecture that results in a relatively small pore size and weak mechanical properties. In order to overcome these limitations, HA-collagen scaffolds were prepared by compression molding HA reinforcements and paraffin microspheres within a suspension of concentrated collagen fibrils (∼ 180 mg/mL), cross-linking the collagen matrix, and leaching the paraffin porogen. HA-collagen scaffolds exhibited an architecture with high porosity (85-90%), interconnected pores ∼ 300-400 μm in size, and struts ∼ 3-100 μm in thickness containing 0-80 vol% HA whisker or powder reinforcements. HA reinforcement enabled a compressive modulus of up to ∼ 1 MPa, which was an order of magnitude greater than unreinforced collagen scaffolds. The compressive modulus was also at least one order of magnitude greater than comparable freeze-dried HA-collagen scaffolds and two orders of magnitude greater than absorbable collagen sponges used clinically. Moreover, scaffolds reinforced with up to 60 vol% HA exhibited fully recoverable elastic deformation upon loading to 50% compressive strain for at least 100,000 cycles. Thus, the scaffold mechanical properties were well-suited for surgical handling, fixation, and bearing osteogenic loads during bone regeneration. The scaffold architecture, permeability, and composition were shown to be conducive to the infiltration and differentiation of adipose-derive stromal cells in vitro. Acellular scaffolds were demonstrated to induce angiogenesis and osteogenesis after subcutaneous ectopic implantation by recruiting endogenous cell populations, suggesting that the scaffolds were osteoinductive.

  15. Correlations between acoustic properties and bone density in bovine cancellous bone from 0.5 to 2 MHz

    Science.gov (United States)

    Lee, Kang Il; Roh, Heui-Seol; Yoon, Suk Wang

    2003-05-01

    Correlations between acoustic properties and bone density were investigated in the 12 defatted bovine cancellous bone specimens in vitro. Speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were measured in three different frequency bandwidths from 0.5 to 2 MHz using three matched pairs of transducers with the center frequencies of 1, 2.25, and 3.5 MHz. The relative orientation between ultrasonic beam and bone specimen was the mediolateral (ML) direction of the bovine tibia. SOS shows significant linear positive correlation with apparent density for all three pairs of transducers. However, BUA shows relatively weak correlation with apparent density. SOS and BUA are only weakly correlated with each other. The linear combination of SOS and BUA in a multiple regression model leads to a significant improvement in predicting apparent density. The correlations among SOS, BUA, and bone density can be effectively and clearly represented in the three-dimensional space by the multiple regression model. These results suggest that the frequency range up to 1.5 MHz and the multiple regression model in the three-dimensional space can be useful in the osteoporosis diagnosis.

  16. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    Science.gov (United States)

    2010-11-01

    Nonidet P - 40 , 10 mg/ml phenylmethylsulfonyl...5 10 15 20 25 30 35 40 45 P e rc e n ta g e TC TA PC EC B6 C3H N=5, * p ɘ.01, a p ɘ.05 Fig.3 Fold change in expression of various genes in response to...mice and brown color represents C3H mice. A= p ɘ.05 vs unloaded control bones B= p ɘ.05 v C3H mice A,B A,B A,B A AA 0 10 20 30 40 50 60 70 10wk 16wk

  17. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  18. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1.

    Science.gov (United States)

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation.

  19. Effects of architecture, density and connectivity on the properties of trabecular bone: a two-dimensional, Voronoi cell based model study

    Science.gov (United States)

    Ruiz, Osvaldo; Schouwenaars, Rafael; Ramírez, Edgar I.; Jacobo, Víctor H.; Ortiz, Armando

    2011-10-01

    Trabecular bone, rather than being considered as a homogeneous material, must be analysed as a structure of interconnected beam and plate-like elements. The arrangement and morphology of these elements depend on the specific tissue studied as well as on the physiology of the individual. It is therefore impossible to define the mechanical properties trabecular bone in general. To estimate the properties of an individual structure, flexible numerical models must be developed, which allow the calculation of elastic constants and resistance of tissue previously characterised by non-destructive observation. Voxel-based modelling of structures observed by X-ray microtomography is computation intensive. Here, synthetic 2D-microstructures are analysed, constructed as a collection of Voronoi-cells obtained from the observation of plane sections of cancellous bone. The effect of architecture (vertebra and femur), bone density and loss of trabecular connectivity was researched. The study confirms findings of earlier experimental and numerical studies relating to the effect of these parameters; the technique is efficient in terms of experimental effort and numerical analysis. Consequently, the use of synthetic microstructures based on a Voronoi-cell approximation of the real bone architecture may be a promising approach for the prediction of the mechanical properties of trabecular bone.

  20. Effects of endurance and resistance exercises on bone mineral density and mechanical strength of osteoporotic male rats

    Directory of Open Access Journals (Sweden)

    Maryam Banparvari

    2015-12-01

    Full Text Available Background and Aim: Osteoporosis is a complex disease characterized by  loss of bone mass, resulting in bone weakness and an increase in susceptibility to fractures. The aim of the current study was to determine skeletal changes induced by two progressive loading training programs on the bone properties of osteoporotic male rats. Materials and Methods: This experimental study was done on 30 Wistar male rats having mean weight of 180-200 g. They were divided into .5 equal groups. In the experimental group, osteoporosis was induced through intraperitoneal injection of 20% ethanol solution (3g/kg/day for four consecutive days for 3 weeks. The rest of the groups were  baseline group (pre test, resistance training, endurance training, and the control. The two training groups completed 12 five-day weeks of training program. according to resistance or endurance protocols. The other 6 rats were considered as the healthy group without any intervention . At the end of the intervention, the animals were killed and their bone mineral density (BMD of the femur and  L4, L5 were measured. Tensile max load of the left tibia and compression of the L5 vertebra were measured using mechanical tests. Results: The endurance (P= 0.035 and resistance (P= 0.001 groups femur BMD had significantly increased compared to that of the control . L4, L5 BMD in resistance training and control was significantly greater than that of endurance group (P= 0.001,P= 0.001. The tensile maximum load of the tibia and compression of the L5 in the resistance group was significantly greater than the control (P=0.01,P=0.03. Conclusion: Resistance training, compared to endurance training, can induce more effective favourable changes in bone mineral status and bone strength.

  1. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment.

    Science.gov (United States)

    Hägi, Tobias T; Wu, Gang; Liu, Yuelian; Hunziker, Ernst B

    2010-05-01

    The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding material's lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.

  2. Moderate alcohol consumption and increased bone mineral density: potential ethanol and non-ethanol mechanisms.

    Science.gov (United States)

    Jugdaohsingh, R; O'Connell, M A; Sripanyakorn, S; Powell, J J

    2006-08-01

    Mounting epidemiological evidence indicates an association between the moderate ingestion of alcoholic beverages and higher bone mineral density (v. abstainers). More limited findings provide some evidence for translation of this association into reduced fracture risk, but further studies are required. Here, these data are reviewed and caveats in their assimilation, comparison and interpretation as well as in the use and application of bone health indices are discussed. Whilst it is concluded that evidence is now strong for the moderate alcohol-bone health association, at least in relation to bone mineral density, mechanisms are less clear. Both ethanol and non-ethanol components have been implicated as factors that positively affect bone health in the light of moderate consumption of alcoholic beverages, and four particular areas are discussed. First, recent findings suggest that moderate ethanol consumption acutely inhibits bone resorption, in a non-parathyroid hormone- and non-calcitonin-dependent fashion, which can only partly be attributed to an energy effect. Second, critical review of the literature does not support a role for moderate ethanol consumption affecting oestrogen status and leading to a knock-on effect on bone. Third, Si is present at high levels in certain alcoholic beverages, especially beer, and may have a measurable role in promoting bone formation. Fourth, a large body of work indicates that phytochemicals (e.g. polyphenols) from alcoholic beverages could influence bone health, but human data are lacking. With further work it is hoped to be able to model epidemiological observations and provide a clear pathway between the magnitude of association and the relative contribution of these mechanisms for the major classes of alcoholic beverage.

  3. Mechanical properties of functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z Q; Liu, B; Chen, Y L; Hwang, K C [FML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Jiang, H [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 (United States); Huang, Y [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208 (United States)], E-mail: liubin@tsinghua.edu.cn, E-mail: y-huang@northwestern.edu

    2008-10-01

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization.

  4. Mechanical Properties of Autoclaved Shell-aggregate

    Institute of Scientific and Technical Information of China (English)

    MA Hailong; CUI Chong; LI Xing; Pierre Chevrier; Vanessa Bouchart; TANG Feng

    2011-01-01

    Waste solid propylene oxide sludge(POS)and fly ash were used as main raw material to prepare propylene oxide sludge aggregate(POSA)under the condition of autoclaved(180 ℃,1.0 MPa)curing.Three different test methods namely cylinder compressive strength(CCS),individual aggregate compressive strength(IACS)and strength contribution rate(SCR)proposed were used to characterize the mechanical properties of the autoclaved POSA.POS shell-aggregate with SCR of 94% were prepared under the hydrothermal synthesis and autoclaved curing.The experimental results indicate that CCS and IACS have good consistency in characterizing mechanical properties of POSA.It is suggested that SCR not only can characterize the strength of POSA core,but also can reflect the effect of shell on the performance of POSA.By means of least square method,relationships between CCS and IACS,CCS and SCR,IACS and SCR were deduced.

  5. Mechanical properties of silicones for MEMS

    Science.gov (United States)

    Schneider, F.; Fellner, T.; Wilde, J.; Wallrabe, U.

    2008-06-01

    This paper focuses on the mechanical properties of polydimethylsiloxane (PDMS) relevant for microelectromechanical system (MEMS) applications. In view of the limited amount of published data, we analyzed the two products most commonly used in MEMS, namely RTV 615 from Bayer Silicones and Sylgard 184 from Dow Corning. With regard to mechanical properties, we focused on the dependence of the elastic modulus on the thinner concentration, temperature and strain rate. In addition, creep and thermal aging were analyzed. We conclude that the isotropic and constant elastic modulus has strong dependence on the hardening conditions. At high hardening temperatures and long hardening time, RTV 615 displays an elastic modulus of 1.91 MPa and Sylgard 184 of 2.60 MPa in a range up to 40% strain.

  6. Mechanical properties of intra-ocular lenses

    Science.gov (United States)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  7. Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Barber, Lauren A; Ayturk, Ugur M; Roberts, Heather J; Deal, Lauren E; Schwartz, Marissa A; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2014-10-01

    The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5(p.A214V) ) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5(+/p.A214V) mice to Col1a2(+/p.G610C) mice, which model human type IV OI. We found that Col1a2(+/p.G610C) ;Lrp5(+/p.A214V) offspring had significantly increased bone mass and strength compared to Col1a2(+/p.G610C) ;Lrp5(+/+) littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2(+/p.G610C) mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody-treated mice had significantly increased bone mass and strength compared to vehicle-treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI.

  8. Mechanical Properties of Palm Fiber Mattress

    Science.gov (United States)

    Li, Yu-Qian; Wu, Jia-Yu; Gu, Hao-Wei; Chen, Zong-Yong; Shi, Xiao-Bing; Liao, Ting-Mao; An, Cheng; Yuan, Hong; Liu, Ren-Huai

    2016-05-01

    Palm fiber mattress is increasingly accepted by many families. This study aims at evaluating the mechanical properties of palm fiber mattress. Two experiments were conduct to investigate the Young's modulus of palm fiber mattress in three directions. In addition, finite element models were established to characterize palm fiber mattress under uniform distributed pressure. Finally, results from finite element analysis are presented to illustrate that the thick mattress will stick with human body curve perfectly, which can support vertebral column effectively.

  9. Mechanical Properties of Infrared Transmitting Materials

    Science.gov (United States)

    1978-01-01

    Theory of the Elasticity," 4th Edition, Dover Publ. Co., New York, N.Y., 1944. Marriott, J. B., and G. Rowden, "The Erosion of a Cobalt - Chromium Alloy...alumina (A1203), spinel (magnesium aluminate ), magnesia (MgO), yttria (Y203), as well as chemical vapor deposition (CVD) silicon carbide, CVD...known to be a problem. Because of their thermal and mechanical properties, alumina and magnesium aluminate (spinel) show, or can show, erosion

  10. Mechanism of mobilization of bone mineral by 1,25-dihydroxyvitamin D/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Brommage, R.; Neuman, W.F.

    1979-01-01

    To better understand the mechanism(s) by which 1,25-dihydroxyvitamin D/sub 3/(1,25(OH)/sub 2/D/sub 3/ promotes the mobilization of bone mineral, calvarial lactate production, and mineral solubility were studied in an in vitro incubation system. The calvairae were obtained from neonatal mice, some of which were previously injected with 20 ng of 1,25(OH)/sub 2/D/sub 3/. In live bones 1,25(OH)/sub 2/D/sub 3/ mobilized bone mineral as evidenced by the increased release of both calcium and phosphate into the medium throughout 48 h of incubation. When examined as a function of incubation time and the interval between injection and incubation, 1,25(OH)/sub 2/D/sub 3/ did not affect lactate production. Apparently, 1,25(OH)/sub 2/D/sub 3/ does not mobilize skeletal mineral through a lactate-mediated pH gradient mechanism. Over 4 days of incubation, 1,25(OH)/sub 2/D/sub 3/-treated calvariae supported higher buffer levels of calcium and phosphate in the absence of cellular metabolism, indicating the solubility of bone mineral was increased by 1,25(OH)/sub 2/D/sub 3/ treatment. Because the effects of 1,25(OH)/sub 2/D/sub 3/ were observed in nonvital bone, a pump mechanism cannot fully explain the 1,25(OH)/sub 2/D/sub 3/-induced transfer of calcium and phosphate from bone to blood. These findings suggest that a mechanism involving an increase in bone mineral solubility, presumably mediated through a mineral solubilizer(s), is at least partially responsible for the skeletal actions of 1,25(OH)/sub 2/D/sub 3/.

  11. Electrical properties of mechanically activated zinc oxide

    Directory of Open Access Journals (Sweden)

    Vojisavljević K.

    2006-01-01

    Full Text Available Microstructural properties of a commercial zinc oxide powder were modified by mechanical activation in a high-energy vibro-mill. The obtained powders were dry pressed and sintered at 1100°C for 2 h. The electrical properties of grain boundaries of obtained ZnO ceramics were studied using an ac impedance analyzer. For that purpose, the ac electrical response was measured in the temperature range from 23 to 240°C in order to determine the resistance and capacitance of grain boundaries. The activation energies of conduction were obtained using an Arrhenius equation. Donor densities were calculated from Mott-Schottky measurements. The influence of microstructure, types and concentrations of defects on electrical properties was discussed.

  12. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties.

    Science.gov (United States)

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit

    2010-09-01

    Despite the excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited the applications of these materials primarily to coatings and other non-load-bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in the nanometer to micrometer range were processed via microwave sintering between 1000 and 1150 degrees C for 20 min. Here we demonstrate that the mechanical properties, such as compressive strength, hardness and indentation fracture toughness, of HA compacts increased with a decrease in grain size. HA with 168 +/- 86 nm grain size showed the highest compressive strength of 395 +/- 42 MPa, hardness of 8.4+/-0.4 GPa and indentation fracture toughness of 1.9 +/- 0.2 MPa m(1/2). To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 microm were assessed for in vitro bone cell-material interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed that surfaces with finer grains provided better bone cell-material interactions than coarse-grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size.

  13. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Science.gov (United States)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  14. Mechanical properties of Indonesian-made narrow dynamic compression plate.

    Science.gov (United States)

    Dewo, P; van der Houwen, E B; Sharma, P K; Magetsari, R; Bor, T C; Vargas-Llona, L D; van Horn, J R; Busscher, H J; Verkerke, G J

    2012-09-01

    Osteosynthesis plates are clinically used to fixate and position a fractured bone. They should have the ability to withstand cyclic loads produced by muscle contractions and total body weight. The very high demand for osteosynthesis plates in developing countries in general and in Indonesia in particular necessitates the utilisation of local products. In this paper, we investigated the mechanical properties, i.e. proportional limit and fatigue strength of Indonesian-made Narrow Dynamic Compression Plates (Narrow DCP) as one of the most frequently used osteosynthesis plates, in comparison to the European AO standard plate, and its relationship to geometry, micro structural features and surface defects of the plates. All Indonesian-made plates appeared to be weaker than the standard Narrow DCP because they consistently failed at lower stresses. Surface defects did not play a major role in this, although the polishing of the Indonesian Narrow DCP was found to be poor. The standard plate showed indications of cold deformation from the production process in contrast to the Indonesian plates, which might be the first reason for the differences in strength. This is confirmed by hardness measurements. A second reason could be the use of an inferior version of stainless steel. The Indonesian plates showed lower mechanical behaviour compared to the AO-plates. These findings could initiate the development of improved Indonesian manufactured DCP-plates with properties comparable to commonly used plates, such as the standard European AO-plates.

  15. A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing

    Science.gov (United States)

    Glatt, Vaida; Evans, Christopher H.; Tetsworth, Kevin

    2017-01-01

    In order to achieve consistent and predictable fracture healing, a broad spectrum of growth factors are required to interact with one another in a highly organized response. Critically important, the mechanical environment around the fracture site will significantly influence the way bone heals, or if it heals at all. The role of the various biological factors, the timing, and spatial relationship of their introduction, and how the mechanical environment orchestrates this activity, are all crucial aspects to consider. This review will synthesize decades of work and the acquired knowledge that has been used to develop new treatments and technologies for the regeneration and healing of bone. Moreover, it will discuss the current state of the art in experimental and clinical studies concerning the application of these mechano-biological principles to enhance bone healing, by controlling the mechanical environment under which bone regeneration takes place. This includes everything from the basic principles of fracture healing, to the influence of mechanical forces on bone regeneration, and how this knowledge has influenced current clinical practice. Finally, it will examine the efforts now being made for the integration of this research together with the findings of complementary studies in biology, tissue engineering, and regenerative medicine. By bringing together these diverse disciplines in a cohesive manner, the potential exists to enhance fracture healing and ultimately improve clinical outcomes. PMID:28174539

  16. Mechanical Properties of Nanofilled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Cristina-Elisabeta PELIN

    2015-06-01

    Full Text Available The paper presents a study concerning mechanical performance of thermoplastic nanocomposites based on isotactic polypropylene matrix, nanofilled with montmorillonite modified with quaternary ammonium salt and carboxyl functionalized carbon nanotubes, respectively, added in the same concentration relative to the matrix. The nanofilled and single polymer materials were obtained by simple melt compounding through extrusion process followed by injection molding into specific shape specimens for mechanical testing of the samples. Mechanical properties were evaluated by tensile and 3 point bending tests. In terms of modulus of elasticity, the results showed overall positive effects concerning the effect of nanofiller addition to the thermoplastic polymer. The fracture cross section of the tested specimens was characterized by FT-IR spectroscopy and SEM microscopy.

  17. The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure

    Science.gov (United States)

    Espinoza Orias, Alejandro A.

    Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.

  18. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale.

    Directory of Open Access Journals (Sweden)

    Mathilde Granke

    Full Text Available The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.

  19. The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone

    Directory of Open Access Journals (Sweden)

    Lee B Meakin

    2014-10-01

    Full Text Available Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading.Jiri Heřt introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gauges to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced.Experiments combining strain gauge instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats and mice has yielded significant insight into the control of strain-related adaptive (remodeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice which is now the model of choice for many studies. Together such studies have demonstrated that; over the physiological strain range, bone’s mechanically-adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles and that these are most effective when interrupted by short periods of

  20. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure.

    Science.gov (United States)

    Fliedner, T M; Graessle, D; Paulsen, C; Reimers, K

    2002-08-01

    It is the purpose of this presentation to review the unique structure and function of bone marrow anchored hematopoiesis in their significance for its response mechanisms to an exposure to ionizing radiation. The ultimate objective of bone marrow hematopoiesis is to maintain in the peripheral blood a constant level of the different blood cell types (erythrocytes, granulocytes, platelets, lymphocytes, etc.). All of them have their particular turnover kinetics (such as granulocytes 120 x 10(9)/d, erythrocytes 200 x 10(9)/d or thrombocytes 150 x 10(9)/d), are semi-autonomous in their steady state regulatory mechanisms and dependent on a life-long supply of mature cells from a stem cell pool with unlimited replicative and pluripotent differentiative potential. The present knowledge of hematopoietic cellular renewal is the result of years of basic experimental and clinical studies using radionuclides in various metabolic forms including (59)Fe, (32)P (DF (32)P), (51)Cr, (131)I, (60)Co, (3)H ((3)HTdR) and (14)C ((14)CTdR). To understand the physiology but in particular the radiation-pathophysiology, it is essential to recognize in detail the infrastructure of the bone marrow as a distinct unit. Indispensable for a life-long cell production is the capsule of the marrow - the bone cortex -, the arterial supply of blood connected to the sinusoidal microvascular architecture with its sinusoids contorti and recti as well as the central (cell collecting) sinusoids. It is further of importance to recognize the significance of nerval regulation of blood flow, characterized by myelinated and unmyelinated nerve fibers. The type of unique lining cells of the sinusoids is the prerequisite for the cell traffic between the hemopoietic parenchyma and the blood. This in turn cannot be achieved without an alternative opening and closing of the sinusoidal segments which - in turn - requires a rigid long capsule to assure an - in toto - constant volume of each bone marrow unit. If a bone

  1. [The principal mechanisms of age-related involution of wrist bones].

    Science.gov (United States)

    Pigolkin, Iu I; Fedulova, M V; Iurchenko, M A

    2012-01-01

    The objective of the present study was to elucidate the general mechanisms underlying age-specific changes in the bone tissue of the wrists by the assessment of the signs of their ageing on X-ray images. Roentgenograms of the left wrist of 261 men and 333 women at the age varying from 18 to 90 years were analysed by the planigraphic technique with the use of a scoring system for the estimation of the severity of the signs of ageing (osteoporosis, osteophytes). The study has shown that the signs of ageing in wrist bones become apparent approximately 4-6 years after the completion of ossification. The age-specific changes in the bones are characterized by a strong sexual dimorphism while both the rate of appearance and the intensity of expression of the markers of bone ageing depend on their localization on the radius and phalanges.

  2. Raloxifene: Mechanism of Action, Effects on Bone Tissue, and Applicability in Clinical Traumatology Practice

    Science.gov (United States)

    Rey, Jose R. Caeiro; Cervino, Eduardo Vaquero; Rentero, Maria Luz; Crespo, Emilio Calvo; Álvaro, Angel Oteo; Casillas, Marta

    2009-01-01

    Raloxifene, a member of the class of selective estrogen receptor modulators (SERM), reproduces the beneficial effects of estrogens on the skeletal systems, without the negative effects estrogens on breast and endometrium. This is a review article summarizing its mechanism, effects on bone and its applicability in traumatology clinical practice. In postmenopausal osteoporosis, this drug has been proven to decrease accelerated bone turnover, increase bone mineral density (BMD), and to structurally recover bone, decreasing the risk of vertebral fractures and the risk of non-vertebral fractures in patients with previous, severe vertebral fractures. Moreover, raloxifene appears to lower the risk of invasive breast cancer. Raloxifene would be efficacious in the prevention and treatment of postmenopausal osteoporosis. We can therefore conclude that raloxifene would be efficacious in the prevention and treatment of postmenopausal osteoporosis, while reducing the risk of breast cancer when used at the indicated dose of 60 mg/day and with a low incidence of side effects. PMID:19516920

  3. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chang

    Full Text Available Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP techniques. A self-developed 3D printer with laser-aided gelling (LAG process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w. Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  4. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    Science.gov (United States)

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  5. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity

    Science.gov (United States)

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  6. Different mechanical properties in Seldinger guide wires

    Directory of Open Access Journals (Sweden)

    Wolfram Schummer

    2015-01-01

    Full Text Available Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1 Established the minimum flexing performance needed to meet clinical requirements, (2 developed flexing performance tests which mimic clinical requirement, and (3 evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N. We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°. All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1 Clinicians use guide wires with high-end mechanical properties, (2 EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3 and raise the tensile strength requirement to a minimum of 30 N, and (3 all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold.

  7. Aggregate of nanoparticles: rheological and mechanical properties

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2011-01-01

    Full Text Available Abstract The understanding of the rheological and mechanical properties of nanoparticle aggregates is important for the application of nanofillers in nanocompoistes. In this work, we report a rheological study on the rheological and mechanical properties of nano-silica agglomerates in the form of gel network mainly constructed by hydrogen bonds. The elastic model for rubber is modified to analyze the elastic behavior of the agglomerates. By this modified elastic model, the size of the network mesh can be estimated by the elastic modulus of the network which can be easily obtained by rheology. The stress to destroy the aggregates, i.e., the yield stress (σy , and the elastic modulus (G' of the network are found to be depended on the concentration of nano-silica (ϕ, wt.% with the power of 4.02 and 3.83, respectively. Via this concentration dependent behavior, we can extrapolate two important mechanical parameters for the agglomerates in a dense packing state (ϕ = 1: the shear modulus and the yield stress. Under large deformation (continuous shear flow, the network structure of the aggregates will experience destruction and reconstruction, which gives rise to fluctuations in the viscosity and a shear-thinning behavior.

  8. Microstructural properties of the mid-facial bones in relation to the distribution of occlusal loading.

    Science.gov (United States)

    Janovic, Aleksa; Milovanovic, Petar; Saveljic, Igor; Nikolic, Dalibor; Hahn, Michael; Rakocevic, Zoran; Filipovic, Nenad; Amling, Michael; Busse, Bjoern; Djuric, Marija

    2014-11-01

    Although the concept of the occlusal load transfer through the facial skeleton along the buttresses has been extensively studied, there has been no study to link microarchitecture of the mid-facial bones to the occlusal load distribution. The aim of this study was to analyze micro-structural properties of the mid-facial bones in relation to occlusal stress. The study was performed by combining the three-dimensional finite element analysis (3D FEA) and micro-computed tomography analysis (micro-CT). Clenching was simulated on the computer model of the adult male human skull which was also used as a source of bone specimens. After the FEA was run, stress was measured at the specific sites in cortical shell and trabecular bone of the model along and between the buttresses. From the corresponding sites on the skull, twenty-five cortical and thirteen cancellous bone specimens were harvested. The specimens were classified into high stress or low stress group based on the stress levels measured via the FEA. Micro-architecture of each specimen was assessed by micro-CT. In the high stress group, cortical bone showed a tendency toward greater thickness and density, lower porosity, and greater pore separation. Stress-related differences in microstructure between the groups were more pronounced in trabecular bone, which showed significantly greater bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) in the high stress group. Our results suggest that the mid-facial bones in the adult dentate male skull exhibit regional variations in cortical and trabecular bone micro-architecture that could be a consequence of different occlusal stress.

  9. Aging and loading rate effects on the mechanical behavior of equine bone

    Science.gov (United States)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  10. Design of monoliths through their mechanical properties.

    Science.gov (United States)

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  11. PICA Variants with Improved Mechanical Properties

    Science.gov (United States)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  12. Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling.

    Science.gov (United States)

    Mercuri, E G F; Daniel, A L; Hecke, M B; Carvalho, L

    2016-09-01

    This work represents a study of a mathematical model that describes the biological response to different mechanical stimuli in a cellular dynamics model for bone remodelling. The biological system discussed herein consists of three specialised cellular types, responsive osteoblasts, active osteoblasts and osteoclasts, three types of signalling molecules, transforming growth factor beta (TGF-β), receptor activator of nuclear factor kappa-b ligand (RANKL) and osteoprotegerin (OPG) and the parathyroid hormone (PTH). Three proposals for mechanical stimuli were tested: strain energy density (SED), hydrostatic and deviatoric parts of SED. The model was tested in a two-dimensional geometry of a standard human femur. The spatial discretization was performed by the finite element method while the temporal evolution of the variables was calculated by the 4th order Runge-Kutta method. The obtained results represent the temporal evolution of the apparent density distribution and the mean apparent density and thickness for the cortical bone after 600 days of remodelling simulation. The main contributions of this paper are the coupling of mechanical and biological models and the exploration of how the different mechanical stimuli affect the cellular activity in different types of physical activities. The results revealed that hydrostatic SED stimulus was able to form more cortical bone than deviatoric SED and total SED stimuli. The computational model confirms how different mechanical stimuli can impact in the balance of bone homeostasis.

  13. Design and mechanical properties of insect cuticle.

    Science.gov (United States)

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  14. Linking properties to microstructure through multiresolution mechanics

    Science.gov (United States)

    McVeigh, Cahal James

    The macroscale mechanical and physical properties of materials are inherently linked to the underlying microstructure. Traditional continuum mechanics theories have focused on approximating the heterogeneous microstructure as a continuum, which is conducive to a partial differential equation mathematical description. Although this makes large scale simulation of material much more efficient than modeling the detailed microstructure, the relationship between microstructure and macroscale properties becomes unclear. In order to perform computational materials design, material models must clearly relate the key underlying microstructural parameters (cause) to macroscale properties (effect). In this thesis, microstructure evolution and instability events are related to macroscale mechanical properties through a new multiresolution continuum analysis approach. The multiresolution nature of this theory allows prediction of the evolving magnitude and scale of deformation as a direct function of the changing microstructure. This is achieved via a two-pronged approach: (a) Constitutive models which track evolving microstructure are developed and calibrated to direct numerical simulations (DNS) of the microstructure. (b) The conventional homogenized continuum equations of motion are extended via a virtual power approach to include extra coupled microscale stresses and stress couples which are active at each characteristic length scale within the microstructure. The multiresolution approach is applied to model the fracture toughness of a cemented carbide, failure of a steel alloy under quasi-static loading conditions and the initiation and velocity of adiabatic shear bands under high speed dynamic loading. In each case the multiresolution analysis predicts the important scale effects which control the macroscale material response. The strain fields predicted in the multiresolution continuum analyses compare well to those observed in direct numerical simulations of the

  15. Analysis of Mechanical Properties for GEM Foil

    CERN Document Server

    Chin, Yuk Ming

    2016-01-01

    In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.

  16. Investigation on Mechanical Property of Seamless Pipe

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-ming; YANG Xiao-yong; LIU Ye

    2004-01-01

    The mechanical properties of the steel pipe rolled with continuously casting round billet after determining the chemical composition in steel were studied. The results show that the total reduction ratio should be higher than 5.2 when the line pipes of grade B, grade 20 and other general seamless pipe were rolled with continuously casting round billet. And the total reduction ratio should be higher than 10.2 and the grain size should be controlled more than grade 7 for casing of oil countryside tubular goods (OCTG).

  17. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  18. Passive mechanical properties of ovine rumen tissue

    Science.gov (United States)

    Waite, Stephen J.; Cater, John E.; Walker, Cameron G.; Amirapu, Satya; Waghorn, Garry C.; Suresh, Vinod

    2016-05-01

    Mechanical and structural properties of ovine rumen tissue have been determined using uniaxial tensile testing of tissue from four animals at five rumen locations and two orientations. Animal and orientation did not have a significant effect on the stress-strain response, but there was a significant difference between rumen locations. Histological studies showed two orthogonal muscle layers in all regions except the reticulum, which has a more isotropic structure. A quasi-linear viscoelastic model was fitted to the relaxation stage for each region. Model predictions of the ramp stage had RMS errors of 13-24% and were within the range of the experimental data.

  19. Photochromic properties and reaction mechanism of naphthopyran

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The photochromic properties and reaction mechanism of title compounds have been examined with steady method on compounds 3-phenyl-3-[3-methylbenzothiophene-2-yl]-3H- naphtho[2,1-b]pyran (1) and 3-phenyl-3-[benzofuran-2-yl]-3H-naphtho[2,1-b]pyran (2) and nanosecond laser flash photolysis techniques on compound 3-phenyl-3-[1,2-dimethylindol-3-yl]- 3H-naphtho[2,1-b]pyran (3). The influence of oxygen on transient spectra and decay kinetics of compound 3 has been investigated. Both excited singlet state and triplet state are involved in the photochromic mechanism of compound 3. The influence of molecular structure on photochromic behavior has been studied also. Decay kinetics indicated that the lifetime of colored forms of 1 and 2 were several orders of magnitude longer than that of 3.

  20. Photochromic properties and reaction mechanism of naphthopyran

    Institute of Scientific and Technical Information of China (English)

    潘桂兰; 魏景强; 朱爱平; 明阳福; 樊美公; 姚思德

    2001-01-01

    The photochromic properties and reaction mechanism of title compounds have been examined with steady method on compounds 3-phenyl-3-[3-methylbenzothiophene-2-yl]-3H-naphtho[2,1-b]pyran (1) and 3-phenyl-3-[benzofuran-2-yl]-3H-naphtho[2,1-b]pyran (2) and nanosecond laser flash photolysis techniques on compound 3-phenyl-3-[1,2-dimethylindol-3-yl]-3H-naphtho[2,1-b]pyran (3). The influence of oxygen on transient spectra and decay kinetics of compound 3 has been investigated. Both excited singlet state and triplet state are involved in the photochromic mechanism of compound 3. The influence of molecular structure on photochromic behavior has been studied also. Decay kinetics indicated that the lifetime of colored forms of 1 and 2 were several orders of magnitude longer than that of 3.

  1. [Effect of dosed diet restriction on physiological remodeling and bioelectric properties of bone].

    Science.gov (United States)

    Levashov, M I; Ianko, R V; Chaka, E G; Safonov, S L

    2014-07-01

    The effect of dosed diet restriction on the physiological remodeling and bioelectric properties of bone tissue was studied in 48 male Wistar rats 3- and 18-months of age. The rate of bone tissue apposition was studied by the dynamic histomorphometry method (intravital tetracycline labeling). Electric potentials on the periosteal surface of the freshly isolated femurs were recorded. The magnitude of dielectric loss factor was determined to assess the quality of bone tissue. The control rats received a standard diet. The experimental rats received a limited diet (60 % of the standard mass) for 28 days. The magnitude and rate of the bone tissue apposition on the endosteal and periosteal surface of the tibia were less by 38.4% and 122.7% respectively in experimental rats after dosed diet restriction. Electric potential in the metaphyseal-epiphyseal growth zones of the femur was 29.7% lower, and the dielectric loss factor increased by 15.8%. The bone tissue apposition rate and the electric potential magnitude were increased 10 days after completion of the dosed diet restriction. The magnitude of the dielectric loss factor decreased after returning to the standard diet. Key words: dosed diet restriction, bone, remodelling, bioelectric properties.

  2. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration

    Directory of Open Access Journals (Sweden)

    E.A. Blaber

    2014-09-01

    Full Text Available Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(−6.72, CSF2(−3.30, CD90(−3.33, PTPRC(−2.79, and GDF15(−2.45, but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow–blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.

  3. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified......Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear....... We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose...

  4. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption.

    Science.gov (United States)

    Razi, Hajar; Birkhold, Annette I; Weinkamer, Richard; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2015-10-01

    Physical activity is essential to maintain skeletal mass and structure, but its effect seems to diminish with age. To test the hypothesis that bone becomes less sensitive to mechanical strain with age, we used a combined in vivo/in silico approach. We investigated how maturation and aging influence the mechanical regulation of bone formation and resorption to 2 weeks of noninvasive in vivo controlled loading in mice. Using 3D in vivo morphometrical assessment of longitudinal microcomputed tomography images, we quantified sites in the mouse tibia where bone was deposited or resorbed in response to controlled in vivo loading. We compared the (re)modeling events (formation/resorption/quiescent) to the mechanical strains induced at these sites (predicted using finite element analysis). Mice of all age groups (young, adult, and elderly) responded to loading with increased formation and decreased resorption, preferentially at high strains. Low strains were associated with no anabolic response in adult and elderly mice, whereas young animals showed a strong response. Adult animals showed a clear separation between strain ranges where formation and resorption occurred but without an intermediate quiescent "lazy zone". This strain threshold disappeared in elderly mice, as mechanically induced (re)modeling became dysregulated, apparent in an inability to inhibit resorption or initiate formation. Contrary to what is generally believed until now, aging does not shift the mechanical threshold required to initiate formation or resorption, but rather blurs its specificity. These data suggest that pharmaceutical strategies augmenting physical exercise should consider this dysfunction in the mechanical regulation of bone (re)modeling to more effectively combat age-related bone loss.

  5. Mechanical properties of nanoporous graphene membrane

    Science.gov (United States)

    Liu, Yilun; Chen, Xi

    2014-01-01

    Nanoporous graphene holds great promise in the application of filtration such as seawater desalination, gas separation, and ionic channels. In this paper, we study the mechanical properties of nanoporous graphene with different size, shape, and density of nanopore. The strength decreases as the size and porosity of the nanopore increases. However, the rough edges of the nanopore has significant influence to the strength where the blunt tip perpendicular to the loading direction has higher strength. The effective tensile modulus is only determined by porosity of the nanopore as ΔE ˜ -p0.64, while the strength is determined by the size, shape, and porosity of the nanopore, for the same type of nanopore the strength scales with the porosity as Δσs ˜ -p. In contrast, the effective fracture strain increases as porosity increases for small and moderate porosities. The work is a first study of the relation between mechanical properties and porosity of nanoporous graphene and is helpful to the design of high performance nanoporous graphene membrane.

  6. Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation.

    Science.gov (United States)

    Yoshikawa, T; Peel, S A; Gladstone, J R; Davies, J E

    1997-01-01

    Bone marrow cells obtained from rat femora were subjected to primary culture with 15% fetal bovine serum in the presence of 10(-8) M dexamethasone, and following trypsin treatment 5 days later were seeded on Petriperm dishes which have a flexible bottom. After a 2-day subculture, a cyclic stress consisting of a 1 s stretch (0.3% strain. 0.5 Hz) and a 1 s relaxation for 30 min every day was started. Culture tissue was removed on day 2 of the subculture (immediately prior to start of stimulation), and then on days 5 and 8 (3 and 6 days after the start of stimulation, respectively), at which times dry weight, DNA, alkaline phosphatase (ALP) activity, and bone Gla protein (BGP, osteocalcin) were measured. Both the dry weight and DNA showed a significant increase in the stimulated group by day 8, while the ALP activity showed a significant increase by day 5. The BGP began to increase in the stimulated group on day 5 in contrast to the control group in which it only increased on day 8. These results support the contention that mechanical stimulation promotes the differentiation of osteogenic cells and enhances bone formation. Since in this experimental model the acceleration of bone formation by mechanical stimulation can be reproduced in vitro, it is extremely useful for investigating the mechanisms underlying mechanical stimulation.

  7. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone

    DEFF Research Database (Denmark)

    Henriksen, S S; Ding, M; Vinther Juhl, M

    2011-01-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitectur...

  8. Mechanical properties of 3D ceramic nanolattices

    Science.gov (United States)

    Meza, Lucas

    Developments in advanced nanoscale fabrication techniques have allowed for the creation of 3-dimensional hierarchical structural meta-materials that can be designed with arbitrary geometry. These structures can be made on length scales spanning multiple orders of magnitude, from tens of nanometers to hundreds of microns. The smallest features are controllable on length scales where materials have been shown to exhibit size effects in their mechanical properties. Combining novel nanoscale mechanical properties with a 3-dimensional architecture enables the creation of new classes of materials with tunable and unprecedented mechanical properties. We present the fabrication and mechanical deformation of hollow tube alumina nanolattices that were fabricated using two-photon lithography direct laser writing (DLW), atomic layer deposition (ALD), and oxygen plasma etching. Nanolattices were designed in a number of different geometries including octet-truss, octahedron, and 3D Kagome. Additionally, a number of structural parameters were varied including tube wall thickness (t) , tube major axis (a) , and unit cell size (L) . The resulting nanolattices had a range of densities from ρ = 4 to 250 mg/cm3. Uniaxial compression and cyclic loading tests were performed on the nanolattices to obtain the yield strength and modulus. In these tests, a marked change in the deformation response was observed when the wall thickness was reduced below 20nm; thick-walled nanolattices (t>20nm) underwent catastrophic, brittle failure, which transitioned to a gradual, ductile-like deformation as wall thickness was reduced. Thick-walled nanolattices also exhibited no recovery after compression, while thin-walled structures demonstrated notable recovery, with some recovering by 98% after compression to 50% strain and by 80% when compressed to 90% strain. Across all geometries, unit cell sizes, and wall thicknesses, we found a consistent power law relation between strength and modulus with

  9. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications

    Directory of Open Access Journals (Sweden)

    Huinan Liu

    2010-04-01

    Full Text Available Huinan Liu, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale ceramics to polymers enhances bone cell functions. However, in order to fully take advantage of the promising nanometer size effects that nanoceramics can provide when added to polymers, it is critical to uniformly disperse them in a polymer matrix. This is critical since ceramic nanoparticles inherently have a strong tendency to form larger agglomerates in a polymer matrix which may compromise their properties. Therefore, in this study, model ceramic nanoparticles, specifically titania and hydroxyapatite (HA, were dispersed in a model polymer (PLGA, poly-lactic-co-glycolic acid using high-power ultrasonic energy. The mechanical properties of the resulting PLGA composites with well-dispersed ceramic (either titania or HA nanoparticles were investigated and compared with composites with agglomerated ceramic nanoparticles. Results demonstrated that well-dispersed ceramic nanoparticles (titania or HA in PLGA improved mechanical properties compared with agglomerated ceramic nanoparticles even though the weight percentage of the ceramics was the same. Specifically, well-dispersed nanoceramics in PLGA enhanced the tensile modulus, tensile strength at yield, ultimate tensile strength, and compressive modulus compared with the more agglomerated nanoceramics in PLGA. In summary, supplemented by previous studies that demonstrated greater osteoblast (bone-forming cell functions on well-dispersed nanophase ceramics in polymers, the present study demonstrated that the combination of PLGA with well-dispersed nanoceramics enhanced mechanical properties

  10. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  11. Mechanical Behaviour of Composite Bioactive Bone Cements Consisting of Two Different Types of Surface Treated Hydroxyapatite as Filler

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Bioactive bone cements based on a paste-paste system for orthopaedic applications were developed consisting of hydroxyapatite ( HA ) filler particles in a methacrylate matrix comprising urethane dimethacrylate(UDMA) and triethylene glycol dimethacrylate ( TEGDMA ). To improve the interface between inorganic filler and orgaric matrix the HA particles were subjected to two different surface treatment methods, using polyacrylic acid ( PAA ) and γ- methacryloxy propyl trimethoxy silane (γMPS). The aim of the present study was to determine the influence of surface treatment and the inclusion of multifunctional methacrylates on the mechanical properties,namely 3-point flexural strength (FS) and fracture toughness of the cements and the effect of ageing in simulated body fluid. Comparing the mechanical properties of the two cements, the γMPS-HA cement showed that the fracture toughness of the experimental bone cements were significantly greater (p< 0.001) compared to that of the PMMA cement, whereas PAA-HA containing cement had strength values around 20% lower. Interestingly, PAA was found to be more effective in improving the interface as the PAA treated HA cement ( UTHAPPA ) maintained its strength on immersion in SBF , suggesting that PAA provided a coupling, which was less sensitive to moisture,a similar trend was also observed with the inclusion of the carboxyl containing multifunctional methacrylates.

  12. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    Science.gov (United States)

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance

  13. Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples

    OpenAIRE

    AUPERRIN, Audrey; Delille, Rémi; LESUEUR, Denis; BRUYERE, Karine; Masson, Catherine; Drazetic, Pascal

    2014-01-01

    The present study aims at providing quantitative data for the personalisation of geometrical and 21 mechanical characteristics of the adult cranial bone to be applied to head FE models. A set of 351 22 cranial bone samples, harvested from 21 human skulls, were submitted to three-point bending tests 23 at 10 mm/min. For each of them, an apparent elastic modulus was calculated using the beam's 24 theory and a density-dependant beam inertia. Thicknesses, apparent densities and percentage of ash ...

  14. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.

    Science.gov (United States)

    Grant, Caroline A; Wilson, Lance J; Langton, Christian; Epari, Devakar

    2014-07-01

    Finite element models of bones can be created by deriving geometry from an X-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticity versus density relationship. Many elasticity-density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions - longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each direction were determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined. A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.

  15. Age-related changes in collagen properties and mineralization in cancellous and cortical bone in the porcine mandibular condyle.

    Science.gov (United States)

    Willems, Nop M B K; Langenbach, Geerling E J; Everts, Vincent; Mulder, Lars; Grünheid, Thorsten; Bank, Ruud A; Zentner, Andrej; van Eijden, Theo M G J

    2010-04-01

    Collagen is an important constituent of bone, and it has been suggested that changes in collagen and mineral properties of bone are interrelated during growth. The aim of this study was to quantify age-related changes in collagen properties and the degree of mineralization of bone (DMB). The DMB in cancellous and cortical bone samples from the mandibular condyle of 35 female pigs aged 0-100 weeks was determined using micro-computed tomography. Subsequently, the amount of collagen and the number of pentosidine (Pen), hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were quantified by means of high-performance liquid chromatography. The amount of collagen increased with age in cancellous bone but remained unchanged in cortical bone. The number of Pen and LP cross-links decreased in both bone types. In contrast, the number of HP cross-links decreased only in cancellous bone. The sum of the number of HP and LP cross-links decreased with age in cancellous bone only. The DMB increased in cancellous and cortical bone. It was concluded that the largest changes in the number of mature collagen cross-links and the mineralization in porcine cancellous and cortical bone take place before the age of 40 weeks. The low number of mature cross-links after this age suggests that the bone turnover rate continues to be high and thereby prevents the development of mature cross-links.

  16. Environmental properties set cell mechanics and morphology

    Science.gov (United States)

    Janmey, Paul

    2012-02-01

    Many cell types are sensitive to mechanical signals that are produced either by application of exogenous force to their surfaces, or by the resistance that their surroundings place on forces generated by the cells themselves. Cell morphology, motility, proliferation, and protein expression all change in response to substrate stiffness. Changing the elastic moduli of substrates alters the formation of focal adhesions, the assembly of actin filaments into bundles, and the stability of intermediate filaments. The range of stiffness over which different primary cell types respond can vary over a wide range and generally reflects the elastic modulus of the tissue from which these cells were isolated. Mechanosensing depends on the type of adhesion receptor by which the cell binds, and therefore on both the molecular composition of the extracellular matrix and the nature of its link to the cytoskeleton. Many cell types can alter their own stiffness to match that of the substrate to which they adhere. The maximal elastic modulus that cells such as fibroblasts can attain is similar to that of crosslinked actin networks at the concentrations in the cell cortex. The precise mechanisms of mechanosensing are not well defined, but they presumably require an elastic connection between cell and substrate, mediated by transmembrane proteins. The viscoelastic properties of different extracellular matrices and cytoskeletal elements strongly influence the response of cells to mechanical signals, and the unusual non-linear elasticity of many biopolymer gels, characterized by strain-stiffening, leads to novel mechanisms by which cells alter their stiffness by engagement of molecular motors that produce internal stresses. Cell cortical elasticity is dominated by cytoskeletal polymer networks and can be modulated by internal tension. Simultaneous control of substrate stiffness and adhesive patterns suggests that stiffness sensing occurs on a length scale much larger than single molecular

  17. Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study.

    Science.gov (United States)

    Maurer, Manfred M; Weinkamer, Richard; Müller, Ralph; Ruffoni, Davide

    2015-08-01

    Although it is beyond doubt that mechanical stimulation is crucial to maintain bone mass, its role in preserving bone architecture is much less clear. Commonly, it is assumed that mechanics helps to conserve the trabecular network since an "accidental" thinning of a trabecula due to a resorption event would result in a local increase of load, thereby activating bone deposition there. However, considering that the thin trabecula is part of a network, it is not evident that load concentration happens locally on the weakened trabecula. The aim of this work was to clarify whether mechanical load has a protective role for preserving the trabecular network during remodeling. Trabecular bone is made dynamic by a remodeling algorithm, which results in a thickening/thinning of trabeculae with high/low strain energy density. Our simulations show that larger deviations from a regular cubic lattice result in a greater loss of trabeculae. Around lost trabeculae, the remaining trabeculae are on average thinner. More generally, thin trabeculae are more likely to have thin trabeculae in their neighborhood. The plausible consideration that a thin trabecula concentrates a higher amount of strain energy within itself is therefore only true when considering a single isolated trabecula. Mechano-regulated remodeling within a network-like architecture leads to local concentrations of thin trabeculae.

  18. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Minhajul [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000 (Bangladesh); Khan, Mubarak A. [Institute of Radiation and Polymer Technology (IRPT), Atomic Energy Research Establishment (AERE), P. O. Box No. 3787, Dhaka 1000 (Bangladesh); Rahman, Mohammed Mizanur, E-mail: mizanur.rahman@du.ac.bd [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000 (Bangladesh)

    2015-04-01

    Biodegradable porous hybrid polymer composites were prepared by using gelatin as base polymer matrix, β-tricalcium phosphate (TCP) and calcium sulfate (CS) as cementing materials, chitosan as an antimicrobial agent, and glutaraldehyde and polyethylene glycol (PEG) as crosslinkers at different mass ratios. Thereafter, the composites were subjected to γ-radiation sterilization. The structure and properties of these composite scaffolds were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), mechanical properties testing (compressive, bending, tensile and impact), thermogravimetry/differential thermal analysis (TG/DTA), and physical stability test in simulated body fluid (SBF). We found that TCP rich composites showed enhanced mechanical properties among all the crosslinked composites. γ-Radiation sterilization triggered further cross linking in polymer matrix resulting a decrease in pore size of the composites and an increase in pore wall thickness with improved mechanical and thermal properties. The chemically crosslinked composite with 40% TCP followed by γ-radiation sterilization showed the smallest pore size distribution with a mean pore diameter of 159.22 μm, which falls in the range of 100–350 μm — known to be suitable for osteoconduction. Considering its improved mechanical and thermal properties along with osteoconduction ability without cytotoxicity, we propose this biocomposite as a viable candidate for bone tissue engineering. - Highlights: • Composite scaffolds were prepared from biopolymers (gelatin and chitosan). • β-TCP and CS were used as bioactive cementing materials at different ratios. • γ-Sterilization improved the mechanical properties of the biocomposites. • γ-Sterilization reduced the cytotoxicity and induced high antimicrobial properties. • Composite having 40% TCP has the proper pore size distribution for osteoconduction.

  19. Mechanical and biological properties of keratose biomaterials.

    Science.gov (United States)

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  20. Nanomechanical properties of bone around cement-retained abutment implants. A minipig study

    Directory of Open Access Journals (Sweden)

    R.R.M. de Barros

    2016-06-01

    Full Text Available Aim The nanomechanical evaluation can provide additional information about the dental implants osseointegration process. The aim of this study was to quantify elastic modulus and hardness of bone around cemented-retained abutment implants positioned at two different crestal bone levels. Materials and methods The mandibular premolars of 7 minipigs were extracted. After 8 weeks, 8 implants were inserted in each animal: crestally on one side of the mandible and subcrestally on the other (crestal and subcrestal groups. Functional loading were immediately provided with abutments cementation and prostheses installation. Eight weeks later, the animals euthanasia was performed and nanoindentation analyses were made at the most coronal newly formed bone region (coronal group, and below in the threaded region (threaded group of histologic sections. Results The comparisons between subcrestal and crestal groups did not achieve statistical relevance; however the elastic modulus and hardness levels were statistically different in the two regions of evaluation (coronal and threaded. Conclusions The crestal and subcrestal placement of cement-retained abutment implants did not affect differently the nanomechanical properties of the surrounding bone. However the different regions of newly formed bone (coronal and threaded groups were extremely different in both elastic modulus and hardness, probably reflecting their differences in bone composition and structure.

  1. Mechanical Properties of Sheared Wet Granular Piles

    Science.gov (United States)

    Seemann, Ralf; Schaber, Marc; Karmakar, Somnath; Hippler, Anna-Lena; Scheel, Mario; di Michiel, Marco; Brinkmann, Martin

    2015-03-01

    The mechanical properties of dry and wet granulates are explored when being sheared with a parabolic profile at constant shear volume. The dissipated energy increase linearly with external pressure both for a wet and a dry granulate. However, the dissipated energy for wet a granulate has a finite value for the limiting case of vanishing external pressure and increases slower with external pressure compared to the dry granulate. Using a down sized version of the shear cell the reorganization of a granulate and liquid is additionally imaged in real time using x-ray micro-tomography. With the insight from x-ray tomography the contribution of the breaking capillary bridges to the dissipated energy can be analyzed. We could also shed light on the influence of dilatation effects on the dissipated energy upon inverting the shear direction.

  2. Mechanical properties of stabilized artificial organic soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to study the influence of organic matter on the mechanical properties of stabilized soil and the effect of XGL2005 on stabilizing organic soil,unconfined compressive strength tests were carried out.Test results indicated that the strength of stabilized soil decreased in the form of a logarithmic function as the organic matter content increased.In contrast,the strength increased in the form of a power function as the content of the stabilization agent increased.The strength of cement stabilized organic soil was reinforced greatly by adding the stabilizer XGL2005.Based on the law obtained from the test,a strength prediction model was established by regression analysis.The model included the influence of the curing time,the content of the cement,the organic matter content and the stabilization agent on the strength of stabilized soil.

  3. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  4. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics.

  5. Differential mechanisms of de-regulated bone formation in rheumatoid arthritis and spondyloarthritis.

    Science.gov (United States)

    Goldring, Steven R

    2016-12-01

    The inflammatory arthropathies share in common their tendency to produce marked alterations in skeletal remodelling and architecture. This review will focus on RA and the seronegative spondyloarthopathies (SpA), which share common features with respect to their tendency to produce localized bone destruction at sites of articular and peri-articular inflammation. However, there are significant differences in the skeletal pathology in these conditions, which include the unique involvement of the axial skeleton and the presence of inflammation in the extra-articular entheses in SpA. There also are differences in the pattern of bone formation and repair associated with the articular and peri-articular inflammation. This review will highlight the molecular and cellular processes that are involved in the pathogenesis of the skeletal pathology in these two forms of inflammatory arthritis with specific focus on the pathogenic mechanisms underlying the differential patterns of bone formation and repair.

  6. How Osteoblasts Sense their Environment: Integrin-Extracellular Matrix Interactions and Mechanical Loading of Bone

    Science.gov (United States)

    Globus, Ruth K.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Osteoblasts are the cells responsible for forming and replacing bone throughout life. We know that mechanical stimulation through weight-bearing at I gravity on Earth is needed to maintain healthy bone, and that osteoblasts play a critical role in that process. Over the last 9 years in my laboratory at NASA ARC, we have studied the regulation of osteoblast function by interactions between the extracellular matrix and die cell. Using a cell culture approach, we defined the repertoire of adhesion receptors, called integrins, which are expressed on the osteoblast surface, as well as specific extracellular matrix proteins, which are needed for cellular differentiation and survival. We are now extending these observations to determine if integrin signaling is involved in the skeletal responses to disuse and recovery from disuse using the rodent model of hindlimb unloading by tail suspension. Together, our cell culture and animal studies are providing new insight into the regulation of osteoblast function in bone.

  7. Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples.

    Science.gov (United States)

    Auperrin, Audrey; Delille, Rémi; Lesueur, Denis; Bruyère, Karine; Masson, Catherine; Drazétic, Pascal

    2014-03-21

    The present study aims at providing quantitative data for the personalisation of geometrical and mechanical characteristics of the adult cranial bone to be applied to head FE models. A set of 351 cranial bone samples, harvested from 21 human skulls, were submitted to three-point bending tests at 10 mm/min. For each of them, an apparent elastic modulus was calculated using the beam's theory and a density-dependant beam inertia. Thicknesses, apparent densities and percentage of ash weight were also measured. Distributions of characteristics among the different skull bones show their symmetry and their significant differences between skull areas. A data analysis was performed to analyse potential relationship between thicknesses, densities and the apparent elastic modulus. A specific regression was pointed out to estimate apparent elastic modulus from the product of thickness by apparent density. These results offer quantitative tools in view of personalising head FE models and thus improve definition of local injury criteria for this body part.

  8. Mechanical properties of ceramic-polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Nano crystalline powders of Barium Sodium Niobate (BNN with the composition Ba3–2x Na4+x R Nb10 O30 with (R stands for rare earth = 0, x = 0 have been prepared by conventional ceramic technique. Barium Sodium Niobate can form a wide range of solid solutions, incorporating rare earth and alkali, alkaline earth elements with different compositions. The powder belonged to tungsten bronze type structure with tetragonal symmetry and lattice constants a = b = 1.2421 nm and c = 0.3903 nm. XRD (X-ray Diffraction SEM (Scanning Electron Microscope and AFM (Atomic Force Microscope studies revealed that the particle size is in the nanometer range. Composites are prepared by mixing powders of BNN with polystyrene at different volume fractions of the BNN. Melt mixing technique is carried out in a Brabender Plasticoder at a rotor speed of 60 rpm (rotations per minute for composite preparation. Mechanical properties such as stress-strain behavior, Young’s modulus, tensile strength, strain at break etc. are evaluated. Addition of filler enhances the mechanical properties of the polymer such as Young’s modulus and tensile strength. The composites showed the trend of perfect adhesion between the filler and the polymer. The filler particles are distributed relatively uniform fashion in all composites and the particles are almost spherical in shape with irregular boundaries. To explore more carefully the degree of interfacial adhesion between the two phases, the results are analyzed by using models featuring adhesion parameter. The experimental results are compared with theoretical predictions.

  9. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  10. Bone marrow mesenchymal stem cell therapy in ischemic stroke:mechanisms of action and treatment optimization strategies

    Institute of Scientific and Technical Information of China (English)

    Guihong Li; Fengbo Yu; Ting Lei; Haijun Gao; Peiwen Li; Yuxue Sun; Haiyan Huang; Qingchun Mu

    2016-01-01

    Animal and clinical studies have conifrmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  11. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 {approx} 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic.

  12. The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair.

    Science.gov (United States)

    Lipner, J; Liu, W; Liu, Y; Boyle, J; Genin, G M; Xia, Y; Thomopoulos, S

    2014-12-01

    Attachment of dissimilar materials is prone to failure due to stress concentrations that can arise their interface. A compositionally or structurally graded transition can dissipate these stress concentrations and thereby toughen an attachment. The interface between compliant tendon and stiff bone utilizes a monotonic change in hydroxylapatite mineral ("mineral") content to produce a gradient in mechanical properties and mitigate stress concentrations. Previous efforts to mimic the natural tendon-to-bone attachment have included electrospun nanofibrous polymer scaffolds with gradients in mineral. Mineralization of the nanofiber scaffolds has typically been achieved using simulated body fluid (SBF). Depending on the specific formulation of SBF, mineral morphologies ranged from densely packed small crystals to platelike crystal florets. Although this mineralization of scaffolds produced increases in modulus, the peak modulus achieved remained significantly below that of bone. Missing from these prior empirical approaches was insight into the effect of mineral morphology on scaffold mechanics and on the potential for the approach to ultimately achieve moduli approaching that of bone. Here, we applied two mineralization methods to generate scaffolds with spatial gradations in mineral content, and developed methods to quantify the stiffening effects and evaluate them in the context of theoretical bounds. We asked whether either of the mineralization methods we developed holds potential to achieve adequate stiffening of the scaffold, and tested the hypothesis that the smoother, denser mineral coating could attain more potent stiffening effects. Testing this hypothesis required development of and comparison to homogenization bounds, and development of techniques to estimate mineral volume fractions and spatial gradations in modulus. For both mineralization strategies, energy dispersive X-ray analysis demonstrated the formation of linear gradients in mineral concentration

  13. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies

    Directory of Open Access Journals (Sweden)

    Shepherd Duncan ET

    2009-06-01

    Full Text Available Abstract Background Articular cartilage is a viscoelastic material, but its exact behaviour under the full range of physiological loading frequencies is unknown. The objective of this study was to measure the viscoelastic properties of bovine articular cartilage at loading frequencies of up to 92 Hz. Methods Intact tibial plateau cartilage, attached to subchondral bone, was investigated by dynamic mechanical analysis (DMA. A sinusoidally varying compressive force of between 16 N and 36 N, at frequencies from 1 Hz to 92 Hz, was applied to the cartilage surface by a flat indenter. The storage modulus, loss modulus and phase angle (between the applied force and the deformation induced were determined. Results The storage modulus, E', increased with increasing frequency, but at higher frequencies it tended towards a constant value. Its dependence on frequency, f, could be represented by, E' = Aloge (f + B where A = 2.5 ± 0.6 MPa and B = 50.1 ± 12.5 MPa (mean ± standard error. The values of the loss modulus (4.8 ± 1.0 MPa mean ± standard deviation were much less than the values of storage modulus and showed no dependence on frequency. The phase angle was found to be non-zero for all frequencies tested (4.9 ± 0.6°. Conclusion Articular cartilage is viscoelastic throughout the full range of frequencies investigated. The behaviour has implications for mechanical damage to articular cartilage and the onset of osteoarthritis. Storage modulus increases with frequency, until the plateau region is reached, and has a higher value than loss modulus. Furthermore, loss modulus does not increase with loading frequency. This means that more energy is stored by the tissue than is dissipated and that this effect is greater at higher frequencies. The main mechanism for this excess energy to be dissipated is by the formation of cracks.

  14. Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors.

    Directory of Open Access Journals (Sweden)

    Shannon R Moore

    2014-06-01

    Full Text Available The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial and trends (temporal of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based

  15. Olecranon bone graft: revisited.

    Science.gov (United States)

    Mersa, Berkan; Ozcelik, Ismail Bulent; Kabakas, Fatih; Sacak, Bulent; Aydin, Atakan

    2010-09-01

    Autogenous bone grafts are frequently in use in the field of reconstructive upper extremity surgery. Cancellous bone grafts are applied to traumatic osseous defects, nonunions, defects after the resection of benign bone tumors, arthrodesis, and osteotomy procedures. Cancellous bone grafts do not only have benefits such as rapid revascularization, but they also have mechanical advantages. Despite the proximity to the primary surgical field, cancellous olecranon grafts have not gained the popularity they deserve in the field of reconstructive hand surgery. In this study, the properties, advantages, and technical details of harvesting cancellous olecranon grafts are discussed.

  16. The effects of mechanical forces on bones and joints. Experimental study on the rat tail.

    Science.gov (United States)

    Pazzaglia, U E; Andrini, L; Di Nucci, A

    1997-11-01

    We have used an experimental model employing the bent tail of rats to investigate the effects of mechanical forces on bones and joints. Mechanical strain could be applied to the bones and joints of the tail without direct surgical exposure or the application of pins and wires. The intervertebral disc showed stretched annular lamellae on the convex side, while the annulus fibrosus on the concave side was pinched between the inner corners of the vertebral epiphysis. In young rats with an active growth plate, a transverse fissure appeared at the level of the hypertrophic cell layer or the primary metaphyseal trabecular zone. Metaphyseal and epiphyseal trabeculae on the compressed side were thicker and more dense than those of the distracted part of the vertebra. In growing animals, morphometric analysis of hemiepiphyseal and hemimetaphyseal areas, and the corresponding trabecular bone density, showed significant differences between the compressed and distracted sides. No differences were observed in adult rats. We found no significant differences in osteoclast number between compressed and distracted sides in either age group. Our results provide quantitative evidence of the working of 'Wolff's law'. The differences in trabecular density are examples of remodelling by osteoclasts and osteoblasts; our finding of no significant difference in osteoclast numbers between the hemiepiphyses in the experimental and control groups suggests that the response of living bone to altered strain is mediated by osteoblasts.

  17. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  18. Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation.

    Science.gov (United States)

    Forwood, M R; Bennett, M B; Blowers, A R; Nadorfi, R L

    1998-09-01

    . Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research.

  19. Tensile material properties of human rib cortical bone under quasi-static and dynamic failure loading and influence of the bone microstucture on failure characteristics

    CERN Document Server

    Subit, Damien; Valazquez-Ameijide, Juan; Arregui-Dalmases, Carlos; Crandall, Jeff

    2011-01-01

    Finite element models of the thorax are under development to assist vehicle safety researchers with the design of countermeasures such as advanced restrain systems. Computational models have become more refined with increasing geometrical complexity as element size decreases. These finite element models can now capture small geometrical features with an attempt to predict fracture. However, the bone material properties currently available, and in particular the rate sensitivity, have been mainly determined from compression tests or tests on long bones. There is a need for a new set of material properties for the human rib cortical bone. With this objective, a new clamping technique was developed to test small bone coupons under tensile loading. Ten coupons were harvested from the cortical shell of the sixth and seventh left ribs from three cadavers. The coupons were tested to fracture under quasi-static (target strain rate of 0.07 %/s) and dynamic loading (target strain rate of 170 %/s). Prior to testing, eac...

  20. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications.

    Science.gov (United States)

    Liu, Huinan; Webster, Thomas J

    2010-04-15

    Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical) of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale) ceramics to polymers enhances bone cell functions. However, in order to fully take advantage of the promising nanometer size effects that nanoceramics can provide when added to polymers, it is critical to uniformly disperse them in a polymer matrix. This is critical since ceramic nanoparticles inherently have a strong tendency to form larger agglomerates in a polymer matrix which may compromise their properties. Therefore, in this study, model ceramic nanoparticles, specifically titania and hydroxyapatite (HA), were dispersed in a model polymer (PLGA, poly-lactic-co-glycolic acid) using high-power ultrasonic energy. The mechanical properties of the resulting PLGA composites with well-dispersed ceramic (either titania or HA) nanoparticles were investigated and compared with composites with agglomerated ceramic nanoparticles. Results demonstrated that well-dispersed ceramic nanoparticles (titania or HA) in PLGA improved mechanical properties compared with agglomerated ceramic nanoparticles even though the weight percentage of the ceramics was the same. Specifically, well-dispersed nanoceramics in PLGA enhanced the tensile modulus, tensile strength at yield, ultimate tensile strength, and compressive modulus compared with the more agglomerated nanoceramics in PLGA. In summary, supplemented by previous studies that demonstrated greater osteoblast (bone-forming cell) functions on well-dispersed nanophase ceramics in polymers, the present study demonstrated that the combination of PLGA with well-dispersed nanoceramics enhanced mechanical properties necessary for load-bearing orthopedic/dental applications.

  1. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical

  2. The Effects of Obesity on Murine Cortical Bone

    Science.gov (United States)

    Martin, Sophi

    This dissertation details the effects of obesity on the mechanical properties and structure of cortical bone. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Femora from adolescent and adult mice fed a high-fat diet are investigated for changes in shape, tissue structure, as well as tissue-level and whole-bone mechanical properties. Results indicate increased bone size, reduced size-independent mechanical properties, but maintained size-dependent mechanical properties. Other changes in cortical bone response to obesity are observed with advancing age. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk, and that fracture risk may not be lessened for adults as previously thought.

  3. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.

    Science.gov (United States)

    Lambers, Floor M; Schulte, Friederike A; Kuhn, Gisela; Webster, Duncan J; Müller, Ralph

    2011-12-01

    It is known that mechanical loading leads to an increase in bone mass through a positive shift in the balance between bone formation and bone resorption. How the remodeling sites change over time as an effect of loading remains, however, to be clarified. The purpose of this paper was to investigate how bone formation and resorption sites are modulated by mechanical loading over time by using a new imaging technique that extracts three dimensional formation and resorption parameters from time-lapsed in vivo micro-computed tomography images. To induce load adaptation, the sixth caudal vertebra of C57BL/6 mice was cyclically loaded through pins in the adjacent vertebrae at either 8 N or 0 N (control) three times a week for 5 min (3000 cycles) over a total of 4 weeks. The results showed that mechanical loading significantly increased trabecular bone volume fraction by 20% (pbone formation rate was on average 23% greater (pbone resorption rate was on average 25% smaller (pbone formation rate for the 8 N group was mostly an effect of a significantly increased surface of bone formation sites (on average 16%, pbone formation packages was less affected (on average 5% greater, pbone resorption sites was significantly reduced (on average 15%, pbone increased significantly by 24% (pbone decreased significantly by 24% (ptail vertebrae adapt to mechanical loading by increasing the surface of formation sites and decreasing the surface of resorption sites, leading to an overall increase in bone strength. This new imaging technique will provide opportunities to investigate in vivo bone remodeling in the context of disease and treatment options, with the added value that both bone formation and bone resorption parameters can be nondestructively calculated over time.

  4. Biomechanical properties of bone in a mouse model of Rett syndrome.

    Science.gov (United States)

    Kamal, Bushra; Russell, David; Payne, Anthony; Constante, Diogo; Tanner, K Elizabeth; Isaksson, Hanna; Mathavan, Neashan; Cobb, Stuart R

    2015-02-01

    Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2(stop/y) male mice in which Mecp2 is silenced in all cells and female Mecp2(stop/+) mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies.

  5. Dissection of the molecular mechanism of action of GW5638, a novel estrogen receptor ligand, provides insights into the role of estrogen receptor in bone.

    Science.gov (United States)

    Willson, T M; Norris, J D; Wagner, B L; Asplin, I; Baer, P; Brown, H R; Jones, S A; Henke, B; Sauls, H; Wolfe, S; Morris, D C; McDonnell, D P

    1997-09-01

    The estrogen receptor (ER) mixed agonists tamoxifen and raloxifene have been shown to protect against bone loss in ovariectomized rats. However, the mechanism by which these compounds manifest their activity in bone is unknown. We have used a series of in vitro screens to select for compounds that are mechanistically distinct from tamoxifen and raloxifene in an effort to define the properties of an ER modulator required for bone protection. Using this approach, we identified a novel high affinity ER antagonist, GW5638, which when assayed in vitro functions as an ER antagonist, inhibiting the agonist activity of estrogen, tamoxifen, and raloxifene and reversing the "inverse agonist" activity of the pure antiestrogen ICI182,780. Thus, GW5638 appears to function as an antagonist in these in vitro systems, although in a manner distinct from other known ER modulators. Predictably, therefore, GW5638 alone displays minimal uterotropic activity in ovariectomized rats, but will inhibit the agonist activity of estradiol in this environment. Unexpectedly, however, this compound functions as a full ER agonist in bone and the cardiovascular system. These data suggest that the mechanism by which ER operates in different cells is not identical, and that classical agonist activity is not required for the bone protective activity of ER modulators.

  6. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron µCT study.

    Directory of Open Access Journals (Sweden)

    Bernhard Hesse

    Full Text Available Osteonecrosis of the jaw, in association with bisphosphonates (BRONJ used for treating osteoporosis or cancer, is a severe and most often irreversible side effect whose underlying pathophysiological mechanisms remain largely unknown. Osteocytes are involved in bone remodeling and mineralization where they orchestrate the delicate equilibrium between osteoclast and osteoblast activity and through the active process called osteocytic osteolysis. Here, we hypothesized that (i changes of the mineralized tissue matrix play a substantial role in the pathogenesis of BRONJ, and (ii the osteocyte lacunar morphology is altered in BRONJ. Synchrotron µCT with phase contrast is an appropriate tool for assessing both the 3D morphology of the osteocyte lacunae and the bone matrix mass density. Here, we used this technique to investigate the mass density distribution and 3D osteocyte lacunar properties at the sub-micrometer scale in human bone samples from the jaw, femur and tibia. First, we compared healthy human jaw bone to human tibia and femur in order to assess the specific differences and address potential explanations of why the jaw bone is exclusively targeted by the necrosis as a side effect of BP treatment. Second, we investigated the differences between BRONJ and control jaw bone samples to detect potential differences which could aid an improved understanding of the course of BRONJ. We found that the apparent mass density of jaw bone was significantly smaller compared to that of tibia, consistent with a higher bone turnover in the jaw bone. The variance of the lacunar volume distribution was significantly different depending on the anatomical site. The comparison between BRONJ and control jaw specimens revealed no significant increase in mineralization after BP. We found a significant decrease in osteocyte-lacunar density in the BRONJ group compared to the control jaw. Interestingly, the osteocyte-lacunar volume distribution was not altered after

  7. Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone.

    Science.gov (United States)

    Shim, Vickie B; Battley, Mark; Anderson, Iain A; Munro, Jacob T

    2015-01-01

    Bone in the pelvis is a composite material with a complex anatomical structure that is difficult to model computationally. Rather than assigning material properties to increasingly smaller elements to capture detail in three-dimensional finite element (FE) models, properties can be assigned to Gauss points within larger elements. As part of a validation process, we compared experimental and analytical results from a composite beam under four-point load to FE models with material properties assigned to refined elements and Gauss points within larger elements. Both FE models accurately predicted deformation and the analytical predictions of internal shear stress.

  8. Adaptation of subchondral bone in osteoarthritis

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    never been proven. Recent studies showing reduced chemical and mechanical properties of subchondral bone in various stages of the disease have invigorated interest in the role of subchondral bone in the development and progression of the disease. The current study showed that the concept of bone...

  9. Mechanical properties of lattice grid composites

    Institute of Scientific and Technical Information of China (English)

    Hualin Fan; Daining Fang; Fengnian Jin

    2008-01-01

    An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid composite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar rowafter initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.

  10. Extracting nanobelt mechanical properties from nanoindentation

    Science.gov (United States)

    Zhang, Yin

    2010-06-01

    A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested.

  11. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    Science.gov (United States)

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  12. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  13. The Effect of Superstructures Connected to Implants with Different Surface Properties on the Surrounding Bone

    Directory of Open Access Journals (Sweden)

    Katsunori Koretake

    2015-07-01

    Full Text Available The objective of this study was to investigate how the connection of superstructures to implants with different surface properties affects the surrounding bone. The right and left mandibular premolars and molars of 5 dogs were extracted. After 12 weeks, a machined implant was placed mesially and an anodized implant was placed distally on one side of the edentulous jaw, with the positions reversed on the opposite side. Twelve weeks after implantation, splinted superstructures were set to the implants. At 24 weeks after implantation, the implant stability quotient (ISQ was measured, radiographs were obtained. Removal torque values were measured and histologic observation was performed. The ISQ values at 24 weeks after implantation were not significantly different between the groups. The removal torque values were significantly different between the distal anodized and distal machined implants (p < 0.05. From 12 to 24 weeks, marginal bone losses were not significantly different between the groups. Fluorescent observation of tissue samples revealed bone-remodeling activity around all of the implants. The results of this study suggest that when implants with different surface properties are connected, machined implants at the most distal sites might be a potential risk factor for implant-bone binding.

  14. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration.

    Science.gov (United States)

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-02-27

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.

  15. Study on Microstructure and Nanomechanics Properties of Antibacterial Bone China

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenyu; Li Hongqi; Zhang Jin; Zhou Hongxiu; Wang Lijuan; Zhang Taihua

    2004-01-01

    Fracture appearance, surface and nanomechanics properties of antibacterial ceramics contairing rare earth phosphate composite antibacterial materials were characterized and measured by SEM, AFM and Nanoindenter, respectively. Results show that grain of fracture surface of antibacterial ceramics grows uniform refinement topography of bubble break-up appears at the surface, which is flat and has liquid character, by adding the phosphate composite containing rare earth, nevertheless needle-like crystal and granular outgrowth form at fracture surface and surface of common ceramics, respectively. Young's modulus of antibacterial ceramic film is 74. 397 GPa and hardness is 8. 134 GPa, which increses by 4.4% and 1.6% comparing with common ceramics, respectively. Loading curves of two kind of ceramics have obvious nonlinear character under 700 nm and linear character between 700 ~ 1000 nm, and unloading curve have obvious linear character.

  16. Estimating the mechanical competence parameter of the trabecular bone: a neural network approach

    Directory of Open Access Journals (Sweden)

    Érica Regina Filletti

    Full Text Available Abstract Introduction The mechanical competence parameter (MCP of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT, and 83 in vivo distal radius magnetic resonance image samples (MRI. Results It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion There is a strong correlation (R2 = 0.97 between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.

  17. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ming [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Wang, Yongchun [Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi' an 710032 (China); Yang, Min; Liu, Yanwu [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Qu, Bo [Chengdu Military General Hospital, Chengdu, 610083 (China); Ye, Zhengxu; Liang, Wei [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Sun, Xiqing, E-mail: sunxiqing@fmmu.edu.cn [Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi' an 710032 (China); Luo, Zhuojing, E-mail: zjluo@fmmu.edu.cn [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2015-05-01

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cell cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.

  18. Limb salvage after infected knee arthroplasty with bone loss and extensor mechanism deficiency using a modular segmental replacement system.

    Science.gov (United States)

    Namdari, Surena; Milby, Andrew H; Garino, Jonathan P

    2011-09-01

    Multiple total knee arthroplasty revisions pose significant surgical challenges, such as bone loss and soft tissue compromise. For patients with bone loss and extensor mechanism insufficiency after total knee arthroplasty, arthrodesis is a treatment option for the avoidance of amputation. However, arthrodesis is both difficult to achieve in situations with massive bone loss and potentially undesirable due to the dramatic shortening that follows. Although intramedullary nailing for knee arthrodesis has been widely reported, this technique has traditionally relied on the achievement of bony union. We report a case of a patient with massive segmental bone loss in which a modular intercalary prosthesis was used for arthrodesis to preserve limb length without bony union.

  19. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them.

  20. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  1. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xu; Liu Xiaoli; Sun Jialun [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); He Shuojie [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); Department of Physics, Pusan National University, Pusan (Korea, Republic of); Lee, Imshik [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China)], E-mail: ilee@nankai.edu.cn2; Pak, Hyuk Kyu [Department of Physics, Pusan National University, Pusan (Korea, Republic of)

    2008-09-15

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E{sup *}. The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E{sup *}-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.

  2. Properties of the "Orgamax" osteoplastic material made of a demineralized allograft bone

    Science.gov (United States)

    Podorognaya, V. T.; Kirilova, I. A.; Sharkeev, Yu. P.; Uvarkin, P. V.; Zhelezny, P. A.; Zheleznaya, A. P.; Akimova, S. E.; Novoselov, V. P.; Tupikova, L. N.

    2016-08-01

    We investigated properties of the "Orgamax" osteoplastic material, which was produced from a demineralized bone, in the treatment of extensive caries, in particular chronic pulpitis of the permanent teeth with unformed roots in children. The "Orgamax" osteoplastic material consists of demineralized bone chips, a collagen additive, and antibiotics. The surface morphology of the "Orgamax" osteoplastic material is macroporous, with the maximum pore size of 250 µm, whereas the surface morphology of the major component of "Orgamax", demineralized bone chips, is microporous, with a pore size of 10-20 µm. Material "Orgamax" is used in the treatment of complicated caries, particularly chronic pulpitis of permanent teeth with unformed roots in children. "Orgamax" filling a formed cavity exhibits antimicrobial properties, eliminates inflammation in the dental pulp, and, due to its osteoconductive and osteoinductive properties, undergoes gradual resorption, stimulates regeneration, and provides replacement of the defect with newly formed tissue. The dental pulp viability is completely restored, which ensures the complete formation of tooth roots with root apex closure in the long-term period.

  3. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    Science.gov (United States)

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan.

  4. Experimental multiscale measurements for the mechanical identification of a cortical bone by digital image correlation.

    Science.gov (United States)

    Nguyen, Manh-Tu; Allain, Jean-Marc; Gharbi, Hakim; Desceliers, Christophe; Soize, Christian

    2016-10-01

    The implementation of the experimental methodology by optical measurements of mechanical fields, the development of a test bench, the specimen preparation, the experimental measurements, and the digital image correlation (DIC) method, have already been the object of research in the context of biological materials. Nevertheless, in the framework of the experimental identification of a mesoscopic stochastic model of the random apparent elasticity field, measurements of one specimen is required at both the macroscopic scale and the mesoscopic scale under one single loading. The nature of the cortical bone induces some difficulties, as no single speckled pattern technique is available for simultaneously obtaining the displacement at the macroscopic scale and at the mesoscopic scale. In this paper, we present a multiscale experimental methodology based on (i) an experimental protocol for one specimen of a cortical bone, (ii) its measuring bench, (iii) optical field measurements by DIC method, (iv) the experimental results, and (v) the multiscale experimental identification by solving a statistical inverse problem.

  5. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement.

    Science.gov (United States)

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya H; Jayasuriya, A Champa

    2015-09-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. The chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples was slightly improved. Based on the presented results, cross-linking does not have a significant effect on porosity. As expected, by increasing the P/L ratio of a sample, ductility and injectability were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can improve the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications.

  6. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study