WorldWideScience

Sample records for bone mass phenotype

  1. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  2. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    in iliac crest bone biopsies from patients with the HBM phenotype and controls. We also used retrovirus-mediated gene transduction to establish three different human mesenchymal stem cell (hMSC) strains stably expressing wildtype LRP5 (hMSC-LRP5WT), LRP5T244 (hMSC-LRP5T244, inactivation mutation leading...... to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...... mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach to increase...

  3. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    International Nuclear Information System (INIS)

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K.; Hock, Janet M.

    2006-01-01

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development

  4. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  5. Low bone turnover phenotype in Rett syndrome

    DEFF Research Database (Denmark)

    Roende, Gitte; Petersen, Janne; Ravn, Kirstine

    2014-01-01

    Background:Patients with Rett syndrome (RTT) are at risk of having low bone mass and low-energy fractures.Methods:We characterised bone metabolism by both bone formation and resorption markers in blood in a RTT population of 61 girls and women and 122 well-matched healthy controls. Levels of N-te...

  6. Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment

    NARCIS (Netherlands)

    J.P. Kemp (John); M.C. Medina-Gomez (Carolina); K. Estrada Gil (Karol); B. St Pourcain (Beate); D.H.M. Heppe (Denise); N.M. Warrington (Nicole); L. Oei (Ling); S.M. Ring (Susan); C.J. Kruithof (Claudia); N.J. Timpson (Nicholas); L.E. Wolber (Lisa); S. Reppe (Sjur); K.M. Gautvik (Kaare); E. Grundberg (Elin); B. Ge (Bing); B.C.J. van der Eerden (Bram); J. van de Peppel (Jeroen); M.A. Hibbs (Matthew); C.L. Ackert-Bicknell (Cheryl); K. Choi (Kunho); D.L. Koller (Daniel); M.J. Econs (Michael); F.M. Williams (Frances); T. Foroud (Tatiana); M.C. Zillikens (Carola); C. Ohlsson (Claes); A. Hofman (Albert); A.G. Uitterlinden (André); G. Davey-Smith (George); V.W.V. Jaddoe (Vincent); J.H. Tobias (Jon); F. Rivadeneira Ramirez (Fernando); D.M. Evans (David)

    2014-01-01

    textabstractHeritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we

  7. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

    Directory of Open Access Journals (Sweden)

    John P Kemp

    2014-06-01

    Full Text Available Heritability of bone mineral density (BMD varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg and residual (re correlations between BMD measured at the upper limbs (UL-BMD, lower limbs (LL-BMD and skull (SK-BMD, using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC. Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78 between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43. Likewise, the residual correlation between BMD at appendicular sites (r(e = 0.55 was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e = 0.20-0.24. To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395, combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites. In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37, whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14. In addition, we report a novel association between RIN3 (previously associated with Paget's disease and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10. Our results suggest that BMD at different skeletal sites is under a mixture of shared and

  8. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

    Science.gov (United States)

    Kemp, John P; Medina-Gomez, Carolina; Estrada, Karol; St Pourcain, Beate; Heppe, Denise H M; Warrington, Nicole M; Oei, Ling; Ring, Susan M; Kruithof, Claudia J; Timpson, Nicholas J; Wolber, Lisa E; Reppe, Sjur; Gautvik, Kaare; Grundberg, Elin; Ge, Bing; van der Eerden, Bram; van de Peppel, Jeroen; Hibbs, Matthew A; Ackert-Bicknell, Cheryl L; Choi, Kwangbom; Koller, Daniel L; Econs, Michael J; Williams, Frances M K; Foroud, Tatiana; Zillikens, M Carola; Ohlsson, Claes; Hofman, Albert; Uitterlinden, André G; Davey Smith, George; Jaddoe, Vincent W V; Tobias, Jonathan H; Rivadeneira, Fernando; Evans, David M

    2014-06-01

    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and

  9. Establishment of peak bone mass.

    Science.gov (United States)

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.

  10. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found in lum.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  11. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... bone density are seen even during childhood and adolescence. Hormonal factors. The hormone estrogen has an effect on peak bone mass. For example, women who had their first menstrual cycle at an early age and those who use oral contraceptives, which contain estrogen, often have high bone mineral ...

  12. DXA measurements in Rett syndrome reveal small bones with low bone mass.

    Science.gov (United States)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine; Andersen, Henrik; Nielsen, Jytte Bieber; Brøndum-Nielsen, Karen; Jensen, Jens-Erik Beck

    2011-09-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients with RTT do have low BMD when correcting for smaller bones by examination with dual-energy X-ray absorptiometry (DXA). We compared areal BMD (aBMD(spine) and aBMD(total hip) ) and volumetric bone mineral apparent density (vBMAD(spine) and vBMAD(neck) ) in 61 patients and 122 matched healthy controls. Further, spine and hip aBMD and vBMAD of patients were associated with clinical risk factors of low BMD, low-energy fractures, MECP2 mutation groups, and X chromosome inactivation (XCI). Patients with RTT had reduced bone size on the order of 10% and showed lower values of spine and hip aBMD and vBMAD (p bone mass and small bones are evident in RTT, indicating an apparent low-bone-formation phenotype. Copyright © 2011 American Society for Bone and Mineral Research.

  13. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found...... in lumbar bone mineral density, femoral neck bone mineral density, serum levels of alkaline phosphatase, osteocalcin, ionized calcium and phosphate. The urinary excretion of both hydroxyproline and calcium relative to urinary creatinine excretion was significantly higher in patients with fibromyalgia, p = 0.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  14. Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta.

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-05-01

    Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  15. Exercise and bone mass in adults.

    Science.gov (United States)

    Guadalupe-Grau, Amelia; Fuentes, Teresa; Guerra, Borja; Calbet, Jose A L

    2009-01-01

    There is a substantial body of evidence indicating that exercise prior to the pubertal growth spurt stimulates bone growth and skeletal muscle hypertrophy to a greater degree than observed during growth in non-physically active children. Bone mass can be increased by some exercise programmes in adults and the elderly, and attenuate the losses in bone mass associated with aging. This review provides an overview of cross-sectional and longitudinal studies performed to date involving training and bone measurements. Cross-sectional studies show in general that exercise modalities requiring high forces and/or generating high impacts have the greatest osteogenic potential. Several training methods have been used to improve bone mineral density (BMD) and content in prospective studies. Not all exercise modalities have shown positive effects on bone mass. For example, unloaded exercise such as swimming has no impact on bone mass, while walking or running has limited positive effects. It is not clear which training method is superior for bone stimulation in adults, although scientific evidence points to a combination of high-impact (i.e. jumping) and weight-lifting exercises. Exercise involving high impacts, even a relatively small amount, appears to be the most efficient for enhancing bone mass, except in postmenopausal women. Several types of resistance exercise have been tested also with positive results, especially when the intensity of the exercise is high and the speed of movement elevated. A handful of other studies have reported little or no effect on bone density. However, these results may be partially attributable to the study design, intensity and duration of the exercise protocol, and the bone density measurement techniques used. Studies performed in older adults show only mild increases, maintenance or just attenuation of BMD losses in postmenopausal women, but net changes in BMD relative to control subjects who are losing bone mass are beneficial in

  16. Do vegetarians have a normal bone mass?

    Science.gov (United States)

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  17. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  18. Corticosteroid therapy and bone mass - comparisOfl of rheumatoid ...

    African Journals Online (AJOL)

    osis Int sis and et of ine in l energy. Tissue. Invasive. -72. cl Med f the ed. The ce ... needs to be re-evaluated, favouring earlier use of such ... There are also very few reports of bone ... compare bone mass at various sites in young, ambulant .... Bone mass ill patients with RA and SLE in relation to ..... on bone in young adults.

  19. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  20. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  1. Determinants of bone mass and bone geometry in adolescent and young adult women

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Hoorneman, G.; Väänänen, K.; Charles, P.; Ando, S.; Maggiolini, M.; Charzewska, J.; Rotily, M.; Deloraine, A.; Heikkinen, J.; Juvin, R.; Schaafsma, G.

    2000-01-01

    Bone mass and bone geometry are considered to have independent effects on bone strength. The purpose of this study was to obtain data on bone mass and geometry in young female populations and how they are influenced by body size and lifestyle factors. In a cross-sectional, observational study in six

  2. Peak bone mineral density, lean body mass and fractures

    NARCIS (Netherlands)

    Boot, Annemieke M.; de Ridder, Maria A. J.; van der Sluis, Inge M.; van Slobbe, Ingrid; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    Background: During childhood and adolescence, bone mass and lean body mass (LBM) increase till a plateau is reached. In this longitudinal and cross-sectional study, the age of reaching the plateau was evaluated for lumbar spine and total body bone mass measurements and lean body mass. The

  3. Common endocrine control of body weight, reproduction, and bone mass

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  4. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  5. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass

    Directory of Open Access Journals (Sweden)

    Guiyuan Han

    2017-04-01

    Full Text Available This study investigated the relationships of fat mass (FM and lean mass (LM with estimated hip bone strength in Chinese men aged 50–80 years (median value: 62.0 years. A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA. The relationships of the LM index (LMI and the FM index (FMI with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders (p < 0.05. Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area (p < 0.05. The contribution of the LMI (4.0%–12.8% was greater than that of the FMI (2.0%–5.7%. The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile (p < 0.05, but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  6. Anorexia nervosa: slow regain of bone mass.

    Science.gov (United States)

    Valla, A; Groenning, I L; Syversen, U; Hoeiseth, A

    2000-01-01

    In a retrospective study of women aged 18-30 years, aimed at assessing factors associated with peak bone mass (PBM), 13 of 239 study cases reported having had anorexia nervosa. The mean total femoral and lumbar bone mineral density (BMD) values were not significantly lower in women who had had anorexia than in the pooled group (mean Z-scores of -0.60 and -0.48). Cases with less than 6 years since the anorexia had on average a present weight 5.7 kg less than their premorbid weights, while cases with more than 6 years since the eating disorder had an average weight 22.5 kg above their pre-morbid weights. The cases who had not regained their weight had BMD values significantly lower than the pooled material (mean Z-scores -1.15 and -0.9 in the lumbar spine and total femur respectively). Those who had regained their weight had BMD values as predicted from their present anthropometric data, while those who had not regained their weight had BMD values that were substantially below that predicted from their present weight. Anorexia nervosa seems to be associated with a low BMD which is even lower than that which can be predicted from the weight loss alone. This suggests that weight loss and other factors, such as menstrual dysfunction and estrogen deficiency, are independent and thus additive causes of bone loss in anorexia nervosa. Recovery of BMD seems slow, but the BMD may become as predicted from the anthropometric data after restoration of body weight and menses. The potential for recovery of BMD seems intact for several years after menarche.

  7. Lumbar bone mass predicts low back pain in males

    NARCIS (Netherlands)

    Hoozemans, M.J.M.; Koppes, L.L.J.; Twisk, J.W.R.; Dieën, J.H. van

    2012-01-01

    STUDY DESIGN.: Longitudinal study of lumbar bone mass as predictor of low back pain (LBP). OBJECTIVE.: To investigate whether low bone mineral content (BMC) and bone mineral density (BMD) values at the age of 36 years are associated with the prevalence of LBP at the age of 42 years among the study

  8. Variation in the MC4R gene is associated with bone phenotypes in elderly Swedish women.

    Directory of Open Access Journals (Sweden)

    Gaurav Garg

    Full Text Available Osteoporosis is characterized by reduced bone mineral density (BMD and increased fracture risk. Fat mass is a determinant of bone strength and both phenotypes have a strong genetic component. In this study, we examined the association between obesity associated polymorphisms (SNPs with body composition, BMD, Ultrasound (QUS, fracture and biomarkers (Homocysteine (Hcy, folate, Vitamin D and Vitamin B12 for obesity and osteoporosis. Five common variants: rs17782313 and rs1770633 (melanocortin 4 receptor (MC4R; rs7566605 (insulin induced gene 2 (INSIG2; rs9939609 and rs1121980 (fat mass and obesity associated (FTO were genotyped in 2 cohorts of Swedish women: PEAK-25 (age 25, n = 1061 and OPRA (age 75, n = 1044. Body mass index (BMI, total body fat and lean mass were strongly positively correlated with QUS and BMD in both cohorts (r(2 = 0.2-0.6. MC4R rs17782313 was associated with QUS in the OPRA cohort and individuals with the minor C-allele had higher values compared to T-allele homozygotes (TT vs. CT vs.100 vs. 103 vs. 103; p = 0.002; (SOS: 1521 vs. 1526 vs. 1524; p = 0.008; (Stiffness index: 69 vs. 73 vs. 74; p = 0.0006 after adjustment for confounders. They also had low folate (18 vs. 17 vs. 16; p = 0.03 and vitamin D (93 vs. 91 vs. 90; p = 0.03 and high Hcy levels (13.7 vs 14.4 vs. 14.5; p = 0.06. Fracture incidence was lower among women with the C-allele, (52% vs. 58%; p = 0.067. Variation in MC4R was not associated with BMD or body composition in either OPRA or PEAK-25. SNPs close to FTO and INSIG2 were not associated with any bone phenotypes in either cohort and FTO SNPs were only associated with body composition in PEAK-25 (p≤0.001. Our results suggest that genetic variation close to MC4R is associated with quantitative ultrasound and risk of fracture.

  9. Chronic Alcohol Abuse Leads to Low Bone Mass with No General Loss of Bone Structure or Bone Mechanical Strength

    DEFF Research Database (Denmark)

    Ulhøi, Maiken Parm; Meldgaard, Karoline; Steiniche, Torben

    2017-01-01

    Chronic alcohol abuse (CAA) has deleterious effects on skeletal health. This study examined the impact of CAA on bone with regard to bone density, structure, and strength. Bone specimens from 42 individuals with CAA and 42 individuals without alcohol abuse were obtained at autopsy. Dual-energy X......-ray absorptiometry (DEXA), compression testing, ashing, and bone histomorphometry were performed. Individuals with CAA had significantly lower bone mineral density (BMD) in the femoral neck and significantly lower bone volume demonstrated by thinner trabeculae, decreased extent of osteoid surfaces, and lower mean...... wall thickness of trabecular osteons compared to individuals without alcohol abuse. No significant difference was found for bone strength and structure. Conclusion: CAA leads to low bone mass due to a decrease in bone formation but with no destruction of bone architecture nor a decrease in bone...

  10. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-01-01

    Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893

  11. DXA measurements in rett syndrome reveal small bones with low bone mass

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine

    2011-01-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients...

  12. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass.

    Science.gov (United States)

    Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei

    2017-04-24

    This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  13. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis

    Science.gov (United States)

    Wu, Xiaofeng; Cao, Lei; Li, Fan; Ma, Chao; Liu, Guangwang; Wang, Qiugen

    2018-01-01

    As a main cause of morbidity in the aged population, osteoarthritis (OA) is characterized by cartilage destruction, synovium inflammation, osteophytes, and subchondral bone sclerosis. To date its etiology remains elusive. Recent data highlight an important role of subchondral bone in the onset and progression of OA. Therefore, elucidating the mechanisms underlying abnormal subchondral bone could be of importance in the treatment of OA. Interleukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes. Although in vitro and in vivo studies have indicated that IL-6 is an important cytokine in the physiopathogenesis of OA, its effects on subchondral bone have not been studied in OA animal models. In this study, we aimed to i) investigate the role of IL-6 in the pathological phenotypes of OA subchondral bone MSCs including increase in cell numbers, mineralization disorder and abnormal type I collagen production; ii) explore whether the systemic blockade of IL-6 signaling could alleviate the pathological phenotypes of experimental OA. We found that IL-6 was over-secreted by OA subchondral bone MSCs compared with normal MSCs and IL-6/STAT3 signaling was over-activated in subchondral bone MSCs, which contributed to the pathological phenotypes of OA subchondral bone MSCs. More importantly, systemic inhibition of IL-6/STAT3 signaling with IL-6 antibody or STAT3 inhibitor AG490 decreased the severity of pathological phenotypes of OA subchondral bone MSCs and cartilage lesions in OA. Our findings provide strong evidence for a pivotal role for IL-6 signaling in OA and open up new therapeutic perspectives. PMID:29736207

  14. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  15. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation.

    Science.gov (United States)

    Xiang, Ruidong; Lee, Alice M C; Eindorf, Tanja; Javadmanesh, Ali; Ghanipoor-Samami, Mani; Gugger, Madeleine; Fitzsimmons, Carolyn J; Kruk, Zbigniew A; Pitchford, Wayne S; Leviton, Alison J; Thomsen, Dana A; Beckman, Ian; Anderson, Gail I; Burns, Brian M; Rutley, David L; Xian, Cory J; Hiendleder, Stefan

    2014-11-01

    Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p maternal genome effects on bone wet weight (74.1%, p paternal genome controlled limb ossification (95.1%, p maternal genome effects on growth plate height (98.6%, p maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p paternal genome effects on alkaline phosphatase (90.0%, p maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors. © 2014 American Society for Bone and Mineral Research.

  16. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  17. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  18. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    International Nuclear Information System (INIS)

    Fränzle, Andrea; Giske, Kristina; Bretschi, Maren; Bäuerle, Tobias; Hillengass, Jens; Bendl, Rolf

    2013-01-01

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approach is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean

  19. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  20. Phenotypic characterization of early events of thymus repopulation in radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Sharrow, S.O.; Singer, A.; Hammerling, U.; Mathieson, B.J.

    1983-01-01

    The phenotype of murine thymocytes repopulating the thymus of radiation bone marrow chimeras shortly after irradiation and bone marrow reconstitution was analyzed by immunofluorescence and flow microfluorometry. Thymuses in these chimeras, while essentially devoid of lymphoid cells at day 7, were repopulated by days 10 to 12 after irradiation. It was found that this initial repopulation arose from a radioresistant intrathymic precursor that expanded to an almost complete complement of host-type thymocytes. However, these host-derived thymocytes were unusual in that they were relatively deficient in Lyt 1+2- and peanut agglutinin ''dull'' cells as compared with normal thymocytes. Donor bone-marrow-derived cells first appeared in the irradiated chimeric thymuses between days 12 and 15 after irradiation and bone marrow transfer. By day 19, chimeric thymuses contained more than 98% donor cells. This course was identical for three chimeric combinations, each made across different genetic barriers. In contrast to the cells that populate the fetal thymus during normal ontogeny, the first donor bone-marrow-derived cells that can be detected within the irradiated chimeric thymuses already expressed phenotypically normal adult T cell subpopulations in that they contained significant numbers both of Lyt 1+2- and of Lyt 1+2+ thymocytes. Thus, the Lyt phenotype of donor cells that initially repopulate an adult thymus after irradiation is markedly different from the Lyt phenotype of cells that initially populate the fetal thymus. The differences between adult and fetal thymic development that are observed in radiation bone marrow chimeras may be important in our understanding of T cell differentiation in these animals

  1. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  2. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  3. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  4. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  5. An Unusual Neck Mass: Ingested Chicken Bone

    OpenAIRE

    Demirhan, Erhan; İber, Metin; Yağız, Özlem; Kandoğan, Tolga; Çukurova, İbrahim

    2016-01-01

    Background: Foreign bodies in the upper aerodigestive tract are frequently seen in otolaryngological practice, but migration of an ingested foreign body to the neck is a very rare condition. Case Report: We present a 66-year-old woman admitted to our outpatient department with a painful neck mass. She had a history of emergency department admission 4 months prior with odynophagia after eating chicken meal. A physical examination revealed a painful and hyperemic mass on the left neck. Ant...

  6. High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep.

    Science.gov (United States)

    Simon, M J K; Beil, F T; Rüther, W; Busse, B; Koehne, T; Steiner, M; Pogoda, P; Ignatius, A; Amling, M; Oheim, R

    2014-07-01

    Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone

  7. Tracking of bone mass from childhood to puberty

    DEFF Research Database (Denmark)

    Rønne, M. S.; Heidemann, M.; Schou, A.

    2018-01-01

    health. Introduction: Bone mass development in childhood varies by sex and age, but also by pubertal stage. The objectives of this study were to (1) describe bone mass development in childhood as it relates to pubertal onset and to (2) determine the degree of tracking from childhood to adolescence....... Methods: A longitudinal study with 7 years of follow-up was initiated in 2008 to include 831 children (407 boys) aged 8 to 17 years. Participants underwent whole body dual-energy X-ray absorptiometry (DXA) scanning, blood collection to quantify luteinizing hormone levels, and Tanner stage self...

  8. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    Directory of Open Access Journals (Sweden)

    Kolsoom Parvaneh

    2014-01-01

    Full Text Available A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1 increasing mineral solubility due to production of short chain fatty acids; (2 producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3 reducing intestinal inflammation followed by increasing bone mass density; (4 hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  9. Identifying A Molecular Phenotype for Bone Marrow Stromal Cells With In Vivo Bone Forming Capacity

    DEFF Research Database (Denmark)

    Larsen, Kenneth H; Frederiksen, Casper M; Burns, Jorge S

    2009-01-01

    (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT(-Bone) cells expressed a larger number of immune-response related genes (26% versus 8%). In order to test for the predictive...... value of these markers, we studied the correlation between their expression levels in 6 different hBMSC-derived clones and the ability to form bone in vivo. We found a significant correlation for, decorin, lysyl oxidase-like 4, natriuretic peptide receptor C, and tetranectin. No significant positive...

  10. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  11. Relationship of bony trabecular characteristics and age to bone mass

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Song, Young Han; Yoon, Young Nam; Lee, Wan; Lee, Byung Do

    2006-01-01

    Bony strength is dependent on bone mass and bony structure. So this study was designed to investigate the relationship between the bone mass and bony mass and bony trabecular characteristics. Study subjects were 51 females (average age 68.6 years) and 20 males (average age 66.4 years). Bony mineral density (BMD, grams/cm 2 ) of proximal femur was measured by a dual energy X-ray absorptiometry (DEXA). Regions of interest (ROIs) were selected from the digitized radiographs of proximal femur. A customized computer program processed morphologic operations (MO) of ROIs. 44 skeletal variables of MO were calculated from ROIs on the Ward's triangle and greater trochanter of femur. WHO BMD classes were predicted by MO variables of the same ROI. Classification and Regression Tree analysis was used for calculating weighted kappa values, sensitivity and specificity of MO. The discriminating factors of morphologic operation were branch point, branch point [per cm sq]. Age also played important role in distinguishing osteoporotic classes. The sensitivity of MO at Ward's triangle and Greater Trochanter was 91.8%, 65.6%, respectively. The specificity of MO was 100% at Ward's triangle and Greater Trochanter. Bony trabecular characteristics obtained using radiological bone morphometric analysis seem to be related to bone mass

  12. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  13. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Science.gov (United States)

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  14. Peak bone mass density among residents of Metro Manila

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.B.; Guanzon, M.L.V.V.; Balderas, J.A.J.; Villaruel, C.M.; Santos, F.

    1996-01-01

    To determine the peak bone mass density among residents of Metro Manila using dual x-ray absorptiometry (DEXA).The design used is cross-sectional study. The study include 23 females and 22 males, with 3 to 4 subjects for each age range of 5. The methods used was bone mass density measurements on the lumbar spine and the femur using dual x-ray absorptiometry (DPXI lunar) were taken. The values were also age-matched and matched with that of a young adult based on programmed Caucasian norm provided by Lunar Co. The values were then scattered against age for each sex. Ten (10) cc of blood was also extracted from the patients, with 5 cc of blood separated for future studies. Patients were also interviewed as to their lifestyle, diet, use of contraceptive pill or hormonal replacement treatment, using a Filipino version of the revised questionnaire on the WHO Study on osteoporosis. The mean bone mass density at the L21.4 level for females was 1.12±0.11 g/cm 2 and 0,91±0.11 g/cm 2 at the femur. The highest BMD in both the lumbar spine femoral neck measurements among females was achieved between the ages 30-35 years of age with the lowest BMD occurring between 15-20 yrs. old and incidentally in 2 subjects with ages between 40-44. There seems to be little bone loss among beyond the age 35, unlike in the females. Bone mass density among a sample Metro Manila residents was determined using DEXA and the measurements on the lumbar spine and femoral neck. These were age-matched with that of young adult based on Caucasian norm provided by the Lunar Co. Peak bone mass density in the L2L4 level among the females is reached between the ages 30-35 years old, after which there is progressive bone loss with values in the 45-50 years old approximating the values in the 15-19 years old age range. A similar pattern is seen in the measurements taken at the femoral neck. Among males, the peak BMD is reached during the 30-35 years old, but there seems to be no rapid decline or rapid bone

  15. High bone turnover is associated with low bone mass in both pre- and postmenopausal women

    DEFF Research Database (Denmark)

    Ravn, Pernille; Fledelius, C; Rosenquist, C

    1996-01-01

    of CrossLaps and OCN-Mid corrected for height and weight, had 6%-11% lower bone mass in all regions (p r = -0.13 to r = -0.28, p ....05. In postmenopausal women, the difference in bone mass between the highest and lowest quartiles was 8%-14% (p r = -0.14 to r = -0.32, p r = -0.06 to r = -0.......20 for premenopausal women, NS to p r = -0.01 to r = -0.23, NS to p

  16. Lack of seasonal variation in bone mass and biochemical estimates of bone turnover

    International Nuclear Information System (INIS)

    Overgaard, K.; Nilas, L.; Johansen, J.S.; Christiansen, C.

    1988-01-01

    Three previous studies have indicated a seasonal variation in bone mineral content, with values during the summer being 1.7% to 7.5% higher than during the winter. We have examined the seasonal influence on both bone mass, biochemical estimates of bone turnover and vitamin D metabolites in 86 healthy women, aged 29-53 years. All participants were followed up for 2 years with examinations every 6 weeks or 3 months. Bone mineral content in the proximal and distal part of the forearm (single photon absorptiometry) did not reveal any significant seasonal variation, whereas bone mineral density of the lumbar spine (dual photon absorptiometry) indicated that the highest values occurred in winter. None of the biochemical parameters showed any statistically significant cyclical changes. Serum concentrations of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D3 showed a highly significant seasonal variation, whereas the serum 1,25-dihydroxyvitamin D concentration was virtually unchanged. We conclude that seasonal variation in bone mineral content and bone turnover should not be taken into account when interpreting data from longitudinal studies of healthy pre- and postmenopausal women on a sufficient vitamin D nutriture

  17. Final Report: Bone Mass Inheritance: A Project to Identify the Genetic Regulation of Bone Mass; FINAL

    International Nuclear Information System (INIS)

    Recker, Robert R. M.D.

    2002-01-01

    This project was designed to find human chromosomal locations that contain genes regulating peak bone density. It is part of a whole genome search for those loci,each responsible for at least 15% of the variation in the peak adult bone density. We accomplished this with a sib pair design, combined with simultaneous examination of extended kindreds. This project gave partial support of the recruitment which has now been completed. The project will extend into 2003. During the remainder of the project, a whole genome scan will be performed from the entire cohort of 2226 persons who have DNA archived, followed by linkage analysis. This project will meet the scientific objective leading eventually to expanded options for treating the condition that leads to bone thinning osteoporosis, and potential fractures in aging populations

  18. Volleyball and Basketball Enhanced Bone Mass in Prepubescent Boys.

    Science.gov (United States)

    Zouch, Mohamed; Chaari, Hamada; Zribi, Anis; Bouajina, Elyès; Vico, Laurence; Alexandre, Christian; Zaouali, Monia; Ben Nasr, Hela; Masmoudi, Liwa; Tabka, Zouhair

    2016-01-01

    The aim of this study was to examine the effect of volleyball and basketball practice on bone acquisition and to determine which of these 2 high-impact sports is more osteogenic in prepubertal period. We investigated 170 boys (aged 10-12 yr, Tanner stage I): 50 volleyball players (VB), 50 basketball players (BB), and 70 controls. Bone mineral content (BMC, g) and bone area (BA, cm(2)) were measured by dual-energy X-ray absorptiometry at different sites. We found that, both VB and BB have a higher BMC at whole body and most weight-bearing and nonweight-bearing sites than controls, except the BMC in head which was lower in VB and BB than controls. Moreover, only VB exhibited greater BMC in right and left ultra-distal radius than controls. No significant differences were observed between the 3 groups in lumbar spine, femoral neck, and left third D radius BMC. Athletes also exhibited a higher BA in whole body, limbs, lumbar spine, and femoral region than controls. In addition, they have a similar BA in head and left third D radius with controls. The VB exhibited a greater BA in most radius region than controls and a greater femoral neck BA than BB. A significant positive correlation was reported between total lean mass and both BMC and BA in whole body, lumbar spine, total hip, and right whole radius among VB and BB. In summary, we suggest that volleyball and basketball have an osteogenic effect BMC and BA in loaded sites in prepubescent boys. The increased bone mass induced by both volleyball and basketball training in the stressed sites was associated to a decreased skull BMC. Moreover, volleyball practice produces a more sensitive mechanical stress in loaded bones than basketball. This effect seems translated by femoral neck expansion. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  19. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.

    Science.gov (United States)

    Guntur, Anyonya R; Le, Phuong T; Farber, Charles R; Rosen, Clifford J

    2014-05-01

    Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and

  20. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  1. Peak bone mass density among residents of Metro Manila

    International Nuclear Information System (INIS)

    Lim-Abrahan, Mary Anne V.; Gacutan-Liwag, Aretha Ann C.; Balderas, Jubilia Araceli J.; Guanzon, Ma. Vicenta Luz; Guzman, Angel de

    2002-01-01

    Study Objectives: To determine the peak bone mass density among residents of Metro Manila using dual energy X-ray absorptiometry and to correlate factors such as age, height, weight, body mass index, total caloric, protein and calcium intake to bone mass density. Design: Cross sectional study Setting: Philippine General Hospital and St Luke's Medical Center, tertiary government and private owned hospitals, respectively. Subjects: Two hundred twenty-eight 228) healthy randomly chosen subjects from amongst hospital companion, aged 15-52 years old, distributed at 25 subjects per group of five per sex. Methods: Bone mass density measurements were done on lumbar spine and femoral neck using dual energy x-ray absorptiometry (Lunar DPXL). Ten (10) cc of blood was extracted on one hundred fourteen (114) patients; 5 cc of which was used for biochemical studies while the rest of the sample was stored for fixture studies. One hundred fourteen (114) patients were then interviewed using the Filipino version of the WHO questionnaire for the Study of Osteoporosis, and their nutritional intake was assessed using a previous day food recall. Results: At present, there are a total of 228 patients recruited. The mean weight and height were 57-43±11.17 kg and 158.16±8.44 cm, respectively, and the mean BMI was 22.99±4.11. The mean daily calcium intake was 501.17±357.79 gms/day (n=64). The mean BMD at the L2-L4 spine for females was 1.14±0.15 gm/cm 2 and 1.12±0.21 gm/cm 2 for the males. The highest BMD was 1.23±0.20 gm/cm 2 in the 35-39 year old age group for the females and 1.26±0.31 gm/cm 2 in the 30-34 age group for the males. The mean femoral neck BMD was 0.91±0.12 gm/cm 2 for the females and 1.00±0.13 gm/cm 2 for the males. The highest femoral neck BMD was 0.931±0.12 gm/cm 2 in the 20-24 females and 1.03±0.18 gm/cm 2 in the 20-24 age group for the males. Calcium intake and weight was significantly correlated in the lumbar spine. Height and sex was correlated with both

  2. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet?

    NARCIS (Netherlands)

    Parsons, T.J.; Dusseldorp, van M.; Seibel, M.J.; Staveren, van W.A.

    2001-01-01

    Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by

  3. The Bone Dysplasia Ontology: integrating genotype and phenotype information in the skeletal dysplasia domain

    Directory of Open Access Journals (Sweden)

    Groza Tudor

    2012-03-01

    Full Text Available Abstract Background Skeletal dysplasias are a rare and heterogeneous group of genetic disorders affecting skeletal development. Patients with skeletal dysplasias suffer from many complex medical issues including degenerative joint disease and neurological complications. Because the data and expertise associated with this field is both sparse and disparate, significant benefits will potentially accrue from the availability of an ontology that provides a shared conceptualisation of the domain knowledge and enables data integration, cross-referencing and advanced reasoning across the relevant but distributed data sources. Results We introduce the design considerations and implementation details of the Bone Dysplasia Ontology. We also describe the different components of the ontology, including a comprehensive and formal representation of the skeletal dysplasia domain as well as the related genotypes and phenotypes. We then briefly describe SKELETOME, a community-driven knowledge curation platform that is underpinned by the Bone Dysplasia Ontology. SKELETOME enables domain experts to use, refine and extend and apply the ontology without any prior ontology engineering experience--to advance the body of knowledge in the skeletal dysplasia field. Conclusions The Bone Dysplasia Ontology represents the most comprehensive structured knowledge source for the skeletal dysplasias domain. It provides the means for integrating and annotating clinical and research data, not only at the generic domain knowledge level, but also at the level of individual patient case studies. It enables links between individual cases and publicly available genotype and phenotype resources based on a community-driven curation process that ensures a shared conceptualisation of the domain knowledge and its continuous incremental evolution.

  4. Dating of some fossil Romanian bones by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Olariu, Agata; Skog, Goeran; Emilian Alexandrescu; Hellborg, Ragnar; Stenstroem, Krstina; Faarinen, Mikko; Persson, Per

    2002-01-01

    Some fossil bones from Romanian territories have been dated by accelerator mass spectrometry (AMS) using the pelletron system from Lund University. The preparation of samples has been the classical procedure to produce pure graphite from bones specimens, The Paleolithic site from Malu Rosu, near Giurgiu was thoroughly analyzed. Two human fossil skulls from Cioclovina and Baia de Fier of special archaeological importance have been estimated to be of around 30 000 years old, a conclusion with great implications for the history of ancient Romania. By this physical analysis, a long scientific dispute was settled. The two fossil human skulls are the only ones of this age from Romania. One could advance the hypothesis that the skulls belong to a certain type of a branch of Central European Cro-Magon, the classical western type, considering both the chronological and the anthropological features. They constitute eastern limit of the Cro-Magnon man type. (authors)

  5. Poor bone health in underprivileged Indian girls: an effect of low bone mass accrual during puberty.

    Science.gov (United States)

    Khadilkar, Anuradha V; Sanwalka, Neha J; Kadam, Nidhi S; Chiplonkar, Shashi A; Khadilkar, Vaman V; Mughal, M Zulf

    2012-05-01

    A socio-economic gradient exists for most reasons of morbidity and mortality including delayed puberty in lower (LSES) as compared to higher (HSES) socio-economic stratum and puberty is an important factor affecting bone status in children and adolescents. Thus, a cross-sectional study was conducted on 195 age-matched pairs of girls (8-17years) from LSES and HSES in Pune City, India to assess the hypothesis that socio-economic factors working through late puberty would have a negative association with bone status of adolescents. Height, weight and Tanner stage were assessed. Total body bone mineral content (TBBMC), total body bone area (TBBA), total body bone mineral density (TBBMD), lean body mass (LBM) and total body fat mass (TBFM) were measured using GE Lunar DPX Pro Pencil Beam DXA (Wisconsin, USA) scanner. Mean TBBMC (1172±434g), TBBA (1351±356cm(2)), TBBMD (0.846±0.104g/cm(2)), LBM (21,622±5306g) and TBFM (7746±5194g) in LSES girls were significantly lower than that of HSES girls [TBBMC (1483±525g), TBBA (1533±380cm(2)), TBBMD (0.942±0.119g/cm(2)), LBM (24,308±5829g) and TBFM (12,196±7404g)] (pbone parameters. The differences in TBBMC, TBBA, LBM and TBFM between the 2 socio-economic strata at Tanner stage I were not significant (p>0.1) whereas there were significant differences in these parameters from Tanner stages II to V (pbone health in adolescent girls from the lower socio-economic stratum. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. 'Sink or swim': an evaluation of the clinical characteristics of individuals with high bone mass.

    LENUS (Irish Health Repository)

    Gregson, C L

    2011-04-01

    High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. INTRODUCTION: High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. METHODS: Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. RESULTS: Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon\\/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg\\/m(2

  7. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  8. A clinical study evaluating bone mineral mass in the radius during skeletal growth

    International Nuclear Information System (INIS)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome. (author)

  9. Analysis of bone mass density of lumbar spine zone of athletes

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... Strengthening exercises, together with walking and aerobic exercises ... effects of exercises on bone mass, the exercises putting load on the ...... activity, body weight and composition, and muscular strength on bone density in ...

  10. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M

    2012-01-01

    Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been...... by real-time PCR analysis. Compared to BMSC, MEF exhibited a more enhanced differentiation into adipocyte and chondrocyte lineages. Interestingly, both MEF and BMSC formed the same amount of heterotopic bone and bone marrow elements upon in vivo subcutaneous implantation with hydroxyapatite...... and differentiation to osteoblasts, adipocytes and chondrocytes....

  11. Paraoxonase 1 Phenotype and Mass in South Asian versus Caucasian Renal Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Philip W. Connelly

    2012-01-01

    Full Text Available South Asian renal transplant recipients have a higher incidence of cardiovascular disease compared with Caucasian renal transplant recipients. We carried out a study to determine whether paraoxonase 1, a novel biomarker for cardiovascular risk, was decreased in South Asian compared with Caucasian renal transplant recipients. Subjects were matched two to one on the basis of age and sex for a total of 129 subjects. Paraoxonase 1 was measured by mass, arylesterase activity, and two-substrate phenotype assay. Comparisons were made by using a matched design. The frequency of PON1 QQ, QR and RR phenotype was 56%, 37%, and 7% for Caucasian subjects versus 35%, 44%, and 21% for South Asian subjects (χ2=7.72, P=0.02. PON1 mass and arylesterase activity were not significantly different between South Asian and Caucasian subjects. PON1 mass was significantly associated with PON1 phenotype (P=0.0001, HDL cholesterol (P=0.009, LDL cholesterol (P=0.02, and diabetes status (P<0.05. Arylesterase activity was only associated with HDL cholesterol (P=0.003. Thus the frequency of the PON1 RR phenotype was higher and that of the QQ phenotype was lower in South Asian versus Caucasian renal transplant recipients. However, ethnicity was not a significant factor as a determinant of PON1 mass or arylesterase activity, with or without analysis including PON1 phenotype. The two-substrate method for determining PON1 phenotype may be of value for future studies of cardiovascular complications in renal transplant recipients.

  12. Paraoxonase 1 Phenotype and Mass in South Asian versus Caucasian Renal Transplant Recipients.

    Science.gov (United States)

    Connelly, Philip W; Maguire, Graham F; Nash, Michelle M; Rapi, Lindita; Yan, Andrew T; Prasad, G V Ramesh

    2012-01-01

    South Asian renal transplant recipients have a higher incidence of cardiovascular disease compared with Caucasian renal transplant recipients. We carried out a study to determine whether paraoxonase 1, a novel biomarker for cardiovascular risk, was decreased in South Asian compared with Caucasian renal transplant recipients. Subjects were matched two to one on the basis of age and sex for a total of 129 subjects. Paraoxonase 1 was measured by mass, arylesterase activity, and two-substrate phenotype assay. Comparisons were made by using a matched design. The frequency of PON1 QQ, QR and RR phenotype was 56%, 37%, and 7% for Caucasian subjects versus 35%, 44%, and 21% for South Asian subjects (χ(2) = 7.72, P = 0.02). PON1 mass and arylesterase activity were not significantly different between South Asian and Caucasian subjects. PON1 mass was significantly associated with PON1 phenotype (P = 0.0001), HDL cholesterol (P = 0.009), LDL cholesterol (P = 0.02), and diabetes status (P < 0.05). Arylesterase activity was only associated with HDL cholesterol (P = 0.003). Thus the frequency of the PON1 RR phenotype was higher and that of the QQ phenotype was lower in South Asian versus Caucasian renal transplant recipients. However, ethnicity was not a significant factor as a determinant of PON1 mass or arylesterase activity, with or without analysis including PON1 phenotype. The two-substrate method for determining PON1 phenotype may be of value for future studies of cardiovascular complications in renal transplant recipients.

  13. Association of vitamin D receptor and estrogen receptor-α gene polymorphism with peak bone mass and bone size in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Qi-ren HUANG; Jin-wei HE; Yun-qiu HU; Qi ZHOU; Jing-hui LU; Miao LI; Yu-juan LIU

    2004-01-01

    AIM: To investigate if vitamin D receptor (VDR) gene Apa I polymorphism and estrogen receptor-α (ER-α) gene Pvu II, Xba I polymorphisms are related to bone mineral density (BMD), bone mineral content (BMC) and bone size in premenopausal Chinese women. METHODS: The VDR Apa I genotype and ER-α Pvu II, Xba I genotype were determined by PCR-restriction fragment length polymorphism (RFLP) in 493 unrelated healthy women aged 20-40 years of Hah nationality in Shanghai city. BMD (g/cm2), BMC (g), and bone areal size (BAS, cm2) at lumbar spine 1-4 (L1-4) and proximal femur (femoral neck, trochanter and Ward's triangle) were measured by duel-energy X-ray absorptionmetry. RESULTS: All allele frequencies did not deviate from Hardy-Weinberg equilibrium. After phenotypes were adjusted for age, height, and weight, a significant association was found between VDR Apa I genotype and BMC variation at L1-4 and Ward's triangle (P<0.05), but not in BMD or BAS at lumbar spine and proximal femur.ER-α Pvu II, Xba I genotype was not related to BMC, BMD, and BAS at all sites. CONCLUSION: The study suggested that Apa I polymorphism in VDR gene may influence on attainment and maintenance of peak bone mass in premenopausal Chinese women.

  14. Assessment of bone mass by image analysis of metacarpal bone roentgenograms

    International Nuclear Information System (INIS)

    Hayashi, Yasufumi; Yamamoto, Kichizo; Fukunaga, Masao; Ishibashi, Toshinobu; Takahashi, Kichiya; Nishii, Yasuho.

    1990-01-01

    A digital image processing (DIP) method for assessing bone mass was developed on the basis of image analysis of roentgenograms. Linearity between DIP values and the actual calcium carbonate content was scarcely affected even if roentgenograms were made with bone phantoms placed in different depths of water or by altering the voltage of X-ray generation. In clinical studies, coefficients of variation (CV) for various measurements were lower than 2.4%. When the correlation between the DIP values and the bone mineral densities in the distal one-third of the radius, and the 2nd to 4th lumbar vertebrae were investigated in 340 females, there were good positive correlations of r=0.799, and r=0.611, respectively (p<0.001). The DIP value was significantly lower in patients showing a low Singh index and in those with vertebral fractures than in other subjects. These results suggest that the DIP method provides an index with which to assess the efficacy of treatment and which can be used as a criterion in screening for osteoporosis. (author)

  15. Bone mass in schizophrenia and normal populations across different decades of life

    Directory of Open Access Journals (Sweden)

    Chueh Ching-Mo

    2009-01-01

    Full Text Available Abstract Background Chronic schizophrenic patients have been reported as having higher osteoporosis prevalence. Survey the bone mass among schizophrenic patients and compare with that of the local community population and reported data of the same country to figure out the distribution of bone mass among schizophrenic patients. Methods 965 schizophrenic patients aged 20 years and over in Yuli Veterans Hospital and 405 members aged 20 and over of the community living in the same town as the institute received bone mass examination by a heel qualitative ultrasound (QUS device. Bone mass distribution was stratified to analyzed and compared with community population. Results Schizophrenic patients have lower bone mass while they are young. But aging effect on bone mass cannot be seen. Accelerated bone mass loss during menopausal transition was not observed in the female schizophrenic patients as in the subjects of the community female population. Conclusion Schizophrenic patients have lower bone mass than community population since they are young. Further study to investigate the pathophysiological process is necessary to delay or avoid the lower bone mass in schizophrenia patients.

  16. The Relation between Visceral and Subcutaneous Fat to Bone Mass among Egyptian Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Sahar A. El-Masry

    2014-12-01

    CONCLUSIONS: Visceral and subcutaneous fat had significant positive association with bone mass in children; males and females respectively. On the contrary such association disappeared during adolescence.

  17. Evaluating the risk of osteoporosis through bone mass density

    International Nuclear Information System (INIS)

    Sayed, S.A.; Khaliq, A.

    2017-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30 percent of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. Method: In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). Result: The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4 percent (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. Conclusion: The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis. (author)

  18. Evaluating The Risk Of Osteoporosis Through Bone Mass Density.

    Science.gov (United States)

    Sayed, Sayeeda Amber; Khaliq, Asif; Mahmood, Ashar

    2016-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30% of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4% (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis.

  19. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    Science.gov (United States)

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  20. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system.

    Directory of Open Access Journals (Sweden)

    Theodore P Braun

    Full Text Available Signaling via the type 4-melanocortin receptor (MC4R is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO. We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.

  1. Disseminated breast cancer cells acquire a highly malignant and aggressive metastatic phenotype during metastatic latency in the bone.

    Directory of Open Access Journals (Sweden)

    Carolyn G Marsden

    Full Text Available BACKGROUND: Disseminated tumor cells (DTCs in the bone marrow may exist in a dormant state for extended periods of time, maintaining the ability to proliferate upon activation, engraft at new sites, and form detectable metastases. However, understanding of the behavior and biology of dormant breast cancer cells in the bone marrow niche remains limited, as well as their potential involvement in tumor recurrence and metastasis. Therefore, the purpose of this study was to investigate the tumorigenicity and metastatic potential of dormant disseminated breast cancer cells (prior to activation in the bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: Total bone marrow, isolated from mice previously injected with tumorspheres into the mammary fat pad, was injected into the mammary fat pad of NUDE mice. As a negative control, bone marrow isolated from non-injected mice was injected into the mammary fat pad of NUDE mice. The resultant tumors were analyzed by immunohistochemistry for expression of epithelial and mesenchymal markers. Mouse lungs, livers, and kidneys were analyzed by H+E staining to detect metastases. The injection of bone marrow isolated from mice previously injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post-injection. However, the injection of bone marrow isolated from non-injected mice did not result in tumor formation in the mammary fat pad. The DTC-derived tumors exhibited accelerated development of metastatic lesions within the lung, liver and kidney. The resultant tumors and the majority of metastatic lesions within the lung and liver exhibited a mesenchymal-like phenotype. CONCLUSIONS/SIGNIFICANCE: Dormant DTCs within the bone marrow are highly malignant upon injection into the mammary fat pad, with the accelerated development of metastatic lesions within the lung, liver and kidney. These results suggest the acquisition of a more aggressive phenotype of DTCs during

  2. Vitamin D and estrogen receptor-alpha genotype and indices of bone mass and bone turnover in Danish girls

    DEFF Research Database (Denmark)

    Cusack, S.; Mølgaard, C.; Michaelsen, K. F.

    2006-01-01

    (VDR) (FokI, TaqI) and estrogen receptor-alpha (ER alpha) (PvuII, XbaI), and bone mineral density (BMD), bone mineral content (BMC), and markers of bone turnover in 224 Danish girls aged 11-12 years. BMD and BMC were measured by dual-energy X-ray absorptiometry. Serum osteocalcin, 25(OH......Peak bone mass is a major determinant of osteoporosis risk in later life. It is under strong genetic control; however, little is known about the identity of the genes involved. In the present study, we investigated the relationship between polymorphisms in the genes encoding the vitamin D receptor...

  3. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice.

    Science.gov (United States)

    Le, Phuong T; Bishop, Kathleen A; Maridas, David E; Motyl, Katherine J; Brooks, Daniel J; Nagano, Kenichi; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2017-12-01

    Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow

  4. Genetic analysis of high bone mass cases from the BARCOS cohort of Spanish postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Patricia Sarrión

    Full Text Available The aims of the study were to establish the prevalence of high bone mass (HBM in a cohort of Spanish postmenopausal women (BARCOS and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600 displayed Z-scores in the HBM range (sum Z-score >4. While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F, which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM.

  5. Long term effect of thiazides on bone mass in women with hypercalciuric nephrolithiasis

    OpenAIRE

    Spivacow, Francisco R; Negri, Armando L; del Valle, Elisa E

    2013-01-01

    Background: Decreased bone mineral density and increased prevalence of bone fractures have been found in patients with idiopathic hypercalciuria. It is not yet clear if thiazide treatment prevent these events. Methods: We retrospectively evaluated bone mass and biochemical markers of bone turnover in response to thiazide therapy in 52 consecutive female patients with idiopathic hypercalciuria and nephrolithiasis. Patients were divided in two subgroups according to their menopausal status: 25 ...

  6. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.

    Science.gov (United States)

    Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K

    2017-09-01

    Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  7. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.

    Science.gov (United States)

    Huegel, Julianne; Mundy, Christina; Sgariglia, Federica; Nygren, Patrik; Billings, Paul C; Yamaguchi, Yu; Koyama, Eiki; Pacifici, Maurizio

    2013-05-01

    During limb skeletogenesis the cartilaginous long bone anlagen and their growth plates become delimited by perichondrium with which they interact functionally. Yet, little is known about how, despite being so intimately associated with cartilage, perichondrium acquires and maintains its distinct phenotype and exerts its border function. Because perichondrium becomes deranged and interrupted by cartilaginous outgrowths in Hereditary Multiple Exostoses (HME), a pediatric disorder caused by EXT mutations and consequent heparan sulfate (HS) deficiency, we asked whether EXT genes and HS normally have roles in establishing its phenotype and function. Indeed, conditional Ext1 ablation in perichondrium and lateral chondrocytes flanking the epiphyseal region of mouse embryo long bone anlagen - a region encompassing the groove of Ranvier - caused ectopic cartilage formation. A similar response was observed when HS function was disrupted in long bone anlagen explants by genetic, pharmacological or enzymatic means, a response preceded by ectopic BMP signaling within perichondrium. These treatments also triggered excess chondrogenesis and cartilage nodule formation and overexpression of chondrogenic and matrix genes in limb bud mesenchymal cells in micromass culture. Interestingly, the treatments disrupted the peripheral definition and border of the cartilage nodules in such a way that many nodules overgrew and fused with each other into large amorphous cartilaginous masses. Interference with HS function reduced the physical association and interactions of BMP2 with HS and increased the cell responsiveness to endogenous and exogenous BMP proteins. In sum, Ext genes and HS are needed to establish and maintain perichondrium's phenotype and border function, restrain pro-chondrogenic signaling proteins including BMPs, and restrict chondrogenesis. Alterations in these mechanisms may contribute to exostosis formation in HME, particularly at the expense of regions rich in progenitor

  8. Stage 1 Breast Cancer and Bone Mass in Older Women

    National Research Council Canada - National Science Library

    Schneider, Diane

    2002-01-01

    The specific aims of the study are 1) to assess the bone mineral density of women 65 years of age and older with breast cancer in comparison with the bone mineral density of same aged women with normal mammograms; 2...

  9. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    National Research Council Canada - National Science Library

    Register, Thomas

    2002-01-01

    ...) OC supplemented with an androgen (methyltestosterone), or 4) an anti-androgen (bicalutamide) to determine the potential role that suppression of androgens plays on bone metabolism, bone architecture, and the attainment of PBM...

  10. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    National Research Council Canada - National Science Library

    Register, Thomas

    2001-01-01

    ...) OC supplemented with an androgen (methyltestosterone), or (4) an anti-androgen (bicalutamide) to determine the potential role that suppression of androgens plays on bone metabolism, bone architecture, and the attainment of PBM...

  11. Does fetal smoke exposure affect childhood bone mass? The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2015-01-01

    textabstractSummary: We assessed the intrauterine influence of maternal smoking on childhood bone mass by comparing parental prenatal and postnatal smoking habits. We observed higher bone mass in children exposed to maternal smoking, explained by higher body weight. Maternal smoking or related

  12. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Macias Abraham, Consuelo; Valle Perez, Lazaro O del; Baganet Cobas, Aymara

    2011-01-01

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90 +c ells in mononuclear cells from CD34 -/ CD45 -p eripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34 +c ells in peripheral blood stem cells with a low expression of molecules CD117 -a nd DR -s uggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  13. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.

    Directory of Open Access Journals (Sweden)

    Ee-Cheng Khor

    Full Text Available Prader-Willi Syndrome (PWS, a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR, including a set of small non-translated nucleolar RNA's (snoRNA. Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health

  14. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    Science.gov (United States)

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  15. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  16. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  17. Sexual dimorphism, age and fat mass are key phenotypic drivers of proteomic signatures

    DEFF Research Database (Denmark)

    Curran, Aoife M; Fogarty Draper, Colleen; Scott-Boyer, Marie-Pier

    2017-01-01

    Validated protein biomarkers are needed for assessing health trajectories, predicting and sub-classifying disease, and optimizing diagnostic and therapeutic clinical decision-making. The sensitivity, specificity, accuracy, and precision of single or combinations of protein biomarkers may be alter...... female) and continuous phenotypes (age, fat mass) which may influence the identification and use of biomarkers of clinical utility for health diagnosis and therapeutic strategies....

  18. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  19. Facial nerve paralysis associated with temporal bone masses.

    Science.gov (United States)

    Nishijima, Hironobu; Kondo, Kenji; Kagoya, Ryoji; Iwamura, Hitoshi; Yasuhara, Kazuo; Yamasoba, Tatsuya

    2017-10-01

    To investigate the clinical and electrophysiological features of facial nerve paralysis (FNP) due to benign temporal bone masses (TBMs) and elucidate its differences as compared with Bell's palsy. FNP assessed by the House-Brackmann (HB) grading system and by electroneurography (ENoG) were compared retrospectively. We reviewed 914 patient records and identified 31 patients with FNP due to benign TBMs. Moderate FNP (HB Grades II-IV) was dominant for facial nerve schwannoma (FNS) (n=15), whereas severe FNP (Grades V and VI) was dominant for cholesteatomas (n=8) and hemangiomas (n=3). The average ENoG value was 19.8% for FNS, 15.6% for cholesteatoma, and 0% for hemangioma. Analysis of the correlation between HB grade and ENoG value for FNP due to TBMs and Bell's palsy revealed that given the same ENoG value, the corresponding HB grade was better for FNS, followed by cholesteatoma, and worst in Bell's palsy. Facial nerve damage caused by benign TBMs could depend on the underlying pathology. Facial movement and ENoG values did not correlate when comparing TBMs and Bell's palsy. When the HB grade is found to be unexpectedly better than the ENoG value, TBMs should be included in the differential diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Prevalence of radiographic hip osteoarthritis is increased in high bone mass.

    Science.gov (United States)

    Hardcastle, S A; Dieppe, P; Gregson, C L; Hunter, D; Thomas, G E R; Arden, N K; Spector, T D; Hart, D J; Laugharne, M J; Clague, G A; Edwards, M H; Dennison, E M; Cooper, C; Williams, M; Davey Smith, G; Tobias, J H

    2014-08-01

    Epidemiological studies have shown an association between increased bone mineral density (BMD) and osteoarthritis (OA), but whether this represents cause or effect remains unclear. In this study, we used a novel approach to investigate this question, determining whether individuals with High Bone Mass (HBM) have a higher prevalence of radiographic hip OA compared with controls. HBM cases came from the UK-based HBM study: HBM was defined by BMD Z-score. Unaffected relatives of index cases were recruited as family controls. Age-stratified random sampling was used to select further population controls from the Chingford and Hertfordshire cohort studies. Pelvic radiographs were pooled and assessed by a single observer blinded to case-control status. Analyses used logistic regression, adjusted for age, gender and body mass index (BMI). 530 HBM hips in 272 cases (mean age 62.9 years, 74% female) and 1702 control hips in 863 controls (mean age 64.8 years, 84% female) were analysed. The prevalence of radiographic OA, defined as Croft score ≥3, was higher in cases compared with controls (20.0% vs 13.6%), with adjusted odds ratio (OR) [95% CI] 1.52 [1.09, 2.11], P = 0.013. Osteophytes (OR 2.12 [1.61, 2.79], P subchondral sclerosis (OR 2.78 [1.49, 5.18], P = 0.001) were more prevalent in cases. However, no difference in the prevalence of joint space narrowing (JSN) was seen (OR 0.97 [0.72, 1.33], P = 0.869). An increased prevalence of radiographic hip OA and osteophytosis was observed in HBM cases compared with controls, in keeping with a positive association between HBM and OA and suggesting that OA in HBM has a hypertrophic phenotype. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, Eamon J.; Buckley, Conor T. [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland); Kelly, Daniel J., E-mail: kellyd9@tcd.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland)

    2012-01-06

    chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.

  2. Maternal first-trimester diet and childhood bone mass: the Generation R Study.

    Science.gov (United States)

    Heppe, Denise H M; Medina-Gomez, Carolina; Hofman, Albert; Franco, Oscar H; Rivadeneira, Fernando; Jaddoe, Vincent W V

    2013-07-01

    Maternal diet during pregnancy has been suggested to influence bone health in later life. We assessed the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass. In a prospective cohort study in 2819 mothers and their children, we measured first-trimester daily energy, protein, fat, carbohydrate, calcium, phosphorus, and magnesium intakes by using a food-frequency questionnaire and homocysteine, folate, and vitamin B-12 concentrations in venous blood. We measured childhood total body bone mass by using dual-energy X-ray absorptiometry at the median age of 6.0 y. Higher first-trimester maternal protein, calcium, and phosphorus intakes and vitamin B-12 concentrations were associated with higher childhood bone mass, whereas carbohydrate intake and homocysteine concentrations were associated with lower childhood bone mass (all P-trend childhood bone mass. In the fully adjusted regression model that included all dietary factors significantly associated with childhood bone mass, maternal phosphorus intake and homocysteine concentrations most-strongly predicted childhood bone mineral content (BMC) [β = 2.8 (95% CI: 1.1, 4.5) and β = -1.8 (95% CI: -3.6, 0.1) g per SD increase, respectively], whereas maternal protein intake and vitamin B-12 concentrations most strongly predicted BMC adjusted for bone area [β = 2.1 (95% CI: 0.7, 3.5) and β = 1.8 (95% CI: 0.4, 3.2) g per SD increase, respectively]. Maternal first-trimester dietary factors are associated with childhood bone mass, suggesting that fetal nutritional exposures may permanently influence bone development.

  3. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.

    Science.gov (United States)

    Legiran, Siswo; Brandi, Maria Luisa

    2012-09-01

    Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.

  4. Lack of influence of simple premenopausal hysterectomy on bone mass and bone metabolism

    DEFF Research Database (Denmark)

    Ravn, Pernille; Lind, C; Nilas, L

    1995-01-01

    urinary calcium corrected for creatinine excretion. RESULTS: Women who had undergone premenopausal hysterectomy had similar bone mineral densities compared with women with an intact uterus in all compartments, apart from a 6% to 11% higher bone mineral density (p

  5. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  6. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  7. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    International Nuclear Information System (INIS)

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-01-01

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  8. Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Warming, Lise; Ravn, Pernille; Christiansen, Claus

    2003-01-01

    as double-layer thickness. Body composition was measured by dual energy x-ray absorptiometry, which divides the body into fat mass, lean mass, and bone mass, both for the total body and regional body compartments. An abdominal region was inserted manually. Statistics were Pearson correlations and analysis...... of variance. RESULTS: Endometrial thickness and total body bone mass were correlated, respectively, to body mass index (r = 0.14, P ... correlate with increased endometrial thickness and bone mass....

  9. Sclerostin Blockade and Zoledronic Acid Improve Bone Mass and Strength in Male Mice With Exogenous Hyperthyroidism.

    Science.gov (United States)

    Tsourdi, Elena; Lademann, Franziska; Ominsky, Michael S; Rijntjes, Eddy; Köhrle, Josef; Misof, Barbara M; Roschger, Paul; Klaushofer, Klaus; Hofbauer, Lorenz C; Rauner, Martina

    2017-11-01

    Hyperthyroidism in mice is associated with low bone mass, high bone turnover, and high concentrations of sclerostin, a potent Wnt inhibitor. Here, we explored the effects of either increasing bone formation with sclerostin antibodies (Scl-Ab) or reducing bone turnover with bisphosphonates on bone mass and strength in hyperthyroid mice. Twelve-week-old C57BL/6 male mice were rendered hyperthyroid using l-thyroxine (T4; 1.2 µg/mL added to the drinking water) and treated with 20 mg/kg Scl-Ab twice weekly or 100 µg/kg zoledronic acid (ZOL) once weekly or phosphate-buffered saline for 4 weeks. Hyperthyroid mice displayed a lower trabecular bone volume at the spine (-42%, P hyperthyroid mice increased trabecular bone volume at the spine by threefold and twofold, respectively. Serum bone formation and resorption markers were increased in hyperthyroid mice and suppressed by treatment with ZOL but not Scl-Ab. Trabecular bone stiffness at the lumbar vertebra was 63% lower in hyperthyroid mice (P hyperthyroidism, was increased by Scl-Ab by 71% and ZOL by 22% (both P hyperthyroid mice was restored by treatment with Scl-Ab and ZOL. Thus, bone-forming and antiresorptive drugs prevent bone loss in hyperthyroid mice via different mechanisms. Copyright © 2017 Endocrine Society.

  10. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    Science.gov (United States)

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (partistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all partistic gymnasts had higher lean mass (partistic and the rhythmic gymnasts (partistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, partistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  11. Targeted Disruption of NF1 in Osteocytes Increases FGF23 and Osteoid With Osteomalacia-like Bone Phenotype.

    Science.gov (United States)

    Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Aruwajoye, Olumide; Kim, Audrey J; Kuroyanagi, Gen; Phipps, Matthew; Adapala, Naga Suresh; Feng, Jian Q; Kim, Harry Kw

    2017-08-01

    Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH) 2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization

  12. Clinical study evaluating bone mineral mass in the radius during skeletal growth. Single photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome.

  13. Improvement of Lumbar Bone Mass after Infliximab Therapy in Crohn’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Marina Mauro

    2007-01-01

    Full Text Available BACKGROUND: Patients with Crohn’s disease (CD have a high risk of developing osteoporosis, but the mechanisms underlying bone mass loss are unclear. Elevated proinflammatory cytokines, such as tumour necrosis factor-alpha (TNFα, have been implicated in the pathogenesis of bone resorption.

  14. A multicenter study of the influence of fat and lean mass on bone mineral content

    DEFF Research Database (Denmark)

    Hla, M M; Davis, J W; Ross, P D

    1996-01-01

    We examined the relative influence of fat and lean mass on bone mineral content (BMC) among 1600 early postmenopausal women aged 45-59 y from four geographical locations (Nottingham, United Kingdom; Portland, OR; Honolulu; and Copenhagen). Bone sites investigated included the major fracture sites...

  15. Maternal first-trimester diet and childhood bone mass: The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); O.H. Franco (Oscar); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2013-01-01

    textabstractBackground: Maternal diet during pregnancy has been suggested to influence bone health in later life. Objective: We assessed the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass. Design: In a prospective cohort study in 2819 mothers and

  16. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    Science.gov (United States)

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  17. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    OpenAIRE

    Pardini,Dolores Perovano; Sabino,Anibal Tagliaferri; Meneses,Ana Maria; Kasamatsu,Teresa; Vieira,José Gilberto Henriques

    2000-01-01

    CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic...

  18. A 21-Week Bone Deposition Promoting Exercise Programme Increases Bone Mass in Young People with Down Syndrome

    Science.gov (United States)

    Gonzalez-Aguero, Alejandro; Vicente-Rodriguez, German; Gomez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A.; Casajus, Jose A.

    2012-01-01

    Aim: To determine whether the bone mass of young people with Down syndrome may increase, following a 21-week conditioning training programme including plyometric jumps. Method: Twenty-eight participants with Down syndrome (13 females, 15 males) aged 10 to 19 years were divided into exercise (DS-E; n = 14; eight females, six males mean age 13y 8mo,…

  19. Association with replication between estrogen-related receptor gamma (ESRRgamma) polymorphisms and bone phenotypes in women of European ancestry.

    Science.gov (United States)

    Elfassihi, Latifa; Giroux, Sylvie; Bureau, Alexandre; Laflamme, Nathalie; Cole, David Ec; Rousseau, François

    2010-04-01

    Osteoporosis is a bone disease characterized by low bone mineral density (BMD), a highly heritable polygenic trait. Women are more prone than men to develop osteoporosis owing to a lower peak bone mass and accelerated bone loss at menopause. Lack of estrogen thus is a major risk factor for osteoporosis. In addition to having strong similarity to the estrogen receptor 1 (ESR1), the orphan nuclear estrogen-related receptor gamma (ESRRgamma) is widely expressed and shows overlap with ESR1 expression in tissues where estrogen has important physiologic functions. For these reasons, we have undertaken a study of ESRRgamma sequence variants in association with bone measurements [heel quantitative ultrasound (QUS) by measurements of broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (SI) and dual-energy X-ray absorptiometry (DXA) at the femoral neck (FN) and lumbar spine (LS)]. A silent variant was found to be associated with multiple bone measurements (LS, BUA, SOS, and SI), the p values ranging from .006 to .04 in a sample of 5144 Quebec women. The region of this variant was analyzed using the HapMap database and the Gabriel method to define a block of 20 kb. Using the Tagger method, eight TagSNPs were identified and genotyped in a sample of 1335 women. Four of these SNPs capture the five major block haplotypes. One SNP (rs2818964) and one haplotype were significantly associated with multiple bone measures. All SNPs involved in the associations were analyzed in two other sample sets with significant results in the same direction. These results suggest involvement of ESRRgamma in the determination of bone density in women. Copyright 2010 American Society for Bone and Mineral Research.

  20. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  1. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M-C; Thomsen, Jesper Skovhus; Nyengaard, J R

    2014-01-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind...... of periosteal BFR/BS (2-fold increase vs. BTX, Pmuscle mass (+29% vs. BTX, Pmuscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse......BMD, -13%, Pmuscle mass (-69%, Pmuscle cell cross sectional area (CSA) (-73%, P

  2. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  3. Bone mass determination from microradiographs by computer-assisted videodensitometry. Pt. 2

    International Nuclear Information System (INIS)

    Kaelebo, P.; Strid, K.G.

    1988-01-01

    Aluminium was evaluated as a reference substance in the assessment of rabbit cortical bone by microradiography followed by videodensitometry. Ten dense, cortical-bone specimens from the same tibia diaphysis were microradiographed using prefiltered 27 kV roentgen radiation together with aluminium step wedges and bone simulating phantoms for calibration. Optimally exposed and processed plates were analysed by previously described computer-assisted videodensitometry. For comparison, the specimens were analysed by physico-chemical methods. A strict proportionality was found between the 'aluminium equivalent mass' and the ash weight of the specimens. The total random error was low with a coefficient of variation within 1.5 per cent. It was concluded that aluminium is an appropriate reference material in the determination of cortical bone, which it resembles in effective atomic number and thus X-ray attenuation characteristics. The 'aluminium equivalent mass' is suitably established as the standard of expressing the results of bone assessment by microradiography. (orig.)

  4. Low bone mass density is associated with hemolysis in brazilian patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Gabriel Baldanzi

    2011-01-01

    Full Text Available OBJECTIVES: To determine whether kidney disease and hemolysis are associated with bone mass density in a population of adult Brazilian patients with sickle cell disease. INTRODUCTION: Bone involvement is a frequent clinical manifestation of sickle cell disease, and it has multiple causes; however, there are few consistent clinical associations between bone involvement and sickle cell disease. METHODS: Patients over 20 years of age with sickle cell disease who were regularly followed at the Hematology and Hemotherapy Center of Campinas, Brazil, were sorted into three groups, including those with normal bone mass density, those with osteopenia, and those with osteoporosis, according to the World Health Organization criteria. The clinical data of the patients were compared using statistical analyses. RESULTS: In total, 65 patients were included in this study: 12 (18.5% with normal bone mass density, 37 (57% with osteopenia and 16 (24.5% with osteoporosis. Overall, 53 patients (81.5% had bone mass densities below normal standards. Osteopenia and osteoporosis patients had increased lactate dehydrogenase levels and reticulocyte counts compared to patients with normal bone mass density (p<0.05. Osteoporosis patients also had decreased hemoglobin levels (p<0.05. Hemolysis was significantly increased in patients with osteoporosis compared with patients with osteopenia, as indicated by increased lactate dehydrogenase levels and reticulocyte counts as well as decreased hemoglobin levels. Osteoporosis patients were older, with lower glomerular filtration rates than patients with osteopenia. There was no significant difference between the groups with regard to gender, body mass index, serum creatinine levels, estimated creatinine clearance, or microalbuminuria. CONCLUSION: A high prevalence of reduced bone mass density that was associated with hemolysis was found in this population, as indicated by the high lactate dehydrogenase levels, increased

  5. The role of lean body mass and physical activity in bone health in children.

    Science.gov (United States)

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p  608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be considered in physical education curricula and other health-enhancing programs.

  6. Low bone mass prevalence and osteoporosis risk factor assessment in African American Wisconsin women.

    Science.gov (United States)

    Kidambi, Srividya; Partington, Susan; Binkley, Neil

    2005-11-01

    Post-menopausal osteoporosis is seen in all racial groups. With the increasing population and longevity of minority groups, osteoporosis is becoming an important health concern. Data regarding risk factors for, and prevalence of, low bone mass and awareness of osteoporosis risk in African American (AA) women are limited. This article evaluates the risk factors for, and prevalence of, low bone mass in a population of urban AA women in Wisconsin and assesses this group's perceived risk for osteoporosis. One hundred fifty consecutive community-dwelling AA women > or = 45 years old from Milwaukee, Wis were asked to complete a questionnaire based on currently accepted osteoporosis risk factors. Additionally, their perception of osteoporosis risk was assessed using a Likert scale. All subjects underwent quantitative calcaneal ultrasound. Subject mean age was 54 +/- 7 years. Mean T- and Z-scores were 0.5 and 0.4, respectively. Applying World Health Organization criteria, osteopenia (bone mineral density T-score 2 children), postmenopausal state, and current smoking were associated with lower calcaneal bone mass. Higher education and presence of diabetes were associated with a higher bone mass. Only 25% of the women surveyed thought they were at moderate to high risk for osteoporosis. Low bone mass was present in 33% of these AA women despite their relative young age. Many AA women do not perceive osteoporosis as a health risk. It is necessary to develop strategies to educate AA women regarding osteoporosis risk.

  7. Sports Practice and Bone Mass in Prepubertal Adolescents and Young Adults: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Alessandra Madia Mantovani

    Full Text Available Abstract AIM To compare bone mass and body composition variables between adolescents engaged in high-impact sports and adults who were sedentary during early life. METHOD A cross-sectional study with 155 participants (64 adolescents and 91 adults aged between 11 and 50 years old. Among the adults, history of sports was evaluated during face-to-face interviews, and information regarding the adolescents' training routines was provided by their coaches. Body composition was evaluated using Dual Energy X-Ray Absorptiometry which provided data about bone mineral density (BMD, bone mineral content (BMC, fat mass (FM, and free fat mass (FFM. RESULTS Adults who engaged in sports practice during early life had higher values of BMC (ES-r = 0.063, FFM (ES-r = 0.391, and lower values of FM (ES-r = 0.396 than sedentary adults. Higher values of BMC (ES-r = 0.063 and BMD in lower limbs (ES-r = 0.091 were observed in active adolescents. Adolescents engaged in sports and adults who were sedentary in early life presented similar values in all bone variables, FM, and FFM. CONCLUSIONS Sports involvement in early life is related to higher bone mass in adulthood. Adolescents engaged in sports presented similar bone mass to adults who had been sedentary in early life.

  8. Effect of fat mass and lean mass on bone mineral density in postmenopausal and perimenopausal Thai women

    Directory of Open Access Journals (Sweden)

    Namwongprom S

    2013-02-01

    Full Text Available Sirianong Namwongprom,1 Sattaya Rojanasthien,2 Ampica Mangklabruks,3 Supasil Soontrapa,4 Chanpen Wongboontan,5 Boonsong Ongphiphadhanakul61Clinical Epidemiology Program and Department of Radiology, 2Department of Orthopaedics, 3Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 4Department of Orthopaedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, 5Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 6Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandBackground: The purpose of this study was to investigate the association between fat mass, lean mass, and bone mineral density (BMD in postmenopausal and perimenopausal Thai women.Methods: A cross-sectional study was conducted in 1579 healthy Thai women aged 40–90 years. Total body, lumbar spine, total femur, and femoral neck BMD and body composition were measured by dual x-ray absorptiometry. To evaluate the associations between fat mass and lean mass and various measures of BMD, multivariable linear regression models were used to estimate the regression coefficients for fat mass and lean mass, first in separate equations and then with both fat mass and lean mass in the same equation.Results: Among the study population, 1448 subjects (91.7% were postmenopausal and 131 (8.3% were perimenopausal. In postmenopausal women, after controlling for age, height, and duration of menopause, both fat mass and lean mass were positively correlated with BMD when they were analyzed independently of each other. When included in the same equation, both fat mass and lean mass continued to show a positive effect, but lean mass had a significantly greater impact on BMD than fat mass at all regions except for total body. Lean mass but not fat mass had a positive effect on BMD at all skeletal sites except the lumbar spine, after controlling for age and height in perimenopausal

  9. Determination of peak bone mass density and composition in low income urban residents of metro Manila using isotope techniques

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.

    2000-01-01

    The work described in this paper is a continuation of the first phase of the study, which is the determination of the peak bone mass density among residents of Metro Manila using dual energy x-ray absorptiometry. However, it also aims to correlate sex, body mass index, nutritional factors, physical activity and lifestyle to peak bone mass and thus attempts to explain any discrepancies in peak bone mass density to that seen in other countries

  10. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity

    NARCIS (Netherlands)

    Isaksson, H.E.; Donkelaar, van C.C.; Huiskes, R.; Ito, K.

    2008-01-01

    Phenomenological computational models of tissue regeneration and bone healing have been only partially successful in predicting experimental observations. This may be a result of simplistic modeling of cellular activity. Furthermore, phenomenological models are limited when considering the effects

  11. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    International Nuclear Information System (INIS)

    Riis, B.J.; Christiansen, C.

    1988-01-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement

  12. High bone turnover is associated with low bone mass and spinal fracture in postmenopausal women

    DEFF Research Database (Denmark)

    Ravn, Pernille; Rix, M; Andreassen, H

    1997-01-01

    -eight women had a lumbar spine bone mineral density (BMD) above 0.860 g/cm2, and 278 women had a BMD below 0.860 g/cm2. Spinal fracture was diagnosed from lateral spine X-ray studies and defined as at least 20% height reduction (wedge, compression, or endplate fracture) in at least one vertebra (T4-L4). Bone...

  13. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, ... on bone mineral density at either the femur neck or lumbar spine? Nine percent of persons aged ...

  14. Alveolar bone mass in pre- and postmenopausal women with serum calcium as a marker: A comparative study

    Directory of Open Access Journals (Sweden)

    Amitha Ramesh

    2011-01-01

    Conclusion: Postmenopausal women exhibit a reduced alveolar bone mass and lowered levels of serum total calcium with the increasing age. These changes may be useful indicators for low skeletal bone mineral density or osteoporosis.

  15. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake and high bone turnover

    OpenAIRE

    Kruger, Annamarie; Kruger, Marlena C.; Kruger, Iolanthé Marike; Wentzel-Viljoen, Edelweiss

    2011-01-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the Nor...

  16. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    Science.gov (United States)

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  17. Clinical manifestations of low bone mass in amenorrhea patients with elevated follicular stimulating hormone.

    Science.gov (United States)

    Yu, Qi; Lin, Shouqing; He, Fangfang; Li, Baoluo; Lin, Yuan; Zhang, Tao; Zhang, Ying

    2002-09-01

    To study the characteristics of low bone mass in amenorrhea patients with elevated follicular stimulating hormone (FSH). Amenorrhea patients with elevated FSH: Primary amenorrhea 18 cases, secondary amenorrhea 171 cases and age matched controls with normal menstruation, 180 cases. The descriptive parameters were: estrogen, alkaline phosphatase, urinary excretion of calcium to creatine ratio, cortical bone mineral density at the right radius measured by single photon absorptiometry and trabecular bone mineral density at the lumbar vertebra body measured by quantitative computerized tomography. Average E(2) levels in amenorrhea patients is under 150 pmol/L with significantly higher alkaline phosphatase and urine calcium to creatine ratio values than the normal menstruation group. Cortical bone mineral density in the secondary amenorrhea group (655 +/- 69 mg/cm(2)) was significantly lower than that of the normal menstruation group (677 +/- 56 mg/cm(2), P < 0.01). Trabecular bone mineral density in the secondary amenorrhea group (145 +/- 26 mg/cm(3)) was significantly lower than that of the NOR group (192 +/- 28 mg/cm(3), P < 0.001). The disparity with the normal menstruation group is even greater in the primary amenorrhea group. Bone mineral density of the amenorrhea patients was negatively correlated with duration of the menopause. Serum estrodiol levels in amenorrhea patients was so low that bone turnover was accelerated. This led to insufficient bone accumulation and a dramatically drop in trabecular bone mineral density. The extent was closely related to age of onset of amenorrhea and the duration of ovarian failure.

  18. Development of a Functional Schwann Cell Phenotype from Autologous Porcine Bone Marrow Mononuclear Cells for Nerve Repair

    Directory of Open Access Journals (Sweden)

    Michael J. Rutten

    2012-01-01

    Full Text Available Adult bone marrow mononuclear cells (BM-MNCs are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6–8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF expression. Addition of neuregulin (1–25 nM increased p75(NGF levels at 24–48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca2+]i, with nucleotide potency being UTP=ATP>ADP>AMP>adenosine. Suramin blocked the ATP-induced [Ca2+]i but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca2+]i sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.

  19. Clinical review: Ethnic differences in bone mass--clinical implications.

    Science.gov (United States)

    Leslie, William D

    2012-12-01

    Differences in bone mineral density (BMD) as assessed with dual-energy x-ray absorptiometry are observed between geographic and ethnic groups, with important implications in clinical practice. PubMed was employed to identify relevant studies. A review of the literature was conducted, and data were summarized and integrated. The available data highlight the complex ethnic variations in BMD, which only partially account for observed variations in fracture rates. Factors contributing to ethnic differences include genetics, skeletal size, body size and composition, lifestyle, and social determinants. Despite BMD differences, the gradient of risk for fracture from BMD and other clinical risk factors appears to be similar across ethnic groups. Furthermore, BMD variation is greater within an ethnic population than between ethnic populations. New imaging technologies have identified ethnic differences in bone geometry, volumetric density, microarchitecture, and estimated bone strength that may contribute to a better understanding of ethnic differences in fracture risk. Factors associated with ethnicity affect BMD and fracture risk through direct and indirect mechanisms.

  20. Quantitative computed tomography in measurement of vertebral trabecular bone mass

    International Nuclear Information System (INIS)

    Nilsson, M.; Johnell, O.; Jonsson, K.; Redlund-Johnell, I.

    1988-01-01

    Measurement of bone mineral concentration (BMC) can be done by several modalities. Quantitative computed tomography (QCT) can be used for measurements at different sites and with different types of bone (trabecular-cortical). This study presents a modified method reducing the influence of fat. Determination of BMC was made from measurements with single-energy computed tomography (CT) of the mean Hounsfield number in the trabecular part of the L1 vertebra. The method takes into account the age-dependent composition of the trabecular part of the vertebra. As the amount of intravertebral fat increases with age, the effective atomic number for these parts decreases. This results in a non-linear calibration curve for single-energy CT. Comparison of BMC values using the non-linear calibration curve or the traditional linear calibration with those obtained with a pixel-by-pixel based electron density calculation method (theoretically better) showed results clearly in favor of the non-linear method. The material consisted of 327 patients aged 6 to 91 years, of whom 197 were considered normal. The normal data show a sharp decrease in trabecular bone after the age of 50 in women. In men a slower decrease was found. The vertebrae were larger in men than in women. (orig.)

  1. A study on assessment of bone mass from aluminum-equivalent image by digital imaging system

    International Nuclear Information System (INIS)

    Kim, Jin Soo; Kim, Jae Duck; Choi, Eui Hwan

    1997-01-01

    The purpose of this study was to evaluated the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxy apatite block and hydroxyapatite mass. The results of this study were as follows : 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated (r2=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference (P<0.05) between them. 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r2 =0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different (P<0.05).

  2. Effects of Eggshell Calcium Supplementation on Bone Mass in Postmenopausal Vietnamese Women.

    Science.gov (United States)

    Sakai, Seigo; Hien, Vu Thi Thu; Tuyen, Le Danh; Duc, Ha Anh; Masuda, Yasunobu; Yamamoto, Shigeru

    2017-01-01

    Bone mass decreases along with aging, especially for women after menopause because of lower estrogen secretion together with low calcium intake. This study was conducted to study the effect of eggshell calcium supplementation on bone mass in 54 postmenopausal Vietnamese women living in a farming area about 60 km from Hanoi, Vietnam. Sets of 3 subjects matched by age, bone mass, BMI and calcium intake were divided randomly into 3 groups with 18 subjects in each group. The eggshell calcium group was administered 300 mg/d calcium from eggshell, the calcium carbonate group 300 mg/d calcium from calcium carbonate and the placebo group received no calcium supplementation. Bone mass (Speed of Sound (SOS)) was measured at the beginning (the baseline), the middle (6th month) and the end of the study (12th month) by the single blind method. SOS of the eggshell group increased significantly at 12 mo (p0.05). In conclusion, eggshell calcium was more effective in increasing bone mass than calcium carbonate in postmenopausal Vietnamese women.

  3. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    Science.gov (United States)

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p Rugby players were heavier than controls, with greater lean mass and BMD (p rugby players (p rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.

  4. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  5. The peak bone mass of Hawaiian, Filipino, Japanese, and white women living in Hawaii.

    Science.gov (United States)

    Davis, J W; Novotny, R; Ross, P D; Wasnich, R D

    1994-10-01

    Our study compares the bone mass of Hawaiian, Filipino, Japanese, and white women living in Oahu, Hawaii. Eligible women ranged in age from 25 to 34; all had bone mass measurements at the spine, calcaneus, and proximal and distal radius. Their average bone mineral density (BMD) remained stable with age at all four bone sites, indicating that the age range 25-34 may represent the peak bone mass. Bone mass varied, however, between ethnicities; differences in BMD up to 11% were observed. The Hawaiian women had the greatest BMD, and whites had the second greatest BMD at the spine and calcaneus. The Japanese most frequently had the lowest BMD. Differences in body size partly explained the differences; most ethnic differences were reduced or eliminated after adjusting for height and weight. At the spine, the ethnic differences for BMD were also apparent with BMC and with vertebral area. Hawaiian and white women had greater values than Japanese or Filipino women. Differences at the proximal radius resembled the spine, except that whites had the widest proximal widths. The results were more complex for the distal radius. At the distal radius whites had the lowest BMD of the four ethic groups. The difference between whites and Hawaiians derived from the greater bone mineral content (BMC) of the Hawaiian women. By contrast, the difference between whites and the Japanese and Filipinos derived from the wider distal widths of the white women. Compared with the Japanese and Filipino women, the white women appeared to disperse their BMC at the distal radius across a wider bone width.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Histone deacetylase 3 is required for maintenance of bone mass during aging

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Dudakovic, Amel; Carlson, Samuel W.; Ryan, Zachary C.; Kumar, Rajiv; Dadsetan, Mahrokh; Yaszemski, Michael J.; Chen, Qingshan; An, Kai-Nan; Westendorf, Jennifer J.

    2012-01-01

    Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the Osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKOOCN mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKOOCN mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKOOCN mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKOOCN mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging. PMID:23085085

  7. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  8. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  9. Musculoskeletal phenotype through the life course: the role of nutrition.

    Science.gov (United States)

    Ward, Kate

    2012-02-01

    This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.

  10. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    Taha Faruqi

    2014-01-01

    Full Text Available A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.

  11. Association between bone mass as assessed by quantitative ultrasound and physical function in elderly women: The Fujiwara-kyo study

    Directory of Open Access Journals (Sweden)

    Akira Minematsu

    2017-06-01

    Conclusions: Measurements of physical function can effectively identify elderly women with low bone mass at an early stage without the need for bone mass measurements. In particular, one-leg standing time and 10-m gait time were good predictors of low bone mass, and is easy to measure, low-cost, and can be self-measured. These findings will be helpful in the prevention and treatment of osteoporosis.

  12. Neonatal Death Dwarfism in a Girl with Distinctive Bone Dysplasia Compatible with Grebe Chondrodysplasia: Analysis by CT Scan-based Phenotype

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi

    2014-01-01

    Full Text Available We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.

  13. Neonatal Death Dwarfism in a Girl with Distinctive Bone Dysplasia Compatible with Grebe Chondrodysplasia: Analysis by CT Scan-based Phenotype.

    Science.gov (United States)

    Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz

    2014-01-01

    We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.

  14. Assessment of the influence of body composition on bone mass in children and adolescents based on a functional analysis of the muscle-bone relationship.

    Science.gov (United States)

    Golec, Joanna; Chlebna-Sokół, Danuta

    2014-01-01

    The functional model of skeletal development considers the mechanical factor to be the most important skeletal modulant. The aim of the study was a functional analysis of the bone-muscle relationship in children with low and normal bone mass. The study involved 149 children with low and 99 children with normal bone mass (control group). All patients underwent a densitometry examination (DXA). Low bone mass was diagnosed if the Z-score was below values of Z-scores for all parameters in children with low bone mass as compared to the control group. Children with low bone mass had lower content of adipose and muscle tissue and a marked deficit of muscle tissue with regard to height (which according to mechanostat theory leads to lower muscle-generated strain on bones). This group of children had also lower TBBMC/LBM Z-scores, which indicates greater fracture susceptibility. 1. Functional analysis, which showed associations between bone and muscle tissues, can be useful for diagnosing and monitoring skeletal system disorders as well as making therapeutic decisions.2. The study emphasizes the role of proper nutrition and physical activities, which contribute to proper body composition, in the prevention of bone mineralization disorders in childhood and adolescence. 3. The study showed the inadequacy of the classic reference ranges used in interpreting DXA data in children and demonstrated the usefulness of continuous variables for that purpose.

  15. Neonatal Death Dwarfism in a Girl with Distinctive Bone Dysplasia Compatible with Grebe Chondrodysplasia: Analysis by CT Scan-based Phenotype

    OpenAIRE

    Ali Al Kaissi; Farid Ben Chehida; Rudolf Ganger; Franz Grill

    2014-01-01

    We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (con...

  16. Thin healthy women have a similar low bone mass to women with anorexia nervosa.

    Science.gov (United States)

    Fernández-García, D; Rodríguez, M; García Alemán, J; García-Almeida, J M; Picón, M J; Fernández-Aranda, F; Tinahones, F J

    2009-09-01

    An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI 18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients.

  17. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    Science.gov (United States)

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  18. Effect of age and disease on bone mass in Japanese patients with schizophrenia.

    Science.gov (United States)

    Sugawara, Norio; Yasui-Furukori, Norio; Umeda, Takashi; Tsuchimine, Shoko; Fujii, Akira; Sato, Yasushi; Saito, Manabu; Furukori, Hanako; Danjo, Kazuma; Matsuzaka, Masashi; Takahashi, Ippei; Kaneko, Sunao

    2012-02-20

    There have been a limited number of studies comparing bone mass between patients with schizophrenia and the general population. The aim of this study was to compare the bone mass of schizophrenia patients with that of healthy subjects in Japan. We recruited patients (n = 362), aged 48.8 ± 15.4 (mean ± SD) years who were diagnosed with schizophrenia or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV). Bone mass was measured using quantitative ultrasound densitometry of the calcaneus. The osteosono-assessment index (OSI) was calculated as a function of the speed of sound and the transmission index. For comparative analysis, OSI data from 832 adults who participated in the Iwaki Health Promotion Project 2009 was used as representative of the general community. Mean OSI values among male schizophrenic patients were lower than those in the general population in the case of individuals aged 40 and older. In females, mean OSI values among schizophrenic patients were lower than those in the general community in those aged 60 and older. In an analysis using the general linear model, a significant interaction was observed between subject groups and age in males. Older schizophrenic patients exhibit lower bone mass than that observed in the general population. Our data also demonstrate gender and group differences among schizophrenic patients and controls with regard to changes in bone mass associated with aging. These results indicate that intervention programs designed to delay or prevent decreased bone mass in schizophrenic patients might be tailored according to gender.

  19. Effect of age and disease on bone mass in Japanese patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Sugawara Norio

    2012-02-01

    Full Text Available Abstract Background There have been a limited number of studies comparing bone mass between patients with schizophrenia and the general population. The aim of this study was to compare the bone mass of schizophrenia patients with that of healthy subjects in Japan. Methods We recruited patients (n = 362, aged 48.8 ± 15.4 (mean ± SD years who were diagnosed with schizophrenia or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV. Bone mass was measured using quantitative ultrasound densitometry of the calcaneus. The osteosono-assessment index (OSI was calculated as a function of the speed of sound and the transmission index. For comparative analysis, OSI data from 832 adults who participated in the Iwaki Health Promotion Project 2009 was used as representative of the general community. Results Mean OSI values among male schizophrenic patients were lower than those in the general population in the case of individuals aged 40 and older. In females, mean OSI values among schizophrenic patients were lower than those in the general community in those aged 60 and older. In an analysis using the general linear model, a significant interaction was observed between subject groups and age in males. Conclusions Older schizophrenic patients exhibit lower bone mass than that observed in the general population. Our data also demonstrate gender and group differences among schizophrenic patients and controls with regard to changes in bone mass associated with aging. These results indicate that intervention programs designed to delay or prevent decreased bone mass in schizophrenic patients might be tailored according to gender.

  20. FTO genotype is associated with phenotypic variability of body mass index

    NARCIS (Netherlands)

    Yang, J.; Loos, R.J.; Powell, J.E.; Medland, S.E.; Speliotes, E.K.; Chasman, D.I.; Rose, L.M.; Thorleifsson, G.; Steinthorsdottir, V.; Mägi, R.; Waite, L.; Smith, A.V.; Yerges-Armstrong, L.M.; Monda, K.L.; Hadley, D.; Mahajan, A.; Li, G.; Kapur, K.; Vitart, V.; Huffman, J.E.; Wang, S.R.; Palmer, C.; Esko, T.; Fischer, K.; Zhao, J.H.; Demirkan, A.; Isaacs, A.; Feitosa, M.F.; Luan, J.; Heard-Costa, N.L.; White, C.; Jackson, A.U.; Preuss, M; Ziegler, A.; Eriksson, J.; Kutalik, Z.; Frau, F.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; Hottenga, J.J.; Jacobs, K.B.; Verweij, N.; Goel, A.; Medina-Gomez, C.; Estrada, K.; Bragg-Gresham, J.L.; Sanna, S.; Sidore, C.; Tyrer, J.; Teumer, A.; Prokopenko, I.; Mangino, M.; Lindgren, C.M.; Assimes, T.L.; Shuldiner, A.R.; Hui, J.; Beilby, J.P.; McArdle, W.L.; Hall, P.; Haritunians, T.; Zgaga, L.; Kolcic, I.; Polasek, O.; Zemunik, T.; Oostra, B.A.; Junttila, M.J.; Grönberg, H.; Schreiber, S; Peters, A.; Hicks, A.A.; Stephens, J.; Foad, N.S.; Laitinen, J.; Pouta, A.; Kaakinen, M.; Willemsen, G.; Vink, J.M.; Wild, S.H.; Navis, G.; Asselbergs, F.W.; Homuth, G.; John, U.; Iribarren, C.; Harris, T.; Launer, L.J.; Gudnason, V.; O'Connell, J.R.; Boerwinkle, E.; Cadby, G.; Palmer, L.J.; James, A.L.; Musk, A.W.; Ingelsson, E.; Psaty, B.M.; Beckmann, J.S.; Waeber, G.; Vollenweider, P.; Hayward, C.; Wright, A.F.; Rudan, I.; Groop, L.C.; Metspalu, A.; Thee Khaw, K.; van Duijn, C.M.; Borecki, I.B.; Province, M.A.; Wareham, N.J.; Tardif, J.C.; Huikuri, H.V.; Cupples, L.A.; Atwood, L.D.; Fox, C.S.; Boehnke, M.; Collins, F.S.; Mohlke, K.L.; Erdmann, J.; Schunkert, H.; Hengstenberg, C.; Stark, K.; Lorentzon, M.; Ohlsson, C.; Cusi, D.; Staessen, J.A.; van der Klauw, M.M.; Pramstaller, P.P.; Kathiresan, S.; Jolley, D.J.; Ripatti, S.; Jarvelin, M.-R.; de Geus, E.J.C.; Boomsma, D.I.; Penninx, B.W.J.H.; Wilson, J.F.; Campbell, H.; Chanock, S.J.; van der Harst, P.; Hamsten, A.; Watkins, H.; Hofman, A.; Witteman, J.C.; Zillikens, M.C.; Uitterlinden, A.G.; Rivadeneira, F.; Kiemeney, L.A.; Vermeulen, S.H.; Abecasis, G.R.; Schlessinger, D.; Schipf, S.; Stumvoll, M.; Tönjes, A.; Spector, T.D.; North, K.E.; Lettre, G.; McCarthy, M.I.; Berndt, S.I.; Heath, A.C.; Madden, P.A.F.; Nyholt, DR; Montgomery, G.W.; Martin, N.G.; McKnight, B.; Strachan, D.P.; Hill, W.G.; Snieder, H.; Ridker, P.M.; Thorsteinsdottir, U.; Stefansson, K.; Frayling, T.M.; Hirschhorn, J.N.; Goddard, M.E.; Visscher, P.M.

    2012-01-01

    There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human

  1. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls.

    Science.gov (United States)

    Hetherington-Rauth, Megan; Bea, Jennifer W; Blew, Robert M; Funk, Janet L; Hingle, Melanie D; Lee, Vinson R; Roe, Denise J; Wheeler, Mark D; Lohman, Timothy G; Going, Scott B

    2018-05-22

    With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. Lean mass was a significant positive contributor to all bone outcomes (p Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic. Copyright © 2018. Published by Elsevier Inc.

  2. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes

    International Nuclear Information System (INIS)

    Suzuki, Hidenori; Taguchi, Toshihiko; Tanaka, Hiroshi; Kataoka, Hideo; Li Zhenglin; Muramatsu, Keiichi; Gondo, Toshikazu; Kawai, Shinya

    2004-01-01

    Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed β-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system

  3. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector.

    Science.gov (United States)

    Chakkaramakkil Verghese, Santhosh; Goloviznina, Natalya A; Kurre, Peter

    2016-11-19

    Fanconi anemia (FA) is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC)-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV) particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.

  4. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector

    Directory of Open Access Journals (Sweden)

    Santhosh Chakkaramakkil Verghese

    2016-11-01

    Full Text Available Abstract Fanconi anemia (FA is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.

  5. Discordant effect of body mass index on bone mineral density and speed of sound

    Directory of Open Access Journals (Sweden)

    Hagag Philippe

    2003-07-01

    Full Text Available Abstract Background Increased BMI may affect the determination of bone mineral density (BMD by dual X-ray absorptiometry (DXA and speed of sound (SOS measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI on BMD and SOS measured along bones. Methods We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m2, and 11 lean (BMI = 21 kg/m2 postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. Results Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P P Conclusions The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women.

  6. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    Science.gov (United States)

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  7. Imaging and mapping of mouse bone using MALDI-imaging mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yoko Fujino

    2016-12-01

    Full Text Available Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS is an advanced method used globally to analyze the distribution of biomolecules on tissue cryosections without any probes. In bones, however, hydroxyapatite crystals make it difficult to determine the distribution of biomolecules using MALDI-IMS. Additionally, there is limited information regarding the use of this method to analyze bone tissues. To determine whether MALDI-IMS analysis of bone tissues can facilitate comprehensive mapping of biomolecules in mouse bone, we first dissected femurs and tibiae from 8-week-old male mice and characterized the quality of multiple fixation and decalcification methods for preparation of the samples. Cryosections were mounted on indium tin oxide-coated glass slides, dried, and then a matrix solution was sprayed on the tissue surface. Images were acquired using an iMScope at a mass-to-charge range of 100–1000. Hematoxylin-eosin, Alcian blue, Azan, and periodic acid-Schiff staining of adjacent sections was used to evaluate histological and histochemical features. Among the various fixation and decalcification conditions, sections from trichloroacetic acid-treated samples were most suitable to examine both histology and comprehensive MS images. However, histotypic MS signals were detected in all sections. In addition to the MS images, phosphocholine was identified as a candidate metabolite. These results indicate successful detection of biomolecules in bone using MALDI-IMS. Although analytical procedures and compositional adjustment regarding the performance of the device still require further development, IMS appears to be a powerful tool to determine the distribution of biomolecules in bone tissues. Keywords: Matrix-assisted laser desorption/ionization-imaging mass spectrometry, Tissue cryosection, Bone, Fixation, Decalcification

  8. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  9. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice

    Directory of Open Access Journals (Sweden)

    O'Shea Marianne

    2006-03-01

    Full Text Available Abstract There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX. However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO sedentary (SED; 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT. The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.

  10. The effect of ethnicity on appendicular bone mass in white, coloured ...

    African Journals Online (AJOL)

    Ethnic differences in the incidence and prevalence of osteoporosis have been shown throughout the world. In South Africa the prevalence of osteoporosis is much higher in whites than in blacks. This is surprising, since factors that might predispose to reduce bone mass are more preponderant in black communities.

  11. Analysis of bone mass density of lumbar spine zone of athletes ...

    African Journals Online (AJOL)

    This study was carried out to evaluate T-Z scores of lumbar spine zone (L1, L2, L3, L4, L1-L4) bone mass density (BMD) of elite active male athletes in different branches and to determine the differences between them. 42 healthy male athletes aged 18 - 25 competing in different branches (Taekwondo 12, wrestling 8, Judo ...

  12. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    Science.gov (United States)

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  13. Local bone mineral mass as a function of dose in radium cases

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Bone mineral mass at specific sites in the forearms and fingers of females with exposure to radium and mesothorium appears to have no dependence on dose. Data analysis is continuing, so these results should be considered preliminary. Future analyses will include males

  14. Chronic obstructive pulmonary disease and low bone mass: A case-control study

    Directory of Open Access Journals (Sweden)

    Rakesh K Gupta

    2014-01-01

    Full Text Available Background and Objective: Low bone mass (osteopenia and osteoporosis is one of the effects associated with chronic obstructive pulmonary disease (COPD. There is very little data from Saudi Arabia on COPD and low bone mass. This retrospective study was done to assess the prevalence of osteoporosis and osteopenia in COPD patients attending King Fahd Hospital of the University (KFHU, Alkhobar. Patients and Methods: After obtaining the ethical approval from the research committee, all patients seen between at the King Fahd Hospital of the University between January 2010 and December 2012 were included. The inclusion criteria included a follow up of a minimum 2 years, and the Medical Records should have the details of forced expiratory volume in one second (FEV 1 , blood bone profile and bone biomarkers and dual-energy X-ray absorptiometry (DEXA scan. Patients were labeled as osteopenia if the T score was -<1 to <-2.5 and osteoporosis of <-2.5 as per the WHO definition of osteopenia and osteoporosis. Results: Seventy-three patients were being followed in the clinics and 49 patients satisfied the inclusion criteria. The average age was 60.6 ± 10.47 years; males were 43 and females 6. Three (6.1% were normal and the remaining 46 (93.9% were with low bone mass. Thirty-two (65.3% were osteoporotic and 14 (28.57% were osteopenic. The average duration of COPD was 4.5 ± 6.2 years. Majority (n = 36, 73.4% of patients were in the Global Initiative for COPD (GOLD class II and III. FEV 1 was significantly lower in the patients with low bone mass 1.66 ± 0.60 versus 3.61 ± 0.58 (P < 0.001. Conclusions: Our study shows that over 90% of Saudi Arabian patients with COPD suffer from osteopenia and osteoporosis and unfortunately they remain under-diagnosed and undertreated.

  15. Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level.

    Science.gov (United States)

    Hwang, Liang-Dar; Cuellar-Partida, Gabriel; Ong, Jue-Sheng; Breslin, Paul A S; Reed, Danielle R; MacGregor, Stuart; Gharahkhani, Puya; Martin, Nicholas G; Rentería, Miguel E

    2016-10-01

    Investigations on the relationship between sweet taste perception and body mass index (BMI) have been inconclusive. Here, we report a longitudinal analysis using a genetically informative sample of 1,576 adolescent Australian twins to explore the relationship between BMI and sweet taste. First, we estimated the phenotypic correlations between perception scores for four different sweet compounds (glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame) and BMI. Then, we computed the association between adolescent taste perception and BMI in early adulthood (reported 9 years later). Finally, we used twin modeling and polygenic risk prediction analysis to investigate the genetic overlap between BMI and sweet taste perception. Our findings revealed that BMI in early adulthood was significantly associated with each of the sweet perception scores, with the strongest correlation observed in aspartame with r = 0.09 (p = .007). However, only limited evidence of association was observed between sweet taste perception and BMI that was measured at the same time (in adolescence), with the strongest evidence of association observed for glucose with a correlation coefficient of r = 0.06 (p = .029) and for aspartame with r = 0.06 (p = .035). We found a significant (p sweet taste perception in adolescence can be a potential indicator of BMI in early adulthood. This association is further supported by evidence of genetic overlap between the traits, suggesting that some BMI genes may be acting through biological pathways of taste perception.

  16. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  17. MR imaging of bone marrow metastasis in patients with neuroblastoma. Comparison between mass-screened cases and clinically detected cases

    International Nuclear Information System (INIS)

    Kanegawa, Kimio; Akasaka, Yoshinori; Kawasaki, Ryuta; Nishiyama, Shoji; Mabuchi, Osamu; Muraji, Toshihiro

    1999-01-01

    Seventy-six patients with neuroblastoma who underwent bone marrow MRI were divided into two groups: the first group consisted of patients detected by mass screening (M group, n=55), and the second group of patients detected clinically (non-M group, n=21). Bone marrow metastasis was morphologically classified into two types, nodular type and diffuse type. We studied the incidence of bone marrow metastasis, relationship between the patterns of bone marrow metastasis and the presence of bone metastasis, and morphological changes of bone marrow metastasis after chemotherapy. In M group, the incidence of bone marrow metastasis was 7.3% (4 patients) and the patterns of bone marrow metastases were all nodular type not accompanied with bone metastasis and disappeared after chemotherapy. In non-M group, the incidence of bone marrow metastasis was 52.4% (11 patients). Bone marrow metastases had both patterns of metastasis. Forty-five per cent of diffuse type of bone marrow metastasis were accompanied with bone metastasis. All bone marrow metastases disappeared after chemotherapy, but in one of 11, there was recurrence of bone marrow metastasis. (author)

  18. Phenotypic characterization of Grm1crv4 mice reveals a functional role for the type 1 metabotropic glutamate receptor in bone mineralization.

    Science.gov (United States)

    Musante, Ilaria; Mattinzoli, Deborah; Otescu, Lavinia Alexandra; Bossi, Simone; Ikehata, Masami; Gentili, Chiara; Cangemi, Giuliana; Gatti, Cinzia; Emionite, Laura; Messa, Piergiorgio; Ravazzolo, Roberto; Rastaldi, Maria Pia; Riccardi, Daniela; Puliti, Aldamaria

    2017-01-01

    Recent increasing evidence supports a role for neuronal type signaling in bone. Specifically glutamate receptors have been found in cells responsible for bone remodeling, namely the osteoblasts and the osteoclasts. While most studies have focused on ionotropic glutamate receptors, the relevance of the metabotropic glutamate signaling in bone is poorly understood. Specifically type 1 metabotropic glutamate (mGlu1) receptors are expressed in bone, but the effect of its ablation on skeletal development has never been investigated. Here we report that Grm1 crv4/crv4 mice, homozygous for an inactivating mutation of the mGlu1 receptor, and mainly characterized by ataxia and renal dysfunction, exhibit decreased body weight, bone length and bone mineral density compared to wild type (WT) animals. Blood analyses of the affected mice demonstrate the absence of changes in circulating factors, such as vitamin D and PTH, suggesting renal damage is not the main culprit of the skeletal phenotype. Cultures of osteoblasts lacking functional mGlu1 receptors exhibit less homogeneous collagen deposition than WT cells, and present increased expression of osteocalcin, a marker of osteoblast maturation. These data suggest that the skeletal damage is directly linked to the absence of the receptor, which in turn leads to osteoblasts dysfunction and earlier maturation. Accordingly, skeletal histomorphology suggests that Grm1 crv4/crv4 mice exhibit enhanced bone maturation, resulting in premature fusion of the growth plate and shortened long bones, and further slowdown of bone apposition rate compared to the WT animals. In summary, this work reveals novel functions of mGlu1 receptors in the bone and indicates that in osteoblasts mGlu1 receptors are necessary for production of normal bone matrix, longitudinal bone growth, and normal skeletal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    Science.gov (United States)

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  20. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass; Trabekulaere Knochendichte der Lendenwirbelsaeule bei Kindern und Jugendlichen in der quantitativen CT: Referenzwerte und Peak Bone Mass

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, L.D.; Alzen, G. [Kinderradiologie, Zentrum fuer Radiologie, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany); Haras, G. [Siemens AG, Medical Solutions, Forchheim (Germany); Mann, M. [AG Medizinische Statistik, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany)

    2006-12-15

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  1. Behavioral Intervention in Adolescents Improves Bone Mass, Yet Lactose Maldigestion Is a Barrier

    Directory of Open Access Journals (Sweden)

    Yujin Lee

    2018-03-01

    Full Text Available Calcium intake during adolescence is important for attainment of peak bone mass. Lactose maldigestion is an autosomal recessive trait, leading to lower calcium intake. The Adequate Calcium Today study aimed to determine if a school-based targeted behavioral intervention over one year could improve calcium intake and bone mass in early adolescent girls. The school-randomized intervention was conducted at middle schools in six states over one school year. A total of 473 girls aged 10–13 years were recruited for outcome assessments. Bone mineral content (BMC was determined by dual energy X-ray absorptiometry. Dietary calcium intake was assessed with a semi-quantitative food frequency questionnaire. Baseline calcium intake and BMC were not significantly different between groups. After the intervention period, there were no differences in changes in calcium intake and BMC at any site between groups. An unanticipated outcome was a greater increase in spinal BMC among lactose digesters than lactose maldigesters in the intervention schools only (12 months (6.9 ± 0.3 g vs. 6.0 ± 0.4 g, p = 0.03 and considering the entire study period (18 months (9.9 ± 0.4 vs. 8.7 ± 0.5 g, p < 0.01. Overall, no significant differences between the intervention and control schools were observed. However, lactose digesters who received the intervention program increased bone mass to a greater extent than lactose maldigesters.

  2. Impact of obesity on bone mass throughout adult life: Influence of gender and severity of obesity.

    Science.gov (United States)

    Maïmoun, Laurent; Mura, Thibault; Leprieur, Elodie; Avignon, Antoine; Mariano-Goulart, Denis; Sultan, Ariane

    2016-09-01

    Obesity improves areal bone mineral density (aBMD). However, it is unknown whether gender, ageing or the severity of obesity could modulate this effect and whether different bone sites are similarly affected. The aim of this observational study was to model the aBMD variation in obese patients from peak bone period to old age according to gender, bone localisation and severity of obesity. Five hundred and four obese patients (363 women, 72%) with a mean BMI of 38.5 ± 6.0 kg/m2, aged from 18.1 to 81.9 years (mean age 49.6 ± 14.6 years) were recruited. The whole body (WB), hip, lumbar spine (L1–L4) and one-third radius aBMDs were determined using dual-energy x-ray absorptiometry (DXA). Z-scores were significantly increased, above the age- and gender-related mean, both for women and men at WB (respectively 0.79 SD and 0.32 SD), hip (1.09 SD and 1.06 SD), one-third radius (1.70 SD and 0.45 SD) and L1–L4 levels (0.86 SD for women only). The improvement of Z-scores was significantly more marked in women compared to men at all bone sites, hip excepted. Furthermore, differences compared with normal values were significantly accentuated by ageing, without noticeable gender effect. In women, regardless of BMI and bone site, Z-scores were higher than normal values, this difference being most marked at WB, L1–L4 and hip levels for obese patients with a BMI above 40 kg/m2. Lean mass, but not fat mass, was independently associated with aBMD in men and women. This study demonstrated for the first time that obesity induces an improvement of aBMD, which is modulated by bone site location, severity of obesity, age and gender. The accentuation of peak bone mass combined with a reduction of bone loss rate with ageing may explain why obese patients present a lower prevalence of osteoporosis.

  3. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.

    Directory of Open Access Journals (Sweden)

    Francisco J A de Paula

    Full Text Available Bone marrow harbors a significant amount of body adipose tissue (BMAT. While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.

  4. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.

    Science.gov (United States)

    de Paula, Francisco J A; de Araújo, Iana M; Carvalho, Adriana L; Elias, Jorge; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H

    2015-01-01

    Bone marrow harbors a significant amount of body adipose tissue (BMAT). While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.

  5. Appendicular bone mass and knee and hand osteoarthritis in Japanese women: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Moji Kazuhiko

    2002-10-01

    Full Text Available Abstract Background It has been reported that there is an inverse association between osteoarthritis (OA and osteoporosis. However, the relationship of bone mass to OA in a Japanese population whose rates of OA are different from Caucasians remains uncertain. Methods We studied the association of appendicular bone mineral density (second metacarpal; mBMD and quantitative bone ultrasound (calcaneus; stiffness index with knee and hand OA among 567 Japanese community-dwelling women. Knee and hand radiographs were scored for OA using Kellgren-Lawrence (K/L scales. In addition, we evaluated the presence of osteophytes and of joint space narrowing. The hand joints were examined at the distal and proximal interphalangeal (DIP, PIP and first metacarpophalangeal/carpometacarpal (MCP/CMC joints. Results After adjusting for age and body mass index (BMI, stiffness index was significantly higher in women with K/L scale, grade 3 at CMC/MCP joint compared with those with no OA. Adjusted means of stiffness index and mBMD were significantly higher in women with definite osteophytes at the CMC/MCP joint compared to those without osteophytes, whereas there were no significant differences for knee, DIP and PIP joints. Stiffness index, but not mBMD, was higher in women with definite joint space narrowing at the CMC/MCP joint compared with those with no joint space narrowing. Conclusions Appendicular bone mass was increased with OA at the CMC/MCP joint, especially among women with osteophytes. Our findings suggest that the association of peripheral bone mass with OA for knee, DIP or PIP may be less clearcut in Japanese women than in other populations.

  6. Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Jensen, Trine

    2016-01-01

    remission (0.0032 vs. 0.0058 g/cm(2)/year; p clinical practice, and only......BACKGROUND: Rheumatoid arthritis is characterised by progressive joint destruction and loss of periarticular bone mass. Hand bone loss (HBL) has therefore been proposed as an outcome measure for treatment efficacy. A definition of increased HBL adjusted for age- and sex-related bone loss is lacking....... In this study, we aimed to: 1) establish reference values for normal hand bone mass (bone mineral density measured by digital x-ray radiogrammetry (DXR-BMD)); and 2) examine whether HBL is normalised in rheumatoid arthritis patients during treatment with tumour necrosis factor alpha inhibitors (TNFI). METHODS...

  7. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M

    2015-02-01

    Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased

  8. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods.

    Science.gov (United States)

    Campione, Nicolás E; Evans, David C

    2012-07-10

    Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a

  9. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Directory of Open Access Journals (Sweden)

    Campione Nicolás E

    2012-07-01

    Full Text Available Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in

  10. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects

    DEFF Research Database (Denmark)

    Strandgren, Charlotte; Nasser, Hasina Abdul; McKenna, Tomás

    2015-01-01

    model to study the possibility of recovering from HGPS bone disease upon silencing of the HGPS mutation, and the potential benefits from treatment with resveratrol. We show that complete silencing of the transgenic expression of progerin normalized bone morphology and mineralization already after 7...... weeks. The improvements included lower frequencies of rib fractures and callus formation, an increased number of osteocytes in remodeled bone, and normalized dentinogenesis. The beneficial effects from resveratrol treatment were less significant and to a large extent similar to mice treated with sucrose...... alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant...

  11. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  12. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs with full

  13. A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia.

    Science.gov (United States)

    Lodberg, Andreas; Eijken, Marco; van der Eerden, Bram C J; Okkels, Mette Wendelboe; Thomsen, Jesper Skovhus; Brüel, Annemarie

    2018-05-01

    Disuse causes a rapid and substantial bone loss distinct in its pathophysiology from the bone loss associated with cancers, age, and menopause. While inhibitors of the activin-receptor signaling pathway (IASPs) have been shown to prevent ovariectomy- and cancer-induced bone loss, their application in a model of disuse osteopenia remains to be tested. Here, we show that a soluble activin type IIA receptor (ActRIIA-mFc) increases diaphyseal bone strength and cancellous bone mass, and mitigates the loss of femoral neck bone strength in the Botulinum Toxin A (BTX)-model of disuse osteopenia in female C57BL/6J mice. We show that ActRIIA-mFc treatment preferentially stimulates a dual-effect (anabolic-antiresorptive) on the periosteal envelope of diaphyseal bone, demonstrating in detail the effects of ActRIIA-mFc on cortical bone. These observations constitute a previously undescribed feature of IASPs that mediates at least part of their ability to mitigate detrimental effects of unloading on bone tissue. The study findings support the application of IASPs as a strategy to combat bone loss during disuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Effect of Raised Body Fat on Vitamin D, Leptin and Bone Mass

    International Nuclear Information System (INIS)

    Fatima, S. S.; Alam, F.

    2015-01-01

    Objectives: To estimate leptin, vitamin D and bone mineral density levels in individuals with high fat mass, and to assess any correlation. Methods: The cross-sectional study was conducted at the Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi, and Aga Khan University, Karachi, from August 2012 to July 2014, and comprised healthy male volunteers between the ages of 18-60 years. Body fat percentage was determined using bioelectrical impedance analysis and the participants were classified as: Group A (15-21.9); Group B (22-27.9); and Group C (>28). Bone mineral density was calculated by ultrasound bone densitometer (T-score between +1 and -1 considered normal). Enzyme-linked immunosorbent assay kits were used to determine the levels of vitamin D and leptin. SPSS 19 was used for statistical analysis. Results: A total of 132 male subjects participated in this study, with each of the 3 groups having 44(33.3 percent). Despite all groups having low Vitamin D, a marked decrease was observed in group C compared to groups A and B (p <0.018). Bone mineral density T-score was <-1; total calcium was within normal range in all three groups. Serum leptin was raised in Group C compared to group A and B (p=0.03). Body fat percentage was negatively associated with vitamin D (p=0.004; r = -0.351), while it was positively correlated with leptin (p =0.038; r = 0.256). Conclusion: Excess of body fat percentage led to decreased vitamin D and raised leptin. However, bone mineral density and calcium levels were within normal range, suggesting that other factors might have played a role in maintaining bone mass in obese individuals, such as leptin. (author)

  15. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  16. Effects of Obesity on Bone Mass and Quality in Ovariectomized Female Zucker Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2014-01-01

    Full Text Available Obesity and osteoporosis are two chronic conditions that have been increasing in prevalence. Despite prior data supporting the positive relationship between body weight and bone mineral density (BMD, recent findings show excess body weight to be detrimental to bone mass, strength, and quality. To evaluate whether obesity would further exacerbate the effects of ovariectomy on bone, we examined the tibiae and fourth lumbar (L4 vertebrae from leptin receptor-deficient female (Leprfa/fa Zucker rats and their heterozygous lean controls (Leprfa/+ that were either sham-operated or ovariectomized (Ovx. BMD of L4 vertebra was measured using dual-energy X-ray absorptiometry, and microcomputed tomography was used to assess the microstructural properties of the tibiae. Ovariectomy significantly (P<0.001 decreased the BMD of L4 vertebrae in lean and obese Zucker rats. Lower trabecular number and greater trabecular separation (P<0.001 were also observed in the tibiae of lean- and obese-Ovx rats when compared to sham rats. However, only the obese-Ovx rats had lower trabecular thickness (Tb.Th (P<0.005 than the other groups. These findings demonstrated that ovarian hormone deficiency adversely affected bone mass and quality in lean and obese rats while obesity only affected Tb.Th in Ovx-female Zucker rats.

  17. Reduced bone mass in Dutch adolescents fed a macrobiotic diet in early life.

    Science.gov (United States)

    Parsons, T J; van Dusseldorp, M; van der Vliet, M; van de Werken, K; Schaafsma, G; van Staveren, W A

    1997-09-01

    This study investigated the effect of a macrobiotic (vegan-type) diet, low in calcium and vitamin D, consumed in early life, on bone mineral during adolescence. Bone mineral content (BMC) and bone area were measured in 195 adolescents (103 girls, 92 boys) aged 9-15 years, using dual-energy X-ray absorptiometry. Ninety-three adolescents (43 girls, 50 boys) had followed a macrobiotic diet in childhood, and 102 (60 girls, 42 boys) were control subjects. After adjustment for bone area, weight, height, percent body lean, age, and puberty, BMC was significantly lower in macrobiotic subjects, in boys and girls, respectively, at the whole body, -3.4% and -2.5%, spine, -8.5% and -5.0%, femoral neck, -8.0% and -8.2%, midshaft radius, -6.8% and -5.6%, and also in girls, at the trochanter, -5.8% (p < 0.05). No group differences were observed at the wrist. Group differences were not explained by current calcium adjusted bone mass at age 9-15 years, observations which may hold important implications for fracture risk in later life.

  18. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P 1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  19. Identification of a dietary pattern prospectively associated with bone mass in Australian young adults.

    Science.gov (United States)

    van den Hooven, Edith H; Ambrosini, Gina L; Huang, Rae-Chi; Mountain, Jenny; Straker, Leon; Walsh, John P; Zhu, Kun; Oddy, Wendy H

    2015-11-01

    Relatively little is known about the relations between dietary patterns and bone health in adolescence, which is a period of substantial bone mass accrual. We derived dietary patterns that were hypothesized to be related to bone health on the basis of their protein, calcium, and potassium contents and investigated their prospective associations with bone mineral density (BMD), bone area, and bone mineral content (BMC) in a cohort of young adults. The study included 1024 young adults born to mothers who were participating in the Western Australian Pregnancy Cohort (Raine) Study. Dietary information was obtained from food-frequency questionnaires at 14 and 17 y of age. Dietary patterns were characterized according to protein, calcium, and potassium intakes with the use of reduced-rank regression. BMD, bone area, and BMC were estimated with the use of a total body dual-energy X-ray absorptiometry scan at 20 y of age. We identified 2 major dietary patterns. The first pattern was positively correlated with intakes of protein, calcium, and potassium and had high factor loadings for low-fat dairy products, whole grains, and vegetables. The second pattern was positively correlated with protein intake but negatively correlated with intakes of calcium and potassium and had high factor loadings for meat, poultry, fish, and eggs. After adjustment for anthropometric, sociodemographic, and lifestyle factors, a higher z score for the first pattern at 14 y of age was positively associated with BMD and BMC at 20 y of age [differences: 8.6 mg/cm(2) (95% CI: 3.0, 14.1 mg/cm(2)) and 21.9 g (95% CI: 6.5, 37.3 g), respectively, per SD increase in z score]. The z score for this same pattern at 17 y of age was not associated with bone outcomes at 20 y of age. The second pattern at 14 or 17 y of age was not associated with BMD, BMC, or bone area. A dietary pattern characterized by high intakes of protein, calcium, and potassium in midadolescence was associated with higher BMD and BMC at 20

  20. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice

    OpenAIRE

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-t...

  1. Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study.

    Science.gov (United States)

    Zouch, Mohamed; Zribi, Anis; Alexandre, Christian; Chaari, Hamada; Frere, Delphine; Tabka, Zouhair; Vico, Laurence

    2015-01-01

    The aim of this study was to examine the effect of 3-yr soccer practice on bone acquisition in prepubescent boys. We investigated 65 boys (aged 10-13 yr, Tanner stage I) at baseline, among which only 40 boys (Tanner stages II and III) have continued the 3-yr follow-up: 23 soccer players (F) completed 2-5 h of training plus 1 competition game per week and 17 controls (C). Bone mineral density (BMD, g/cm(2)) and bone mineral content (BMC, g) were measured by dual-energy X-ray absorptiometry at different sites. At baseline, BMD was higher in soccer players than in controls in the whole body and legs. In contrast, there was nonsignificant difference BMD in head, femoral neck, arms, and BMC in all measured sites between groups. At 3-yr follow-up, soccer players were found to have higher BMD and BMC at all sites than controls, except for head BMD and BMC and arms BMC in which the difference was nonsignificant between groups. During the 3-yr follow-up, the soccer players were found to gain significantly more in lumbar spine (31.2% ± 2.9% vs 23.9% ± 2.1%; p soccer players have less %BMD and %BMC changes in the head than controls. A nonsignificant difference was found in legs, dominant arm, head %BMD and %BMC changes, and whole-body %BMC changes between groups. In summary, we suggest that soccer has an osteogenic effect BMD and BMC in loaded sites in pubertal soccer players. The increased bone mass induced by soccer training in the stressed sites was associated to a decreased skull bone mass after 3 yr of follow-up. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  2. Handball Practice Enhances Bone Mass in Specific Sites Among Prepubescent Boys.

    Science.gov (United States)

    Missawi, Kawther; Zouch, Mohamed; Chakroun, Yosra; Chaari, Hamada; Tabka, Zouhair; Bouajina, Elyès

    2016-01-01

    This investigation's purpose is to focus on the effects of practicing handball for at least 2 yr on bone acquisition among prepubescent boys. One hundred prepubescent boys aged 10.68 ± 0.85 yr were divided into 2 groups: 50 handball players (HP group) and 50 controls (C group). Bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were evaluated by using dual-photon X-ray absorptiometry on the whole body, lumbar spine (L2-L4), legs, arms, femoral necks, hips and radiuses. Results showed greater values of BMD in both right and left femoral neck and total hip in handball players than in controls. In addition, handball players had higher values of legs and right total hip BMC than controls without any obvious variation of BA measurement in all sites between groups. All results of the paired t-test displayed an obviously marked variation of bone mass parameters between the left and right sides in the trained group without any marked variation among controls. Data showed an increased BMD of the supporting sites between the left and the right leg among handball players. However, "BMC" results exhibited higher values in the right than in the left total hip, and in the right total radius than in the left correspondent site. In addition, differences in the "BA" measurements were observed in the left total hip and in the right arm. Specific bone sites are markedly stimulated by handball training in prepubescent boys. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  3. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys.

    Science.gov (United States)

    Dolan, Eimear; McGoldrick, Adrian; Davenport, Colin; Kelleher, Grainne; Byrne, Brendan; Tormey, William; Smith, Diarmuid; Warrington, Giles D

    2012-09-01

    Horse-racing jockeys are a group of weight-restricted athletes, who have been suggested as undertaking rapid and extreme weight cycling practices in order to comply with stipulated body-mass standards. The aim of this study was to examine bone mass, turnover and endocrine function in jockeys and to compare this group with age, gender and body mass index matched controls. Twenty male professional jockeys and 20 healthy male controls participated. Dual energy X-ray absorptiometry scans and early morning fasting blood and urine samples were used to measure bone mass, turnover and a hormonal profile. Total body bone mineral density (BMD) was significantly lower in jockeys (1.143 ± 0.05 vs. 1.27 ± 0.06 g cm(-3), p professional jockeys have an elevated rate of bone loss and reduced bone mass that appears to be associated with disrupted hormonal activity. It is likely that this may have occurred in response to the chronic weight cycling habitually experienced by this group.

  4. Bone mass in Indian children--relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study.

    Science.gov (United States)

    Ganpule, A; Yajnik, C S; Fall, C H D; Rao, S; Fisher, D J; Kanade, A; Cooper, C; Naik, S; Joshi, N; Lubree, H; Deshpande, V; Joglekar, C

    2006-08-01

    Bone mass is influenced by genetic and environmental factors. Recent studies have highlighted associations between maternal nutritional status during pregnancy and bone mass in the offspring. We hypothesized that maternal calcium intakes and circulating micronutrients during pregnancy are related to bone mass in Indian children. DESIGN/SETTING/PARTICIPANTS/MAIN OUTCOME MEASURES: Nutritional status was measured at 18 and 28 wk gestation in 797 pregnant rural Indian women. Measurements included anthropometry, dietary intakes (24-h recall and food frequency questionnaire), physical workload (questionnaire), and circulating micronutrients (red cell folate and plasma ferritin, vitamin B12, and vitamin C). Six years postnatally, total body and total spine bone mineral content and bone mineral density (BMD) were measured using dual-energy x-ray absorptiometry (DXA) in the children (n = 698 of 762 live births) and both parents. Both parents' DXA measurements were positively correlated with the equivalent measurements in the children (P pregnancy (milk, milk products, pulses, non-vegetarian foods, green leafy vegetables, fruit) had higher total and spine bone mineral content and BMD, and children of mothers with higher folate status at 28 wk gestation had higher total and spine BMD, independent of parental size and DXA measurements. Modifiable maternal nutritional factors may influence bone health in the offspring. Fathers play a role in determining their child's bone mass, possibly through genetic mechanisms or through shared environment.

  5. ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency.

    Science.gov (United States)

    Sauer, Aisha V; Mrak, Emanuela; Hernandez, Raisa Jofra; Zacchi, Elena; Cavani, Francesco; Casiraghi, Miriam; Grunebaum, Eyal; Roifman, Chaim M; Cervi, Maria C; Ambrosi, Alessandro; Carlucci, Filippo; Roncarolo, Maria Grazia; Villa, Anna; Rubinacci, Alessandro; Aiuti, Alessandro

    2009-10-08

    Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling.

  6. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  7. Deficiency of Thrombospondin-4 in Mice Does Not Affect Skeletal Growth or Bone Mass Acquisition, but Causes a Transient Reduction of Articular Cartilage Thickness.

    Directory of Open Access Journals (Sweden)

    Anke Jeschke

    Full Text Available Although articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4. In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone. To study the role of Thbs4 in skeletal development and integrity we took advantage of a Thbs4-deficient mouse model that was analyzed by undecalcified bone histology. We found that Thbs4-deficient mice do not display phenotypic differences towards wildtype littermates in terms of skeletal growth or bone mass acquisition. Since Thbs4 has previously been found over-expressed in bones of Phex-deficient Hyp mice, we additionally generated Thbs4-deficient Hyp mice, but failed to detect phenotypic differences towards Hyp littermates. With respect to articular cartilage we found that Thbs4-deficient mice display transient thinning of articular cartilage, suggesting a protective role of Thbs4 for joint integrity. Gene expression analysis using porcine primary cells revealed that Thbs4 is not expressed by synovial fibroblasts and that it represents the only member of the Thbs gene family with specific expression in articular, but not in growth plate chondrocytes. In an attempt to identify specific molecular effects of Thbs4 we treated porcine articular chondrocytes with human THBS4 in the absence or presence of conditioned medium from porcine synovial fibroblasts. Here we did not observe a significant influence of THBS4 on proliferation, metabolic activity, apoptosis or gene expression, suggesting that it does not act as a signaling molecule. Taken together, our data demonstrate that Thbs4 is highly expressed in articular chondrocytes, where its

  8. Association between circulating levels of adiponectin and indices of bone mass and bone metabolism in middle-aged post-menopausal women.

    Science.gov (United States)

    Tenta, R; Kontogianni, M D; Yiannakouris, N

    2012-03-01

    Adiponectin, a fat derived cytokine, is a potential independent contributor to bone mineral density (BMD); however, its action on bone metabolism in humans is still unclear. The aim of this study was to investigate the relationship of adiponectin with bone mass indices and bone metabolic markers in middle-aged post-menopausal women without diabetes. A random sample consisted of 81 post-menopausal women (age range 45-61 yr, osteopenic/osteoporotic no.=43) was studied. Lumbar-spine BMD (BMD(L2-L4)) and total-body bone mineral content (TBBMC) were measured with dual X-ray absorptiometry. Plasma levels of total and high-molecular weight (HMW) adiponectin, osteoprotegerin (OPG), soluble receptor activator of nuclear factor-κB ligand (sRANKL) and IGF-I were determined. No association was observed between total or HMW adiponectin and BMD(L2-L4) or TBBMC. On the contrary, adiponectin levels were positively associated with OPG levels (partial r=0.276, p=0.015) and negatively with IGF-I (partial r=-0.438, pfailed to show statistically significant association between circulating adiponectin levels and indices of bone mass in women during the postmenopausal period, we showed significant associations with OPG and IGF-I levels, suggesting an anabolic role of adiponectin, which may contribute in the understanding of the interplay between adipose tissue-derived hormones and bone metabolism. © 2012, Editrice Kurtis.

  9. Peak bone mass density among residents of metro Manila: A preliminary report

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.; Guanzon, L.V.; Guzman, A.M. de; Villaruel, C.M.; Santos, F.

    1998-01-01

    Study Objective: To determine the peak bone mass density among residents of Metro Manila using dual X-ray absorptiometry (DEXA). Design: Cross-sectional study. Setting: Philippine General Hospital, a university based tertiary care hospital, and St. Luke's Medical Center, a private tertiary care center. Subjects: Forty five (45) healthy subjects aged 15-50 years old, all current residents of Metro Manila, were randomly chosen from among hospital companions were included in the study. There were 23 females and 22 males, with 3 to 4 subjects for each age range of 5. Methods: Bone mass density measurements on the lumbar spine and the femur using dual X-ray absorptiometry (DPXL Lunar) were taken. The values were also age-matched and matched with that of a young adult based on programmed Caucasian norm provided by Lunar Co. The values were then scattered against age for each sex. Ten (10) cc of blood was also extracted from the patients, with the 5 cc of blood separated for future studies. Parathormone assay and biochemistry examinations were also done. Patents were also interviewed as to their lifestyle, diet, use of contraceptive pill or hormonal replacement treatment, using a Filipino version of the revised questionnaire on the WHO Study on Osteoporosis. Dietary content was estimated using a previous day food recall. Results: The mean weight and height for females were 59.48±16.34 kg and 153.52±5.09 cm respectively, and for males, 58.14±10.06 kg and 162.52±6.75 cm respectively. The mean bone mass density at the L 2 L 4 level for females was 1.12±0.11 g/cm 2 and 0.91±0.11 g/cm 2 at the femur. The highest BMD in both the lumbar spine femoral neck measurements among females was achieved among those aged 30-35 years of age with the lowest BMD occurring between 15-19 and 45-50 years of age in the lumbar spine among female subjects. The highest BMD at the lumbar spine and the femoral neck among males was achieved between the ages 30-35 years of age with the lowest IND

  10. Effects of Portulaca oleracea L. Polysaccharides on Phenotypic and Functional Maturation of Murine Bone Marrow Derived Dendritic Cells.

    Science.gov (United States)

    Zhao, Rui; Zhang, Tao; Zhao, Hui; Cai, Yaping

    2015-01-01

    Portulaca oleracea L. is an annual plant widely distributed from the temperate to the tropical zones. POL-P3b, a polysaccharide fraction purified from Portulaca oleracea L., is able to enhance immunity and inhibit tumor formation. Induction of antitumor immunity by dendritic-tumor fusion cells can be modulated by their activation status. Mature dendritic cells are significantly better than immature dendritic cells at cytotoxic T-lymphocyte induction. In this study, we analyzed the effects of POL-P3b on the maturation and function of murine bone-marrow-derived dendritic cells (DCs) and relevant mechanisms. The phenotypic maturation of DCs was confirmed by flow cytometry. We found that POL-P3b upregulated the expression of CD80, CD86, CD83, and major histocompatibility complex class II molecules on DCs, stimulated production of more interleukin (IL)-12, tumor necrosis factor-α, and less IL-10. Also, DCs pulsed POL-P3b and freeze-thaw antigen increased DCs-driven T cells' proliferation and promoted U14 cells' apoptosis. Furthermore, the expression of TLR-4 was significantly increased on DCs treated by POL-P3b. These results suggested that POL-P3b may induce DCs maturation through TLR-4. Taken together, our results may have important implications for the molecular mechanisms of immunopotentiation of POL-P3b, and provide direct evidence to suggest that POL-P3b should be considered as a potent adjuvant nutrient supplement for DC-based vaccines.

  11. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study.

    Science.gov (United States)

    Cole, Zoe A; Gale, Catharine R; Javaid, M Kassim; Robinson, Sian M; Law, Catherine; Boucher, Barbara J; Crozier, Sarah R; Godfrey, Keith M; Dennison, Elaine M; Cooper, Cyrus

    2009-04-01

    Maternal nutrition is a potentially important determinant of intrauterine skeletal development. Previous studies have examined the effects of individual nutrients, but the pattern of food consumption may be of greater relevance. We therefore examined the relationship between maternal dietary pattern during pregnancy and bone mass of the offspring at 9 yr of age. We studied 198 pregnant women 17-43 yr of age and their offspring at 9 yr of age. Dietary pattern was assessed using principal component analysis from a validated food frequency questionnaire. The offspring underwent measurements of bone mass using DXA at 9 yr of age. A high prudent diet score was characterized by elevated intakes of fruit, vegetables, and wholemeal bread, rice, and pasta and low intakes of processed foods. Higher prudent diet score in late pregnancy was associated with greater (p socioeconomic status, height, arm circumference, maternal smoking, and vitamin D status. Associations with prudent diet score in early pregnancy were weaker and nonsignificant. We conclude that dietary patterns consistent with current advice for healthy eating during pregnancy are associated with greater bone size and BMD in the offspring at 9 yr of age.

  12. Influence of androgens on bone mass in young women with sickle cell anemia

    International Nuclear Information System (INIS)

    Al-Elq, Abdulmohsen H.; Sultan, Osama A.; Al-Turki, Haifa A.; Sadat-Ali, M.

    2008-01-01

    The objective was to evaluate the relationship between the gender hormonal levels and bone mineral density in premenopausal women suffering with sickle cell disease. Method was a cross-sectional study including consecutive female adult patients with sickle cell anemia attending the outpatient hematology/orthopedic clinics, or admitted to King Fahd University Hospital, Al-Khobar, Saudi Arabia, between August 2006 and June 2007. Patient's age was documented and body mass index was calculated. Blood was drawn for complete blood picture, biochemistry and hormonal profile including total estradiol E2 and total testosterone Te. Bone mineral density BMD was measured for all patients using dual energy x-ray absorptiometry scan at the hip and lumbar spine. We analyzed the data of 51 patients with an average age of 26+/-3.1 years. Patients were divided into two groups group A and group B. Group A had normal BMD and group B with low BMD. Thirty-one (60.8%) were in group A and 20 (39.2%) were in group B. The E-2 level was not statistically different between the 2 groups, while Te level was significantly lower in women with low BMD 38+/-11.8 versus 22.3+/-11.7 ng/dl, p<0.001. Our study indicates that in menopausal female patients with sickle cell anemia, testosterone may play a role in the preservation of bone mass. (author)

  13. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  14. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links.

    Science.gov (United States)

    Pardini, D P; Sabino, A T; Meneses, A M; Kasamatsu, T; Vieira, J G

    2000-01-06

    The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. Cohort correlational study. Academic referral center. 53 post-menopausal women, aged 48-58 years. Urinary pyr and d-pyr were measured in fasting urine samples by spectrofluorometry after high performance liquid chromatography and corrected for creatinine excretion measured before treatment and after 1, 2, 4 and 12 months. Bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DEXA) before treatment and after 12 months of HRT. The BMD after HRT was about 4.7% (P < 0.0004); 2% (P < 0.002); and 3% (P < 0. 01) higher than the basal values in lumbar spine, neck and trochanter respectively. There were no significant correlations between pyridinium cross-links and age, weight, menopause duration and BMD. The decrease in pyr and d-pyr was progressive after HRT, reaching 28.9% (P < 0.0002), and 42% (P < 0.0002) respectively after 1 year. Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.

  15. Effects of a 6-month football intervention program on bone mass and physical fitness in overweight children

    DEFF Research Database (Denmark)

    Seabra, André; Serra, Hugo; Seabra, Ana

    2016-01-01

    , consisting of four weekly 60-90 min sessions with mean heart rate > 80%HRmax [football group (FG)]. A control group (CG) included eight boys of equivalent age from an obesity clinic located in the same area as the school. Both groups participated in two sessions of 45-90 min physical education per week......Introduction: Physical activity is an important medium for improving bone mass and physical fitness of children, and as such is often emphasized in intervention programs with overweight/obesity children. Only few studies have examined the impact of a specific team sport intervention on the bone...... at school. Bone mass indicators included whole-boy and lumbar spine bone mineral density (BMD) and bone mineral content (BMC). Physical fitness tests included 5- and 30-m sprints, countermovement jump (CMJ), and Yo-Yo intermittent endurance test level 1 (Yo-Yo IE1). Body composition was evaluated using dual...

  16. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    Directory of Open Access Journals (Sweden)

    Sina Gallo

    2012-01-01

    Full Text Available For over 2 decades, dual-energy X-ray absorptiometry (DXA has been the gold standard for estimating bone mineral density (BMD and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation, weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada. Whole body (WB as well as regional sites of the lumbar spine (LS 1–4 and femur was measured using DXA (QDR 4500A, Hologic Inc. providing bone mineral content (BMC for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0±14.2 versus 227.0±29.7 g, spine BMC by 130% (2.35±0.42 versus 5.37±1.02 g, and femur BMC by 190% (2.94±0.54 versus 8.50±1.84 g. Spine BMD increased by 14% (0.266±0.044 versus 0.304±0.044 g/cm2 during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals.

  17. Prevalence of Osteoporosis and Low Bone Mass Among Puerto Rican Older Adults

    Science.gov (United States)

    Noel, Sabrina E; Mangano, Kelsey M; Griffith, John L; Wright, Nicole C; Dawson-Hughes, Bess; Tucker, Katherine L

    2018-01-01

    Historically, osteoporosis has not been considered a public health priority for the Hispanic population. However, recent data indicate that Mexican Americans are at increased risk for this chronic condition. Although it is well established that there is heterogeneity in social, lifestyle, and health-related factors among Hispanic subgroups, there are currently few studies on bone health among Hispanic subgroups other than Mexican Americans. The current study aimed to determine the prevalence of osteoporosis and low bone mass (LBM) among 953 Puerto Rican adults, aged 47 to 79 years and living on the US mainland, using data from one of the largest cohorts on bone health in this population: The Boston Puerto Rican Osteoporosis Study (BPROS). Participants completed an interview to assess demographic and lifestyle characteristics and bone mineral density measures. To facilitate comparisons with national data, we calculated age-adjusted estimates for osteoporosis and LBM for Mexican American, non-Hispanic white, and non-Hispanic black adults, aged ≥50 years, from the National Health and Nutrition Examination Survey (NHANES). The overall prevalence of osteoporosis and LBM were 10.5% and 43.3% for participants in the BPROS, respectively. For men, the highest prevalence of osteoporosis was among those aged 50 to 59 years (11%) and lowest for men ≥70 years (3.7%). The age-adjusted prevalence of osteoporosis for Puerto Rican men was 8.6%, compared with 2.3% for non-Hispanic white, and 3.9% for Mexican American men. There were no statistically significant differences between age-adjusted estimates for Puerto Rican women (10.7%), non-Hispanic white women (10.1%), or Mexican American women (16%). There is a need to understand specific factors contributing to osteoporosis in Puerto Rican adults, particularly younger men. This will provide important information to guide the development of culturally and linguistically tailored interventions to improve bone health in this

  18. Muscle strength and regional lean body mass influence on mineral bone health in young male adults.

    Science.gov (United States)

    Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller

    2018-01-01

    The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, pBMC and BMD for LL (R2adj = 0.68, pBMC (R2adj = 0.47, pBMC (R2adj = 0.36, pBMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.

  19. Hormone replacement therapy dissociates fat mass and bone mass, and tends to reduce weight gain in early postmenopausal women

    DEFF Research Database (Denmark)

    Jensen, L B; Vestergaard, P; Hermann, A P

    2003-01-01

    in women randomized to HRT (1.94 +/- 4.86 kg) than in women randomized to no HRT (2.57 +/- 4.63, p = 0.046). A similar pattern was seen in the group receiving HRT or not by their own choice. The smaller weight gain in women on HRT was almost entirely caused by a lesser gain in fat. The main determinant...... of the weight gain was a decline in physical fitness. Women opting for HRT had a significantly lower body weight at inclusion than the other participants, but the results in the self-selected part of the study followed the pattern found in the randomized part. The change in fat mass was the strongest predictor...... of bone changes in untreated women, whereas the change in lean body mass was the strongest predictor when HRT was given. Body weight increases after the menopause. The gain in weight is related to a decrease in working capacity. HRT is associated with a smaller increase in fat mass after menopause. Fat...

  20. Cognitive function in relation with bone mass and nutrition: cross-sectional association in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Brownbill Rhonda A

    2004-05-01

    Full Text Available Abstract Background It has been suggested that bone loss and cognitive decline are co-occurring conditions, possibly due to their relationship with estrogen. Cognitive decline has been associated with various nutritional deficiencies as well. The purpose of this study was to determine if cognitive function is related to bone mineral density of various skeletal sites as well as to various dietary components. Methods Cross-sectional study with 97 healthy, Caucasian, postmenopausal women (59.4–85.0 years enrolled in a larger longitudinal study, investigating the effects of sodium on bone mass. The subjects were divided into two groups based on cognition scores. Group 1 represented lower and Group 2 higher scores on cognitive function. Bone mineral density from the whole body, lumbar spine, femur and forearm were measured with the Lunar DPX-MD instrument. Anthropometry was measured by standard methods. Cognition was assessed using the Mini Mental State Examination. Cumulative (over 2 years dietary intake from 3-day records was analyzed by Food Processor® (ESHA Research, Salem, OR and cumulative physical activity was assessed using Allied Dunbar National Fitness Survey for older adults. Results Subjects' cognition scores ranged from 22–30 (normal, 27–30, indicating all subjects had either mild or no cognitive impairment. Multiple Analysis of Covariance adjusted for age, height, weight, physical activity, alcohol, calcium, sodium and energy intake, showed a statistically significant association between cognition and bone mineral density of all measurable sites (η2 = 0.21, P 2 = 0.07, P = 0.050. Group 2 did have a significantly higher potassium intake (P = 0.023. In multiple regression, saturated fat had a significant negative relationship with cognitive function. Conclusions It appears mild degree of cognitive impairment may be a marker for lower bone mineral density as well as for a diet lower in carbohydrate and potassium intake, and higher

  1. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    Science.gov (United States)

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  2. Effects of Denosumab and Calcitriol on Severe Secondary Hyperparathyroidism in Dialysis Patients With Low Bone Mass.

    Science.gov (United States)

    Chen, Chien-Liang; Chen, Nai-Ching; Liang, Huei-Lung; Hsu, Chih-Yang; Chou, Kang-Ju; Fang, Hua-Chang; Lee, Po-Tsang

    2015-07-01

    Secondary hyperparathyroidism (SHPT) may worsen with administration of denosumab in chronic renal failure patients with low bone mass. This study aimed to evaluate the short-term effect of coadministration of calcitriol and denosumab on PTH secretion and parathyroid structure and the incidence of adverse effects in patients with SHPT and low bone mass. This was a 24-week, open-label study at Kaohsiung Veterans General Hospital in Kaohsiung, Taiwan. Dialysis patients with SHPT (intact parathyroid hormone [iPTH] > 800 pg/mL) and low bone mass (T score < -2.5) were enrolled. Patients received denosumab (60 mg) and doses of calcitriol adjusted to achieve iPTH < 300 pg/mL. Parathyroid gland volume was assessed upon study initiation and completion. Serum calcium, phosphate, alkaline phosphatase, iPTH, and adverse effects were assessed at each visit (Day 7, 14, and 21, and every month thereafter). iPTH significantly decreased (mean decrease, 58.28 ± 6.12%) with denosumab/calcitriol administration (P < .01) but not in the controls (patients not receiving denosumab). Parathyroid gland volume decreased (mean decrease, 21.98 ± 5.54%) with denosumab/calcitriol administration (P < .01) and progressively increased (20.58 ± 4.48%) in the controls (P < .05). Serum alkaline phosphatase and iPTH levels were significantly correlated to decreased iPTH and regression of parathyroid hyperplasia (P < .05). The most common adverse events were hypocalcemia (33.33%) and respiratory tract infection (4.17%). Hypocalcemia rapidly resolved with calcium and calcitriol supplements. Denosumab allows for supra-physiologic doses of calcitriol resulting in decreased parathyroid secretion and parathyroid hyperplasia. Supervised administration and weekly laboratory and clinical monitoring of serum calcium are recommended during the first month to prevent hypocalcemia.

  3. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  4. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover.

    Science.gov (United States)

    Kruger, Marlena C; Kruger, Iolanthé M; Wentzel-Viljoen, Edelweiss; Kruger, Annamarie

    2011-10-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the North West Province of South Africa (Prospective Urban and Rural Epidemiology-South Africa project). Fasting blood samples were taken; and participants were interviewed to complete questionnaires on self-reported diseases, fractures, and dietary intakes. Bone health markers were assessed in a subgroup of 658 women older than 45 years. Specific lifestyle risk factors identified were inactivity, smoking, injectable progestin contraception use, and high alcohol consumption. Dietary risk factors identified were low calcium and high animal protein, phosphorous, and sodium intakes. The 25(OH)D3 and C-terminal telopeptide (CTX) levels were significantly higher in the rural vs the urban women older than 50 years. Parathyroid hormone (PTH) levels increased with age in both groups. The 25(OH)D levels were inversely correlated with CTX and PTH in rural women. In urban women, PTH and CTX were correlated while dietary calcium was inversely correlated with CTX and PTH with 25(OH)D3. The combination of low dietary calcium (<230 mg/d), marginally insufficient 25(OH)D3 status, and raised PTH may result in increased bone resorption. Further research is required to assess bone health and fracture risk in black African women. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians

    DEFF Research Database (Denmark)

    Harsløf, Torben; Frost, M; Nielsen, T L

    2013-01-01

    The interaction between muscle and bone is complex. The aim of this study was to investigate if variations in the muscle genes myostatin (MSTN), its receptor (ACVR2B), myogenin (MYOG), and myoD1 (MYOD1) were associated with fracture risk, bone mineral density (BMD), bone mineral content (BMC......), and lean body mass. We analyzed two independent cohorts: the Danish Osteoporosis Prevention Study (DOPS), comprising 2,016 perimenopausal women treated with hormone therapy or not and followed for 10 years, and the Odense Androgen Study (OAS), a cross-sectional, population-based study on 783 men aged 20......-29 years. Nine tag SNPs in the four genes were investigated. In the DOPS, individuals homozygous for the variant allele of the MSTN SNP rs7570532 had an increased risk of any osteoporotic fracture, with an HR of 1.82 (95 % CI 1.15-2.90, p = 0.01), and of nonvertebral osteoporotic fracture, with an HR of 2...

  7. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice

    Science.gov (United States)

    Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and

  8. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice.

    Science.gov (United States)

    Friedman, Michael A; Bailey, Alyssa M; Rondon, Matthew J; McNerny, Erin M; Sahar, Nadder D; Kohn, David H

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6-12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups-exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases

  9. Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis.

    Science.gov (United States)

    Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda

    2011-01-01

    Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia

    Directory of Open Access Journals (Sweden)

    Fujiwara S

    2014-11-01

    Full Text Available Saeko Fujiwara,1 Etsuro Hamaya,2 Masayo Sato,2 Peita Graham-Clarke,3 Jennifer A Flynn,2 Russel Burge41Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan; 2Lilly Research Laboratories Japan, Eli Lilly Japan K.K., Kobe, Japan; 3Global Health Outcomes, Eli Lilly Australia, Sydney, NSW, Australia; 4Global Health Outcomes, Eli Lilly and Company, Indianapolis, IN, USAPurpose: To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia.Materials and methods: Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain. Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis.Results: Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications, but not the hip region (eight publications, a low incidence of vertebral fracture (three publications, decreases in markers of bone turnover (eleven publications, improved hip structural geometry (two publications, improved blood–lipid profiles (five publications, a low incidence of hot flushes

  11. 201Tl scintigraphic evaluation of tumor mass and viability of bone and soft-tissue tumors

    International Nuclear Information System (INIS)

    Tsuda, Takatoshi; Kubota, Masahiro; Yoshida, Satoru; Shibata, Masahito; Wakabayashi, Jun-ichi; Obata, Hiroyuki; Matsuyama, Toshikatsu; Usui, Masamichi; Ishii, Sei-ichi.

    1994-01-01

    To characterize 201 Tl uptake in patients with bone and soft-tissue tumor, we studied 49 patients with surgically proven tumors and one patient with a tumor diagnosed arteriographically. In 37 of our 50 patients, the tumor was evaluated with 201 Tl and arteriography. Moreover, in 14 of patients with pre-operative chemotherapy, pathologic changes were graded on the basis of percent tumor necrosis as defined histologically. The percent tumor necrosis histologically was compared with changes in the scintigraphic and conventional angiographic studies. Radiologic comparisons demonstrated a high degree of correlation with images of 201 Tl and both arterial and blood pool phase of 99m Tc-HMDP. Ninety-six percent of 28 malignant tumors had positive 201 Tl uptake. None of the patients showed any thallium accumulation in the soft tissues or skeleton adjacent to the lesion. Activity of 201 Tl was mainly dependent upon a tumor blood flow and a vascular density. In of 14 cases with the preoperative chemotherapeutic treatment, 201 Tl scintigraphic changes showed concordance with % tumor necrosis. Thallium-201 was superior to 99m Tc-HMDP in predicting tumor response to chemotherapy. Interestingly, delayed images of 99m Tc-HMDP of 5 responders with >90% tumor necrosis showed decreased uptake in the adjacent bone to the tumor mass lesions. It seems to be quite all right to consider that a major determinant of 201 Tl uptake is intratumoral angiogenecity, which is closely connected with tumor viability. Therefore, 201 Tl is a sensitive radiopharmaceutical for detection of vascular rich bone and soft-tissue tumors, and appears to be a simple and an accurate test for evaluating the response to specific therapeutic regimens of malignant bone and soft-tissue tumors. (author)

  12. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass.

    Science.gov (United States)

    Kemper, Han C G; Bakker, I; Twisk, J W R; van Mechelen, W

    2002-05-01

    Most of the questionnaires available to estimate the daily physical activity levels of humans are based on measuring the intensity of these activities as multiples of resting metabolic rate (METs). Metabolic intensity of physical activities is the most important component for evaluating effects on cardiopulmonary fitness. However, animal studies have indicated that for effects on bone mass the intensity in terms of energy expenditure (metabolic component) of physical activities is less important than the intensity of mechanical strain in terms of the forces by the skeletal muscles and/or the ground reaction forces. The physical activity questionnaire (PAQ) used in the Amsterdam Growth and Health Longitudinal Study (AGAHLS) was applied to investigate the long-term effects of habitual physical activity patterns during youth on health and fitness in later adulthood. The PAQ estimates both the metabolic components of physical activities (METPA) and the mechanical components of physical activities (MECHPA). Longitudinal measurements of METPA and MECHPA were made in a young population of males and females ranging in age from 13 to 32 years. This enabled evaluation of the differential effects of physical activities during adolescence (13-16 years), young adulthood (21-28 years), and the total period of 15 years (age 13-28 years) on bone mineral density (BMD) of the lumbar spine, as measured by dual-energy X-ray absorptiometry (DXA) in males (n = 139) and females (n = 163) at a mean age of 32 years. The PAQ used in the AGAHLS during adolescence (13-16 years) and young adulthood (21-28 years) has the ability to measure the physical activity patterns of both genders, which are important for the development of bone mass at the adult age. MECHPA is more important than METPA. The highest coefficient of 0.33 (p PAQ was established by comparing PAQ scores during four annual measurements in 200 boys and girls with two other objective measures of physical activity: movement

  13. Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention

    Directory of Open Access Journals (Sweden)

    Nguyen Nguyen D

    2005-06-01

    Full Text Available Abstract Background While risk factors of osteoporosis in Western populations have been extensively documented, such a profile has not been well studied in Caucasians of non-European origin. This study was designed to estimate the modifiable distribution and determinants of bone mineral density (BMD among Iranian women in Australia. Methods Ninety women aged 35 years and older completed a questionnaire on socio-demographic and lifestyle factors. BMD was measured at the lumbar spine (LS and femoral neck (FN using DXA (GE Lunar, WI, USA, and was expressed in g/cm2 as well as T-score. Results In multiple regression analysis, advancing age, lower body mass index (BMI, and smoking were independently associated with LS and FN BMD, with the 3 factors collectively accounting for 30% and 38% variance of LS and FN BMD, respectively. LS and FN BMD in smokers was 8% lower than that in non-smokers. Further analysis of interaction between BMI and smoking revealed that the effect of smoking was only observed in the obese group (p = 0.029 for LSBMD and p = 0.007 for FNBMD, but not in the overweight and normal groups. Using T-scores from two bone sites the prevalence of osteoporosis (T-scores ≤ -2.5 was 3.8% and 26.3% in pre-and post-menopausal women, respectively. Among current smokers, the prevalence was higher (31.3% than that among ex-smokers (28.6% and non-smokers (7.5%. Conclusion These data, for the first time, indicate that apart from advancing age and lower body mass index, cigarette smoking is an important modifiable determinant of bone mineral density in these Caucasians of non-European origin.

  14. The relationship between low bone mass and metabolic syndrome in Korean women.

    Science.gov (United States)

    Hwang, D-K; Choi, H-J

    2010-03-01

    We examined the relationship between low bond mass and metabolic syndrome in 2,475 Korean women. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome. Moreover, age and weight adjusted vertebral BMD was significantly decreased with additional components of the metabolic syndrome. Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and metabolic syndrome. It has been suggested that proinflammatory cytokines and low-grade systemic inflammation activate bone resorption and may lead to reduced bone mineral density (BMD). The objective of this study was to determine the relationship between low bone mass and metabolic syndrome in Korean women. This is a cross-sectional study of 2,548 women aged 18 years and over who had visited the Health Promotion Center. Physical examination and laboratory tests were performed. Vertebral BMD was measured using dual-energy X-ray absorptiometry. Metabolic syndrome was defined by National Cholesterol Education Program-Adult Treatment Panel III criteria. Among 2,475 women, 511 (21.0%) women had metabolic syndrome. Women with abdominal obesity or hypertriglyceridemia had significantly lower vertebral BMD than women without respective components after adjustment for age, weight, and height. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome (p = 0.031). Moreover, age- and weight-adjusted vertebral BMD were significantly decreased with additional components of the metabolic syndrome (p = 0.004). These findings suggest that metabolic syndrome might be another risk factor for osteoporosis and related fractures.

  15. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  16. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass

    International Nuclear Information System (INIS)

    Berthold, L.D.; Alzen, G.; Haras, G.; Mann, M.

    2006-01-01

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  17. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Ceredig, R.; McDonald, H.R.

    1982-01-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2 + ) thymocytes, which reaches maximum number of 10 to 20 x 10 6 cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1 + ) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10 6 ). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype

  18. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Ceredig, R.; McDonald, H.R.

    1982-02-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2/sup +/) thymocytes, which reaches maximum number of 10 to 20 x 10/sup 6/ cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1/sup +/) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10/sup 6/). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype.

  19. Effect of long-term growth hormone treatment on bone mass and bone metabolism in growth hormone-deficient men

    NARCIS (Netherlands)

    Bravenboer, N; Holzmann, PJ; ter Maaten, JC; Stuurman, LM; Roos, JC; Lips, P

    2005-01-01

    Long-term GH treatment in GH-deficient men resulted in a continuous increase in bone turnover as shown by histomorphometry. BMD continuously increased in all regions of interest, but more in the regions with predominantly cortical bone. Introduction: Adults with growth hormone (GH) deficiency have

  20. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    Science.gov (United States)

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  1. A path model of sarcopenia on bone mass loss in elderly subjects.

    Science.gov (United States)

    Rondanelli, M; Guido, D; Opizzi, A; Faliva, M A; Perna, S; Grassi, M

    2014-01-01

    Aging is associated with decreases in muscle mass, strength, power (sarcopenia) and bone mineral density (BMD). The aims of this study were to investigate in elderly the role of sarcopenia on BMD loss by a path model, including adiposity, inflammation, and malnutrition associations. Body composition and BMD were measured by dual X-ray absorptiometry in 159 elderly subjects (52 male/107 female; mean age 80.3 yrs). Muscle strength was determined with dynamometer. Serum albumin and PCR were also assessed. Structural equations examined the effect of sarcopenia (measured by Relative Skeletal Muscle Mass, Total Muscle Mass, Handgrip, Muscle Quality Score) on osteoporosis (measured by Vertebral and Femoral T-scores) in a latent variable model including adiposity (measured by Total Fat Mass, BMI, Ginoid/Android Fat), inflammation (PCR), and malnutrition (serum albumin). The sarcopenia assumed a role of moderator in the adiposity-osteoporosis relationship. Specifically, increasing the sarcopenia, the relationship adiposity-osteoporosis (β: -0.58) decrease in intensity. Adiposity also influences sarcopenia (β: -0.18). Malnutrition affects the inflammatory and the adiposity states (β: +0.61, and β: -0.30, respectively), while not influencing the sarcopenia. Thus, adiposity has a role as a mediator of the effect of malnutrition on both sarcopenia and osteoporosis. Malnutrition decreases adiposity; decreasing adiposity, in turn, increase the sarcopenia and osteoporosis. This study suggests such as in a group of elderly sarcopenia affects the link between adiposity and BMD, but not have a pure independent effect on osteoporosis.

  2. Body Mass Index below Obesity Threshold Implies Similar Cardiovascular Risk among Various Polycystic Ovary Syndrome Phenotypes.

    Science.gov (United States)

    Bagir, Gulay Simsek; Bakiner, Okan S; Bozkirli, Emre; Cavlak, Gulhan; Serinsoz, Hulya; Ertorer, M Eda

    2016-01-01

    The aim of this study was to determine the cardiometabolic risk factors in different polycystic ovary syndrome (PCOS) phenotypes. This cross-sectional study was performed between 2010 and 2011. Eighty-nine patients with PCOS and 25 age- and weight-matched healthy controls were included in the study. Patients were grouped using the Rotterdam 2003 criteria as: group 1, oligomenorrhea and/or anovulation (ANOV) and hyperandrogenemia (HA) and/or hyperandrogenism (n = 23); group 2, ANOV and polycystic ovaries (PCO; n = 22); group 3, HA and PCO (n = 22); group 4, ANOV, HA and PCO (n = 22); group 5, controls (n = 25). Laboratory blood tests for diagnosis and cardiometabolic risk assessments were performed. Insulin resistance (IR) was calculated in all patients with the homeostasis model assessment of IR (HOMA-IR) formula. An euglycemic hyperinsulinemic clamp test was performed on 5 randomly selected cases in each subgroup, making 25 cases in total, and indicated as the 'M' value (mg/kg/min), which is the total body glucose disposal rate. The mean BMl values of the groups were: group 1, 26.1 ± 5.3; group 2, 27.9 ± 5.2; group 3, 24.3 ± 4.2; group 4, 27.9 ± 7.5; group 5, 24.7 ± 5.2 (p > 0.05). There were no differences in the lipid profile, plasma glucose, HOMA-IR, insulin and M values between the groups (p > 0.05). Phenotypes with oligomenorrhea/anovulation (groups 1, 2 and 4) were more obese than group 3 (p = 0.039). The cardiometabolic risk profile was similar among the PCOS subgroups. This finding could be attributed to the mean BMl values, which, being below 30, were not within the obesity range. Obesity appeared to be an important determinant of high cardiovascular risk in PCOS. © 2015 S. Karger AG, Basel.

  3. Contributions of Caucasian-associated bone mass loci to the variation in bone mineral density in Vietnamese population.

    Science.gov (United States)

    Ho-Pham, Lan T; Nguyen, Sing C; Tran, Bich; Nguyen, Tuan V

    2015-07-01

    Bone mineral density (BMD) is under strong genetic regulation, but it is not clear which genes are involved in the regulation, particularly in Asian populations. This study sought to determine the association between 29 genes discovered by Caucasian-based genome-wide association studies and BMD in a Vietnamese population. The study involved 564 Vietnamese men and women aged 18 years and over (average age: 47 years) who were randomly sampled from the Ho Chi Minh City. BMD at the femoral neck, lumbar spine, total hip and whole body was measured by DXA (Hologic QDR4500, Bedford, MA, USA). Thirty-two single nucleotide polymorphisms (SNPs) in 29 genes were genotyped using Sequenom MassARRAY technology. The magnitude of association between SNPs and BMD was analyzed by the linear regression model. The Bayesian model average method was used to identify SNPs that are independently associated with BMD. The distribution of genotypes of all, but two, SNPs was consistent with the Hardy-Weinberg equilibrium law. After adjusting for age, gender and weight, 3 SNPs were associated with BMD: rs2016266 (SP7 gene), rs7543680 (ZBTB40 gene), and rs1373004 (MBL2/DKK1 gene). Among the three genetic variants, the SNP rs2016266 had the strongest association, with each minor allele being associated with ~0.02 g/cm(2) increase in BMD at the femoral neck and whole body. Each of these genetic variant explained about 0.2 to 1.1% variance of BMD. All other SNPs were not significantly associated with BMD. These results suggest that genetic variants in the SP7, ZBTB40 and MBL2/DKK1 genes are associated with BMD in the Vietnamese population, and that the effect of these genes on BMD is likely to be modest. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Influence of preoperative bone mass density in periprosthetic bone remodeling after implantation of ABG-II prosthesis: A 10-year follow-up].

    Science.gov (United States)

    Aguilar Ezquerra, A; Panisello Sebastiá, J J; Mateo Agudo, J

    2016-01-01

    Preoperative bone mass index has shown to be an important factor in peri-prosthetic bone remodelling in short follow-up studies. Bone density scans (DXA) were used to perform a 10-year follow-up study of 39 patients with a unilateral, uncemented hip replacement. Bone mass index measurements were made at 6 months, one year, 3 years, 5 years, and 10 years after surgery. Pearson coefficient was used to quantify correlations between preoperative bone mass density (BMD) and peri-prosthetic BMD in the 7 Gruen zones at 6 months, one year, 3 years, 5 years, and 10 years. Pre-operative BMD was a good predictor of peri-prosthetic BMD one year after surgery in zones 1, 2, 4, 5 and 6 (Pearson index from 0.61 to 0.75). Three years after surgery it has good predictive power in zones 1, 4 and 5 (0.71-0.61), although in zones 3 and 7 low correlation was observed one year after surgery (0.51 and 0.57, respectively). At the end of the follow-up low correlation was observed in the 7 Gruen zones. Sex and BMI were found to not have a statistically significant influence on peri-prosthetic bone remodelling. Although preoperative BMD seems to be an important factor in peri-prosthetic remodelling one year after hip replacement, it loses its predictive power progressively, until not being a major factor in peri-prosthetic remodelling ten years after surgery. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  5. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil.

    Science.gov (United States)

    Bachagol, Deepa; Joseph, Gilbert Stanley; Ellur, Govindraj; Patel, Kalpana; Aruna, Pamisetty; Mittal, Monika; China, Shyamsundar Pal; Singh, Ravendra Pratap; Sharan, Kunal

    2018-02-01

    Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  7. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis.

    Science.gov (United States)

    Berger, Claudie; Goltzman, David; Langsetmo, Lisa; Joseph, Lawrence; Jackson, Stuart; Kreiger, Nancy; Tenenhouse, Alan; Davison, K Shawn; Josse, Robert G; Prior, Jerilynn C; Hanley, David A

    2010-09-01

    We estimated peak bone mass (PBM) in 615 women and 527 men aged 16 to 40 years using longitudinal data from the Canadian Multicentre Osteoporosis Study (CaMos). Individual rates of change were averaged to find the mean rate of change for each baseline age. The age range for PBM was defined as the period during which bone mineral density (BMD) was stable. PBM was estimated via hierarchical models, weighted according to 2006 Canadian Census data. Lumbar spine PBM (1.046 ± 0.123 g/cm(2)) occurred at ages 33 to 40 years in women and at 19 to 33 years in men (1.066 ± 0.129 g/cm(2)). Total hip PBM (0.981 ± 0.122 g/cm(2)) occurred at ages 16 to 19 years in women and 19 to 21 years in men (1.093 ± 0.169 g/cm(2)). Analysis of Canadian geographic variation revealed that the levels of PBM and of mean BMD in those over age 65 sometimes were discordant, suggesting that PBM and subsequent rates of bone loss may be subject to different genetic and/or environmental influences. Based on our longitudinally estimated PBM values, the estimated Canadian prevalences of osteoporosis (T-score < -2.5) were 12.0% (L(1)-L(4)) and 9.1% (total hip) in women aged 50 years and older and 2.9% (L(1)-L(4)) and 0.9% (total hip) in men aged 50 years and older. These were higher than prevalences using cross-sectional PBM data. In summary, we found that the age at which PBM is achieved varies by sex and skeletal site, and different reference values for PBM lead to different estimates of the prevalence of osteoporosis. Furthermore, lack of concordance of PBM and BMD over age 65 suggests different determinants of PBM and subsequent bone loss. © 2010 American Society for Bone and Mineral Research.

  8. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    . Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  9. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  10. Reduced Bone and Body Mass in Young Male Rats Exposed to Lead

    Directory of Open Access Journals (Sweden)

    Fellipe Augusto Tocchini de Figueiredo

    2014-01-01

    Full Text Available The aim of this study was to see whether there would be differences in whole blood versus tibia lead concentrations over time in growing rats prenatally. Lead was given in the drinking water at 30 mg/L from the time the dams were pregnant until offspring was 28- or 60-day-old. Concentrations of lead were measured in whole blood and in tibia after 28 (28D and 60 days (60D in control (C and in lead-exposed animals (Pb. Lead measurements were made by GF-AAS. There was no significant difference (P>0.05 in the concentration of whole blood lead between Pb-28D (8.0±1.1 μg/dL and Pb-60D (7.2±0.89 μg/dL, while both significantly varied (P<0.01 from controls (0.2 μg/dL. Bone lead concentrations significantly varied between the Pb-28D (8.02±1.12 μg/g and the Pb-60D (43.3±13.26 μg/g lead-exposed groups (P<0.01, while those exposed groups were also significantly higher (P<0.0001 than the 28D and 60D control groups (Pb < 1 μg/g. The Pb-60D group showed a 25% decrease in tibia mass as compared to the respective control. The five times higher amount of lead found in the bone of older animals (Pb-60D versus Pb-28D, which reinforces the importance of using bone lead as an exposure biomarker.

  11. Analysis of a Fossil Bone from Malu Rosu - Giurgiu by Accelerator Mass Spectroscopy

    International Nuclear Information System (INIS)

    Olariu, Agata; Popescu, I.V.; Hellborg, Ragnar; Stenstroem, Kristina; Skog, Goeran; Alexandrescu, E.

    2000-01-01

    In the present work we studied a fossil bone found in the archaeological site at Malu Rosu, near Giurgiu. Other specimens of fossil bones from Malu Rosu had been earlier dated by a chemical method, considering the content of the fluorine by neutron activation analysis. In this paper we have determined the age of a bone from Malu Rosu by the method of radiocarbon using the AMS (accelerator mass spectroscopy) technique. The measurement has been performed at 3 MeV Pelletron accelerator of the Lund University. The preparation of the bone sample was done in 2 steps: extraction of collagen from the structure of the bone by a chemical pretreatment, and then the transformation of collagen to pure carbon. The conversion to the elemental carbon is done also in two steps: formation of CO 2 by collagen combustion, and then the reduction of CO 2 to pure carbon. The sample of bone, as pure carbon is put in a copper holder and is arranged in a wheel in the following sequence: 5 carbon samples and 3 standards (1 standard of anthracite and 2 standards of oxalic acid). The anthracite being a very old coal is considered to have no 14 C traces and by its measurement one gets the background for 14 C both of the accelerator and of preparation installation of samples. Oxalic acid is a standard SRM prepared by USA National Bureau of Standards, with a well known activity of 14 C, measured in the Radiocarbon Dating Laboratory, Lund University, used to normalize the value of the 14 C counting rate, for the sample measured in the same conditions of beam current and time as the standard. The wheel with samples and standards are put in the ion source of the accelerator. The central part of the Lund AMS system is a Pelletron tandem accelerator (model 3UDH, produced by NEC, Wisconsin USA). The accelerator is run at 2.4 MV during AMS experiments, which is optimal for the C 3+ charge state. On the experimental beam line a magnetic quadrupole triplet, a velocity selector and a second analyzing

  12. Reduced bone mass and preserved marrow adipose tissue in patients with inflammatory bowel diseases in long-term remission.

    Science.gov (United States)

    Bastos, C M; Araújo, I M; Nogueira-Barbosa, M H; Salmon, C E G; de Paula, F J A; Troncon, L E A

    2017-07-01

    Bone marrow adipose tissue has not been studied in patients with inactive inflammatory bowel disease. We found that these patients have preserved marrow adiposity even with low bone mass. Factors involved in bone loss in active disease may have long-lasting effects but do not seem to affect bone marrow adiposity. Reduced bone mass is known to occur at varying prevalence in patients with inflammatory bowel diseases (IBD) because of inflammation, malnutrition, and steroid therapy. Osteoporosis may develop in these patients as the result of an imbalanced relationship between osteoblasts and adipocytes in bone marrow. This study aimed to evaluate for the first time bone mass and bone marrow adipose tissue (BMAT) in a particular subgroup of IBD patients characterized by long-term, steroid-free remission. Patients with Crohn's disease (CD; N = 21) and ulcerative colitis (UC; N = 15) and controls (C; N = 65) underwent dual X-ray energy absorptiometry and nuclear magnetic resonance spectroscopy of the L3 lumbar vertebra for BMAT assessment. Both the CD and UC subgroups showed significantly higher proportions of patients than controls with Z-score ≤-2.0 at L1-L4 (C 1.54%; CD 19.05%; UC 20%; p = 0.02), but not at other sites. The proportions of CD patients with a T-score ˂-1.0 at the femoral neck (C 18.46%; CD 47.62%; p = 0.02) and total hip (C 16.92%; CD 42.86%; p = 0.03) were significantly higher than among controls. There were no statistically significant differences between IBD patients and controls regarding BMAT at L3 (C 28.62 ± 8.15%; CD 29.81 ± 6.90%; UC 27.35 ± 9.80%; p = 0.67). IBD patients in long-term, steroid-free remission may have a low bone mass in spite of preserved BMAT. These findings confirm the heterogeneity of bone disorders in IBD and may indicate that factors involved in bone loss in active disease may have long-lasting effects on these patients.

  13. Thyroid hormone interacts with the sympathetic nervous system to modulate bone mass and structure in young adult mice.

    Science.gov (United States)

    Fonseca, Tatiana L; Teixeira, Marilia B C G; Miranda-Rodrigues, Manuela; Rodrigues-Miranda, Manuela; Silva, Marcos V; Martins, Gisele M; Costa, Cristiane C; Arita, Danielle Y; Perez, Juliana D; Casarini, Dulce E; Brum, Patricia C; Gouveia, Cecilia H A

    2014-08-15

    To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects. Interestingly, the mRNA expression of osteoprotegerin, a protein that limits osteoclast activity, was upregulated and downregulated by T3 in the bone of α(2A/2C)-AR(-/-) and WT mice, respectively. β1-AR mRNA expression and IGF-I serum levels, which exert bone anabolic effects, were increased by T3 treatment only in α(2A/2C)-AR(-/-) mice. As expected, T3 inhibited the cell growth of calvaria-derived osteoblasts isolated from WT mice, but this effect was abolished or reverted in cells isolated from KO mice. Collectively, these findings support the hypothesis of a TH-SNS interaction to control bone mass and structure of young adult mice and suggests that this interaction may involve α2-AR signaling. Finally, the present findings offer new insights into the mechanisms through which TH regulates bone mass, structure, and physiology. Copyright © 2014 the American Physiological Society.

  14. Importance of participation rate in sampling of data in population based studies, with special reference to bone mass in Sweden.

    OpenAIRE

    Düppe, H; Gärdsell, P; Hanson, B S; Johnell, O; Nilsson, B E

    1996-01-01

    OBJECTIVE: To study the effects of participation rate in sampling on "normative" bone mass data. DESIGN: This was a comparison between two randomly selected samples from the same population. The participation rates in the two samples were 61.9% and 83.6%. Measurements were made of bone mass at different skeletal sites and of muscle strength, as well as an assessment of physical activity. SETTING: Malmö, Sweden. SUBJECTS: There were 230 subjects (117 men, 113 women), aged 21 to 42 years. RESUL...

  15. SHP1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Menghui Jiang

    2016-07-01

    Full Text Available Osteoblasts and adipocytes are derived from a common precursor, mesenchymal stem cells (MSCs. Alterations in the normal fate of differentiating MSCs are involved in the development of obesity and osteoporosis. Here, we report that viable motheaten (mev mice, which are deficient in the SH2-domain-containing phosphatase-1 (SHP1, develop osteoporosis spontaneously. Consistently, MSCs from mev/mev mice exhibit significantly reduced osteogenic potential and greatly increased adipogenic potential. When MSCs were transplanted into nude mice, SHP1-deficient MSCs resulted in diminished bone formation compared with wild-type MSCs. SHP1 was found to bind to GSK3β and suppress its kinase activity by dephosphorylating pY216, thus resulting in β-catenin stabilization. Mice, in which SHP1 was deleted in MSCs using SHP1fl/flDermo1-cre, displayed significantly decreased bone mass and increased adipose tissue. Taken together, these results suggest a possible role for SHP1 in controlling tissue homeostasis through modulation of MSC differentiation via Wnt signaling regulation.

  16. Age-related changes in cortical bone mass: data from a German female cohort

    International Nuclear Information System (INIS)

    Toledo, V.A. Molina; Jergas, M.

    2006-01-01

    To describe data from digital radiogrammetry (DXR) in an unselected German female cohort over a wide age range. Using a retrospective study design we analyzed radiographs of the hand from 540 German women (aged 5-96 years) using an automated assessment of cortical thickness, metacarpal index (MCI), and estimated cortical bone mineral density (DXR-BMD) on digitized radiographs. Both hands were radiographed in 97 women. In this group DXR-BMD and cortical thickness were significantly higher in the right metacarpals while there was no significant difference in MCI. To study the association with age we differentiated young ( 45 years). In young women all parameters increased significantly with age in a linear fashion (r=0.8 for DXR-BMD, r=0.7 for MCI). In those aged 25-45 years DXR-BMD and MCI were highest (peak bone mass). In women aged 45 or older all parameters decreased with age in an almost linear fashion with an annual change ranging from 0.7% to 0.9%. Our results for an unselected German female cohort indicate that DXR is a reliable, widely available osteodensitometric technique based on the refinement of conventional radiogrammetry. These findings are comparable to those from other studies and represent a valid resource for clinical application and for comparisons with other ethnic groups. (orig.)

  17. Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment.

    Science.gov (United States)

    Sromicki, Jerzy Jan; Hess, Bernhard

    2017-06-01

    Chronic acid retention is known to promote bone dissolution. In this study, 23 % of patients with osteopenia/osteoporosis were diagnosed with abnormal distal renal tubular acidification (dRTA), a kidney dysfunction leading to chronic acid retention. Treating those patients with alkali-therapy shows improvement in bone density. To evaluate the prevalence of abnormal distal renal tubular acidification in patients with low bone mass (LBM) and the impact of additional alkali treatment on bone density in patients with concomitant LBM and dRTA,183 patients referred for metabolic evaluation of densitometrically proven low bone mass were screened for abnormal distal renal tubular acidification between 2006 and 2013. In all LBM urine pH (U-pH) was measured in the 2nd morning urines after 12 h of fasting. If U-pH was ≥5.80, LBM underwent a 1-day ammonium chloride loading, and U-pH was remeasured the next morning. If U-pH after acid loading did not drop below 5.45, patients were diagnosed with abnormal distal renal tubular acidification. Normal values were obtained from 21 healthy controls. All LBM with dRTA were recommended alkali citrate in addition to conventional therapy of LBM, and follow-up DXAs were obtained until 2014. 85 LBM underwent NH 4 Cl loading. 42 LBM patients were diagnosed with incomplete dRTA (idRTA; prevalence 23.0 %). During follow-up (1.6-8 years) of idRTA-LBM patients, subjects adhering to alkali treatment tended to improve BMD at all sites measured, whereas BMD of non-adherent idRTA patients worsened/remained unchanged. (1) About one out of four patients with osteopenia/osteoporosis has idRTA. (2) Upon NH 4 Cl loading, idRTA patients do not lower urine pH normally, but show signs of increased acid-buffering by bone dissolution. (3) In idRTA patients with low bone mass on conventional therapy, additional long-term alkali treatment improves bone mass at lumbar spine and potentially at other bone sites. (4) All patients with low bone mass undergoing

  18. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    Directory of Open Access Journals (Sweden)

    Dolores Perovano Pardini

    2000-01-01

    Full Text Available CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic referral center. SAMPLE: 53 post-menopausal women, aged 48-58 years. MAIN MEASUREMENTS: Urinary pyr and d-pyr were measured in fasting urine samples by spectrofluorometry after high performance liquid chromatography and corrected for creatinine excretion measured before treatment and after 1, 2, 4 and 12 months. Bone mineral density (BMD was measured by dual energy X-ray absorptiometry (DEXA before treatment and after 12 months of HRT. RESULTS: The BMD after HRT was about 4.7% (P < 0.0004; 2% (P < 0.002; and 3% (P < 0.01 higher than the basal values in lumbar spine, neck and trochanter respectively. There were no significant correlations between pyridinium cross-links and age, weight, menopause duration and BMD. The decrease in pyr and d-pyr was progressive after HRT, reaching 28.9% (P < 0.0002, and 42% (P < 0.0002 respectively after 1 year. CONCLUSIONS: Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.

  19. Scalp Block for Awake Craniotomy in a Patient With a Frontal Bone Mass: A Case Report

    Science.gov (United States)

    Amiri, Hamid Reza; Kouhnavard, Marjan; Safari, Saeid

    2012-01-01

    “Anesthesia” for awake craniotomy is a unique clinical condition that requires the anesthesiologist to provide changing states of sedation and analgesia, to ensure optimal patient comfort without interfering with electrophysiologic monitoring and patient cooperation, and also to manipulate cerebral and systemic hemodynamics while guaranteeing adequate ventilation and patency of airways. Awake craniotomy is not as popular in developing countries as in European countries. This might be due to the lack of information regarding awake craniotomy and its benefits among the neurosurgeons and anesthetists in developing countries. From the economic perspective, this procedure may decrease resource utilization by reducing the use of invasive monitoring, the duration of the operation, and the length of postoperative hospital stay. All these reasons also favor its use in the developing world, where the availability of resources still remains a challenge. In this case report we presented a successful awake craniotomy in patient with a frontal bone mass. PMID:24904791

  20. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    International Nuclear Information System (INIS)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok

    2000-01-01

    %, 9%) were more common in COM with cholesteatoma (p-value less than 0.05). Soft tissue in Prussak's space (58%, 72%), retraction of the tympanic membrane (19%, 9%), and tympanosclerosis (8%, 10%) were not however, important findings (p-value greater than 0.05). Bone erosion or destruction was seen in COM without cholesteatoma, but expansile bone erosion or destruction with mass effect suggested COM with cholesteatoma. These findings of temporal bone CT in COM demonstrate the existence and extent of combined cholesteatoma, and are therefore valuable. (author)

  1. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2000-01-01

    flaccida (35%, 9%) were more common in COM with cholesteatoma (p-value less than 0.05). Soft tissue in Prussak's space (58%, 72%), retraction of the tympanic membrane (19%, 9%), and tympanosclerosis (8%, 10%) were not however, important findings (p-value greater than 0.05). Bone erosion or destruction was seen in COM without cholesteatoma, but expansile bone erosion or destruction with mass effect suggested COM with cholesteatoma. These findings of temporal bone CT in COM demonstrate the existence and extent of combined cholesteatoma, and are therefore valuable. (author)

  2. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  3. Determination of peak bone mass density and composition in low-income urban residents of metro Manila using isotope techniques

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.V.; Guanzon, L.V.V.; De Guzman, A.M.; Villaruel, C.M.; Santos, F.

    1996-01-01

    Filipinos are predisposed to osteoporosis because of inadequate calcium in their diet early on in life, confounded by malnutrition, susceptibility to infectious diseases and their generally small body frame. And yet the problem of osteoporosis has not been properly addressed. The incidence of osteoporosis is not known since oftentimes it is established only once complications have set in. It is believed that osteoporosis poses a public health concern but its extent is not realized at present because of lack of local epidemiological data. This study aims to determine the bone mass density as a function of age among 210 screened and healthy volunteers coming from urban poor communities of Metro Manila over a 3-year period. A LUNAR DPX-L bone densitometry for dual X-ray photon absorptiometry will be used, with measurements taken on the spine and femur. It also aims to correlate factors such as nutritional intake, physical activity, lifestyle, sex and body mass index with that of bone mass density. Blood and urine samples will be obtained for biochemistry and hormonal radioimmunoassay examination. Statistical analysis will be done to com are differences within the group and to determine rate of bone loss as a function of age and sex. Plans for future research include the determination of trace element content in cortical bone and tooth samples from healthy living subjects. (author)

  4. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  5. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development.

    Science.gov (United States)

    Lappe, Joan M; Watson, Patrice; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J; Oberfield, Sharon; Shepherd, John; Winer, Karen K; Zemel, Babette

    2015-01-01

    Childhood and adolescence are critical periods of bone mineral content (BMC) accrual that may have long-term consequences for osteoporosis in adulthood. Adequate dietary calcium intake and weight-bearing physical activity are important for maximizing BMC accrual. However, the relative effects of physical activity and dietary calcium on BMC accrual throughout the continuum of pubertal development in childhood remains unclear. The purpose of this study was to determine the effects of self-reported dietary calcium intake and weight-bearing physical activity on bone mass accrual across the five stages of pubertal development in a large, diverse cohort of US children and adolescents. The Bone Mineral Density in Childhood study was a mixed longitudinal study with 7393 observations on 1743 subjects. Annually, we measured BMC by dual-energy X-ray absorptiometry (DXA), physical activity and calcium intake by questionnaire, and pubertal development (Tanner stage) by examination for up to 7 years. Mixed-effects regression models were used to assess physical activity and calcium intake effects on BMC accrual at each Tanner stage. We found that self-reported weight-bearing physical activity contributed to significantly greater BMC accrual in both sexes and racial subgroups (black and nonblack). In nonblack males, the magnitude of the activity effect on total body BMC accrual varied among Tanner stages after adjustment for calcium intake; the greatest difference between high- and low-activity boys was in Tanner stage 3. Calcium intake had a significant effect on bone accrual only in nonblack girls. This effect was not significantly different among Tanner stages. Our findings do not support differential effects of physical activity or calcium intake on bone mass accrual according to maturational stage. The study demonstrated significant longitudinal effects of weight-bearing physical activity on bone mass accrual through all stages of pubertal development. © 2014 American

  6. Reference Centile Curves for Body Fat Percentage, Fat-free Mass, Muscle Mass and Bone Mass Measured by Bioelectrical Impedance in Asian Indian Children and Adolescents.

    Science.gov (United States)

    Chiplonkar, Shashi; Kajale, Neha; Ekbote, Veena; Mandlik, Rubina; Parthasarathy, Lavanya; Borade, Ashwin; Patel, Pinal; Patel, Prerna; Khadilkar, Vaman; Khadilkar, Anuradha

    2017-12-15

    To create gender-specific percentile curves for percent body fat (%BF) by Bio electrical Impedance Analysis (BIA) for screening adiposity and risk of hypertension in Indian children and generate reference curves for percent fat-free mass (%FFM), muscle mass (%LM) and bone mineral content (BMC) by using bioelectrical impedance. Secondary analysis of data from previous multicenter cross-sectional studies. Private schools from five regions of India. A random sample of 3850 healthy school children (2067 boys) (5-17 yr) from private schools in five major Indian cities. Anthropometry, blood pressure (BP) and body composition were measured by bioelectrical impedance. Reference curves were generated by the LMS method. %BF, %FFM, %LM, BMC and BP. Median %BF increased by 6% from 5 to 13 years of age and declined (around 2%) up to 17 years in boys. In girls, %BF increased by 8% from 5 to 14 years and thereafter declined by 3%. Based upon the risk of hypertension, the new cut-offs of 75th and 85th percentile of %BF were proposed for detecting over fatness and excess fatness in children. Median %FFM was 90% at 5 yrs and decreased till 12 years, and then showed a slight increase to 84% at 17 yrs in boys. In girls, it was 86% at 5 yrs and decreased till 15 yrs, and plateaued at 71.8% at 17 yrs. Reference curves for percent body fat for Indian children would be useful to screen children for health risk in clinical set up.

  7. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    Science.gov (United States)

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  8. Rapid restoration of bone mass after surgical management of hyperthyroidism: A prospective case control study in Southern India.

    Science.gov (United States)

    Karunakaran, Poongkodi; Maharajan, Chandrasekaran; Mohamed, Kamaludeen N; Rachamadugu, Suresh V

    2016-03-01

    The rate and the extent of bone remineralization at cancellous versus cortical sites after treatment of hyperthyroidism is unclear. Few studies have examined the effect of operative management of hyperthyroidism on recovery of bone mass. To evaluate prospectively the bone mineral density (BMD), bone mineral content (BMC), and bone areal size at the spine, hip, and forearm before and after total thyroidectomy. A prospective case control observational study from August 2011 to July 2014 in a single center. This study evaluated 40 overt hyperthyroid patients and 31 age-matched euthyroid controls who were operative candidates. Bone indices were measured at baseline and 6-month postoperatively using dual energy x-ray absorptiometry. Serum levels of alkaline phosphatase and 25-hydroxy vitamin D3 (25OHD) were assessed. Baseline BMD of hyperthyroid subjects at the spine, hip, and forearm were less than euthyroid controls (P = .001) with concomitant increases in serum alkaline phosphatase (mean ± SD, 143 ± 72 vs 72 ± 23 IU/L control; P hyperthyroid patients, posttreatment BMD expressed as g/cm(2) were 0.97 ± 0.12 (vs pretreatment 0.91 ± 0.14; P = .001) at the spine, 0.87 ± 0.12 (vs pretreatment 0.80 ± 0.13; P = .001) at the hip, and 0.67 ± 0.09 (vs pretreatment 0.64 ± 0.11; P = .191) at the forearm. The percent change in BMD was greatest at spine (8.3%) followed by the hip (7.6%) and forearm (3.0%). Operative management with total thyroidectomy improved the bone loss associated with hyperthyroidism as early as 6 months postoperatively at the hip and spine despite concomitant vitamin D deficiency. Delayed recovery of bone indices at the forearm, a cortical bone, requires further long-term evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dinosaur bone beds and mass mortality: Implications for the K-T extinction

    Science.gov (United States)

    Carpenter, Kenneth

    1988-01-01

    Mass accumulations of fossilized large terrestrial vertebrate skeletons (bone beds: BB) provide a test for K-T catastrophic extinction hypotheses. The two major factors contributing to BB formation are mode of death and sedimentation rate. Catastrophic mass mortality (CMM) is the sudden death of numerous individuals where species, age, health, gender, or social ranking offer no survivorship advantage. Noncatastrophic mass mortality (NCMM) occurs over time and is strongly influenced by species, age, or gender. In addition to cause of death, sedimentation rate is also important in BB formation. Models of BBs can be made. The CMM drops all individuals in their tracks, therefore, the BB should reflect the living population with respect to species, age, or gender. The NCMM results in monospecific BBs skewed in the direction of the less fit, usually the very young or very old, or towards a specific gender. The NCMM and AM BBs may become more similar the more spread out over time NCMM deaths occur because carcasses are widely scattered requiring hydraulic accumulation, and the greater time allows for more disarticulation and weathering. The CMM and NCMM BB appear to be dominated by social animals. Applying this and the characteristics of mortality patterns to the uppermost Cretaceous Hell Creek Formation indicates that only NCMM and AM BB occur. Furthermore, NCMM BB are rare in the upper third of the Hell Creek. Near the K-T boundary, only AM BB are known. The absence of CMM and NCMM BB appears to be real reflecting a decrease in population levels of some dinosaurs prior to the K-T event. The absence of CMM suggests that the K-T event did not lead to an instantaneous extinction of dinosaurs. Nor was there a protracted die-off due to an asteroid impact winter, because no NCMM BB are known at or near the K-T boundary.

  10. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie

    2012-02-01

    Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia

  11. Relations of diet and physical activity to bone mass and height in black and white adolescents

    Directory of Open Access Journals (Sweden)

    Yanbin Dong

    2011-06-01

    Full Text Available Because the development of healthy bodies during the years of growth has life-long health consequences, it is important to understand the early influences of diet and physical activity (PA. One way to generate hypotheses concerning such influences is to conduct cross-sectional studies of how diet and PA are related to different components of body composition. The subjects were 660 black and white adolescents. Total body bone mineral content (BMC was measured with dual-energy X-ray absorptiometry; free-living diet and PA were assessed with 4-7 separate 24-h recalls. The main dietary variables investigated were: total energy intake, macronutrient distribution (%, dairy servings, vitamin D, and calcium. The main PA variables were hours of moderate PA (3-6 METs and vigorous PA (>6 METs. BMC was higher in blacks than in whites (P<0.01 and it increased more in boys than in girls (age by sex interaction as age increased (P<0.01. After adjustment for age, race and sex, higher levels of BMC were associated with higher levels of energy intake, dairy servings, calcium, vitamin D, and vigorous PA (all P 's<0.05. In the multivariable model, significant and independent proportions of the variance in BMC were explained by race, the age by sex interaction, calcium, and vigorous PA (all P 's<0.01. When height was used as the outcome variable, similar diet results were obtained; however, there was a sex by vigorous PA interaction, such that vigorous PA was associated with height only in the girls. These data are consistent with the hypothesis that the bone mass and height of growing youths are positively influenced by higher dietary intake of energy and dairy foods, along with sufficient amounts of vigorous PA. This hypothesis needs to be tested in randomized controlled trials.

  12. Trends in osteoporosis and low bone mass in older US adults, 2005-2006 through 2013-2014.

    Science.gov (United States)

    Looker, A C; Sarafrazi Isfahani, N; Fan, B; Shepherd, J A

    2017-06-01

    This study examined trends in osteoporosis and low bone mass in older US adults between 2005 and 2014 using bone mineral density (BMD) data from the National Health and Nutrition Examination Survey (NHANES). Osteoporosis and low bone mass appear to have increased at the femur neck but not at the lumbar spine during this period. Recent preliminary data from Medicare suggest that the decline in hip fracture incidence among older US adults may have plateaued in 2013-2014, but comparable data on BMD trends for this time period are currently lacking. This study examined trends in the prevalence of osteoporosis and low bone mass since 2005 using BMD data from NHANES. The present study also updated prevalence estimates to 2013-2014 and included estimates for non-Hispanic Asians. Femur neck and lumbar spine BMD by DXA were available for 7954 adults aged 50 years and older from four NHANES survey cycles between 2005-2006 and 2013-2014. Significant trends (quadratic or linear) were observed for the femur neck (mean T-score and osteoporosis in both sexes; low bone mass in women) but not for the lumbar spine. The trend in femur neck status was somewhat U-shaped, with prevalences being most consistently significantly higher (by 1.1-6.6 percentage points) in 2013-2014 than 2007-2008. Adjusting for changes in body mass index, smoking, milk intake, and physician's diagnosis of osteoporosis between surveys did not change femur neck trends. In 2013-2014, the percent of older adults with osteoporosis was 6% at the femur neck, 8% at the lumbar spine, and 11% at either site. There was some evidence of a decline in femur neck BMD between 2005-2006 and 2013-2014, but not in lumbar spine BMD. Changes in the risk factors that could be examined did not explain the femur neck BMD trends.

  13. Role of clinical indications of bone mass measurement with bi-photonic X-ray absorptiometry. Interet et indications cliniques des mesures de masse osseuse par absorptiometrie biphotonique a rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    Bone densitometry by precise, reliable and non-traumatic methods such as X-ray bi-phonon absorptiometry, is the only way to predict osteoporosis fractures risks. The whole epidemiological studies establish that bone mass loss and osteoporosis risk are directly linked. The measurement of the bone mass is the basis of osteoporosis prevention for elderly women, and of other clinical situations. This paper gives, by a critical analysis of available data, advantages and limits of bone mass measurements by X-ray bi-phonon absorptiometry, and essential clinical indications. (A.B.). 181 refs.

  14. Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study.

    Science.gov (United States)

    Rudäng, Robert; Darelid, Anna; Nilsson, Martin; Nilsson, Staffan; Mellström, Dan; Ohlsson, Claes; Lorentzon, Mattias

    2012-10-01

    It has previously been shown that smoking is associated with reduced bone mass and increased fracture risk, but no longitudinal studies have been published investigating altered smoking behavior at the time of bone mass acquisition. The aim of this study was to investigate the development of bone density and geometry according to alterations in smoking behavior in a 5-year, longitudinal, population-based study of 833 young men, age 18 to 20 years (baseline). Furthermore, we aimed to examine the cross-sectional, associations between current smoking and parameters of trabecular microarchitecture of the radius and tibia, using high-resolution peripheral quantitative computed tomography (HR-pQCT), in young men aged 23 to 25 years (5-year follow-up). Men who had started to smoke since baseline had considerably smaller increases in areal bone mineral density (aBMD) at the total body (mean ± SD, 0.020 ± 0.047 mg/cm(2) versus 0.043 ± 0.040 mg/cm(2) , p young adulthood have poorer development of their aBMD at clinically important sites such as the spine and hip than nonsmokers, possibly due to augmented loss of trabecular density and impaired growth of cortical cross-sectional area. Copyright © 2012 American Society for Bone and Mineral Research.

  15. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    Science.gov (United States)

    2015-12-01

    osteoporosis. J Bone Miner Res, 2003. 18(3): p. 539-43. 10. Ma, Y., et al., Parathyroid hormone and mechanical usage have a synergistic effect in rat tibial...directions, respectively. Material nonlinearity was modeled as bilinear elastic– plastic with a postyield modulus that was 5% of the pre-yield modulus(31...Injury Poster Sessions, Presentation Number: SA0435 Session: Poster Session I & Poster Tours Saturday, October 5, 2013 12:00 PM - 2:00 PM, Baltimore

  16. Diverse bone morphogenetic protein expression profiles and smad pathway activation in different phenotypes of experimental canine mammary tumors.

    Directory of Open Access Journals (Sweden)

    Helena Wensman

    Full Text Available BACKGROUND: BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones. CONCLUSIONS/SIGNIFICANCE: We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.

  17. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    Science.gov (United States)

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  18. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell.

    Science.gov (United States)

    Donnelly, Jessica M; Engevik, Amy C; Engevik, Melinda; Schumacher, Michael A; Xiao, Chang; Yang, Li; Worrell, Roger T; Zavros, Yana

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis. The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype. Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1(Cre) mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1(Cre) mice were paired to either an uninfected Vav-1(Cre) littermate or a BL/6 mouse inoculated with Helicobacter pylori. GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression. Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

  19. Modeling the effect of levothyroxine therapy on bone mass density in postmenopausal women: a different approach leads to new inference

    Directory of Open Access Journals (Sweden)

    Tavangar Seyed

    2007-06-01

    Full Text Available Abstract Background The diagnosis, treatment and prevention of osteoporosis is a national health emergency. Osteoporosis quietly progresses without symptoms until late stage complications occur. Older patients are more commonly at risk of fractures due to osteoporosis. The fracture risk increases when suppressive doses of levothyroxine are administered especially in postmenopausal women. The question is; "When should bone mass density be tested in postmenopausal women after the initiation of suppressive levothyroxine therapy?". Standard guidelines for the prevention of osteoporosis suggest that follow-up be done in 1 to 2 years. We were interested in predicting the level of bone mass density in postmenopausal women after the initiation of suppressive levothyroxine therapy with a novel approach. Methods The study used data from the literature on the influence of exogenous thyroid hormones on bone mass density. Four cubic polynomial equations were obtained by curve fitting for Ward's triangle, trochanter, spine and femoral neck. The behaviors of the models were investigated by statistical and mathematical analyses. Results There are four points of inflexion on the graphs of the first derivatives of the equations with respect to time at about 6, 5, 7 and 5 months. In other words, there is a maximum speed of bone loss around the 6th month after the start of suppressive L-thyroxine therapy in post-menopausal women. Conclusion It seems reasonable to check bone mass density at the 6th month of therapy. More research is needed to explain the cause and to confirm the clinical application of this phenomenon for osteoporosis, but such an approach can be used as a guide to future experimentation. The investigation of change over time may lead to more sophisticated decision making in a wide variety of clinical problems.

  20. Risk of Fracture in Women with Sarcopenia, Low Bone Mass, or Both.

    Science.gov (United States)

    Harris, Rebekah; Chang, Yuefang; Beavers, Kristen; Laddu-Patel, Deepika; Bea, Jennifer; Johnson, Karen; LeBoff, Meryl; Womack, Catherine; Wallace, Robert; Li, Wenjun; Crandall, Carolyn; Cauley, Jane

    2017-12-01

    To determine whether women with sarcopenia and low bone mineral density (BMD) are at greater risk of clinical fractures than those with sarcopenia or low BMD alone. Women's Health Initiative (WHI) Observational and Clinical trials. Three U.S. clinical centers (Pittsburgh, PA; Birmingham, AL; Phoenix/Tucson, AZ). Women (mean age 63.3 ± 0.07) with BMD measurements (N = 10,937). Sarcopenia was defined as appendicular lean mass values corrected for height and fat mass. Low BMD was defined as a femoral neck T-score less than -1.0 based on the Third National Health and Nutrition Examination Survey reference database for white women. Cox proportional hazards analysis was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). We followed women for incident fractures over a median of 15.9 years. Participants were classified into mutually exclusive groups based on BMD and sarcopenia status: normal BMD and no sarcopenia (n = 3,857, 35%), sarcopenia alone (n = 774, 7%), low BMD alone (n = 4,907, 45%), and low BMD and sarcopenia (n = 1,399, 13%). Women with low BMD, with (HR = 1.72, 95% CI = 1.44-2.06) or without sarcopenia (HR = 1.58, 95% CI = 1.37-1.83), had greater risk of fracture than women with normal BMD; the difference remained statistically significant after adjustment for important covariates. Women with low BMD, with (HR = 2.78, 95% CI = 1.78-4.30 and without (HR = 2.42, 95% CI = 1.63-3.59) sarcopenia had higher risk of hip fractures. Women with sarcopenia alone had similar HRs to women with normal BMD. Compared to women with normal BMD. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  1. Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women.

    Science.gov (United States)

    Moon, Seong-Su; Lee, Young-Sil; Kim, Sung Woo

    2012-10-01

    Osteoporosis is a disease associated with insulin resistant states such as central obesity, diabetes, and metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD) is also increased in such conditions. However, little is known about whether osteoporosis and nonalcoholic fatty liver disease are etiologically related to each other or not. We examined whether bone mineral density (BMD) is associated with NAFLD in pre- and postmenopausal women. Four hundred eighty-one female subjects (216 premenopausal and 265 postmenopausal) were enrolled. Lumbar BMD was measured using dual-energy X-ray absorptiometry. Liver ultrasonography was done to check the severity of fatty liver. We excluded subjects with a secondary cause of liver disease. Blood pressure, lipid profile, fasting plasma glucose, alanine aminotransferase (ALT), aspartate aminotransferase, and body mass index were measured in every subject. Mean lumbar BMD was lower in subjects with NAFLD than those without NAFLD in postmenopausal women (0.98 ± 0.01 vs. 1.01 ± 0.02 g/cm², P = 0.046). Multiple correlation analysis revealed a significant association between mean lumbar BMD and NAFLD in postmenopausal subjects after adjusting for age, body mass index, ALT, smoking status, and alcohol consumption (β coefficient -0.066, 95% CI -0.105 to -0.027, P = 0.001). Even after adjusting the presence of metabolic syndrome, the significance was maintained (β coefficient -0.043, 95% CI -0.082 to -0.004, P = 0.031). Lumbar BMD is related with NAFLD in postmenopausal females. We suggest that postmenopausal women with NAFLD may have a higher risk of osteoporosis than those without.

  2. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  3. Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Naranjo, Maria C; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz

    2016-05-18

    Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on polarisation and inflammatory potential in bone marrow-derived macrophages (BMDMs) from niacin (NA)-treated Lep(ob/ob)LDLR(-/-) mice. Animals fed with HFLCD-SFAs had increased weight and serum triglycerides, and their BMDMs accumulated triglycerides over the animals fed with HFLCD-MUFAs or -PUFAs. Furthermore, BMDMs from animals fed with HFLCD-SFAs were polarised towards the M1 phenotype with functional competence to produce pro-inflammatory cytokines, whereas BMDMs from animals fed with HFLCD-MUFAs or -PUFAs were skewed to the anti-inflammatory M2 phenotype. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent development and progression of metabolic complications in the NA-treated MetS.

  4. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitor cells, and dermal fibroblasts

    Science.gov (United States)

    Wang, Qi; Clarkson, Christina; Graham, Melanie; Donahue, Robert; Hering, Bernhard J.; Verfaillie, Catherine M.; Bansal-Pakala, Pratima; O'Brien, Timothy D.

    2015-01-01

    Background Potent immunomodulatory effects have been reported for mesenchymal stem/stromal cells (MSCs), multipotent adult progenitor cells (MAPCs), and fibroblasts. However, side-by-side comparisons of these cells specifically regarding immunophenotype, gene expression, and suppression of proliferation of CD4+ and CD8+ lymphocyte populations have not been reported. Methods We developed MAPC and MSC lines from rhesus macaque bone marrow and fibroblast cell lines from rhesus dermis and assessed phenotypes based upon differentiation potential, flow cytometric analysis of immunophenotype, and quantitative RT-PCR analysis of gene expression. Using allogeneic lymphocyte proliferation assays, we compared the in vitro immunomodulatory potency of each cell type. Results and Conclusions Extensive phenotypic similarities exist among each cell type, although immunosuppressive potencies are distinct. MAPCs are most potent, and fibroblasts are the least potent cell type. All three cell types demonstrated immunomodulatory capacity such that each may have potential therapeutic applications such as in organ transplantation, where reduced local immune response is desirable. PMID:24825538

  5. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum

    Science.gov (United States)

    2012-01-01

    Introduction Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into several mesenchymal lineages, classically derived from bone marrow (BM) but potentially from umbilical cord blood (UCB). Although they are becoming a good tool for regenerative medicine, they usually need to be expanded in fetal bovine serum (FBS)-supplemented media. Human platelet lysate (HPL) has recently been proposed as substitute for safety reasons, but it is not yet clear how this supplement influences the properties of expanded MSCs. Methods In the present study, we compared the effect of various media combining autologous HPL with or without FBS on phenotypic, proliferative and functional (differentiation, cytokine secretion profile) characteristics of human BM-derived MSCs. Results Despite less expression of adipogenic and osteogenic markers, MSCs cultured in HPL-supplemented media fully differentiated along osteoblastic, adipogenic, chondrogenic and vascular smooth muscle lineages. The analyses of particular specific proteins expressed during osteogenic differentiation (calcium-sensing receptor (CaSR) and parathormone receptor (PTHR)) showed their decrease at D0 before any induction for MSC cultured with HPL mostly at high percentage (10%HPL). The cytokine dosage showed a clear increase of proliferation capacity and interleukin (IL)-6 and IL-8 secretion. Conclusions This study shows that MSCs can be expanded in media supplemented with HPL that can totally replace FBS. HPL-supplemented media not only preserves their phenotype as well as their differentiation capacity, but also shortens culture time by increasing their growth rate. PMID:22333342

  6. The Ca, Cl, Mg, Na, and P mass fractions in benign and malignant giant cell tumors of bone investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Vladimir Zaichick; German Davydov; Tatyana Epatova; Sofia Zaichick

    2015-01-01

    The Ca, Cl, Mg, Na, and P content and Ca/P, Ca/Mg, Ca/Na, Cl/Ca, and Cl/Na ratios in samples of intact bone, benign and malignant giant cell tumor (GCT) of bone were investigated by neutron activation analysis with high resolution spectrometry of short-lived radionuclides. It was found that in GCT tissue the mass fractions of Cl and Na are higher and the mass fraction of Ca and P are lower than in normal bone tissues. Moreover, it was shown that higher Cl/Na mass fraction ratios as well as lower Ca/Cl, Ca/Mg, and Ca/Na mass fraction ratios are typical of the GCT tissue compared to intact bone. Finally, we propose to use the estimation of such parameters as the Cl mass fraction and the Ca/Cl mass fraction ratio as an additional test for differential diagnosis between benign and malignant GCT. (author)

  7. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  8. Collaborative Research and Support of Fitzsimmons Army Medical Center DWH Research Program Projects. The Effects of Region-Specific Resistance Exercises on Bone Mass in Premenopausal Military Women, Protocol 8

    National Research Council Canada - National Science Library

    Hayes, Robert

    1995-01-01

    .... The purpose of this study is to determine if peak bone mass can be improved after age 20, the age at which peak bone mass is usually reached, and to compare the effects of region-specific resistance...

  9. LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French-Canadian women.

    Science.gov (United States)

    Giroux, Sylvie; Elfassihi, Latifa; Cardinal, Guy; Laflamme, Nathalie; Rousseau, François

    2007-05-01

    Bone mineral density has a strong genetic component but it is also influenced by environmental factors making it a complex trait to study. LRP5 gene was previously shown to be involved in rare diseases affecting bone mass. Mutations associated with gain-of-function were described as well as loss-of-function mutations. Following this discovery, many frequent LRP5 polymorphisms were tested against the variation of BMD in the normal population. Heel bone parameters (SOS, BUA) were measured by right calcaneal QUS in 5021 healthy French-Canadian women and for 2104 women, BMD evaluated by DXA at two sites was available (femoral neck (FN) and lumbar spine (LS)). Among women with QUS measures and those with DXA measures, 26.5% and 32.8% respectively were premenopausal, 9.2% and 10.7% were perimenopausal and 64.2% and 56.5% were postmenopausal. About a third of the peri- and postmenopausal women never received hormone therapy. Two single nucleotide coding polymorphisms (Val667Met and Ala1330Val) in LRP5 gene were genotyped by allele-specific PCR. All bone measures were tested individually for associations with each polymorphism by analysis of covariance with adjustment for non genetic risk factors. Furthermore, haplotype analysis was performed to take into account the strong linkage disequilibrium between the two polymorphisms. The two LRP5 polymorphisms were found to be associated with all five bone measures (L2L4 and femoral neck DXA as well as heel SOS, BUA and stiffness index) in the whole sample. Premenopausal women drove the association as expected from the proposed role of LRP5 in peak bone mass. Our results suggest that the Val667Met polymorphism is the causative variant but this remains to be functionally proven.

  10. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    Science.gov (United States)

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  11. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model.

    Science.gov (United States)

    Perosky, Joseph E; Khoury, Basma M; Jenks, Terese N; Ward, Ferrous S; Cortright, Kai; Meyer, Bethany; Barton, David K; Sinder, Benjamin P; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M

    2016-12-01

    Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Body composition and bone mineral mass in normal and obese female population using dual X-ray absorptiometry

    International Nuclear Information System (INIS)

    Massardo, T.; Gonzalez, P.; Coll, C.; Rodriguez, J.L.; Solis, I.; Oviedo, S.

    2002-01-01

    It has been observed that a greater percentage of body fat is associated with augmented bone mineral mass. Objective: The goal of this work was to assess the relationship between bone mineral density (BMD in g/cm 2 ) and content (BMC in g) and soft tissue components, fat and lean mass (in g) in whole body of adult female population in Chile. Method: We studied 185 volunteers, asymptomatic, excluding those using estrogens, regular medication, tobacco (>10 cigarettes/day), excessive alcohol intake or with prior oophorectomy. They were separated in 111 pre and 74 post menopausal and according to body mass index (BMI) they were 37 women > 30 kg/m 2 and 148 2 . A Lunar Dual X-Ray absorptiometer was used to determine whole BMD and BMC. Results: Post menopausal women were older and smaller [p:0.0001], with higher body mass index [p:0.0007] and with lower BMD and BMC and higher fat mass than the pre menopausal group; In the whole group, women with BMI ≥ 30 (obese) were compared with normal weight observing no difference in BMD. The fat mass incremented significantly with age. Obese women > 50 years presented greater BMC than the non-obese. The percentage of fat corresponded to 48% in the obese group and to 39% in the non-obese [p<0.0001]. Conclusion: Fat mass somehow protect bone mineral loss in older normal population, probably associated to multifactorial causes including extra ovaric estrogen production. Postmenopausal women presented lower mineral content than premenopausal, as it was expected

  13. Factors associated with low bone mass in the hemodialysis patients – a cross-sectional correlation study

    Directory of Open Access Journals (Sweden)

    Huang Guey-Shiun

    2009-06-01

    Full Text Available Abstract Background Low bone mass is common in end-stage renal disease patients, especially those undergoing hemodialysis. It can lead to serious bone health problems such as fragility fractures. The purpose of this study is to investigate the risk factors of low bone mass in the hemodialysis patients. Methods Sixty-three subjects on hemodialysis for at least 6 months were recruited from a single center for this cross-sectional study. We collected data by questionnaire survey and medical records review. All subjects underwent a bone mineral density (BMD assay with dual-energy x-ray absorptiometry at the lumbar spine and right hip. Data were statistically analyzed by means of descriptive analysis, independent t test and one way analysis of variance for continuous variables, Pearson product-moment correlation to explore the correlated factors of BMD, and stepwise multiple linear regression to identify the predictors of low bone mass. Results Using WHO criteria as a cutoff point, fifty-one subjects (81% had a T-score lower than -1, of them 8 subjects (13% had osteoporosis with the femoral neck most commonly affected. Regarding risk factors, age, serum alkaline phosphatase (ALP level, and intact parathyroid hormone (iPTH level had significant negative correlations with the femoral neck and lumbar spine BMD. On the other hand, serum albumin level, effective exercise time, and body weight (BW had significant positive correlations with the femoral neck and lumbar spine BMD. Age, effective exercise time, and serum albumin level significantly predicted the femoral neck BMD (R2 × 0.25, whereas BW and the ALP level significantly predicted the lumbar spine BMD (R2 × 0.20. Conclusion This study showed that advanced age, low BW, low serum albumin level, and high ALP and iPTH levels were associated with a low bone mass in the hemodialysis patients. We suggest that regular monitoring of the femoral neck BMD, maintaining an adequate serum albumin level and BW

  14. Changes in bone mass during low dose corticosteroid treatment in patients with polymyalgia rheumatica

    DEFF Research Database (Denmark)

    Krogsgaard, M R; Thamsborg, G; Lund, B

    1996-01-01

    or deflazacort. Bone mineral content (BMC) was measured in the lumbar spine and in the distal forearm before treatment and three, six, and 12 months after treatment. RESULTS: At three months the decrease in lumbar BMC and bone mineral density (BMD) was significantly greater in the deflazacort group than...

  15. Determinants of bone mass and bone size in a large cohort of physically active young adult men

    Directory of Open Access Journals (Sweden)

    Garrett P

    2006-02-01

    Full Text Available Abstract The determinants of bone mineral density (BMD at multiple sites were examined in a fit college population. Subjects were 755 males (mean age = 18.7 years entering the United States Military Academy. A questionnaire assessed exercise frequency and milk, caffeine, and alcohol consumption and tobacco use. Academy staff measured height, weight, and fitness. Calcaneal BMD was measured by peripheral dual-energy x-ray absorptiometry (pDXA. Peripheral-quantitative computed tomography (pQCT was used to measure tibial mineral content, circumference and cortical thickness. Spine and hip BMD were measured by DXA in a subset (n = 159. Mean BMD at all sites was approximately one standard deviation above young normal (p

  16. Relationships between bone mass and dietary/lifestyle habits in Japanese women at 3-4 months postpartum.

    Science.gov (United States)

    Hoshino, A; Yamada, A; Tanabe, R; Noda, S; Nakaoka, K; Oku, Y; Katayama, C; Haraikawa, M; Nakano, H; Harada, M; Uenishi, K; Goseki-Sone, M

    2017-11-01

    The relationships between calcaneal bone mass and dietary/lifestyle habits in women at 3-4 months postpartum were examined in the context of osteoporosis prevention. Cross-sectional survey. We measured bone mass using calcaneal ultrasound in mothers who brought their 3- to 4-month-old babies to healthcare centers in Japan for health examination and administered a self-report questionnaire on physical characteristics and dietary/lifestyle habits to those who agreed to participate in the survey. Valid data were available for 1220 women (valid response rate, 97.5%). Based on their stiffness score, a measure of bone mass, 70.9% (n = 865) of the participants were classified as 'no apparent abnormality (stiffness score ≥78.8)' (low-risk group), 18.2% (n = 222) as 'guidance required (≥70.1-healthy eating habits, such as increased consumption of calcium-rich foods, and prevent osteoporosis. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. The Relationship of Age, Body Mass Index, and Individual Habit to Bone Mineral Density in Adults

    International Nuclear Information System (INIS)

    Park, Soung Ock; Lee, In Ja; Shin, Gwi Soon

    2008-01-01

    We studied the change of bone mineral density (BMD) by age, body mass index (BMI), coffee, carbonated drink, alcohol, smoking, and exercise in adults who checked in health center. The number of study subjects was total 268 persons (women of 136 persons and men of 132 persons). The BMD was determined in lumbar spine and femoral neck by dual energy x-ray absorptiometry. And we got some results as below : 1. In women, mean body height was , mean body weight was 155.8±6.0 cm, and mean BMI was 56.8±7.9 kg. In men, mean body height was 169.1±6.0 cm, mean body weight was 69.0±9.5 kg, and mean BMI was 24.1±2.7 kg/m 2 . 2. BMD decreased as age increased, and the age was the most determinant factor for BMD (p<0.01). Women's BMD decreased rapidly in the groups aged ≥50s, while men's BMD decreased gradually with age. In addition, for both sex, lower BMD was measured in lumbar spine than in femoral neck. 3. BMD increased in high BMI, and BMD with BMI increased distinctly in the group aged 50s. But their relationship was not significant. 4. In view of the distribution by three BMD categories, women's BMD was mostly normal in the groups aged ≥40s but the rate of osteopenia and osteoporosis was similar in the group aged 50s, and the rate of osteoporosis was the highest in the groups aged 60s and 70s. Men's BMD was mostly normal through all groups except the group aged 70s. 5. Coffee and carbonated drink were not influenced in BMD. But alcohol-drinking group showed higher BMD than non-drinking group, and alcohol was statistically significant determinant for BMD (p<0.05). Smoking and exercise were not statistically significant determinant of BMD.

  18. Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass.

    Science.gov (United States)

    Schacht, E; Ringe, Johann D

    2012-01-01

    We investigated the effect of daily therapy with 1 mcg alfacalcidol (Doss(®)-TEVA/AWD-pharma) on muscle power, muscle function, balance performance and fear of falls in an open, multi-centered, uncontrolled, prospective study on a cohort of patients with reduced bone mass. Among the 2,097 participants, 87.1% were post-menopausal women and 12.9% were men. Mean age was 74.8 years and mean body mass index (BMI) 26.3 kg/m². A total of 75.3% of the study population had osteoporosis, 81% a diagnosis of "increased risk of falls" and 70.1% had a creatinine clearance (CrCl) of power tests at onset and after 3 and 6 months: the timed up and go test (TUG) and the chair rising test (CRT). At baseline and after 6 months, participants performed the tandem gait test (TGT) and filled out a questionnaire evaluating fear of falling. Successful performance in the muscle tests is associated with a significantly lower risk of falls and non-vertebral fractures in elderly patients (successful test performance: TUG ≤ 10 s (sec), CRT ≤ 10 s, TGT ≥ 8 steps). A significant improvement in the performance of the two muscle tests was proved already after 3 months of treatment with alfacalcidol and further increased by the end of the therapeutic intervention. There were significant increases in the number of participants able to successfully perform the tests: 24.6% at baseline and 46.3% at the end of trial for the TUG (P balance test (TGT) increased from 36.0% at onset to 58.6% at the end of the trial (P power, muscle function and balance and reduces fear of falls. The significant improvement in the three muscle and balance tests and fear of falls may have a preventative effect on falls and fractures. We suggest that the quantitative risk tests used in this study could be reliable surrogate parameters for the risk of falls and fractures in elderly patients.

  19. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    Science.gov (United States)

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  20. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus.

    Science.gov (United States)

    Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E

    2011-05-01

    Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.

  1. Among-sibling differences in the phenotypes of juvenile fish depend on their location within the egg mass and maternal dominance rank

    Science.gov (United States)

    Burton, Tim; Hoogenboom, M. O.; Beevers, N. D.; Armstrong, J. D.; Metcalfe, N. B.

    2013-01-01

    We investigated whether among-sibling differences in the phenotypes of juvenile fish were systematically related to the position in the egg mass where each individual developed during oogenesis. We sampled eggs from the front, middle and rear thirds of the egg mass in female brown trout of known dominance rank. In the resulting juveniles, we then measured traits that are related to individual fitness: body size, social status and standard metabolic rate (SMR). When controlling for differences among females in mean egg size, siblings from dominant mothers were initially larger (and had a lower mass-corrected SMR) if they developed from eggs at the rear of the egg mass. However, heterogeneity in the size of siblings from different positions in the egg mass diminished in lower-ranking females. Location of the egg within the egg mass also affected the social dominance of the resulting juvenile fish, although the direction of this effect varied with developmental age. This study provides the first evidence of a systematic basis for among-sibling differences in the phenotypes of offspring in a highly fecund organism. PMID:23193132

  2. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Bone Mass in Young Adulthood Following Gonadotropin-Releasing Hormone Analog Treatment and Cross-Sex Hormone Treatment in Adolescents With Gender Dysphoria

    NARCIS (Netherlands)

    Klink, D.T.; Caris, M.G.; Heijboer, A.C.; van Trotsenburg, M.; Rotteveel, J.

    2015-01-01

    Context: Sex steroids are important for bone mass accrual. Adolescents with gender dysphoria (GD) treated with gonadotropin-releasing hormone analog (GnRHa) therapy are temporarily sex-steroid deprived until the addition of cross-sex hormones (CSH). The effect of this treatment on bone mineral

  4. Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats — impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over

    Directory of Open Access Journals (Sweden)

    Katharina E. Scholz-Ahrens

    2016-08-01

    Conclusion: SYN exerted a synergistic effect on bone mineralization, presumably due to changes in gut microbiota and ecology associated with large bowel digesta weight (most likely reflecting microbial mass and with large bowel weight (reflecting absorptive area, while bone turnover tended to be reduced as indicated by BAP.

  5. Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs.

    Science.gov (United States)

    Munoz, Jessian L; Greco, Steven J; Patel, Shyam A; Sherman, Lauren S; Bhatt, Suresh; Bhatt, Rekha S; Shrensel, Jeffrey A; Guan, Yan-Zhong; Xie, Guiqin; Ye, Jiang-Hong; Rameshwar, Pranela; Siegel, Allan

    2012-09-01

    Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke. Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  6. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  7. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.

    Science.gov (United States)

    Legendre, Florence; Ollitrault, David; Hervieu, Magalie; Baugé, Catherine; Maneix, Laure; Goux, Didier; Chajra, Hanane; Mallein-Gerin, Frédéric; Boumediene, Karim; Galera, Philippe; Demoor, Magali

    2013-07-01

    Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.

  8. The effect ofethnicity on appendicular bone m.ass in white, coloured ...

    African Journals Online (AJOL)

    impression of a lower incidence of osteoporosis in coloured WOInen than ..... greater physical activity in black and coloured females throughout ... porosis: incidence of hip fractures in mental instirutions. J Bone ... Underweight: a nutritional risk.

  9. Associations of Bone Mineral Density with Lean Mass, Fat Mass, and Dietary Patterns in Postmenopausal Chinese Women: A 2-Year Prospective Study.

    Directory of Open Access Journals (Sweden)

    Yongjie Chen

    Full Text Available To assess factors associated with bone mineral density (BMD in postmenopausal women in a longitudinal study, and to examine the relative contribution of lean mass, fat mass, dietary patterns, and years since menopause to BMD.Two hundred and eighty-two postmenopausal women were randomly selected from Hongqi Community Health Center, in Harbin City, China. All participants were followed up from 2009 to 2011. Dietary data were collected using a Food Frequency Questionnaire. BMD of the left hip, the lumbar spine, and the total body, and the body composition were measured by dual-energy X-ray absorptiometry at baseline and follow-up.Lean mass and fat mass were positively associated with BMD of the spine, hip, and the total body at both baseline and follow-up. The association between fat mass and BMD at the spine at baseline (P = 0.210 and at the spine (P = 0.116 and hip (P = 0.073 in the second year was not statistically significant when height was adjusted. Six dietary patterns were identified but only cereal grains-fruits pattern (P = 0.001 in the spine, P = 0.037 in hip and milk-root vegetables pattern (P = 0.010 in hip were associated with BMD of the spine and hip. The linear mixed model of follow-up data showed that lean mass, years since menopause, and age of menophania were the significant determinants of BMD of all sites. Moreover, lean mass was the best determinant of BMD (VIP = 1.936.Lean mass, years since menopause, age of menophania and dietary patterns are the important determinants of BMD of the spine, hip, and the total body. Lean mass is the best determinant of BMD.

  10. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta

    Science.gov (United States)

    DiGirolamo, Douglas J.; Singhal, Vandana; Chang, Xiaoli; Lee, Se-Jin; Germain-Lee, Emily L.

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system. PMID:26161291

  11. Association between low lean mass and low bone mineral density in 653 women with hip fracture: does the definition of low lean mass matter?

    Science.gov (United States)

    Di Monaco, Marco; Castiglioni, Carlotta; Di Monaco, Roberto; Tappero, Rosa

    2017-12-01

    Loss of both muscle and bone mass results in fragility fractures with increased risk of disability, poor quality of life, and death. Our aim was to assess the association between low appendicular lean mass (aLM) defined according to different criteria and low bone mineral density (BMD) in hip-fracture women. Six hundred fifty-three women admitted to our rehabilitation hospital underwent dual energy X-ray absorptiometry 19.1 ± 4.1 (mean ± SD) days after hip-fracture occurrence. Low aLM was identified according to either Baumgartner's definition (aLM/height 2 less than two standard deviations below the mean of the young reference group) or FNIH criteria: aLM definition, the association between low aLM/height 2 and low BMD was significant: χ 2 (1, n = 653) = 8.52 (p = 0.004), but it was erased by adjustments for age and fat mass. Using the FNIH definition the association between low aLM and low BMD was significant: χ 2 (1, n = 653) = 42.5 (p definition based on aLM/BMI ratio the association between low aLM/BMI ratio and low BMD was nonsignificant: χ 2 (1, n = 653) = 0.003 (p = 0.957). The association between low aLM and low BMD in women with hip fracture dramatically depends on the adopted definition of low aLM. FNIH threshold for aLM (<15.02 kg) emerges as a useful tool to capture women with damage of the muscle-bone unit.

  12. The Relationship of Age, Body Mass Index, and Individual Habit to Bone Mineral Density in Adults

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soung Ock; Lee, In Ja; Shin, Gwi Soon [Dept. of Radiologic Techology, Dongnam Health College, Suwon (Korea, Republic of)

    2008-12-15

    We studied the change of bone mineral density (BMD) by age, body mass index (BMI), coffee, carbonated drink, alcohol, smoking, and exercise in adults who checked in health center. The number of study subjects was total 268 persons (women of 136 persons and men of 132 persons). The BMD was determined in lumbar spine and femoral neck by dual energy x-ray absorptiometry. And we got some results as below : 1. In women, mean body height was , mean body weight was 155.8{+-}6.0 cm, and mean BMI was 56.8{+-}7.9 kg. In men, mean body height was 169.1{+-}6.0 cm, mean body weight was 69.0{+-}9.5 kg, and mean BMI was 24.1{+-}2.7 kg/m{sup 2}. 2. BMD decreased as age increased, and the age was the most determinant factor for BMD (p<0.01). Women's BMD decreased rapidly in the groups aged {>=}50s, while men's BMD decreased gradually with age. In addition, for both sex, lower BMD was measured in lumbar spine than in femoral neck. 3. BMD increased in high BMI, and BMD with BMI increased distinctly in the group aged 50s. But their relationship was not significant. 4. In view of the distribution by three BMD categories, women's BMD was mostly normal in the groups aged {>=}40s but the rate of osteopenia and osteoporosis was similar in the group aged 50s, and the rate of osteoporosis was the highest in the groups aged 60s and 70s. Men's BMD was mostly normal through all groups except the group aged 70s. 5. Coffee and carbonated drink were not influenced in BMD. But alcohol-drinking group showed higher BMD than non-drinking group, and alcohol was statistically significant determinant for BMD (p<0.05). Smoking and exercise were not statistically significant determinant of BMD.

  13. Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling

    DEFF Research Database (Denmark)

    Moreno-Pérez, J.; Bonilla-Petriciolet, A.; Rojas-Mayorga, C. K.

    2016-01-01

    This study reports the assessment of helical coil-packed bed columns for Zn2+ adsorption on bone char. Zn2+ adsorption breakthrough curves have been obtained using helical coil columns with different characteristics and a comparison has been conducted with respect to the results of straight fixed-bed...... columns. Results showed that the helical coil adsorption columns may offer an equivalent removal performance than that obtained for the traditional packed bed columns but using a compact structure. However, the coil diameter, number of turns, and feed flow appear to be crucial parameters for obtaining...... the best performance in this packed-bed geometry. A mass transfer model for a mobile fluid flowing through a porous media was used for fitting and predicting the Zn2+ breakthrough curves in helical coil bed columns. Results of adsorbent physicochemical characterization showed that Zn2+ adsorption on bone...

  14. Osteoporosis: Modern Paradigms for Last Century's Bones.

    Science.gov (United States)

    Kruger, Marlena C; Wolber, Frances M

    2016-06-17

    The skeleton is a metabolically active organ undergoing continuously remodelling. With ageing and menopause the balance shifts to increased resorption, leading to a reduction in bone mineral density and disruption of bone microarchitecture. Bone mass accretion and bone metabolism are influenced by systemic hormones as well as genetic and lifestyle factors. The classic paradigm has described osteoporosis as being a "brittle bone" disease that occurs in post-menopausal, thin, Caucasian women with low calcium intakes and/or vitamin D insufficiency. However, a study of black women in Africa demonstrated that higher proportions of body fat did not protect bone health. Isoflavone interventions in Asian postmenopausal women have produced inconsistent bone health benefits, due in part to population heterogeneity in enteric bacterial metabolism of daidzein. A comparison of women and men in several Asian countries identified significant differences between countries in the rate of bone health decline, and a high incidence rate of osteoporosis in both sexes. These studies have revealed significant differences in genetic phenotypes, debunking long-held beliefs and leading to new paradigms in study design. Current studies are now being specifically designed to assess genotype differences between Caucasian, Asian, African, and other phenotypes, and exploring alternative methodology to measure bone architecture.

  15. Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.

    Science.gov (United States)

    Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J

    2003-09-01

    High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.

  16. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor

    2015-06-01

    The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.

  17. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  18. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo.

    Science.gov (United States)

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-08-01

    Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life.

  19. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt.

    Science.gov (United States)

    Jackowski, Stefan A; Faulkner, Robert A; Farthing, Jonathan P; Kontulainen, Saija A; Beck, Thomas J; Baxter-Jones, Adam D G

    2009-06-01

    We examined the timing of the age and the magnitude of peak lean tissue mass accrual (PLTV) relative to the age and magnitude of two variables of bone strength [peak cross sectional area velocity (PCSAV), and peak section modulus velocity, (PZV)] at the proximal femur in males and females during the adolescent growth spurt. We hypothesized that the age of PLTV would precede the ages of PCSAV and PZV and that there is a positive relationship between the magnitude of PLTV and both PCSAV and PZV in both genders. 41 males and 42 females aged 8-18 years were selected from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2005). Participants' total body lean tissue mass was assessed annually for 6 consecutive years using DXA. Narrow neck and femoral shaft cross sectional areas (CSA) and section modulus (Z) were determined using the hip structural analysis (HSA) program. Participants were aligned by maturational age (years from peak height velocity). Lean tissue mass, CSA, and Z were converted into whole year velocities and the maturational age of peak tissue velocities was determined using a cubic spline curve fitting procedure. A 2 x 3 (gender x tissue) factorial MANOVA with repeated measures was used to test for differences between age of PLTV and the ages of PCSAV and PZV between genders. Multiple regression analyses were used to examine the relationship between PLTV and both PCSAV and PZV. There were no sex differences in the ages at which tissue peaks occurred when aligned by maturational age. There were significant differences between the age of PLTV and both PCSAV and PZV at the narrow neck (p=0.001) and femoral shaft (p=0.03), where the age of PLTV preceded both PCSAV and PZV when pooled by gender. PLTV was a significant predictor of the magnitude of both PCSAV and PZV at all sites (ptheory that muscle development is an important factor in affecting bone strength.

  20. Constitutional bone impairment in Noonan syndrome.

    Science.gov (United States)

    Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista

    2017-03-01

    Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  2. Bone mass and vitamin D levels in Parkinson's disease: is there any difference between genders?

    Science.gov (United States)

    Ozturk, Erhan Arif; Gundogdu, Ibrahim; Tonuk, Burak; Kocer, Bilge Gonenli; Tombak, Yasemin; Comoglu, Selcuk; Cakci, Aytul

    2016-08-01

    [Purpose] The aim of this study was to determine the bone mineral density, vitamin D level, and frequencies of osteopenia and osteoporosis in patients with Parkinson's disease and to compare male and female patients with the controls separately. [Subjects and Methods] One hundred fifteen Parkinson's disease patients (47 males, 68 females; age range: 55-85 years) and 117 age- and gender-matched controls (47 males, 70 females) were enrolled in the study. Bone mineral density measured by dual-energy X-ray absorptiometry and serum D vitamin levels of each participant were recorded. [Results] The mean lumbar spine, femur neck, and total femur bone mineral density levels, T-scores, and vitamin D levels were found to be significantly lower in Parkinson's disease patients in both genders. Furthermore, osteoporosis rates were found be significantly higher only in female Parkinson's disease patients compared with female controls. [Conclusion] Data from the present study revealed that while osteoporosis was significantly higher only in female Parkinson's disease patients, all Parkinson's disease patients had lower bone mineral density scores and vitamin D levels compared with the controls regardless of gender, suggesting that clinicians should pay attention to the osteoporosis risk in Parkinson's disease and that adequate preventive measures should be taken in order to limit the future risk due to osteoporotic fractures.

  3. Calcium and vitamin D requirements for optimal bone mass during adolescence

    Science.gov (United States)

    There remains very strong interest in the calcium and vitamin D requirements of adolescents related to bone health. The Institute of Medicine (IOM) released new dietary guidelines in late 2010 for these nutrients. These guidelines were primarily based on literature published in 2009 and earlier and ...

  4. Relationship between knee pain and the presence, location, size and phenotype of femorotibial denuded areas of subchondral bone as visualized by MRI.

    Science.gov (United States)

    Cotofana, S; Wyman, B T; Benichou, O; Dreher, D; Nevitt, M; Gardiner, J; Wirth, W; Hitzl, W; Kwoh, C K; Eckstein, F; Frobell, R B

    2013-09-01

    Conflicting associations between imaging biomarkers and pain in knee osteoarthritis (OA) have been reported. A relation between pain and denuded areas of subchondral bone (dABs) has been suggested and this study explores this relationship further by relating the presence, phenotype, location and size of dABs to different measures of knee pain. 633 right knees from the Osteoarthritis Initiative (OAI) (250 men, age 61.7 ± 9.6 yrs, BMI 29.4 ± 4.7 kg/m(2)) were included. Manual segmentation of the femorotibial cartilage plates was performed on 3 T coronal fast low angle shot with water excitation (FLASHwe) images. dABs were defined as areas where the subchondral bone was uncovered by cartilage. The following measures of pain were used: weightbearing-, non-weightbearing-, moderate-to-severe-, infrequent- and frequent knee pain. Using pain measures from subjects without dABs as a reference, those with at least one dAB had a 1.64-fold higher prevalence ratio [PR, 95% confidence interval (CI) 1.24-2.18] to have frequent and 1.45-fold higher for moderate-to-severe knee pain (95% CI 1.13-1.85). Subjects with dABs in central subregions had a 1.53-fold increased prevalence of having weightbearing pain (95% CI 1.20-1.97), especially when the central subregion was moderately (>10%) denuded (PR 1.81, 95% CI 1.35-2.42). Individuals with cartilage-loss-type dABs had a slightly higher prevalence (PR 1.13, 95% CI 1.00-1.27) of having frequent knee pain compared to individuals with intra-chondral-osteophyte-type dABs. This study supports a positive relation between femorotibial dABs and knee pain, especially when the dABs are located centrally (i.e., in weightbearing regions) or when the respective central subregion is moderately denuded. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Adipokines, myokines and cytokines in endometrial cancer patients: relations to obesity phenotype of excessive body mass and features of the tumor

    Directory of Open Access Journals (Sweden)

    Lev M. Berstein

    2017-06-01

    Full Text Available Aim. To study serum content of a number of known adipokines, myokines and cytokines and compare obtained data with overweight phenotype and characteristics of tumor in untreated patients with endometrial cancer (EC Materials and methods. The study included 88 patients with a mean age 60.08±0.67 years and a mean body mass index (BMI 32.90±0.83. Patients were subjected to anthropometry and analysis of laboratory parameters, including serum level of leptin, adiponectin, omentin, prefilin (Pref-1, myostatin, irisin, IL-6 as well as insulinemia and insulin resistance index (HOMA-IR. On the basis of combination of anthropometric and laboratory data patients with overweight (BMI >25.0 were subdivided into the groups with "standard" (S and conditionally "metabolically healthy" (MH phenotype. Results. Levels of leptin, insulin and adiponectin in the serum of patients with EC are associated with BMI value and demonstrate significant differences between S and MH groups. Levels of prefilin, myostatin, and IL-6 are not associated with an increase in BMI, but are also different in patients with S and MH phenotype of overweight.For levels oа irisin, omentin, and TNF-alphathere is no peculiar dependence both, the BMI, and of belonging to a group with S or MH phenotype. Omentin level in the serum is associated with less favorable tumor differentiation (MH group, while IL-6 level – with a more advanced stage of the tumor (all patients and group S. Conclusion. Adipokines, myokines and cytokines circulating in blood of EC patients vary in their connections with BMI or with "standard" or "metabolically healthy" phenotype of its excess. They vary also in relation to EC features, which in sum may have practical importance.

  6. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  7. Bone Morphology in 46 BXD Recombinant Inbred Strains and Femur-Tibia Correlation

    Directory of Open Access Journals (Sweden)

    Yueying Zhang

    2015-01-01

    Full Text Available We examined the bone properties of BXD recombinant inbred (RI mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n=16 and DBA/2J (n=15 and two first filial generations (D2B6F1 and B6D2F1. Strain differences were observed in bone quality and structural properties (P<0.05 in each bone profile (whole bone, cortical bone, or trabecular bone. It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD. While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

  8. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry

    International Nuclear Information System (INIS)

    Hirata, Takafumi; Tanoshima, Mina; Suga, Akinobu; Tanaka, Yu-ki; Nagata, Yuichi; Shinohara, Atsuko; Chiba, Momoko

    2008-01-01

    The biological processing of Ca produces significant stable isotope fractionation. The level of isotopic fractionation can provide key information about the variation in dietary consumption or Ca metabolism. To investigate this, we measured the 43 Ca/ 42 Ca and 44 Ca/ 42 Ca ratios for bone and blood plasma samples collected from mice of various ages using multiple collector-ICP-mass spectrometry (MC-ICP-MS). The 44 Ca/ 42 Ca ratio in bones was significantly (0.44 - 0.84 per mille) lower than the corresponding ratios in the diet, suggesting that Ca was isotopically fractionated during Ca metabolism for bone formation. The resulting 44 Ca/ 42 Ca ratios for blood plasma showed almost identical, or slightly higher, values (0.03 - 0.2 per mille) than found in a corresponding diet. This indicates that a significant amount of Ca in the blood plasma was from dietary sources. Unlike that discovered for Fe, there were not significant differences in the measured 44 Ca/ 42 Ca ratios between female and male specimens (for either bone or blood plasma samples). Similarity, the 44 Ca/ 42 Ca ratios suggests that there were no significant differences in Ca dietary consumption or Ca metabolism between female and male specimens. In contrast, the 44 Ca/ 42 Ca ratios of blood plasma from mother mice during the lactation period were significantly higher than those for all other adult specimens. This suggests that Ca supplied to infants through lactation was isotopically lighter, and the preferential supply of isotropically lighter Ca resulted in isotopically heavier Ca in blood plasma of mother mice during the lactation period. The data obtained here clearly demonstrate that the Ca isotopic ratio has a potential to become a new tool for evaluating changes in dietary consumption, or Ca metabolism of animals. (author)

  9. Dlk1/FA1 Is a Novel Endocrine Regulator of Bone and Fat Mass and Its Serum Level Is Modulated By Growth Hormone

    DEFF Research Database (Denmark)

    Abdallah, B.M.; Ding, M.; Jensen, C.H.

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. FA1 (fetal antigen 1) is the soluble form of dlk1 (delta like 1), which is a member of the Notch-Delta family. We have previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1-mice) using the hydrodynamic-based gene transfer procedure (HGTP). We found that increased serum FA1 levels led to a significant reduction in total body weight......, fat mass and bone mass in a dose-dependent manner. Reduced bone mass in FA1-mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58% and 72% respectively. Since FA1 is co-localized with growth hormone (GH) in the pituitary gland, we explored the possible...

  10. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ding, Ming; Jensen, Charlotte H

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. Fetal antigen 1 (FA1) is the soluble form of dlk1 (delta-like 1), which is a member of the Notch-Delta family. We previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1 mice) using the hydrodynamic-based gene transfer procedure. We found that increased serum FA1 levels led to a significant reduction in total body weight, fat...... mass, and bone mass in a dose-dependent manner. Reduced bone mass in FA1 mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58 and 72%, respectively. Because FA1 is colocalized with GH in the pituitary gland, we explored the possible modulation of serum FA1...

  11. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH Vitamin D Serum Levels in Systemic Sclerosis.

    Directory of Open Access Journals (Sweden)

    Addolorata Corrado

    Full Text Available A reduced bone mineral density (BMD is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc; nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc or diffuse cutaneous (dcSSc SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content.

  12. Efficacy of estrogen replacement therapy (ERT) on uterine growth and acquisition of bone mass in patients with Turner syndrome.

    Science.gov (United States)

    Nakamura, Tomomi; Tsuburai, Taku; Tokinaga, Aya; Nakajima, Izumi; Kitayama, Reiko; Imai, Yuichi; Nagata, Tomoko; Yoshida, Hiroshi; Hirahara, Fumiki; Sakakibara, Hideya

    2015-01-01

    Estrogen replacement therapy (ERT) is necessary for uterine development and bone mass acquisition in women with Turner syndrome (TS) suffering from ovarian insufficiency. However, adequate ERT regimens have not yet been established. The aim of this study was to evaluate the efficacy of ERT for both uterine development and bone mass acquisition. One hundred TS patients from Yokohama City University Hospital (88 with primary amenorrhea (PA) and 12 patients with spontaneous menstrual cycles (MC)) were enrolled after obtaining consent. Clinical profiles, uterine length (UL) measured by ultrasonic examination, and bone mineral density (BMD) of the lumbar vertebrae (L2-4) assessed by DEXA were evaluated. At the time of the first visit, the ULs of patients in the PA group were significantly shorter than those in the MC group. After receiving ERT, there were no significant differences in UL between patients with PA and MC. Forty-seven patients for whom the ERT initiation age was known were investigated to clarify the influence on BMD. The results showed that the BMD in the late initiation (18 years or older) group at the latest visit (0.770 ± 0.107 g/cm2: n = 16) was significantly lower than that in the early initiation (under 18 years) group (0.858 ± 0.119 g/cm2: n = 21) or the MC group (0.941 ± 0.118 g/cm2: n = 10). No significant differences were seen between the early initiation and MC group. ERT was effective in increasing UL and BMD. However, early initiation of ERT is necessary to increase BMD.

  13. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  14. Changes in biochemical markers and bone mass after withdrawal of ibandronate treatment

    DEFF Research Database (Denmark)

    Ravn, Pernille; Christensen, J O; Baumann, M

    1998-01-01

    ) at the distal forearm at least 1.5 standard deviations below the premenopausal mean peak value. A total of 141 women (78%) completed the first year, and 119 women (66%) the second year of the study. The dose-response data of the first year have been published previously (Ravn et al. Bone 19...... with the highest doses of ibandronate (1.0-5.0 mg) (p

  15. The effect of hemiplegia on bone mass and soft tissue body composition

    International Nuclear Information System (INIS)

    Iversen, E.; Hassager, C.; Christiansen, C.

    1989-01-01

    The content of bone mineral (BMC), lean tissue, and fat tissue were measured by single and dual photon absorptiometry in both the paretic and the nonparetic limbs of 15 patients, hemiplegic due to cerebrovascular accident 23-38 weeks earlier. Compared with the non-paretic arm, the paretic arm had approximately 10% lower (P < 0.01) BMC. This difference was largest at the measuring site with the highest ratio of trabecular to compact bone. The paretic leg had a 4% (P < 0.001) lower BMC than the non-paretic leg. For both the arms and the legs, the lean content was lower (P < 0.05) and the fat content higher (P < 0.01) in the paretic than in the non-paretic. This was relatively more pronounced in the arms than in the legs. We conclude that partial immobilization, owing to parasis after a cerebrovascular accident, results in characteristic changes in the affected limbs, with a marked decrease in the content of bone and lean tissue and a pronounced increase in fatty tissue. (author)

  16. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    Science.gov (United States)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  17. Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    April S Chan

    2009-11-01

    Full Text Available The bone-bone marrow interface is an area of the bone marrow microenvironment in which both bone remodeling cells, osteoblasts and osteoclasts, and hematopoietic cells are anatomically juxtaposed. The close proximity of these cells naturally suggests that they interact with one another, but these interactions are just beginning to be characterized.An Id1(-/- mouse model was used to assess the role of Id1 in the bone marrow microenvironment. Micro-computed tomography and fracture tests showed that Id1(-/- mice have reduced bone mass and increased bone fragility, consistent with an osteoporotic phenotype. Osteoclastogenesis and pit formation assays revealed that loss of Id1 increased osteoclast differentiation and resorption activity, both in vivo and in vitro, suggesting a cell autonomous role for Id1 as a negative regulator of osteoclast differentiation. Examination by flow cytometry of the hematopoietic compartment of Id1(-/- mice showed an increase in myeloid differentiation. Additionally, we found increased expression of osteoclast genes, TRAP, Oscar, and CTSK in the Id1(-/- bone marrow microenvironment. Lastly, transplantation of wild-type bone marrow into Id1(-/- mice repressed TRAP, Oscar, and CTSK expression and activity and rescued the hematopoietic and bone phenotype in these mice.In conclusion, we demonstrate an osteoporotic phenotype in Id1(-/- mice and a mechanism for Id1 transcriptional control of osteoclast-associated genes. Our results identify Id1 as a principal player responsible for the dynamic cross-talk between bone and bone marrow hematopoietic cells.

  18. Application and Effect of Mobiletype-Bone Health Intervention in Korean Young Adult Women with Low Bone Mass: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Young-Joo Park, PhD, RN

    2017-03-01

    Conclusion: Although both experimental groups exhibited positive outcomes in regards to the promotion of bone health, this study did not show an additional effect of the mobile application on self-management ability for the promotion of bone health. Nonetheless, the SbFb application is very meaningful as it is the first application developed with the aim of improving women's bone health.

  19. Osteoblast-targeted overexpression of TAZ increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Jae-Yeon Yang

    Full Text Available Osteoblasts are derived from mesenchymal progenitors. Differentiation to osteoblasts and adipocytes is reciprocally regulated. Transcriptional coactivator with a PDZ-binding motif (TAZ is a transcriptional coactivator that induces differentiation of mesenchymal cells into osteoblasts while blocking differentiation into adipocytes. To investigate the role of TAZ on bone metabolism in vivo, we generated transgenic mice that overexpress TAZ under the control of the procollagen type 1 promoter (Col1-TAZ. Whole body bone mineral density (BMD of 6- to 19-week-old Col-TAZ mice was 4% to 7% higher than that of their wild-type (WT littermates, whereas no difference was noticed in Col.1-TAZ female mice. Microcomputed tomography analyses of proximal tibiae at 16 weeks of age demonstrated a significant increase in trabecular bone volume (26.7% and trabecular number (26.6% with a reciprocal decrease in trabecular spacing (14.2% in Col1-TAZ mice compared with their WT littermates. In addition, dynamic histomorphometric analysis of the lumbar spine revealed increased mineral apposition rate (42.8% and the serum P1NP level was also significantly increased (53% in Col.1-TAZ mice. When primary calvaria cells were cultured in osteogenic medium, alkaline phosphatase (ALP activity was significantly increased and adipogenesis was significantly suppressed in Col1-TAZ mice compared with their WT littermates. Quantitative real-time polymerase chain reaction analyses showed that expression of collagen type 1, bone sialoprotein, osteocalcin, ALP, osterix, and Runx2 was significantly increased in calvaria cells from Col1-TAZ mice compared to their WT littermates. In vitro, TAZ enhanced Runx2-mediated transcriptional activity while suppressing the peroxisome proliferator-activated receptor gamma signaling pathway. TAZ also enhanced transcriptional activity from 3TP-Lux, which reflects transforming growth factor-beta (TGF-β-mediated signaling. In addition, TAZ enhanced TGF

  20. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  1. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength.

    Science.gov (United States)

    Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C

    2008-05-01

    Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral

  2. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad.

    Science.gov (United States)

    Carroll, S F; Buckley, C T; Kelly, D J

    2014-06-27

    The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-β3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Relationship between parity and bone mass in postmenopausal women according to number of parities and age.

    Science.gov (United States)

    Heidari, Behzad; Heidari, Parnaz; Nourooddini, Haj Ghorban; Hajian-Tilaki, Karim Ollah

    2013-01-01

    To investigate the impact of multiple pregnancies on postmenopausal bone mineral density (BMD). BMD at the femoral neck (FN) and lumbar spine (LS) was measured by dual energy X-ray absorptiometry (DXA) method. Diagnosis of osteoporosis (OP) was confirmed by World Health Organization criteria. Women were stratified according to number of parity as 7 parity groups as well as in age groups of or = 65 years. BMD values and frequency of OP were compared across the groups according to age. Multiple logistic regression analysis with calculation of adjusted odds ratio (OR) was used for association. A total of 264 women with mean age of 63 +/- 8.7 and mean menopausal duration of 15.8 +/- 10.2 years were studied. LS-OP and FN-OP were observed in 28% and 58.3% of women, respectively. There were significant differences in BMD values across different parity groups at both sites of LS and FN (p = 0.011 and p = 0.036, respectively). Parity 4-7 (vs. 7 significantly decreased LS-BMD and FN-BMD as compared with 0-7 parity (p = 0.006 and p = 0.009, respectively). Parity > 7 increased the risk of LS-OP by OR = 1.81 (95% CI 1.03-3.1, p = 0.037) and FN-OP by OR = 1.67 (95% CI 0.97-2.8, p = 0.063). In addition, women with high parity had lower BMD decline at LS and FN by age (> or = 65 vs. 7 is associated with spinal trabecular bone loss in younger postmenopausal women as well as an osteoprotective effect against age-related bone loss, which counteracts the early negative effect. Therefore, parity should not be considered as a risk factor for postmenopausal osteoporosis.

  4. Global variations in peak bone mass as studied by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    McCloskey, E.V.; Dey, A.; Bostock, J.; Parr, R.M.; Aras, N.; Balogh, A.; Borelli, A.; Krishnan, S.; Lobo, G.; Qin, L.L.

    2004-01-01

    In 1994, the International Atomic Energy Agency (IAEA) initiated a 5-year Co-ordinated Research Project (CRP) to determine geographical and racial differences in peak bone mineral density (BMD) in men and women aged 15-49 years. Distinct global differences in BMD were demonstrated at the hip and spine in both men and women approximating to one population standard deviation between populations with the highest and lowest BMD. These differences persist following adjustments for age, sex and body size. Such information is valuable in understanding the reasons for global differences in fracture rate and predicting future trends in fracture incidence. (author)

  5. Streptozotocin, Type I Diabetes Severity and Bone

    Directory of Open Access Journals (Sweden)

    Motyl Katherine

    2009-01-01

    Full Text Available Abstract As many as 50% of adults with type I (T1 diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2. An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.

  6. Streptozotocin, Type I Diabetes Severity and Bone

    Directory of Open Access Journals (Sweden)

    Motyl Katherine

    2009-03-01

    Full Text Available Abstract As many as 50% of adults with type I (T1 diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2. An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.

  7. Polymorphisms in the interleukin-6 receptor gene are associated with bone mineral density and body mass index in Spanish postmenopausal women.

    Science.gov (United States)

    Bustamante, M; Nogués, X; Mellibovsky, L; Agueda, L; Jurado, S; Cáceres, E; Blanch, J; Carreras, R; Díez-Pérez, A; Grinberg, D; Balcells, S

    2007-11-01

    Osteoporosis and obesity are complex diseases with a strong genetic component. Bone mineral density (BMD) and body mass index (BMI) linkage studies identified a locus at 1q21-23, where the interleukin-6 receptor (IL6R) gene is located. The IL6R and the gp130 receptors are the mediators of IL6 action. Serum levels of IL6 and sIL6R (the soluble form of IL6R) are higher in several diseases such as osteoporosis or obesity. Variants at IL6R have been associated with BMI and obesity. However, IL6R is an as-yet-unexplored osteoporosis candidate gene. In the present study we analysed two polymorphisms in the IL6R promoter, -1435 C/T (rs3887104) and -208 G/A (rs4845617), and the Asp358Ala polymorphism (rs8192284), in relation to both BMD and BMI in a cohort of 559 postmenopausal Spanish women. The promoter polymorphisms, -1435 C/T and -208 G/A were associated with femoral neck (FN) BMD (P=0.011 and P=0.025 respectively). The C-A and T-G promoter haplotypes were also associated with FN BMD. Additionally, the Asp358Ala variant was associated with lumbar spine BMD (P=0.038). Finally, the -208 G/A polymorphism and the C-G and C-A haplotypes were associated with BMI and obesity, where GG was the risk genotype (P=0.033 for BMI; P=0.010 for obesity). These data suggest that variants in the IL6R gene are not only involved in the determination of BMI but also relevant for the determination of BMD. The IL6R gene may belong to the growing list of genes known to be involved in both phenotypes.

  8. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Ammann, P

    2014-11-01

    Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal

  9. Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014).

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2014-10-01

    It has been recently proposed that leaf vein length per area (VLA) is the major determinant of leaf mass per area ( MA), and would thereby determine other traits of the leaf economic spectrum (LES), such as photosynthetic rate per mass (A(mass)), nitrogen concentration per mass (N(mass)) and leaf lifespan (LL). In a previous paper we argued that this 'vein origin' hypothesis was supported only by a mathematical model with predestined outcomes, and that we found no support for the 'vein origin' hypothesis in our analyses of compiled data. In contrast to the 'vein origin' hypothesis, empirical evidence indicated that VLA and LMA are independent mechanistically, and VLA (among other vein traits) contributes to a higher photosynthetic rate per area (A(area)), which scales up to driving a higher A(mass), all independently of LMA, N(mass) and LL. In their reply to our paper, Blonder et al. (2014) raised questions about our analysis of their model, but did not address our main point, that the data did not support their hypothesis. In this paper we provide further analysis of an extended data set, which again robustly demonstrates the mechanistic independence of LMA from VLA, and thus does not support the 'vein origin' hypothesis. We also address the four specific points raised by Blonder et al. (2014) regarding our analyses. We additionally show how this debate provides critical guidance for improved modelling of LES traits and other networks of phenotypic traits that determine plant performance under contrasting environments. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Mother and offspring fitness in an insect with maternal care: phenotypic trade-offs between egg number, egg mass and egg care

    Science.gov (United States)

    2014-01-01

    Background Oviparous females have three main options to increase their reproductive success: investing into egg number, egg mass and/or egg care. Although allocating resources to either of these three components is known to shape offspring number and size, potential trade-offs among them may have key impacts on maternal and offspring fitness. Here, we tested the occurrence of phenotypic trade-offs between egg number, egg mass and maternal expenditure on egg care in the European earwig, Forficula auricularia, an insect with pre- and post-hatching forms of maternal care. In particular, we used a series of laboratory observations and experiments to investigate whether these three components non-additively influenced offspring weight and number at hatching, and whether they were associated with potential costs to females in terms of future reproduction. Results We found negative associations between egg number and mass as well as between egg number and maternal expenditure on egg care. However, these trade-offs could only be detected after statistically correcting for female weight at egg laying. Hatchling number was not determined by single or additive effects among the three life-history traits, but instead by pairwise interactions among them. In particular, offspring number was positively associated with the number of eggs only in clutches receiving high maternal care or consisting of heavy eggs, and negatively associated with mean egg mass in clutches receiving low care. In contrast, offspring weight was positively associated with egg mass only. Finally, maternal expenditure on egg care reduced their future reproduction, but this effect was only detected when mothers were experimentally isolated from their offspring at egg hatching. Conclusions Overall, our study reveals simultaneous trade-offs between the number, mass and care of eggs. It also demonstrates that these factors interact in their impact on offspring production, and that maternal expenditure on egg

  11. Mass and elemental concentrations of air bone particles at Kuala Lumpur site in 2000 to 2006

    International Nuclear Information System (INIS)

    Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2008-01-01

    Atmospheric Pollution due to air bone particle is a major concern to many cities in the Southeast Asian region, including Kuala Lumpur. Within the last six years air particulate samples have been collected from a site in Kuala Lumpur and measured for their PM10, PM2.5 and elemental concentrations. The results showed that the daily PM10 (<10μ diameter) concentrations were generally acceptable but the values occasionally very high, especially during the haze episodes. The PM10 annual average values were just below the national set standard and these values were mostly contributed by the fine particles (<2μ diameter) concentration. The annual average for PM2.5 (fine particle) concentrations over the past few years were considerably high where elemental carbon, sulfur and potassium were the main components. (Author)

  12. Determinants of Growth, Adiposity and Bone Mass in Early Life : The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise)

    2016-01-01

    markdownabstractAbstract Environmental influences during fetal life and early infancy have been suggested to influence body composition throughout the life-course. Especially poor fetal nutrition and fetal growth restriction have been designated important risk factors for gaining high fat mass

  13. Hyperthyroidism and Hypothyroidism in Male Mice and Their Effects on Bone Mass, Bone Turnover, and the Wnt Inhibitors Sclerostin and Dickkopf-1.

    Science.gov (United States)

    Tsourdi, Elena; Rijntjes, Eddy; Köhrle, Josef; Hofbauer, Lorenz C; Rauner, Martina

    2015-10-01

    Thyroid hormones are key regulators of bone homeostasis, and Wnt signaling has been implicated in thyroid hormone-associated bone loss. Here we tested whether hyperthyroidism and hypothyroidism interfere with dickkopf-1 (DKK1) and sclerostin, two inhibitors of Wnt signaling. Twelve-week-old male C57BL/6 mice were rendered either hyperthyroid or hypothyroid. Hyperthyroid mice displayed decreased trabecular (-54%, P hyperthyroid mice and low bone turnover in hypothyroid mice. In vivo, serum DKK1 concentrations were decreased in hyperthyroid mice (-24%, P hyperthyroid mice (+50%, P hyperthyroid (P hyperthyroid but not in hypothyroid mice. Our data show that thyroid hormone-induced changes in bone remodeling are associated with a divergent regulation of DKK1 and sclerostin. Thus, the modulation of Wnt signaling by thyroid hormones may contribute to thyroid hormone-associated bone disease and altered expression of Wnt inhibitors may emerge as potential therapeutic targets.

  14. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, Jens L; Matsumoto, Keitaro

    2008-01-01

    .0 +/- 1.4%); nutrient group: 0.953 +/- 0.051 to 0.978 +/- 0.043 g/mm(3) (3.8 +/- 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report...... that nutrient supplementation results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  15. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, J.L.; Matsumoto, K.

    2008-01-01

    .4%); nutrient group: 0.953 ± 0.051 to 0.978 ± 0.043 g/mm3 (3.8 ± 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report that nutrient supplementation...... results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal maintenance.......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  16. Reduced bone mass in obese young rats through PPAR omega suppression of wnt/beta-catenin signaling and direct action of free fatty acids (NEFA)

    Science.gov (United States)

    The relationship of obesity to skeletal development is unclear. We utilized total enteral nutrition to feed high and low fat diets (HFD and LFD) to rats for 4 wks to produce obesity. Weight gain was matched but fat mass, serum leptin and NEFA were increased by HFD (P < 0.05). HFD lowered total bone ...

  17. Sequential treatment with basic fibroblast growth factor and PTH is more efficacious than treatment with PTH alone for increasing vertebral bone mass and strength in osteopenic ovariectomized rats

    DEFF Research Database (Denmark)

    Iwaniec, U.T.; Mosekilde, Li.; Mitova-Caneva, N.G.

    2002-01-01

    The study was designed 1) to determine whether treatment with basic fibroblast growth factor (bFGF) and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic ovariectomized rats, and 2) to assess whethe...

  18. A Phase 2 Trial on the Effect of Low-Dose Versus High-Dose Vitamin D Supplementation on Bone Mass in Adults with Neurofibromatosis 1 (NF1)

    Science.gov (United States)

    2015-10-01

    versus High-Dose Vitamin D Supplementation on Bone Mass in Adults with Neurofibromatosis 1 (NF1) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1...regulatory processes have taken more time than anticipated in the Statement of Work. An IND from the FDA to use high-dose vitamin D in the NF1

  19. Usefulness of circuit training at home for improving bone mass and muscle mass while losing fat mass in undergraduate female students.

    Science.gov (United States)

    Takahata, Yoko

    2018-05-09

    The purpose of this study was to determine whether or not circuit training at home affects the calcaneus quantitative ultrasound status as well as other indices of body composition among undergraduate female students. Forty-one adolescents were recruited (18.5 ± 0.6 years old). The stiffness index of the calcaneus, broadband ultrasound attenuation of the calcaneus, speed of sound of the calcaneus, and body frame index. This was a three-month intervention study, so the measurements were conducted at baseline, 2 months later, and 3 months later while the subjects underwent circuit training at home. The subjects were divided into two groups: namely, the exercising group and non-exercising group. In the exercising group, broadband ultrasound attenuation of the calcaneus was higher 2 months later (p = 0.033) as well as 3 months later (p = 0.036), and the speed of sound of the calcaneus was higher 3 months later (p = 0.018). In addition, the muscle mass was strongly positively correlated with the calcaneus QUS-SOS (p = 0.004), while the body fat percentage was a strongly negatively correlated with the calcaneus QUS-BUA (p = 0.043). In the non-exercising group, the stiffness index of the calcaneus was higher 2 months later (p = 0.002) as well as 3 months later (p = 0.002). Furthermore, the body percentage was strongly positively correlated with the calcaneus QUS-SI (p = 0.009). These findings suggest that the calcaneus quantitative ultrasound status and muscle mass while losing fat mass may be improved by means of a simple exercise regimen within a short period among undergraduate female students.

  20. Bone Mass Density and Risk of Breast Cancer and Survival in Older Women

    International Nuclear Information System (INIS)

    Ganry, O.; Baudoin, C.; Fardellone, P.; Peng, J.; Raverdy, N.

    2004-01-01

    Study objective: Older women with high bone mineral density (BMD) have an increased risk of breast cancer but it is not well known whether this association is associated with the stage of the tumor. The objective of the study is to determine if older women with high BMD are likely to develop a more aggressive form of breast cancer, as defined by mortality. Patients: We prospectively studied 1504 women who were 75 years of age or older at the entry in the study (range, 75-90 years), between 1992 and 1994. BMD was measured by dual-photon X-ray absorptiometry at three skeletal sites (trochanter, Ward's triangle, femoral neck). The women were followed for a mean of 7 years for the occurrence of breast cancer. Cox proportional-hazards models were used to obtain estimates of the relative risk of breast cancer and relative risk of death according to the BMD. Main results: Forty-five incident breast cancer cases were identified. In multivariate analyses of the risk of breast cancer for women in the highest tertile of BMD was greater than for women in the lowest tertile. Indeed, the women with a trochanter BMD in the highest tertile were at 2.3-fold increased risk compared with women in the lowest tertile. The women with highest tertile BMD measured at the Ward's triangle and at the femoral neck were respectively at 2.2-and 3.3-fold increased risk compared with women at the lowest risk. The 7-year survival rates were markedly less favorable for women in the second and third tertile of the three skeletal sites compared with the lowest tertile. The risk of death was greater for women in the highest tertile of BMD than for women in the lowest tertile at every skeletal site. Conclusion: Elderly women with high BMD have an increased risk of breast cancer, especially advanced cancer, compared with women with low BMD

  1. Dating of two human fossil bones from Romania by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Olariu, Agata; Skog, Goeran; Hellborg, Ragnar; Stenstroem, Kristina; Faarinen, Mikko; Persson, Per; Alexandrescu, Emilian

    2005-01-01

    In this study we have dated two fossil remains found in Romania, by the method of radiocarbon using the technique of the accelerator mass spectrometry. The human fossil remains from Woman's cave, Baia de Fier, have been dated to the age 30150 ± 800 years BP, and the skull, from the Cioclovina cave has been dated to the age 29000 ± 700 years BP. These are among the most ancient dated human fossil remains from Romania, possibly belonging to the upper Paleolithic, the Aurignacian period. (authors)

  2. Evaluation of the peak bone mass by quantitative heel ultrasound in young women of the centre of Italy

    Directory of Open Access Journals (Sweden)

    A. Puxeddu

    2011-09-01

    Full Text Available Objective: To measure the reference young adult mean values in healthy women of the centre of Italy by Quantitative heel UltraSound (QUS. Methods: The study group was composed by 70 caucasian women: mean age was 25.4 years (Standard Deviation 4.7, mean weight was 58 Kg (SD 8.2, mean height was 166 cm (SD 5.8, mean BMI was 20.9 kg/m2 (SD 2.5. Every subject was evaluated firstly with an original questionnaire to discover risk factors (like for example steroids consumption, recent fractures of the lower limb, then was measured by quantitative heel ultrasonometry Hologic Sahara. Results: Mean extimated Bone Mineral Density (BMD 0.588 g/cm2 (SD 0.124 mean Quantitative Ultrasound Index (QUI 105.0 (SD 19.6, mean Speed of Sound (SOS 1564.2 m/s (SD 31.4, mean Broadband Ultrasound Attenuation (BUA 84.8 dB/MHz (SD 17.4. No significant correlation was found between QUS parameters and anthropometric data. A correlation was found between every QUS parameters. No significant differences were found about QUI and extimated BMD, between our results and Hologic normative data for European women. Conclusions: It is very important to develop specific reference values for any measurement device and site of skeleton especially in the age of reaching the peak bone mass because the T score is then measured referring to these data. Usually the normative data are supplied by manufacturer and are based on large multicentric study. In our opinion it could be helpful to verify if these data are compatible with the population examined in every region.

  3. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice

    DEFF Research Database (Denmark)

    Xu, T; Bianco, P; Fisher, L W

    1998-01-01

    The resilience and strength of bone is due to the orderly mineralization of a specialized extracellular matrix (ECM) composed of type I collagen (90%) and a host of non-collagenous proteins that are, in general, also found in other tissues. Biglycan (encoded by the gene Bgn) is an ECM proteoglycan...... apparently normal at birth, these mice display a phenotype characterized by a reduced growth rate and decreased bone mass due to the absence of Bgn. To our knowledge, this is the first report in which deficiency of a non-collagenous ECM protein leads to a skeletal phenotype that is marked by low bone mass...... that becomes more obvious with age. These mice may serve as an animal model to study the role of ECM proteins in osteoporosis....

  4. Rapid maxillary anterior teeth retraction en masse by bone compression: a canine model.

    Directory of Open Access Journals (Sweden)

    Chufeng Liu

    Full Text Available The present study sought to establish an animal model to study the feasibility and safety of rapid retraction of maxillary anterior teeth en masse aided by alveolar surgery in order to reduce orthodontic treatment time.Extraction of the maxillary canine and alveolar surgery were performed on twelve adult beagle dogs. After that, the custom-made tooth-borne distraction devices were placed on beagles' teeth. Nine of the dogs were applied compression at 0.5 mm/d for 12 days continuously. The other three received no force as the control group. The animals were killed in 1, 14, and 28 days after the end of the application of compression.The tissue responses were assessed by craniometric measurement as well as histological examination. Gross alterations were evident in the experimental group, characterized by anterior teeth crossbite. The average total movements of incisors within 12 days were 4.63±0.10 mm and the average anchorage losses were 1.25±0.12 mm. Considerable root resorption extending into the dentine could be observed 1 and 14 days after the compression. But after consolidation of 28 days, there were regenerated cementum on the dentine. There was no apparent change in the control group. No obvious tooth loosening, gingival necrosis, pulp degeneration, or other adverse complications appeared in any of the dogs.This is the first experimental study for testing the technique of rapid anterior teeth retraction en masse aided by modified alveolar surgery. Despite a preliminary animal model study, the current findings pave the way for the potential clinical application that can accelerate orthodontic tooth movement without many adverse complications.It may become a novel method to shorten the clinical orthodontic treatment time in the future.

  5. Dating of cremated bones

    OpenAIRE

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a r...

  6. Unicameral bone cyst of a cervical vertebral body and lateral mass with associated pathological fracture in a child. Case report and review of the literature.

    Science.gov (United States)

    Snell, B E; Adesina, A; Wolfla, C E

    2001-10-01

    The authors present the case of a 10-year-old girl with a history of cervical trauma in whom a cystic lesion was found to involve all three columns of C-7 with evidence of pathological fracture. Computerized tomography scanning revealed a lytic lesion with sclerotic margins involving the left vertebral body, pedicle, lateral mass, and lamina of C-7 with an associated pathological compression fracture. Magnetic resonance imaging demonstrated mixed signal on both T1- and T2-weighted sequences, with cystic and enhancing solid portions. Magnetic resonance angiography demonstrated anterior displacement of the left vertebral artery at C-7. The patient underwent C-7 subtotal corpectomy and posterior resection of the tumor mass; anterior and posterior fusion were performed in which instrumentation was placed. Histological examination disclosed cystic areas lined by fibromembranous tissue with calcification and osteoid deposits consistent with unicameral bone cyst. Of the four previously reported cases of unicameral bone cysts in the cervical spine, none involved all three columns simultaneously or was associated with pathological fracture. The most common differential diagnostic considerations for cystic lesions in the spine are aneurysmal bone cyst, osteoblastoma, or giant cell tumor of bone. Unicameral bone cyst, in this location, although rare, must be considered in the differential diagnosis and may require resection and spinal reconstruction.

  7. Alendronate has a residual effect on bone mass in postmenopausal Danish women up to 7 years after treatment withdrawal

    DEFF Research Database (Denmark)

    Bagger, Yu Z; Tankó, László B; Alexandersen, Peter

    2003-01-01

    for 7, 5, or 3 yr, respectively. Bone mineral density of the lumbar spine, hip, and forearm was measured by dual-energy x-ray absorptiometry. Biochemical markers of bone turnover were induced serum C-terminal telopeptides of type I collagen (CTX) and osteocalcin. Women who received alendronate (2...... was found in women treated with alendronate 20 mg per day for 2 yr (9.7%, P=0.01 vs. placebo). The rate of bone loss after alendronate withdrawal was comparable to the bone loss observed in the placebo group. Bone markers tended to reverse back to normal levels, but were still affected even several years...

  8. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    Science.gov (United States)

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of Nordic Walking Training on Muscle Strength and the Electromyographic Activity of the Lower Body in Women With Low Bone Mass

    Directory of Open Access Journals (Sweden)

    Ossowski Zbigniew

    2016-06-01

    Full Text Available Introduction. Osteoporosis and osteopenia are related to changes in the quantity and quality of skeletal muscle and contribute to a decreased level of muscle strength. The purpose of this study was to evaluate the impact of Nordic walking training on muscle strength and the electromyographic (EMG activity of the lower body in women with low bone mass. Material and methods. The participants of the study were 27 women with low bone mass. The sample was randomly divided into two groups: a control group and an experimental group. Women from the experimental group participated in 12 weeks of regular Nordic walking training. Functional strength was assessed with a 30-second chair stand test. The EMG activities of the gluteus maximus (GMax, rectus femoris (RF, biceps femoris (BF, soleus (SOL, and lumbar (LB muscles were measured using a surface electromyogram. Results. Nordic walking training induced a significant increase in the functional strength (p = 0.006 of the lower body and activity of GMax (p = 0.013 and a decrease in body mass (p = 0.006 in women with reduced bone mass. There was no statistically significant increase in the EMG activities of the RF, BF, SOL, or LB muscles. The study did not indicate any significant changes in functional muscle strength, the EMG activity of the lower body, or anthropometry in women from the control group. Conclusions. Nordic walking training induces positive changes in lower body strength and the electromyographic activity of the gluteus maximus as well as a decrease in body mass in women with low bone mass.

  10. High-intensity intermittent "5-10-15" running reduces body fat, and increases lean body mass, bone mineral density, and performance in untrained subjects

    DEFF Research Database (Denmark)

    Ravnholt, Tanja Højegaard; Tybirk, Jonas; Jørgensen, Niklas Rye

    2018-01-01

    , and 5 s low-, moderate-, and high-speed running, respectively. Body fat mass was 4.3% lower (P bone mineral density was 1.1 and 0.9% higher (P bone turnover markers osteocalcin......The present study examined the effect of intense intermittent running with 5 s sprints on body composition, fitness level, and performance in untrained subjects aged 36-53 years. For 7 weeks, the subjects carried out 3 days a week 5-10-15 training consisting of 3-9 blocks of 4 repetitions of 15, 10...

  11. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  12. Age- and sex-related changes in bone mass measured by neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Aloia, J.F.; Vaswani, A.N.; Zanzi, I.; Vartsky, D.; Ellis, K.J.

    1981-01-01

    Total-body calcium (TBCa) measurements have been employed in two basic types of studies. In the first type, serial measurements made on an individual patient are used to trace the time variation in body calcium. In the second type of study, the absolute total body calcium of an individual is determined and compared to a standard or predicted value in order to determine the deficit or excess of calcium. Generally, the standards are derived from data obtained from normal populations and grouped by the parameters of age and sex (mean value denoted TBCa/sub m/). In the study reported in this paper, the clinical usefulness of predicted calcium (TBCa/sub p/) is evaluated. The predicted value (TBCa/sub p/) for an individual is obtained with an algorithm utilizing values of sex and age, height and lean body mass (as derived from /sup 40/K measurement). The latter two components characterize skeletal size and body habitus, respectively. For the study, 133 white women and 71 white men ranging in age from 20 to 80 years were selected from a larger population. Individuals with evidence of metabolic calcium disorders or osteoporosis were excluded. Additionally, the women and men selected were first judged to have total body potassium levels in the normal range. For each age decade, the variance of TBCa values of these individuals, when expressed in terms of TBCa/sub p/, was significantly less than when expressed in terms of TBCa/sub m/. Thus, erroneous conclusions based on Ca deficit in osteoporosis could be drawn for individuals whose height and body size differ markedly from the average, as the variation of their TBCa values often exceeds the variation in the age and sex cohort. Data on a group of osteoporotic women were compared with the normal skeletal baseline values both in terms of the TBCa and the TBCa/sub p/ values.

  13. Age- and sex-related changes in bone mass measured by neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Aloia, J.F.; Vaswani, A.N.; Zanzi, I.; Vartsky, D.; Ellis, K.J.

    1981-01-01

    Total-body calcium (TBCa) measurements have been employed in two basic types of studies. In the first type, serial measurements made on an individual patient are used to trace the time variation in body calcium. In the second type of study, the absolute total body calcium of an individual is determined and compared to a standard or predicted value in order to determine the deficit or excess of calcium. Generally, the standards are derived from data obtained from normal populations and grouped by the parameters of age and sex (mean value denoted TBCa/sub m/). In the study reported in this paper, the clinical usefulness of predicted calcium (TBCa/sub p/) is evaluated. The predicted value (TBCa/sub p/) for an individual is obtained with an algorithm utilizing values of sex and age, height and lean body mass (as derived from 40 K measurement). The latter two components characterize skeletal size and body habitus, respectively. For the study, 133 white women and 71 white men ranging in age from 20 to 80 years were selected from a larger population. Individuals with evidence of metabolic calcium disorders or osteoporosis were excluded. Additionally, the women and men selected were first judged to have total body potassium levels in the normal range. For each age decade, the variance of TBCa values of these individuals, when expressed in terms of TBCa/sub p/, was significantly less than when expressed in terms of TBCa/sub m/. Thus, erroneous conclusions based on Ca deficit in osteoporosis could be drawn for individuals whose height and body size differ markedly from the average, as the variation of their TBCa values often exceeds the variation in the age and sex cohort. Data on a group of osteoporotic women were compared with the normal skeletal baseline values both in terms of the TBCa and the TBCa/sub p/ values

  14. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine

    Directory of Open Access Journals (Sweden)

    Pybus Brandon S

    2012-08-01

    Full Text Available Abstract Background The 8-aminoquinoline (8AQ drug primaquine (PQ is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ’s haemotoxic and anti-malarial properties are not fully understood. Methods In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP and mono-amine oxidase (MAO families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. Results Relative activity factor (RAF-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. Conclusions As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.

  15. Bone mineral density in postmenopausal Mexican-Mestizo women with normal body mass index, overweight, or obesity.

    Science.gov (United States)

    Méndez, Juan Pablo; Rojano-Mejía, David; Pedraza, Javier; Coral-Vázquez, Ramón Mauricio; Soriano, Ruth; García-García, Eduardo; Aguirre-García, María Del Carmen; Coronel, Agustín; Canto, Patricia

    2013-05-01

    Obesity and osteoporosis are two important public health problems that greatly impact mortality and morbidity. Several similarities between these complex diseases have been identified. The aim of this study was to analyze if different body mass indexes (BMIs) are associated with variations in bone mineral density (BMD) among postmenopausal Mexican-Mestizo women with normal weight, overweight, or different degrees of obesity. We studied 813 postmenopausal Mexican-Mestizo women. A structured questionnaire for risk factors was applied. Height and weight were used to calculate BMI, whereas BMD in the lumbar spine (LS) and total hip (TH) was measured by dual-energy x-ray absorptiometry. We used ANCOVA to examine the relationship between BMI and BMDs of the LS, TH, and femoral neck (FN), adjusting for confounding factors. Based on World Health Organization criteria, 15.13% of women had normal BMI, 39.11% were overweight, 25.96% had grade 1 obesity, 11.81% had grade 2 obesity, and 7.99% had grade 3 obesity. The higher the BMI, the higher was the BMD at the LS, TH, and FN. The greatest differences in size variations in BMD at these three sites were observed when comparing women with normal BMI versus women with grade 3 obesity. A higher BMI is associated significantly and positively with a higher BMD at the LS, TH, and FN.

  16. Three-dimensional geometric analysis of felid limb bone allometry.

    Directory of Open Access Journals (Sweden)

    Michael Doube

    Full Text Available Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry.Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  17. Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-Free Female's Lean Body and Bone Mass.

    Science.gov (United States)

    Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M

    2017-12-01

    To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

  18. Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice.

    Directory of Open Access Journals (Sweden)

    Mandy Sawitzky

    Full Text Available We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK, were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.

  19. Selected factors affecting bone mass in students with diagnosed obesity, aged 7–10 years, from Łódź

    Directory of Open Access Journals (Sweden)

    Anna Łupińska

    2017-12-01

    Full Text Available Introduction: Obesity may be a risk factor for mineralisation and bone structure disorders, contrary to a common belief in its protective effects on bone tissue. Aim: The aim of the study was to assess the relationship between selected risk factors and obesity indicators and bone mass in obese children. Material and methods: The study included 80 children aged between 7 and 10 years with excessive body weight (60 obese and 20 overweight; the reference group included 37 children with body weight appropriate for height. All patients underwent physical examination with anthropometric measurements. Parents were asked to complete a questionnaire. The average daily intake of selected nutrients was analysed using Dieta 2 software package. Densitometry (dual-energy X-ray absorptiometry, DXA was performed in all children to evaluate bone mass. Results: Obese and overweight children had statistically significantly higher total body BMD and total body BMD Z-score compared to control group. Most DXA parameters (except from volumetric bone mineral density were positively correlated with body weight, height and waist circumference. A significant positive correlation was found between physical activity and total body BMD. There was a negative correlation between the average daily intake of proteins, carbohydrates, magnesium and phosphorus in obese children and most DXA parameters (p < 0.05. Conclusions: Bone mass in obese children is positively affected by somatic features (body weight, height, waist circumference and body composition and physical activity, and negatively affected by increased intake of proteins, carbohydrates, phosphorus and magnesium. The calculated volumetric mineral bone density may reflect the actual bone mineral density and prevent DXA overestimation in obese children.

  20. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    Science.gov (United States)

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright

  1. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass.

    Science.gov (United States)

    Ryan, Zachary C; Craig, Theodore A; McGee-Lawrence, Meghan; Westendorf, Jennifer J; Kumar, Rajiv

    2015-04-01

    Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

    Science.gov (United States)

    Yu, Kanglun; Doherty, Alison H.; Genik, Paula C.; Gookin, Sara E.; Roteliuk, Danielle M.; Wojda, Samantha J.; Jiang, Zhi-Sheng; McGee-Lawrence, Meghan E.; Weil, Michael M.; Donahue, Seth W.

    2017-11-01

    During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.

  3. Effect of controlled early implant loading on bone healing and bone mass in guinea pigs, as assessed by micro-CT and histology.

    NARCIS (Netherlands)

    Smet, E. De; Jaecques, S.V.; Wevers, M.; Jansen, J.A.; Jacobs, R.; Sloten, J. van der; Naert, I.E.

    2006-01-01

    Without controlled loading, the failure of early loaded oral implants is higher than in delayed loading, unless loading regimens can be identified that stimulate bone formation. The purpose of this study was to investigate whether controlled early loading optimizes osseointegration. Six series of

  4. The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial.

    Science.gov (United States)

    Vogel, Kara A; Martin, Berdine R; McCabe, Linda D; Peacock, Munro; Warden, Stuart J; McCabe, George P; Weaver, Connie M

    2017-05-01

    Background: Calcium retention increases with increasing body mass index (BMI) on recommended calcium intakes. Dairy foods are an excellent source of essential nutrients that are needed to increase bone mineral content (BMC) and potentially decrease fracture. Objective: We compared children who were overweight with children who were healthy weight for the accrual of bone mass in response to an extra 3 servings dairy/d compared with usual intake. Design: Participants were 240 healthy boys and girls (64%), aged 8-15.9 y (mean ± SD age: 11.8 ± 1.5 y), who consumed low amounts of dairy (hip were observed between subjects who received the dairy intervention (achieved consumption of 1500 mg Ca/d) and subjects who did not (achieved 1000 mg Ca/d, which represented ∼2 cups milk or other dairy as part of the diet) with the exception of a tibial BMC gain, which was greater in the group who were given dairy ( P = 0.02). Body fat was not influenced by the diet assignment. Conclusions: Dairy food interventions generally had no effect on bone mineral acquisition or body composition either within or between weight groups. This study suggests that 2 cups milk or the dairy equivalent is adequate for normal bone gain between ages 8 and 16 y. This trial was registered at clinicaltrials.gov as NCT00635583. © 2017 American Society for Nutrition.

  5. Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Puolakkainen, Tero; Ma, Hongqian; Kainulainen, Heikki; Pasternack, Arja; Rantalainen, Timo; Ritvos, Olli; Heikinheimo, Kristiina; Hulmi, Juha J; Kiviranta, Riku

    2017-01-19

    Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral μCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.

  6. The impact of idiopathic childhood-onset growth hormone deficiency (GHD) on bone mass in subjects without adult GHD

    DEFF Research Database (Denmark)

    Lange, Martin; Müller, Jørn; Svendsen, Ole Lander

    2005-01-01

    Despite seemingly adequate growth hormone (GH) treatment during childhood, children with GH deficiency (GHD) have reduced bone mineral density (BMD) at final height. The aim was to evaluate BMD and bone mineral content (BMC) in adults treated for idiopathic childhood-onset (CO) GHD, 18 years after...

  7. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  8. Functional characterization and phenotypic monitoring of human hematopoietic stem cell expansion and differentiation of monocytes and macrophages by whole-cell mass spectrometry

    Directory of Open Access Journals (Sweden)

    Guido Vogel

    2018-01-01

    Full Text Available The different facets of macrophages allow them to play distinct roles in tissue homeostasis, tissue repair and in response to infections. Individuals displaying dysregulated macrophage functions are proposed to be prone to inflammatory disorders or infections. However, this being a cause or a consequence of the pathology remains often unclear. In this context, we isolated and expanded CD34+ HSCs from healthy blood donors and derived them into CD14+ myeloid progenitors which were further enriched and differentiated into macrophages. Aiming for a comprehensive phenotypic profiling, we generated whole-cell mass spectrometry (WCMS fingerprints of cell samples collected along the different stages of the differentiation process to build a predictive model using a linear discriminant analysis based on principal components. Through the capacity of the model to accurately predict sample's identity of a validation set, we demonstrate that WCMS profiles obtained from bona fide blood monocytes and respectively derived macrophages mirror profiles obtained from equivalent HSC derivatives. Finally, HSC-derived macrophage functionalities were assessed by quantifying cytokine and chemokine responses to a TLR agonist in a 34-plex luminex assay and by measuring their capacity to phagocytise mycobacteria. These functional read-outs could not discriminate blood monocytes-derived from HSC-derived macrophages. To conclude, we propose that this method opens new avenues to distinguish the impact of human genetics on the dysregulated biological properties of macrophages in pathological conditions.

  9. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women.

    Science.gov (United States)

    Andreoli, A; Bazzocchi, A; Celi, M; Lauro, D; Sorge, R; Tarantino, U; Guglielmi, G

    2011-10-01

    The knowledge of factors modulating the behaviour of bone mass is crucial for preventing and treating osteoporotic disease; among these factors, body weight (BW) has been shown to be of primary importance in postmenopausal women. Nevertheless, the relative effects of body composition indices are still being debated. Our aim was to analyze the relationship between body mass index (BMI), fat and lean mass and bone mineral density (BMD) in a large population of women. Moreover, this study represents a first important report on reference standard values for body composition in Italian women. Between 2005 and 2008, weight and height of 6,249 Italian women (aged 30-80 years) were measured and BMI was calculated; furthermore BMD, bone mineral content, fat and lean mass were measured by dual-energy X-ray absorptiometry. Individuals were divided into five groups by decades (group 1, 30.0-39.9; group 2, 40.0-49.9; group 3, 50.0-59.9; group 4, 60.0-69.9; group 5, 70.0-79.9). Differences among decades for all variables were calculated using a one-way analysis of variance (ANOVA) and Bonferroni test by the SPSS programme. Mean BW was 66.8±12.1 kg, mean height 159.1±6.3 cm and mean BMI 26.4±4.7 kg/m(2). According to BW and BMI, there was an increase of obesity with age, especially in women older than 50 years (posteoporosis in the examined population was 43.0% and 16.7%, respectively. Our data show that obesity significantly decreased the risk for osteoporosis but did not decrease the risk for osteopenia. It is strongly recommended that a strong policy regarding prevention of osteopenia and osteoporosis be commenced. An overall examination of our results suggests that both fat and lean body mass can influence bone mass and that their relative effect on bone could be modulated by their absolute amount and ratio to total BW.

  10. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency? A systematic literature analysis

    DEFF Research Database (Denmark)

    Klefter, O.; Feldt-Rasmussen, U.

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  11. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency?

    DEFF Research Database (Denmark)

    Klefter, Oliver; Feldt-Rasmussen, Ulla

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  12. The Mass-Dimension Relationships in the Mussels Mytilus Galloprovincialis (Mollusca, Bivalvia from Different Phenotypical Groups in Periphyton Populations near Odessa Coast, the North-Western Part of Black Sea

    Directory of Open Access Journals (Sweden)

    Govorin I. A.

    2016-06-01

    Full Text Available The data of the size-mass indices in the mussels Mytilus galloprovincialis (Lamarck, 1819 from three phenotypic groups - brown, dark violet (black and “zebra” (brown with radial black stripes shells in the periphyton settlements on the concrete traverses near Odessa coast, the North-western part of Black Sea (Ukraine, in March-November 2014-2015 are presented. A comparative evaluation has been made on the relationships of total mass of the mollusks, wet and dry mass of their soft body and mass of the shells on the one hand, and the size of animals (length of its shells on the other hand, in the each of phenotypical groups from the five marine beach areas. It is shown, that in the marine areas with different degrees of isolation from the open sea by coast-protection engineering constructions, the mussels from different phenotypes have almost the same size-mass characteristics. Only the dry weight of soft animal body, which indicated to fatness of mollusk and therefore demonstrated his biological prosperity in specific hydrological conditions, can serve as a reliable criterion which can mark the shellfish habitats with different gradients of environmental factors.

  13. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT

    NARCIS (Netherlands)

    Wilks, D.C.; Winwood, K.; Gilliver, S.F.; Kwiet, A.; Chatfield, M; Michaelis, I.; Sun, L.W.; Ferretti, J.L.; Sargeant, A.J.; Felsenberg, D.; Rittweger, J.

    2009-01-01

    Mechanical loading is thought to be a determinant of bone mass and geometry. Both ground reaction forces and tibial strains increase with running speed. This study investigates the hypothesis that surrogates of bone strength in male and female master sprinters, middle and long distance runners and

  14. Anorexia Nervosa and Bone

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  15. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors

    Science.gov (United States)

    Avanzini, Maria Antonietta; Bernardo, Maria Ester; Cometa, Angela Maria; Perotti, Cesare; Zaffaroni, Nadia; Novara, Francesca; Visai, Livia; Moretta, Antonia; Del Fante, Claudia; Villa, Raffaella; Ball, Lynne M.; Fibbe, Willem E.; Maccario, Rita; Locatelli, Franco

    2009-01-01

    Background Mesenchymal stromal cells are employed in various different clinical settings in order to modulate immune response. However, relatively little is known about the mechanisms responsible for their immunomodulatory effects, which could be influenced by both the cell source and culture conditions. Design and Methods We tested the ability of a 5% platelet lysate-supplemented medium to support isolation and ex vivo expansion of mesenchymal stromal cells from full-term umbilical-cord blood. We also investigated the biological/functional properties of umbilical cord blood mesenchymal stromal cells, in comparison with platelet lysate-expanded bone marrow mesenchymal stromal cells. Results The success rate of isolation of mesenchymal stromal cells from umbilical cord blood was in the order of 20%. These cells exhibited typical morphology, immunophenotype and differentiation capacity. Although they have a low clonogenic efficiency, umbilical cord blood mesenchymal stromal cells may possess high proliferative potential. The genetic stability of these cells from umbilical cord blood was demonstrated by a normal molecular karyotype; in addition, these cells do not express hTERT and telomerase activity, do express p16ink4a protein and do not show anchorage-independent cell growth. Concerning alloantigen-specific immune responses, umbilical cord blood mesenchymal stromal cells were able to: (i) suppress T- and NK-lymphocyte proliferation, (ii) decrease cytotoxic activity and (iii) only slightly increase interleukin-10, while decreasing interferon-γ secretion, in mixed lymphocyte culture supernatants. While an indoleamine 2,3-dioxygenase-specific inhibitor did not reverse mesenchymal stromal cell-induced suppressive effects, a prostaglandin E2-specific inhibitor hampered the suppressive effect of both umbilical cord blood- and bone marrow-mesenchymal stromal cells on alloantigen-induced cytotoxic activity. Mesenchymal stromal cells from both sources expressed HLA

  16. Hovenia dulcis Thunb extract and its ingredient methyl vanillate activate Wnt/β-catenin pathway and increase bone mass in growing or ovariectomized mice.

    Directory of Open Access Journals (Sweden)

    Pu-Hyeon Cha

    Full Text Available The Wnt/β-catenin pathway is a potential target for development of anabolic agents to treat osteoporosis because of its role in osteoblast differentiation and bone formation. However, there is no clinically available anti-osteoporosis drug that targets this Wnt/β-catenin pathway. In this study, we screened a library of aqueous extracts of 350 plants and identified Hovenia dulcis Thunb (HDT extract as a Wnt/β-catenin pathway activator. HDT extract induced osteogenic differentiation of calvarial osteoblasts without cytotoxicity. In addition, HDT extract increased femoral bone mass without inducing significant weight changes in normal mice. In addition, thickness and area of femoral cortical bone were also significantly increased by the HDT extract. Methyl vanillate (MV, one of the ingredients in HDT, also activated the Wnt/β-catenin pathway and induced osteoblast differentiation in vitro. MV rescued trabecular or cortical femoral bone loss in the ovariectomized mice without inducing any significant weight changes or abnormality in liver tissue when administrated orally. Thus, natural HDT extract and its ingredient MV are potential anabolic agents for treating osteoporosis.

  17. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  18. Phenotypic variability in patients with osteogenesis imperfecta caused by BMP1 mutations.

    Science.gov (United States)

    Pollitt, Rebecca C; Saraff, Vrinda; Dalton, Ann; Webb, Emma A; Shaw, Nick J; Sobey, Glenda J; Mughal, M Zulf; Hobson, Emma; Ali, Farhan; Bishop, Nicholas J; Arundel, Paul; Högler, Wolfgang; Balasubramanian, Meena

    2016-12-01

    Osteogenesis Imperfecta (OI) is an inherited bone fragility disorder most commonly associated with autosomal dominant mutations in the type I collagen genes. Autosomal recessive mutations in a number of genes have also been described, including the BMP1 gene that encodes the mammalian Tolloid (mTLD) and its shorter isoform bone morphogenic protein-1 (BMP1). To date, less than 20 individuals with OI have been identified with BMP1 mutations, with skeletal phenotypes ranging from mild to severe and progressively deforming. In the majority of patients, bone fragility was associated with increased bone mineral density (BMD); however, the full range of phenotypes associated with BMP1 remains unclear. Here, we describe three children with mutations in BMP1 associated with a highly variable phenotype: a sibship homozygous for the c.2188delC mutation that affects only the shorter BMP1 isoform and a further patient who is compound heterozygous for a c.1293C>G nonsense mutation and a c.1148G>A missense mutation in the CUB1 domain. These individuals had recurrent fractures from early childhood, are hypermobile and have no evidence of dentinogenesis imperfecta. The homozygous siblings with OI had normal areal BMD by dual energy X-ray absorptiometry whereas the third patient presented with a high bone mass phenotype. Intravenous bisphosphonate therapy was started in all patients, but discontinued in two patients and reduced in another due to concerns about increasing bone stiffness leading to chalk-stick fractures. Given the association of BMP1-related OI with very high bone material density, concerns remain whether anti-resorptive therapy is indicated in this ultra-rare form of OI.© 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  20. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    Science.gov (United States)

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  1. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children.

    Science.gov (United States)

    Reyes, M Loreto; Hernández, Marta; Holmgren, Luz J; Sanhueza, Enrique; Escobar, Raúl G

    2011-08-01

    Disuse osteoporosis in children is a progressive disease that can affect quality of life. High-frequency, low-magnitude vibration (HFLMV) acts as an anabolic signal for bone and muscle. We undertook a prospective, randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of regional HFLMV in disabled children. Sixty-five children 6 to 9 year of age were randomized into three groups: placebo, 60 Hz, and 90 Hz. In the two active groups, a 0.3-g mechanical vibration was delivered to the radii and femurs for 5 minutes each day. After 6 months, the main endpoint was bone mineral density (BMD) at the ultradistal radius (UDR), 33% radii (33%R), and femoral necks (FN). Secondary endpoints were area and bone mineral content (BMC) at the UDR, 33%R, and FN; grip force of the upper and lower limbs; motor function; and PedsQL evaluation. An intention-to-treat analysis was used. Fifty-seven children (88%) completed the protocol. A significant increase was observed in the 60-Hz group relative to the other groups in BMD at the UDR (p = .011), in grip force of the upper limbs (p = .035), and in the "daily activities item" (p = .035). A mixed model to evaluate the response to intervention showed a stronger effect of 60 Hz on patients with cerebral palsy on the UDR and that between-subject variability significantly affected the response. There were no reported side effects of the intervention. This work provides evidence that regional HFLMV is an effective and safe strategy to improve bone mass, muscle strength, and possibly independence in children with motor disabilities. Copyright © 2011 American Society for Bone and Mineral Research.

  2. Peak-bone-mass development in young adults: effects of study program related levels of occupational and leisure time physical activity and exercise. A prospective 5-year study.

    Science.gov (United States)

    Kemmler, W; Bebenek, M; von Stengel, S; Bauer, J

    2015-02-01

    Young adulthood is characterized by profound life-style changes. This study suggests that reduction of sport or exercise, induced by alteration of the occupational situation, negatively impacts generation/maintenance of peak bone mass. In order to compensate occupational-related reductions of physical activity, workplace exercise programs will be helpful. Only few studies have determined the effect of physical activity or physical exercise on bone mineral density (BMD) in the period of late skeletal maturation, i.e. around peak bone mass. The aim of this article was to determine the long-term effect of different levels of physical activity and exercise directly and indirectly derived by occupation during young adulthood. Sixty-one male and female dental students (DES) and 53 male and female sport students (SPS) 21±2 years old were accompanied over the course (4.8±0.5 years) of their study program. BMD at the lumbar spine (LS), hip, and whole body (WB) were determined using dual-energy X-ray absorptiometry. Parameters of physical activity increased non-significantly in both groups with no relevant differences between the groups. Indices of exercise, however, increased significantly in the SPS group while a significant decrease was assessed for the DES group. Independent of gender, BMD of the SPS increased significantly (p≤0.007) at all skeletal sites (LS, 2.4±3.9%; hip, 1.6±3.5%; WB, 1.8±2.8%) while BMD of the DES remained unchanged at LS (-0.6±4.4%, p=0.432) and WB (0.5±1.9%, p=0.092) but decreased significantly at the hip (-1.9±4.3%, p=0.010). BMD-changes at LS, hip, and WB differ significantly between SPS and DES (p≤0.017). Results remained unchanged after adjusting for baseline BMD-values that differed (p=0.030 to p=0.082) in favor of the SPS group. Changes of exercise levels directly or indirectly caused by occupational factors during young adulthood significantly affected generation and/or maintenance of peak bone mass. Compensatory exercise is

  3. The influence of lifestyle, menstrual function and oral contraceptive use on bone mass and size in female military cadets

    Directory of Open Access Journals (Sweden)

    Tendy Susan

    2007-08-01

    Full Text Available Abstract Purpose To determine the influence of menstrual irregularity, oral contraceptive use and other factors on bone mineral density (BMD and bone size at different skeletal sites in 135 college-aged fit women. Methods Menstrual history, oral contraceptive use, exercise history, and nutritional factors including calcium, caffeine, and alcohol intake as well as tobacco use were determined by written survey. Height, weight and fitness levels were measured. Spine and hip BMD were measured by dual x-ray absorptiometry (DXA, calcaneus BMD by peripheral DXA, and tibial bone mineral content (BMC and size by peripheral Quantitative Computed Tomography (pQCT. Results The mean age was 18.4 ± 0.8 years. Weight and prior exercise were positively related to BMD at most skeletal sites and to tibial bone size. Milk intake was positively related to calcaneal BMD, tibial BMC and cortical thickness. Fracture history was an important predictor of spine, hip and heel BMD. Women who had ≥ 10 menstrual cycles in the year prior to BMD measurement had higher BMD at all sites as well as a greater tibial mineral content and cortical thickness than women who had oligomenorrhea/amenorrhea (≤ 9 cycles in the prior year; all p p p = 0.04, smaller tibial periosteal circumference and lower tibial mineral content (p Conclusion In a population of fit, college-aged women, OC use and oligomenorrhea were associated with reduced BMD and bone size. Weight, as well as prior exercise and milk intake was positively related to bone density and size at some skeletal sites. Understanding these relationships would help improve skeletal health in young women.

  4. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  5. Risk of low bone mineral density and low body mass index in patients with non-celiac wheat-sensitivity: a prospective observation study.

    Science.gov (United States)

    Carroccio, Antonio; Soresi, Maurizio; D'Alcamo, Alberto; Sciumè, Carmelo; Iacono, Giuseppe; Geraci, Girolamo; Brusca, Ignazio; Seidita, Aurelio; Adragna, Floriana; Carta, Miriam; Mansueto, Pasquale

    2014-11-28

    Non-celiac gluten sensitivity (NCGS) or 'wheat sensitivity' (NCWS) is included in the spectrum of gluten-related disorders. No data are available on the prevalence of low bone mass density (BMD) in NCWS. Our study aims to evaluate the prevalence of low BMD in NCWS patients and search for correlations with other clinical characteristics. This prospective observation study included 75 NCWS patients (63 women; median age 36 years) with irritable bowel syndrome (IBS)-like symptoms, 65 IBS and 50 celiac controls. Patients were recruited at two Internal Medicine Departments. Elimination diet and double-blind placebo controlled (DBPC) wheat challenge proved the NCWS diagnosis. All subjects underwent BMD assessment by Dual Energy X-Ray Absorptiometry (DXA), duodenal histology, HLA DQ typing, body mass index (BMI) evaluation and assessment for daily calcium intake. DBPC cow's milk proteins challenge showed that 30 of the 75 NCWS patients suffered from multiple food sensitivity. Osteopenia and osteoporosis frequency increased from IBS to NCWS and to celiac disease (CD) (P <0.0001). Thirty-five NCWS patients (46.6%) showed osteopenia or osteoporosis. Low BMD was related to low BMI and multiple food sensitivity. Values of daily dietary calcium intake in NCWS patients were significantly lower than in IBS controls. An elevated frequency of bone mass loss in NCWS patients was found; this was related to low BMI and was more frequent in patients with NCWS associated with other food sensitivity. A low daily intake of dietary calcium was observed in patients with NCWS.

  6. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.

  7. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran

    OpenAIRE

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Abedi, Iraj; Janghorbani, Mohsen

    2013-01-01

    Objective. Although several studies have investigated the association between body mass index (BMI) and bone mineral density (BMD), the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft) and lumbar vertebrae (L2-L4) using a Dual-Energy X-ra...

  8. The association between vitamin D status and parameters for bone density and quality is modified by Body Mass Index

    NARCIS (Netherlands)

    Sohl, E.; Jongh, de R.T.; Swart, K.M.A.; Enneman, A.W.; Wijngaarden, van J.P.; Dijk, van S.C.; Ham, A.C.; Zwaluw, van der N.L.; Brouwer-Brolsma, E.M.; Velde, van der N.; Groot, de C.P.G.M.; Velde, te S.J.; Lips, P.; Schoor, van N.M.

    2015-01-01

    The association of vitamin D status with bone mineral density (BMD) and Quantitative Ultrasound measurements (QUS) has been inconsistent in previous studies, probably caused by moderating effects. This study explored (1) the association of vitamin D status with QUS and BMD, and (2) whether these

  9. The Association Between Vitamin D Status and Parameters for Bone Density and Quality is Modified by Body Mass Index

    NARCIS (Netherlands)

    Sohl, E.; de Jongh, R.T.; Swart, C.M.A.; Enneman, A.W.; van Wijngaarden, J.P.; van Dijk, S.C.; van der Ham, A.C.; van der Zwaluw, N.L.; Brouwer-Brolsma, E.M.; van der Velde, N.; de Groot, C.P.G.M.; te Velde, S.J.; Lips, P.; van Schoor, N.M.

    2015-01-01

    The association of vitamin D status with bone mineral density (BMD) and Quantitative Ultrasound measurements (QUS) has been inconsistent in previous studies, probably caused by moderating effects. This study explored (1) the association of vitamin D status with QUS and BMD, and (2) whether these

  10. Bone mass and vitamin D levels in Parkinson’s disease: is there any difference between genders?

    Science.gov (United States)

    Ozturk, Erhan Arif; Gundogdu, Ibrahim; Tonuk, Burak; Kocer, Bilge Gonenli; Tombak, Yasemin; Comoglu, Selcuk; Cakci, Aytul

    2016-01-01

    [Purpose] The aim of this study was to determine the bone mineral density, vitamin D level, and frequencies of osteopenia and osteoporosis in patients with Parkinson’s disease and to compare male and female patients with the controls separately. [Subjects and Methods] One hundred fifteen Parkinson’s disease patients (47 males, 68 females; age range: 55–85 years) and 117 age- and gender-matched controls (47 males, 70 females) were enrolled in the study. Bone mineral density measured by dual-energy X-ray absorptiometry and serum D vitamin levels of each participant were recorded. [Results] The mean lumbar spine, femur neck, and total femur bone mineral density levels, T-scores, and vitamin D levels were found to be significantly lower in Parkinson’s disease patients in both genders. Furthermore, osteoporosis rates were found be significantly higher only in female Parkinson’s disease patients compared with female controls. [Conclusion] Data from the present study revealed that while osteoporosis was significantly higher only in female Parkinson’s disease patients, all Parkinson’s disease patients had lower bone mineral density scores and vitamin D levels compared with the controls regardless of gender, suggesting that clinicians should pay attention to the osteoporosis risk in Parkinson’s disease and that adequate preventive measures should be taken in order to limit the future risk due to osteoporotic fractures. PMID:27630398

  11. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Science.gov (United States)

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  12. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Directory of Open Access Journals (Sweden)

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  13. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  14. Bone and fat connection in aging bone.

    Science.gov (United States)

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  15. Dietary patterns in Canadian men and women ages 25 and older: relationship to demographics, body mass index, and bone mineral density

    Directory of Open Access Journals (Sweden)

    Towheed Tanveer

    2010-01-01

    Full Text Available Abstract Background Previous research has shown that underlying dietary patterns are related to the risk of many different adverse health outcomes, but the relationship of these underlying patterns to skeletal fragility is not well understood. The objective of the study was to determine whether dietary patterns in men (ages 25-49, 50+ and women (pre-menopause, post-menopause are related to femoral neck bone mineral density (BMD independently of other lifestyle variables, and whether this relationship is mediated by body mass index. Methods We performed an analysis of 1928 men and 4611 women participants in the Canadian Multicentre Osteoporosis Study, a randomly selected population-based longitudinal cohort. We determined dietary patterns based on the self-administered food frequency questionnaires in year 2 of the study (1997-99. Our primary outcome was BMD as measured by dual x-ray absorptiometry in year 5 of the study (2000-02. Results We identified two underlying dietary patterns using factor analysis and then derived factor scores. The first factor (nutrient dense was most strongly associated with intake of fruits, vegetables, and whole grains. The second factor (energy dense was most strongly associated with intake of soft drinks, potato chips and French fries, certain meats (hamburger, hot dog, lunch meat, bacon, and sausage, and certain desserts (doughnuts, chocolate, ice cream. The energy dense factor was associated with higher body mass index independent of other demographic and lifestyle factors, and body mass index was a strong independent predictor of BMD. Surprisingly, we did not find a similar positive association between diet and BMD. In fact, when adjusted for body mass index, each standard deviation increase in the energy dense score was associated with a BMD decrease of 0.009 (95% CI: 0.002, 0.016 g/cm2 for men 50+ years old and 0.004 (95% CI: 0.000, 0.008 g/cm2 for postmenopausal women. In contrast, for men 25-49 years old

  16. The bone mass density in men aged over 50 and its relation to the concentration of free and total testosterone in the blood serum

    International Nuclear Information System (INIS)

    Purzycka-Jazdon, A.; Lasek, W.; Serafin, Z.; Manysiak, S.

    2003-01-01

    As the mean length of life increases, osteoporosis affects a growing number of men and women, thus becoming an important medical and socioeconomic problem in many countries. Pathogenesis and the prevalence of the osteoporosis in women are well established, however, in men, they are still controversial. In this study, the bone mass density (BMD) of the lumbar spine was determined in 100 healthy men age 50-83, using quantitative computed tomography (QCT). Also, the total serum and free testosterone was measured. The mean BMD was 123.1I39.3 mg/cm 3 , and the values below a fracture threshold were noted in 39% of subjects. The mean concentration of total and free serum testosterone was 4.3I1.7 ng/ml and 6.2I3.7 pg/ml, respectively. There was a significant (p 3 , respectively). There was no correlation found between total testosterone and BMD. Results indicate that reduced bone mass density in males over 50 is as frequent as recently reported in females. Moreover, sex hormones seem to be related to osteoporosis development in men as well. (author)

  17. Biochemical markers for prediction of 4-year response in bone mass during bisphosphonate treatment for prevention of postmenopausal osteoporosis

    DEFF Research Database (Denmark)

    Ravn, Pernille; Thompson, Desmond E; Ross, Philip D

    2003-01-01

    measured at 6-month intervals. The correlation between 6-month change in uCTX and 4-year change in spine and hip bone mineral density (BMD) was r = -0.41 and r = -0.42, respectively (P r = -0.53 and r = -0.42 (uNTX), r = -0.46 and r = -0.......47 [total OC (ELISA)], and r = -0.43 and r = -0.41 [total OC (RIA)], all P

  18. Liver-derived IGF-I contributes to GH-dependent increases in lean mass and bone mineral density in mice with comparable levels of circulating GH.

    Science.gov (United States)

    Nordstrom, Sarah M; Tran, Jennifer L; Sos, Brandon C; Wagner, Kay-Uwe; Weiss, Ethan J

    2011-07-01

    The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.

  19. The relationship between objectively assessed physical activity and bone health in older adults differs by sex and is mediated by lean mass.

    Science.gov (United States)

    McMillan, L B; Aitken, D; Ebeling, P; Jones, G; Scott, D

    2018-03-12

    Relationships between objectively assessed free-living physical activity (PA) and changes in bone health over time are poorly understood in older adults. This study suggests these relationships are sex-specific and that body composition may influence the mechanical loading benefits of PA. To investigate associations of objectively assessed PA and bone health in community-dwelling older adults. This secondary analysis of a subset of the Tasmanian Older Adult Cohort study included participants with PA assessed utilising ActiGraph GT1M accelerometers over 7 days (N = 209 participants, 53% female; mean ± SD age 64.5 ± 7.2 years). Steps/day and PA intensity were estimated via established thresholds. Bone mineral content (BMC) was acquired at the total hip, lumbar spine, legs and whole body by DXA at baseline and approximately 2.2 years later. Relationships between PA and BMC were assessed by multivariable linear regression analyses adjusted for age, smoking status, height and total lean mass. Men with above-median total hip BMC completed significantly less steps per day, but there was no significant difference in PA intensity compared with those with below-median BMC. There were no significant differences in PA in women stratified by median BMC. In women, steps/day were positively associated with leg BMC (B = 0.178; P = 0.017), and sedentary behaviour was negatively associated with leg BMC (- 0.165; 0.016) at baseline. After adjustment for confounders including lean mass and height, higher sedentary behaviour at baseline was associated with declines in femoral neck BMC (- 0.286; 0.011) but also with increases in pelvic BMC (0.246; 0.030) in men and increases in total hip BMC (0.215; 0.032) in women, over 2.2 years. No other significant longitudinal associations were observed after adjustment for body composition. Associations of accelerometer-determined sedentary behaviour and PA with bone health in older adults differ by sex and anatomical

  20. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65).

    Science.gov (United States)

    Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P

    2016-01-01

    Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human

  1. The value of calcaneal bone mass measurement using a dual X-ray laser calscan device in risk screening for osteoporosis

    Directory of Open Access Journals (Sweden)

    Gulseren Kayalar

    2009-01-01

    Full Text Available OBJECTIVE: To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA. MATERIALS AND METHODS: A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score <-2.5 received a referral for DXA of the spine and hip. Besides dual energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. RESULTS: Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO, dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT, covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (p<0.05. A significant correlation was observed between the calcaneal dual energy X-ray laser T-score and age (r=-0.465, p=0.001, body mass index (BMI (r=0.223, p=0.001, number of live births (r=-0.229, p=0.001, breast feeding time (r=-0.064, p=0.001, and age at menarche (r=-0.050, p=0.008. The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001 and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001 at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001 and calcaneal

  2. Associations of dietary patterns with bone mass, muscle strength and balance in a cohort of Australian middle-aged women.

    Science.gov (United States)

    Wu, Feitong; Wills, Karen; Laslett, Laura L; Oldenburg, Brian; Jones, Graeme; Winzenberg, Tania

    2017-10-01

    Influences of dietary patterns on musculoskeletal health are poorly understood in middle-aged women. This cross-sectional analysis from a cohort of 347 women (aged 36-57 years) aimed to examine associations between dietary patterns and musculoskeletal health outcomes in middle-aged women. Diet was measured by the Cancer Council of Victoria FFQ. Total body bone mineral content (TB BMC), femoral neck and lumbar spine bone density (dual-energy X-ray absorptiometry), lower limbs muscle strength (LMS) and balance tests (timed up and go test, step test, functional reach test (FRT) and lateral reach test) were also measured. Exploratory factor analysis was used to identify dietary patterns and scores for each pattern generated using factor loadings with absolute values ≥0·20. Associations between food pattern scores and musculoskeletal outcomes were assessed using multivariable linear regression. Three dietary patterns were identified: 'Healthy' (high consumption of a plant-based diet - vegetables, legumes, fruit, tomatoes, nuts, snacks, garlic, whole grains and low intake of high-fat dairy products), 'high protein, high fat' (red meats, poultry, processed meats, potatoes, cruciferous and dark-yellow vegetables, fish, chips, spirits and high-fat dairy products) and 'Processed foods' (high intakes of meat pies, hamburgers, beer, sweets, fruit juice, processed meats, snacks, spirits, pizza and low intake of cruciferous vegetables). After adjustment for confounders, Healthy pattern was positively associated with LMS, whereas Processed foods pattern was inversely associated with TB BMC and FRT. The associations were not significant after accounting for multiple comparisons. There were no associations with any other outcomes. These results suggest that maintaining a healthy diet could contribute to bone acquisition, muscle strength and balance in adult life. However, while they provide some support for further investigating dietary strategies for prevention of age

  3. Urinary cadmium excretion is correlated with calcaneal bone mass i Japanese women living in an urban area

    International Nuclear Information System (INIS)

    Honda, Ryumon; Tsuritani, Ikiko; Noborisaka, Yuka; Suzuki, Hisa; Ishizaki, Masao; Yamada, Yuichi

    2003-01-01

    Nine hundred eight women aged 40-88 years living in a non-Cd-polluted area in Japan were analyzed for urinary cadmium (Cd) N-acetyl-β-D-glucosaminidase (NAG) activity, β 2 -microglobuli (B2MG) concentration, and for the stiffness index (STIFF) of calcaneal bone using an ultrasound method. The urinary Cd in the subjects, with a mean an range of 2.87 and 0.25-11.4 μg/g creatinine, respectively, showed significant correlation with NAG but not with B2MG. STIFF was significantly inversely correlated with urinary Cd, and the association remaine significant after adjusting for age, body weight, and menstrual status suggesting a significant effect of Cd on the bone loss in these subject without signs of Cd-induced kidney damage. A two-fold increase in urinary C was accompanied by a decrease in STIFF corresponding to a 1.7-year rise in age. These results emphasize the need for reassessment of the significance of Cd exposure in the general Japanese population

  4. Bone tumors

    International Nuclear Information System (INIS)

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  5. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index

    Directory of Open Access Journals (Sweden)

    Thomas Branly

    2018-02-01

    Full Text Available Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA, a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform, along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an

  6. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index.

    Science.gov (United States)

    Branly, Thomas; Contentin, Romain; Desancé, Mélanie; Jacquel, Thibaud; Bertoni, Lélia; Jacquet, Sandrine; Mallein-Gerin, Frédéric; Denoix, Jean-Marie; Audigié, Fabrice; Demoor, Magali; Galéra, Philippe

    2018-02-01

    Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs) from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform), along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1 : Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an index of the

  7. Functional microimaging. A hierarchical investigation of bone failure behavior

    International Nuclear Information System (INIS)

    Voide, Romain; Lenthe, G.Harry van; Stauber, Martin; Schneider, Philipp; Thurner, Philipp J.; Mueller, Ralph; Wyss, Peter; Stampanoni, Marco

    2008-01-01

    Biomechanical testing is the gold standard to determine bone competence, and has been used extensively. Direct mechanical testing provides detailed information on overall bone mechanical and material properties, but fails in revealing local properties such as local deformations and strains and does not permit quantification of fracture progression. Therefore, we incorporated several imaging methods in our mechanical setups to get a better insight into bone deformation and failure characteristics on various levels of structural organization. Our aim was to develop an integrative approach for hierarchical investigation of bone, working at different scales of resolution ranging from the whole bone to its ultrastructure. Inbred strains of mice make useful models to study bone properties. In this study, we concentrated on C57BL/6 (B6) and in C3H/He (C3H) mice, two strains known for their differences in bone phenotype. At the macroscopic level, we used high-resolution and high-speed cameras which allowed to visualize global failure behavior and fracture initiation with high temporal resolution. This image data proved especially important when dealing with small bones such as murine femora. At the microscopic level, bone microstructure, i.e. trabecular architecture and cortical porosity, are known to influence bone strength and failure mechanisms significantly. For this reason, we developed an image-guided failure assessment technique, also referred to as functional microimaging, allowing direct time-lapsed three-dimensional visualization and computation of local displacements and strains for better quantification of fracture initiation and progression. While the resolution of conventional desktop micro-computed tomography is typically around a few micrometers, computer tomography systems based on highly brilliant synchrotron radiation X-ray sources permit to explore the sub-micrometer world. This allowed, for the first time, to uncover fully nondestructively the 3D

  8. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Altan, Mehmet Fatih; Kanter, Mehmet; Donmez, Senayi; Kartal, Murat Emre; Buyukbas, Sadik

    2007-01-01

    Extracts of the seeds of Nigella sativa (NS), an annual herbaceous plant of the Ranunculaceae family, have been used for many years for therapeutic purposes, including their potential anti-diabetic properties. The aim of the present study was to test the hypothesis that combined treatment with NS and human parathyroid hormone (hPTH) is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, biomechanical behaviour and strength in insulin-dependent diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) at a single dose of 50mg/kg. The diabetic rats received NS (2ml/kg/day, i.p.), hPTH (6microg/kg/day, i.p.) or NS and hPTH combined for 4 weeks, starting 8 weeks after STZ injection. The beta-cells of the pancreatic islets of Langerhans were examined by immunohistochemical methods. In addition, bone sections of femora were processed for histomorphometry and biomechanical analysis. In diabetic rats, the beta-cells were essentially negative for insulin-immunoreactivity. NS treatment (alone or in combination with hPTH) significantly increased the area of insulin immunoreactive beta-cells in diabetic rats; however, hPTH treatment alone only led to a slightly increase in the insulin-immunoreactivity. These results suggest that NS might be used in a similar manner to insulin as a safe and effective therapy for diabetes and might be useful in the treatment of diabetic osteopenia.

  9. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  10. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    International Nuclear Information System (INIS)

    Sala, A.; Webber, C.E.; Morrison, J.; Beaumont, L.F.; Barr, R.D.

    2007-01-01

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  11. Physiologically-based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance

    Directory of Open Access Journals (Sweden)

    Kristin eDickschen

    2012-05-01

    Full Text Available Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+ mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6. It is widely accepted that CYP2D6 poor metabolizers (PM exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers (EM. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved.In this context, physiologically-based pharmacokinetic (PBPK-modeling provides a useful tool to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy.It has long been thought that only a minor percentage of endoxifen is formed via 4-hydroxytamoxifen. However, the current investigation supports very recently published data that postulates a contribution of 4-hydroxytamoxifen above 20 % to total endoxifen formation. The developed PBPK-model describes tamoxifen PK in rats and humans. Moreover, tamoxifen metabolism in dependence of CYP2D6 phenotype in populations of European female individuals is well described, thus providing a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity or co-treatment with CYP2D6 inhibitors.

  12. The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism.

    Science.gov (United States)

    Sodi, R; Hazell, M J; Durham, B H; Rees, C; Ranganath, L R; Fraser, W D

    2009-09-01

    There is increasing evidence suggesting that adiponectin plays a role in the regulation of bone metabolism. This was a cross-sectional study of 34 post-menopausal women with and 37 without osteoporosis. All subjects had body mass index (BMI), bone mineral density (BMD), total-, high molecular weight (HMW)-adiponectin and their ratio, osteoprotegerin (OPG), a marker of bone resorption (betaCTX) and formation (P1NP) measured. We observed a positive correlation between BMI and BMD (r=0.44, plean subjects but there was no difference between those with or without osteoporosis. There were significant negative correlations between HMW/total-adiponectin ratio and BMI (r=-0.27, p=0.030) and with OPG (r=-0.44, pproduction of OPG thereby affecting osteoclasts mediated bone resorption.

  13. Phenotypic H-Antigen Typing by Mass Spectrometry Combined with Genetic Typing of H Antigens, O Antigens, and Toxins by Whole-Genome Sequencing Enhances Identification of Escherichia coli Isolates.

    Science.gov (United States)

    Cheng, Keding; Chui, Huixia; Domish, Larissa; Sloan, Angela; Hernandez, Drexler; McCorrister, Stuart; Robinson, Alyssia; Walker, Matthew; Peterson, Lorea A M; Majcher, Miles; Ratnam, Sam; Haldane, David J M; Bekal, Sadjia; Wylie, John; Chui, Linda; Tyler, Shaun; Xu, Bianli; Reimer, Aleisha; Nadon, Celine; Knox, J David; Wang, Gehua

    2016-08-01

    Mass spectrometry-based phenotypic H-antigen typing (MS-H) combined with whole-genome-sequencing-based genetic identification of H antigens, O antigens, and toxins (WGS-HOT) was used to type 60 clinical Escherichia coli isolates, 43 of which were previously identified as nonmotile, H type undetermined, or O rough by serotyping or having shown discordant MS-H and serotyping results. Whole-genome sequencing confirmed that MS-H was able to provide more accurate data regarding H antigen expression than serotyping. Further, enhanced and more confident O antigen identification resulted from gene cluster based typing in combination with conventional typing based on the gene pair comprising wzx and wzy and that comprising wzm and wzt The O antigen was identified in 94.6% of the isolates when the two genetic O typing approaches (gene pair and gene cluster) were used in conjunction, in comparison to 78.6% when the gene pair database was used alone. In addition, 98.2% of the isolates showed the existence of genes for various toxins and/or virulence factors, among which verotoxins (Shiga toxin 1 and/or Shiga toxin 2) were 100% concordant with conventional PCR based testing results. With more applications of mass spectrometry and whole-genome sequencing in clinical microbiology laboratories, this combined phenotypic and genetic typing platform (MS-H plus WGS-HOT) should be ideal for pathogenic E. coli typing. Copyright © 2016 Cheng et al.

  14. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  15. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl

    2003-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  16. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl J

    2004-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  17. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl J

    2006-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  18. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl

    2002-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  19. Blood and Bones: The Influence of the Mass Media on Australian Primary School Children's Understandings of Genes and DNA

    Science.gov (United States)

    Donovan, Jenny; Venville, Grady

    2014-02-01

    Previous research showed that primary school children held several misconceptions about genetics of concern for their future lives. Included were beliefs that genes and DNA are separate substances, with genes causing family resemblance and DNA identifying suspects at crime scenes. Responses to this work `blamed' the mass media for these misunderstandings. This study aimed to determine whether that blame had any foundation by examining the media habits and conceptions about genes and DNA of Australian children. With little prior research considering the influence of entertainment mass media on children's academically relevant knowledge, this was an exploratory study with a mixed modes design. Data were collected by detailed media questionnaires and face-to-face interviews with 62 children aged 10-12 years, and subjected to content and thematic analysis. Specific mass media examples children reported using were examined for genetics content. Results indicate 5 h/day of media use, mostly television including crime shows, and that children perceived television to be their main source of information about genetics. Most children (89 %) knew DNA, 60 % knew genes, and more was known about uses of DNA outside the body such as crime solving or resolving family relationships than about its biological nature and function. Half believed DNA is only in blood and body parts used for forensics. These concepts paralleled the themes emerging from the media examples. The results indicate that the mass media is a pervasive teacher of children, and that fundamental concepts could be introduced earlier in schools to establish scientific concepts before misconceptions arise.

  20. Total body calcium by neutron activation analysis in normals and osteoporotic populations: a discriminator of significant bone mass loss

    International Nuclear Information System (INIS)

    Ott, S.M.; Murano, R.; Lewellen, T.K.; Nelp, W.B.; Chesnut, C.M.

    1983-01-01

    Measurements of total body calcium by neutron activation (TBC) in 94 normal individuals and 86 osteoporotic patients are reported. The ability of TBC to discriminate normal from osteoporotic females was evaluated with decision analysis. Bone mineral content (BMC) by single-photon absorptiometry was also measured. TBC was higher in males (range 826 to 1363 gm vs 537 to 1054 in females) and correlated with height in all normals. In females over age 55 there was a negative correlation with age. Thus, for normals an algorithm was derived to allow comparison between measured TBC and that predicted by sex, age, and height (TBCp). In the 28 normal females over age 55, the TBC was 764 +/- 115 gm vs. 616 +/- 90 in the osteoporotics. In 63 of the osteoporotic females an estimated height, from tibial length, was used to predict TBC. In normals the TBC/TBCp ratio was 1.00 +/- 0.12, whereas in osteoporotic females it was 0.80 +/- 0.12. A receiver operating characteristic curve showed better discrimination of osteoporosis with TBC/TBCp than with wrist BMC. By using Bayes' theorem, with a 25% prevalence of osteoporosis (estimate for postmenopausal women), the posttest probability of disease was 90% when the TBC/TBCp ratio was less than 0.84. The authors conclude that a low TBC/TBCp ratio is very helpful in determining osteoporosis

  1. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and